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Ryu and Takayanagi conjectured a formula for the entanglement (von Neumann) entropy of an arbitrary

spatial region in an arbitrary holographic field theory. The von Neumann entropy is a special case of a

more general class of entropies called Rényi entropies. Using Euclidean gravity, Fursaev computed the

entanglement Rényi entropies (EREs) of an arbitrary spatial region in an arbitrary holographic field

theory, and thereby derived the RT formula. We point out, however, that his EREs are incorrect, since his

putative saddle points do not in fact solve the Einstein equation. We remedy this situation in the case of

two-dimensional conformal field theories (CFTs), considering regions consisting of one or two intervals.

For a single interval, the EREs are known for a general CFT; we reproduce them using gravity. For two

intervals, the RT formula predicts a phase transition in the entanglement entropy as a function of their

separation, and that the mutual information between the intervals vanishes for separations larger than the

phase transition point. By computing EREs using gravity and CFT techniques, we find evidence

supporting both predictions. We also find evidence that large N symmetric product theories have the

same EREs as holographic ones.
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I. INTRODUCTION

The concept of holography originated as an idea about
quantum information, that the number of qubits that can be
stored in a region of space is fundamentally limited by its
surface area in Planck units. Modern holographic theories go
beyond a mere counting of states, and posit that the physics
governing certain spacetimes can be fully described by a
quantum field theory residing on its boundary. However, the
way that those qubits are organized remains unclear on both
sides of the correspondence. On one side, we do not yet
understand how the states are organized in quantum gravity;
on the other, despite an in-principle understanding of the state
space of quantum field theories, in practice we have to deal
with a strongly coupled theory with a large number of
degrees of freedom. And, of course, the map between the
two descriptions remains deeply mysterious.

A useful probe of physical information in quantum
systems is the entanglement entropy (EE). Here we imag-
ine decomposing a system into two subsystems, A, Ac, with
a corresponding decomposition of the Hilbert space H ¼
H A �H Ac . Given a density matrix � for the full system,
the reduced density matrix �A, which acts on H A, is
defined by tracing � overH Ac and represents the effective
density matrix for an observer who has access only to the
subsystem A. The EE for A is then the von Neumann
entropy of �A: SA � �trð�A ln�AÞ. A nonzero EE may
be due to the full system being in a mixed state, to infor-
mation about the state being lost by the inability to observe
the rest of the system, or to a combination of the two
effects. The degree of correlation (both classical and quan-
tum) between disjoint subsystems may be quantified by
their mutual information IA;B � SA þ SB � SA[B, which

puts an upper bound on correlators between operators in
A and in B [1].
In a quantum field theory, it is natural to consider sub-

systems that are spatial regions. Their EEs and mutual
informations then tell us about the spatial distribution and
correlations of quantum information in a given state.
Unfortunately, EEs in quantum field theories are notoriously
difficult to calculate, mainly because one does not have a
good way to represent the operator ln�A. On the other hand,
if the density matrix for the full system can be represented
by a path integral (as in the vacuum or a thermal ensemble,
for example), then both the reduced density matrix �A and
its positive integer powers �n

A can also be represented in a

fairly simple way by path integrals. If those path integrals
can be computed explicitly for all n, then one can obtain the
EE indirectly as follows. Defining the entanglement Rényi

entropy (ERE) SðnÞA � ðlntr�n
AÞ=ð1� nÞ for n > 1, one ana-

lytically continues SðnÞA in n and takes the limit n ! 1 to

obtain the EE. This procedure is called the replica trick.
Aside from being easier to calculate than the EE, the EREs
are of interest in their own right, as a more refined charac-
terization of the reduced density matrix �A. In fact, knowing

SðnÞA for all n is equivalent to knowing the full eigenvalue

distribution of �A. In Sec. II, we review the basic properties
of entanglement and Rényi entropies.
Even given the replica trick, exact results for the EE in

field theories are known only in very simple cases, such as
a single interval in the vacuum of an arbitrary two-
dimensional conformal field theory [2]. For two disjoint
intervals, the EE, and hence mutual information, remain
unknown even for a theory as simple as that of a compact
free scalar [3]. It might therefore seem hopeless to dream
of knowing the EE in a strongly coupled, large N field
theory. Remarkably, however, Ryu and Takayanagi (RT)*mph@brandeis.edu
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proposed a simple, elegant, and universal formula for the
EE of an arbitrary spatial region in an arbitrary holographic
field theory [4,5]. Their formula, which applies to any state
described by a static classical geometry, says simply that
the EE equals one-quarter the area in Planck units of the
minimal surface in the bulk ending on the boundary of the
region A. If correct, the RT formula is not only very useful
as a calculational tool, but also a significant hint regarding
quantum information in holographic theories, and probably
in quantum gravity more generally (see for example [6]).

The RT formula passes several nontrivial checks. For
example, it correctly reproduces the EE for a single inter-
val in a two-dimensional CFT. A general derivation, using
the replica trick, was offered by Fursaev [7]. He found that

the ERE SðnÞA equaled one-quarter the minimal-surface area,

independent of n. The analytic continuation in n was thus
trivial, giving agreement between the resulting value of SA
and the RT formula. In computing the ERE, Fursaev per-
formed the necessary path integrals using Euclidean quan-
tum gravity. Unfortunately, as we show, the bulk
geometries that he used to evaluate the partition function
are not actually saddle points of the gravitational action. As
a result, the ERE he derived is incorrect, as we can see by
comparing it to the known exact result in the case of a
single interval in a two-dimensional CFT. We show how
the latter result can be reproduced using the correct saddle
point action. The RT formula and Fursaev’s proof are
reviewed and discussed in Sec. III.

The question thus arises of whether, in cases where the
correct value is not already known, we can compute the
ERE in a holographic theory, both for its own sake and in
order to confirm or refute the RT conjecture. Unfortunately,
to do so in complete generality, as Fursaev attempted,
appears to be quite difficult. Therefore, in Sec. IV, we focus
on a simple but nontrivial case: two disjoint intervals in a
two-dimensional CFT. The RT formula predicts a rather
interesting phase transition for the mutual information
between the two intervals as a function of their separation.
In particular, for separations larger than a certain critical
value, the mutual information vanishes, implying a decou-
pling between the degrees of freedom in the two regions.
(This behavior of the mutual information is a completely
general prediction of the RT formula, applying essentially
to any two regions in any state of any holographic theory. It
is closely analogous to the factorization property for dis-
connected Wilson loops [8].)

The ERE for two disjoint intervals can be expressed in
terms of the partition function on a certain Riemann surface
of genus n� 1. For n ¼ 2, we thus need the torus partition
function, which fortunately is known for a general holo-
graphic CFT [9]. Indeed, as we show, it exhibits a phase
transition at precisely the same separation as that predicted
for the EE by the RT formula. For higher values of n, while
the partition function is not known explicitly, we show using
symmetry arguments that the ERE continues to have a phase

transition at the same separation. This strongly suggests that
the same will hold for n ¼ 1, confirming this prediction of
the RT formula.
The fact that we can compute the ERE explicitly only for

n ¼ 2 precludes analytically continuing it to n ¼ 1, to
directly confirm or refute the full EE predicted by the RT
formula. We therefore pursue a different strategy. Using
the operator product expansion (OPE), we expand the
ERE, for any given n, in powers of the inverse separation
between the intervals. The coefficient of any given power
can be computed explicitly for all n using formulas for
conformal blocks, and analytically continued to n ¼ 1. We
carry this out for a number of coefficients, finding that,
thanks to a rather intricate pattern of cancellations, in each
case the continuation to n ¼ 1 vanishes, precisely as pre-
dicted by the RT formula.
As a by-product of our analysis of the ERE for two

disjoint intervals, we find that the result for certain non-
holographic CFTs with large central charges, such as large
N symmetric product theories, is precisely the same as for
holographic ones. It seems that there is some form of large
c universality operating here, with a large class of such
CFTs having identical EREs. This possible feature of the
ERE deserves further study.
We conclude in Sec. V with a list of open questions and

possible generalizations of our work, and some remarks
concerning our current understanding of the RT formula.
An Appendix contains some calculations in symmetric

product theories whose results are used in the main text.

II. ENTANGLEMENT RÉNYI ENTROPY: REVIEW

In Subsection II A we briefly motivate, define, and state
(without proof) the important properties of the entangle-
ment Rényi entropy and mutual Rényi information. In
Subsection II B, we illustrate these ideas in the simple
example of two subsystems that are weakly coupled to
each other. In Subsection II C we then briefly review the
replica trick for computing the entanglement Rényi en-
tropy, and in Subsection II D apply it to the simplest field
theory example, a single interval in a two-dimensional
conformal field theory. For more details, we refer the
reader to the books [10,11] and the review [12]; the latter
provides a comprehensive introduction to Rényi and en-
tanglement entropies in two-dimensional CFTs.

A. Basic definitions and properties

Given a density matrix � and a positive real number
� � 1, the Rényi entropy is defined as1

1Writing e�Sð�Þ ¼ h���1i1=ð��1Þ
� , we see that the definition of

the Rényi entropy is similar to that of the Lp norm of a positive
function, kfkp � ðR fpÞ1=p. The difference is that, whereas in
the Lp norm we evaluate the integral with respect to a fixed
measure, in the Rényi entropy we evaluate it with respect to the
very density matrix whose entropy we are computing.
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Sð�Þ � 1

1� �
lntr��: (2.1)

At � ¼ 1 the Rényi entropy is defined by taking the limit,
and equals the von Neumann entropy:

S ¼ Sð1Þ � lim
�!1

Sð�Þ ¼ �trð� ln�Þ: (2.2)

Two other interesting limits are lim�!0S
ð�Þ ¼

ln dimH occupied, where H occupied is the image of �, and

lim�!1Sð�Þ ¼ � ln�max, called the min-entropy, where
�max is the largest eigenvalue of �. The following properties

ofSð�Þ are straightforward to prove: (1)Sð�Þ � 0, with equal-

ity if and only if� represents a pure state; (2) Sð�Þ is constant
if and only if � is proportional to the identity on H occupied,

and is otherwise a decreasing function of �; (3) for �> 1 it

satisfies Sð�Þ � �ð�� 1Þ�1Sð1Þ.
If the system contains a subsystem A—for example, in a

field theory, A could be a spatial region2—then the Hilbert
spaceH can be expressed as the tensor product of Hilbert
spaces corresponding to A and to its complement Ac:H ¼
H A �H Ac . Let �A � trH Ac

� be the reduced density

matrix, defined in H A, obtained by tracing � over H Ac ;
this is the effective density matrix for an observer who has

access only to A. Its Rényi entropy Sð�ÞA ¼ ð1� �Þ�1 �
lntrA�

�
A is called the entanglement Rényi entropy (ERE) of

A, with the special case SA � Sð1ÞA simply called the en-
tanglement entropy (EE). It can be shown that, if the full

theory is in a pure state, then Sð�ÞA ¼ Sð�ÞAc .
The EE (but not the ERE for � � 1) satisfies an impor-

tant property called strong subadditivity [13,14], namely,
for any two subsystems (or spatial regions) C and D,

SC þ SD � SC[D þ SC\D; SC þ SD � SCnD þ SDnC:
(2.3)

Strong subadditivity in fact characterizes EE, in the sense
that any measure of entanglement that satisfies (2.3) for all
subsystems C and D (as well as certain basic reasonable-
ness requirements) must equal the EE [15,16]. As a special
case, strong subadditivity implies subadditivity, namely,
for disjoint subsystems A and B,3

jSA � SBj � SA[B � SA þ SB: (2.4)

The second inequality is saturated if and only if the density
matrix �A[B factorizes: �A[B ¼ �A � �B. Motivated partly
by this fact, the mutual information (MI) is defined by

IA;B ¼ SA þ SB � SA[B; (2.5)

which quantifies the extent to which the degrees of freedom
of A and B are correlated with each other, including both
quantum entanglement and classical correlations. For ex-
ample, the MI puts an upper bound on the correlator
between any operatorAA in subsystem A and any operator
AB in subsystem B [1]:

ðhAAABi � hAAihABiÞ2
2hA2

AihA2
Bi

� IA;B: (2.6)

As a consequence of strong subadditivity, the mutual in-
formation is monotone under restriction: if B0 � B then
IA;B0 � IA;B.
The natural generalization of the mutual information

defines the mutual Rènyi information (MRI):

Ið�ÞA;B � Sð�ÞA þ Sð�ÞB � Sð�ÞA[B: (2.7)

Unlike the MI, the MRI is not necessarily positive.
However, it is nonzero only when �A[B � �A � �B, and
in this sense still quantifies the extent of correlation be-
tween A and B.
Another reason to study the MRI (including the MI) is

that, when we are considering a field theory, it is universal,
whereas the ERE (including the EE) is cutoff- or regulator-

dependent. Specifically, when A is a spatial region, Sð�ÞA

usually suffers from an ultraviolet divergence proportional
to the area of the boundary of A. However, if the two
regions A and B are disjoint and mutually disconnected,
then those divergences cancel in the MRI. Since the UV
regulator generally violates conformal invariance, it fol-
lows that in conformal field theories the MRI is generally
conformally invariant while the ERE is not. Also, in the
CFT case the ERE suffers from an infrared divergence
when one of the regions is infinite in size, but this cancels
in the MRI (although not when both A and B are infinite).
We will see explicit examples of these statements through-
out this paper.
In the field theory context, the restriction monotonicity

of the MI implies that the bound (2.6) will be strongest
when the operators AA, AB ‘‘cover’’ the regions A, B,
respectively. In particular, the bound is trivially satisfied
for local operators, since then the denominator on the left-
hand side is generally divergent.4

B. Perturbative MRI

Before tackling the computation of entanglement entro-
pies in field theories, as a warm-up we first consider the

2By region we technically mean codimension zero submani-
fold (possibly with boundary). In this paper we will not consider
other types of sets, such as single points, fractals, etc.

3The ERE satisfies jSð�ÞA � Sð�ÞB j � Sð�ÞA[B for classical distribu-
tions, but not in general for quantum density matrices.

4One could worry about the case where the field theory has a
UV cutoff—so the denominator on the left-hand side of (2.6) is
not strictly infinite—but the MI vanishes exactly. In this case the
bound is satisfied for a different reason, namely, that the density
matrix factorizes, so all correlators factorize and the numerator
vanishes. As far as we know, such a situation can only occur if
the space where the field theory lives is disconnected. We thank
M. van Raamsdonk for pointing out this possibility.
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perturbative computation for subsystems that are weakly
coupled to each other. We will see that in this case the
� � 1 MRI between the subsystems is parametrically
larger than the MI, a result that foreshadows the results
of Sec. IV concerning holographic systems.

We begin by considering a single system, and the effect
on its Rényi entropy of a small perturbation to its density
matrix:

� ¼ �ð0Þ þ ��ð1Þ; (2.8)

where tr�ð0Þ ¼ 1, tr�ð1Þ ¼ 0, and � is a small parameter. To

first order in � we have

Sð�Þ ¼ 1

1� �
lntr��

ð0Þ þ �
�

1� �

trð�ð1Þ���1
ð0Þ Þ

tr��
ð0Þ

þOð�2Þ

(2.9)

S ¼ �trð�ð0Þ ln�ð0ÞÞ � � trð�ð1Þ ln�ð0ÞÞ þOð�2Þ: (2.10)

Now suppose our system is composed of two subsys-
tems, and the unperturbed density matrix factorizes:

�ð0Þ ¼ �̂A � �̂B: (2.11)

(For example, A and B could represent distinct regions of
momentum space, and � the coupling constant, in a
weakly-coupled field theory.) At zeroth order in � the
MRI of course vanishes. To first order we have

Ið�ÞA;B ¼ �
�

�� 1
tr

�
�ð1Þ

�
�̂��1
A

tr�̂�
A

� IB þ IA � �̂��1
B

tr�̂�
B

� �̂��1
A

tr�̂�
A

� �̂��1
B

tr�̂�
B

��
þOð�2Þ: (2.12)

For � � 1, the operator in the inner parentheses is propor-
tional to ð�� 1Þ2. Hence, to first order in �, the MI
vanishes:

IA;B ¼ Oð�2Þ: (2.13)

It can be shown that the order �2 term generically does not
vanish. Note that the left-hand side of the inequality (2.6) is
at most of order �2, so it is reasonable that the right-hand
side would be of the same order.

C. Replica trick

Unfortunately, in practice there are very few known
methods for computing EREs (or EEs) in field theories.
One of the most useful is the replica trick, which we will

review below, that allows one to compute the ERE SðnÞ for
integer n > 1 [2]. In favorable circumstances a simple

analytic form for Sð�Þ for general real � can be found
which fits those data points, and from this form the EE
can be read off by setting � ¼ 1.5 It is important to say at
the outset that in proceeding this way we are merely

presuming to have guessed the ERE Sð�Þ correctly; first,
nothing guarantees (in an infinite-dimensional Hilbert
space) that the ERE is analytic, and, second, the values
of a function on a countable infinite set (in this case, the
integers larger than 1) are not sufficient to fix a unique
analytic continuation. (There exist analytic functions, such
as ð1� �Þ�1 sin��, that vanish for all integer �> 1 but
not elsewhere, including at � ¼ 1.) Having stated this
caveat, for the rest of the paper we will assume that all
EREs we consider are indeed analytic functions of �. We
will find nothing inconsistent with this assumption.
The replica trick applies when the theory is in a state,

such as the vacuum or a thermal state, whose partition
function can be obtained by a path integral over some
Euclidean spacetime E (possibly with some operator in-
sertions, which for the purposes of this discussion we will
consider to be part of E). Let A be a spatial region, and En

the n-sheeted cover of E with the sheets connected along
branch cuts placed at A on a constant Euclidean-time
surface. Then trA�

n
A ¼ Zn=Z

n
1 , where Zn is the partition

function of the theory on En (and, in particular, Z1 is the
partition function for the original theory).6 Hence we have
(for n > 1)

SðnÞA ¼ 1

1� n
ln

�
Zn

Zn
1

�
: (2.14)

To be more concrete, let us further specialize to a two-
dimensional conformal field theory C,7 and let A be
the union of N disjoint intervals ½ui; vi	, where ui < vi <
uiþ1. Then we can rewrite the expression (2.14) in terms of
correlators of twist operators in the symmetric product
theory Cn=Sn (or equivalently Cn=Zn), computed on E:

5Throughout this paper � will lie in the interval ½0;1	, while n
will be a positive integer.

6If the theory contains fermions then one needs to specify their
boundary conditions across the constant Euclidean-time surface
where the sheets are sewn together, which we will call S. The
original partition function Z1 is computed with a sign flip on the
fermionic fields across S. More generally, Zn is computed with a
flip on S \ Ac on each sheet of En, along with one on S \ A
where the nth sheet connects to the first sheet (but not on the
other n� 1 copies of S \ A). Hence a curve that winds around a
branch point n times, returning to the same point on En, crosses
nþ 1 sign flips. The resulting overall flip for even n is part of the
definition of the twist operators �1 and ��1 of the next para-
graph. When Zn is evaluated by passing to a coordinate system
that is single-valued on En, this overall flip is canceled by the
branch cut in the coordinate transformation for the fermionic
field. (For example, in complex coordinates if z is a local
coordinate on E with the branch point at z ¼ 0, and t ¼ z1=n

is a single-valued local coordinate on En, then c t ¼ðdz=dtÞ1=2c z ¼ n�1=2tð1�nÞ=2c z. For even n the factor tðn�1Þ=2
has a branch cut with a sign flip.) Hence there is no operator
insertion in the new coordinate system. However, there may still
be sign flips around noncontractible cycles. (See, for example,
the case of the torus in footnote 14 below.)

7All CFTs will be assumed compact, unitary, and modular-
invariant in this paper.
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SðnÞA ¼ 1

1� n
lnh��

1ðu1Þ���1ðv1Þ . . .��
1ðuNÞ���1ðvNÞi:

(2.15)

The correlator of twist operators is divergent, due to the
singular geometry of En at the branch point. It can be
regularized by regularizing each twist operator separately;
hence the notation ��

1 and ���1, where � is a UV cutoff
length, for the regularized twist operators [17].

D. Single interval in a CFT

As an example of the application of (2.15), the ERE for a
single interval, in the vacuum, is

SðnÞ½u;v	 ¼
1

1� n
lnh��

1ðuÞ���1ðvÞi

¼ c

6

�
1þ 1

n

�
ln

�
v� u

�

�
þ cn; (2.16)

where c is the central charge of C and cn is a scheme-
dependent quantity. Here we used the fact that the twist
operators have scaling dimension

d� ¼ c

12

�
n� 1

n

�
: (2.17)

The (simplest) analytic continuation of (2.16) to noninteger
� is8

Sð�Þ½u;v	 ¼
c

6

�
1þ 1

�

�
ln

�
v� u

�

�
þ c�; (2.20)

which yields the EE [2]

S½u;v	 ¼ c

3
ln

�
v� u

�

�
þ c1: (2.21)

Note that Sð�Þ½u;v	 indeed satisfies the properties (1), (2), (3)

mentioned below Eq. (2.2).
It is also possible to obtain the result (2.16) (and thereby

derive the scaling dimension (2.17)) by computing Zn and
applying (2.14). The computation of Zn is done as follows
[17]. We are in the vacuum, so the Euclidean spacetime E
is simply the plane, to which we add a point at infinity to
make it topologically a sphere. The multisheeted surface
En is then also topologically a sphere. AWeyl transforma-
tion maps the metric ds2 on En to a fiducial metric dŝ2 ¼
e��ds2 on the sphere. We then have Zn ¼ eSLẐ, where Ẑ is
the partition function of C on the sphere with the fiducial
metric, and SL is the Liouville action:

SL ¼ c

96�

Z
ĝ1=2

�
ĝ�	@��@	�þ 2R̂�

�
(2.22)

(which depends on C only through its central charge). For
n > 1 the metric on En has a conical singularity at each
branch point u, v, so the Liouville action is divergent. The
divergence can be regulated by replacing a disc of radius �
about each branch point with a smooth metric, which
defines the regularized twist operators ��
1.

III. HOLOGRAPHIC ENTANGLEMENT
ENTROPIES

A. Ryu-Takayanagi formula

In this subsection we will provide a brief summary of
Ryu and Takayanagi’s proposal for the entanglement en-
tropy (EE) in field theories with holographic duals [4,5],
along with some of the evidence supporting it. A more
complete review can be found in [19].
The Ryu-Takayanagi (RT) conjecture is a proposed for-

mula for the EE of a given spatial region A in certain states
of holographic field theories whose dual gravitational the-
ory is classical Einstein gravity (possibly with matter).
Specifically, the proposal concerns states that are described
in the dual theory by static classical solutions; this in-
cludes, for example, the vacuum and thermal states.9 We
work in a fixed constant-time (i.e. timelike-Killing-field
orthogonal) slice of the bulk. The conjecture states that

SA ¼ areaðmAÞ
4GN

; (3.1)

where mA is the minimal-area surface in the bulk that is
homologous to A, i.e. such that there exists a region rA with
@rA ¼ A [mA. (We use the term ‘‘homologous’’ loosely,
given that A is not generally closed. This topological
condition was originally suggested by Fursaev [7], and
plays a crucial role in several checks of the proposal.)
The area is evaluated with respect to the Einstein-frame
metric.

8It is interesting to ask what eigenvalue distribution for �½u;v	
gives rise to the �-dependence Sð�Þ½u;v	 ¼ ð1þ 1=�ÞC seen in
(2.20) (neglecting the subleading and scheme-dependent quan-
tity c�). This question can be answered by defining a fictional
‘‘Hamiltonian’’ Ĥ � � ln�½u;v	 acting on H ½u;v	. Then Sð�Þ½u;v	 is
related to the free energy of Ĥ at the temperature ��1:

F ¼ � 1

�
lntre��Ĥ ¼

�
1� 1

�

�
Sð�ÞA ¼

�
1� 1

�2

�
C: (2.18)

(The first two equalities apply to the Rényi entropy of any
system.) The density of states that gives rise to this temperature
dependence for the free energy is easily found, in the saddle
point approximation, by performing a Legendre transform:

�ðÊÞ ¼
�
0; Ê < C
expð2C1=2ðÊ� CÞ1=2Þ; Ê > C

; (2.19)

where Ê is the eigenvalue of Ĥ. (See [18] or [12] for the form of
the full inverse Laplace transform.) It is interesting that (up to a
shift of Ê by C) �ðÊÞ has the same form as the Cardy formula for
the asymptotic density of states in a CFTon a circle. Note that we
have not determined which physical observable Ĥ represents—it
is not necessarily related to a physical energy.

9Possible generalizations to time-dependent states were pro-
posed in [20].
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An interesting question, assuming the RT formula is
valid, is how it gets corrected by quantum effects and by
higher-derivative (e.g. �0) corrections to the classical ac-
tion in the bulk. Quantum effects presumably lead to GN

corrections to (3.1) (starting at order G0
N), although a

specific form has not been proposed. In the presence of
higher-derivative corrections to the classical bulk action, it
is expected, based on consistency with black-hole entropy
(discussed below), that in the formula (3.1) the area is
replaced by Wald’s black-hole entropy formula [21] (or
at least some functional that coincides with it on horizons).

The RT proposal passes several basic checks. For ex-
ample, if A is the entire boundary, then SA should simply be
the statistical entropy of the state. Indeed, according to the
RT proposal we should take mA to be the minimal surface
in the bulk that is homologous to the boundary; this will
generally be the horizon, if there is one, giving agreement
with the Bekenstein-Hawking entropy. If there is no hori-
zon, then the boundary is homologically trivial in the bulk
(i.e. the topological boundary of the bulk is precisely the
boundary where the field theory lives); hence the minimal
surface is the empty set, giving SA ¼ 0.10 (Again, this is
the order G�1

N entropy—the RT formula does not capture
the entropy due, for example, to a gas of gravitons, which is
of order G0

N.) Furthermore, when the total entropy is zero
(or of order G0

N), then if we instead take A to be a subset of
the boundary, we expect from (2.4) that SA ¼ SAc . Indeed,
in this case the entire boundary is homologically trivial
in the bulk, so A and Ac are homologous, implying
mA ¼ mAc .

Another important check on the RT proposal is that it
satisfies the strong subadditivity (SSA) property (2.3) for
any regions C and D, as can be shown by a simple geo-
metrical argument [23]. (Interestingly, the proof of SSA
based on the RT formula is far simpler than the general
proof.) Since, as mentioned in Subsection II A, SSA char-
acterizes the EE, this is quite strong evidence in favor of
the RT formula. (However, it is not sufficient to prove its
correctness, since it only shows that (2.3) is satisfied for
subsystems corresponding to geometrical regions, whereas
for the characterization proof one needs it to hold for all

subsystems.) The proof extends trivially to the inclusion of
higher-derivative corrections, as long as they are extensive.
As a final check, let us see how the RT formula repro-

duces the EE (2.21) of a single interval ½u; v	, in the
vacuum of a two-dimensional CFT. The vacuum is de-
scribed holographically by AdS3, whose metric on a
constant-time slice is

ds2 ¼ ‘2AdS
z2

ðdz2 þ dy2Þ; (3.2)

here y is the coordinate along the boundary and z is the
radial coordinate, with the boundary being at z ¼ 0. We
employ a simple UV cutoff in which we shift the boundary
to z ¼ �. The minimal-surface m½u;v	 is a geodesic con-

necting the points on the boundary ðy; zÞ ¼ ðu; �Þ; ðv; �Þ,
which is an arc of a circle (almost a semicircle) with center
ððuþ vÞ=2; 0Þ. Applying (3.1) and using the standard holo-
graphic relation ‘AdS=GN ¼ 2c=3, one finds [4,5]

S½u;v	 ¼ ‘AdS
2GN

ln

�
v� u

�

�
¼ c

3
ln

�
v� u

�

�
; (3.3)

matching (2.21). (In this scheme, the finite part c1 van-
ishes.) In higher dimensional CFTs, although one does not
have exact formulas for the EEs even of simple regions, the
leading UV divergence is known and matches that pre-
dicted by the RT formula [4,5].
For a time it was believed that the RT formula should

only apply to connected regions. (See, for example, the
paper [24].) The reason was that, when applied to the union
of two intervals (a case that will be considered in detail in
the next section), it disagreed with a calculation by
Calabrese and Cardy [25] which (like the formula (2.21)
for a single interval) was supposed to be valid in any two-
dimensional CFT. However, those same authors have since
shown that their original calculation was incorrect. At
present, there is no reason to believe that the RT formula,
if it is valid at all, would not apply equally well to con-
nected and to disconnected regions. For example, all the
checks discussed above apply to both cases (including the
last one, which can be considered a computation of the EE
of the disconnected region ð�1; u	 [ ½v;1Þ).
When applied to a disconnected region, the RT formula

makes a fascinating prediction for the mutual information
(MI) between its components, similar to the phase transi-
tion for disconnected Wilson loops found by Gross and
Ooguri [8]. For simplicity, let us consider two disjoint and
mutually disconnected regions A, B. Each has a corre-
sponding minimal-surface mA, mB and region rA, rB. (We
assume the generic situation that rA, rB are disjoint
and mutually disconnected.) When we consider the region
A [ B, the disconnected surface mA [mB is topologically
allowed and locally minimal. Assuming that the full bulk
spacetime is itself connected, surfaces will also exist that
connect A and B. However, if the separation between A and
B is sufficiently large compared to their sizes (and any

10Since we are considering static spacetimes, any black holes in
the spacetime should be eternal, so the maximally extended
spacetime may include other, topologically disconnected
boundaries. Consider, for example, the maximally extended
spacetime of the AdS-Schwarzschild black hole, whose bound-
ary has two connected components. It is believed [22] that the
field theory defined on both boundaries represents the thermo-
field double of the field theory defined on only one boundary. In
this picture, the black-hole spacetime, which represents a ther-
mal and therefore mixed state in the original field theory,
represents a pure state in the thermofield double. This result is
faithfully reproduced by the RT prescription; the full boundary
(including both components) is homologically trivial in the bulk,
giving SA ¼ 0.
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other scales defined in the theory or state), then mA [mB

will necessarily be the globally minimal surface. Then we
have SA[B ¼ SA þ SB, so the MI IA;B vanishes. More

precisely, IA;B is of order G0
N, rather than G�1

N .11 This

implies that, from a quantum information point of view,
the two regions are approximately decoupled from each
other. (See, for example, the bound (2.6) on correlators
between A and B. Note however that this bound does not
give us new information about correlators of local opera-
tors, for which the left-hand side is always of order G0

N.)
This prediction is striking in its generality, applying as it
does to all holographic theories. (In Sec. IV we will find
evidence that in fact it applies even more generally, to a
large class of large N field theories.) If we then imagine
bringing A and B closer to each other, then it may happen
that, at some critical separation, the minimal surface will
switch from mA [mB to one that connects @A and @B (see,
for example, Fig. 1). In this case, the MI will (in the
thermodynamic/classical limit GN ! 0) undergo a first-
order phase transition; it will become nonzero, with a
continuous value but discontinuous first derivative as a
function of the separation between A and B. Section IV
will be devoted to a detailed study of these phenomena in
the simplest example, namely, two intervals in the vacuum
of a two-dimensional CFT.

B. Fursaev’s ERE calculation

In the paper [7], Fursaev gave a derivation, based on the
replica trick, of the RT formula. In this subsection, we will
briefly summarize his argument, and then point out a flaw
that results in an incorrect value for the entanglement
Rényi entropy (ERE).

In our sketch of Fursaev’s argument, for simplicity we
will take the bulk action to be pure Einstein gravity; matter
fields and higher-derivative (e.g. �0) corrections are
straightforwardly incorporated, as he discusses. We will
also assume that the ultraviolet divergence in the field
theory is cut off in some manner whose details will not
concern us. Fursaev’s starting point is (2.14), where Zn is

the partition function on the n-sheeted Euclidean space-
time En. Recall that, if A is the spatial region whose EE we
are computing, then the sheets of En are connected by a
branch cut along A on a constant-time slice. In a holo-
graphic theory, this partition function is given by the
gravitational path integral over Euclidean geometries
whose conformal boundary is En. In the classical limit,
this path integral goes over to its saddle point approxima-
tion e�Smin , where Smin is the minimal value of the
Euclidean Einstein-Hilbert action among extrema obeying
the boundary conditions. Fursaev constructs a set of ge-
ometries with boundary En, then minimizes the Euclidean
action within that set. He takes as given the bulk Euclidean
spacetime ~E representing the original state of the system;
its boundary is E and its Euclidean action is � lnZ1. He
takes n copies of ~E and connects them along a branch cut
rA, which is a spatial region in ~E lying in the same
constant-time slice as A. In order for this n-sheeted bulk
geometry to have boundary En, the part of the boundary of
rA that lies in E must coincide with A (i.e. @rA \ E ¼ A);
apart from this condition, the choice of rA is at this point
arbitrary. The branch ‘‘point’’ is mA, the rest of the bound-
ary of rA (mA ¼ @rA n A and @rA ¼ A [mA). He now
evaluates the Euclidean Einstein-Hilbert action for this
geometry. There are two contributions. First, the geometry
is made up of n copies of ~E, so there is a contribution
�n lnZ1, which is independent of the choice of rA. In
addition, the Ricci scalar has a delta function along the
branch ‘‘point’’ mA, which is codimension 2 and hosts a
conical singularity with excess angle 2�ðn� 1Þ. It there-
fore contributes a term ðn� 1ÞareaðmAÞ=ð4GNÞ to the ac-
tion. Minimizing this action over all possible choices of rA,
he obtains the minimal-surface mA, and (from (2.14)) the
ERE

SðnÞA ¼ areaðmAÞ
4GN

: (3.4)

Since there is no n dependence, the analytic continuation is

particularly simple: Sð�ÞA ¼ areaðmAÞ=4GN. Finally, setting

� ¼ 1, he obtains the RT formula (3.1).
The problem with this derivation is that the action

has been extremized only with respect to a subset of
the degrees of freedom in the metric, namely, the choice

FIG. 1 (color online). The two locally minimal surfaces for the boundary region ½u1; v1	 [ ½u2; v2	. The global minimum is the one
on the left is when x < 1=2, and the one on right when x > 1=2, where x is the cross-ratio defined in (4.5).

11A closely related phenomenon, in which the A and B are held
fixed but the bulk spacetime is deformed, was discussed in the
paper [6].
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of rA. The resulting field configuration is therefore not
guaranteed to be a true saddle point, and in fact it does
not solve the Einstein equation: the Einstein tensor has a
delta function supported on mA due to the conical singu-
larity, with no corresponding source.

We can confirm that the ERE (3.4) is incorrect by
comparing it to the exact result in a case where the latter
is known. For example, when A is a single interval in the
vacuum of a two-dimensional CFT, the exact ERE (2.16)
depends on n (by the factor 1þ 1=n), whereas the Fursaev
result (3.4) is independent of n. What is the true saddle
point in this case? The Euclidean space E is a plane, and
the corresponding bulk geometry ~E is hyperbolic 3-space
H3 (a.k.a. Euclidean AdS3). The saddle point correspond-
ing to the n-sheeted cover En is alsoH

3. The easiest way to
see this is to add a point at infinity to E to make it a sphere;
then its n-sheeted cover En is also a sphere, so the corre-
sponding bulk geometry isH3. This geometry is smooth, in
contrast to Fursaev’s, which is n copies of H3 glued
together in such a way as to create a conical singularity
along the geodesic connecting the endpoints of A. Given
that the bulk geometry is H3 for all n, why does its action
depend on n? The bulk action is divergent due to the
infinite volume near the boundary; while the full bulk
geometry is H3 for any n, the cutoff geometry depends
on n. (The full geometry depends only on the Weyl class of
the boundary metric, which is the same for all n, since the
sphere admits a unique Weyl class. On the other hand, the
cutoff geometry is sensitive to the actual boundary metric.
This is the holographic manifestation of the Weyl anomaly
[26].) The n dependence can most easily be calculated by
performing a Weyl transformation to put the metric on En

into a standard form and taking into the account the result-
ing change in the partition function due to the Liouville
action, as described at the end of Subsection II D,
or equivalently by the holographic renormalization
procedure [26].

It is worth noting that the true H3 saddle point with
boundary En can be obtained topologically by gluing n
copies of ~E ¼ H3 together in precisely the manner de-
scribed by Fursaev. This will continue to be the case in
the more complicated examples we will study in the next
section, suggesting that, while it carries the wrong metric,
Fursaev’s construction may be topologically correct in
general. This would explain why the topological condition
on the minimal-surface mA that he suggested—that mA

should be homologous to A—appears to be correct.
Finally, it is intriguing that, while Fursaev’s value (3.4)

for the ERE is incorrect for n > 1, it somehow manages to
give the right answer for the EE (n ¼ 1), assuming that the
RT conjecture holds. We can only speculate that, if there is
some sense in which the spacetimes En and their bulk duals
can be defined for noninteger values of n, then his con-
struction may be correct ‘‘at linear order’’ in a neighbor-
hood of n ¼ 1

IV. MUTUAL RÉNYI INFORMATION
BETWEEN TWO INTERVALS

As we saw in Subsection II D, the entanglement entropy
for a single interval in the vacuum of a two-dimensional
CFT depends only on the theory’s central charge. The fact
that the Ryu-Takayanagi formula correctly reproduces this
entropy, as shown in Subsection III A, is an important
check on the proposal, but does not give us any new
information. The next simplest configuration we can con-
sider in such a theory consists of two disjoint intervals. As
suggested by the fact that the Rényi entropies (2.15) de-
pend in this case on four-point rather than two-point func-
tions of twist operators, we would expect the EE to depend
on the full operator content of the theory, rather than
simply its central charge. As we will see in this section,
the RT formula can give us significant new physical infor-
mation in this case. The new predictions in turn give us the
opportunity to subject the formula to new and highly non-
trivial quantitative tests.
We begin by reviewing the necessary formulas and

setting up the basic properties of the ERE for two intervals.

A. General properties

We consider two separated intervals ½u1; v1	, ½u2; v2	
(u1 < v1 < u2 < v2) in the vacuum of a conformal field
theory C with central charge c. As discussed in
Subsection II A, it is convenient to consider the mutual
Rényi information (MRI) between the two intervals,

Ið�Þ½u1;v1	;½u2;v2	 ¼ Sð�Þ½u1;v1	 þ Sð�Þ½u2;v2	 � Sð�Þ½u1;v1	[½u2;v2	; (4.1)

which measures the extent to which the degrees of freedom
of the two intervals are entangled with each other (includ-
ing both classical correlations and quantum entanglement).
We first consider the integer case � ¼ n > 1. Using

(2.15), the MRI is given in terms of a finite ratio of four-
point and two-point functions in the symmetric product
theory Cn=Sn:

IðnÞ½u1;v1	;½u2;v2	 ¼
1

n� 1

� ln

� h��
1ðu1Þ���1ðv1Þ��

1ðu2Þ���1ðv2Þi
h��

1ðu1Þ���1ðv1Þih��
1ðu2Þ���1ðv2Þi

�

(4.2)

¼ 1

n� 1
ln

� h�1ðu1Þ��1ðv1Þ�1ðu2Þ��1ðv2Þi
h�1ðu1Þ��1ðv1Þih�1ðu2Þ��1ðv2Þi

�
; (4.3)

where we have defined the renormalized twist operators:

�
1 � ��
1

h��
1ð0Þ��

�1ð1Þi1=2
: (4.4)

This is an example of the UV divergences in the EREs,
which occur at the endpoints of the intervals, cancelling in
the MRI, as discussed at the end of Subsection II A.
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Since the twist operators are primaries, the transforma-
tion law for the four- and two-point function implies that
I½u1;v1	;½u2;v2	 is conformally invariant, and therefore de-

pends only on the cross-ratio

x � ðv1 � u1Þðv2 � u2Þ
ðu2 � u1Þðv2 � v1Þ ; (4.5)

which lies in the interval 0< x< 1. By a conformal trans-
formation, the four points u1, v1, u2, v2 can be brought to
0, x, 1, 1, respectively, so we have

IðnÞ½u1;v1	;½u2;v2	 ¼ IðnÞðxÞ � IðnÞ½0;x	;½1;1	

¼ 1

n� 1
lnðx2d�h�1ð0Þ��1ðxÞ�1ð1Þ�0

�1ð1ÞiÞ;
(4.6)

where �0
�1ð1Þ � limz!1z2d���1ðzÞ. (The scaling dimen-

sions d� of the twist operators are given by (2.17).) Notice
that, like the UV divergence, the IR divergence in the ERE
cancels in the MRI. The four-point function, and therefore

IðnÞðxÞ, is an analytic function of x in the interval 0< x < 1.
It is useful to note that the four-point function in (4.6)

can be expanded as a power series in x, where the powers
are the dimensions dm of operators A0

m in the orbifold
theory,12 and the coefficients are given in terms of OPE
coefficients:

IðnÞðxÞ ¼ 1

n� 1
ln

�X
m

c�1
�1mc

m
�1��1

xdm
�
: (4.7)

Note that only untwisted operators contribute to the sum.
Assuming we are dealing with a unitary theory, the opera-
tor with lowest scaling dimension is the unit operator, for
which (by the normalization of the twist operators) the

OPE coefficients are 1. Hence IðnÞðxÞ goes to 0 as x ! 0,
as we would expect on physical grounds. For example, if
we fix the sizes of the intervals and take their separation to
infinity, we would expect all correlations between them to
go to zero. We will study the higher-order terms in the
expansion (4.7) in Subsections IVD and IV Fand in the
Appendix.

A final important property of the MRI, implied by the
invariance of the four-point function in (4.6) under x !
1� x, is

IðnÞð1� xÞ ¼ IðnÞðxÞ þ c

6

�
1þ 1

n

�
ln
1� x

x
: (4.8)

At the level of the definition (4.1) of the MRI, this relation
is due to the fact that, in a pure state (in this case, the

vacuum), Sð�ÞA ¼ Sð�ÞAc , so Sð�Þ½0;x	[½1;1	 ¼ Sð�Þ½�1;0	[½x;1	 ¼
Sð�Þ½0;1�x	[½1;1	.
We have listed five general properties that the MRI

satisfies for integer �> 1, but for the reasons given we
either know or expect each to hold for general values of �:
(1) UV finiteness, and IR finiteness when one of the

intervals is semi-infinite;
(2) conformal invariance, implying

Ið�Þ½u1;v1	;½u2;v2	 ¼ Ið�ÞðxÞ � Ið�Þ½0;x	;½1;1	 (4.9)

(where 0< x< 1);
(3)

lim
x!0

Ið�ÞðxÞ ¼ 0; (4.10)

(4) for all x,

Ið�Þð1� xÞ ¼ Ið�ÞðxÞ þ c

6

�
1þ 1

�

�
ln
1� x

x
;

(4.11)

(5) analyticity of Ið�ÞðxÞ as a function of x.
So far we have not assumed anything about the theory C

(other than unitary and compactness). In the rest of this

section, we will study the function Ið�ÞðxÞ in holographic
CFTs, as well as certain other theories with large central
charge.

B. Prediction from Ryu-Takayanagi formula

As in the holographic derivation of the EE for a single
interval, reviewed in Subsection III A, we use the fact that
the holographic dual of the vacuum is AdS3, with
‘AdS=GN ¼ 2c=3, and we cut off integrals near the bound-
ary at radial coordinate value z ¼ �.
The RT formula is straightforward to apply to the union

of two intervals ½u1; v1	 [ ½u2; v2	. There are two locally
minimal surfaces in the bulk that are homologous to this
boundary region, as shown in Fig. 1. The first is the union
of the minimal surfaces for the two intervals separately,
mdis ¼ m½u1;v1	 [m½u2;v2	 (similarly for the corresponding

bulk region rdis ¼ r½u1;v1	 [ r½u2;v2	). This has ‘‘area’’ (i.e.

length)

area ðmdisÞ ¼ areaðm½u1;v1	Þ þ areaðm½u2;v2	Þ (4.12)

¼ 2‘AdS ln

�
v1 � u1

�

�
þ 2‘AdS ln

�
v2 � u2

�

�
(4.13)

(see (3.3)). The other locally minimal surface connects
u1 to v2 and u2 to v1: mcon ¼ m½u1;v2	 [m½v1;u2	. (The

12Throughout the paper, we use primes on (untwisted) opera-
tors of Cn=Sn, to distinguish them from operators of C.
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corresponding bulk region is a semiannulus connecting the
two intervals: rcon ¼ r½u1;v2	 n r½v1;u2	.) Its area is

area ðmconÞ ¼ 2‘AdS ln

�
v2 � u1

�

�
þ 2‘AdS ln

�
u2 � v1

�

�
:

(4.14)

It is easy to see that mdis is the globally minimal surface
when x < 1=2, and mcon otherwise (see (4.5)), so

S½u1;v1	[½u2;v2	 ¼
1

4GN

minðareaðmdisÞ;areaðmconÞÞ

¼ c

3
�
�
lnððv1�u1Þðv2�u2Þ=�2Þ; x�1=2

lnððv2�u1Þðu2�v1Þ=�2Þ; x�1=2
:

(4.15)

Combining (4.15) with (3.3), we obtain the following
mutual information:

I½u1;v1	;½u2;v2	 ¼ Ið1ÞðxÞ

¼
8<
:
0; x � 1=2

ðc=3Þ lnðx=ð1� xÞÞ; x � 1=2
:

(4.16)

Of the five properties of the MI listed at the end of the
previous subsection, this formula obeys the first four. It
does not obey the last—analyticity—as it has a discontinu-
ous first derivative at x ¼ 1=2 and vanishes for x � 1=2.
These two features were anticipated in the discussion at the
end of Subsection III A. The discontinuity in the first
derivative occurs because the global minimum switches
between the local minima as we vary x, and is reminiscent
of phase transitions due to competing saddle points of the
Euclidean action, such as the Hawking-Page transition. As
in that case, the transition is presumably sharp only in
the classical limit in the bulk, which corresponds to the
thermodynamic (c ! 1) limit of the CFT, and gets
smoothed out by finite c effects. Similarly, the vanishing
of the MI for x � 1=2 is presumably true only at order c;
if the MI vanished exactly for x � 1=2, then the reduced
density matrix for the two intervals would factorize,
�½u1;v1	[½u2;v2	 ¼ �½u1;v1	 � �½u2;v2	, implying that the two

intervals are completely decoupled from each other, a
rather unphysical situation (in particular, it would violate
the inequality (2.6), as we will discuss below). Thus we
should expect both perturbative and nonperturbative cor-
rections to (4.16) in GN � c�1, with the first perturbative
correction at order c0. Nonetheless, since the MI is appar-
ently parametrically small for x � 1=2—smaller than the
EE for either interval separately or for their union, and

smaller than the MI for x > 1=2—it appears that the den-
sity matrix factorizes approximately.
Unlike quantum corrections, we do not expect higher-

derivative (e.g. �0) corrections to the classical bulk action
to change the result (4.16), for the following reason. As
discussed in Subsection III A, such corrections are believed
to correct the area functional appearing in the RT formula
without changing the basic prescription of minimizing over
topologically allowed surfaces. The symmetries of AdS3
guarantee that the minimal surfaces shown in Fig. 1 remain
uncorrected; furthermore, the corrected ‘‘area’’ of each
curve is unchanged when written as a function of c, since
we know that the EE is always given by (2.21). In fact, this
argument applies for any bulk gravitational action, not just
Einstein-Hilbert with small higher-derivative corrections.
It is interesting to consider the result (4.16) in the context

of the general inequality (2.6). Local operators in holo-
graphic field theories are dual to bulk fields. Smearing such
operators over the two intervals will give a result of order
c0—no matter how the operators are normalized, the nu-
merator and denominator will be of the same order in c.
This is consistent with the result (4.16) (and shows that it
must be corrected at order c0). However, for x > 1=2, the
right-hand side of (2.6) is of order c. It would be quite
interesting to find examples of operators A½u1;v1	,A½u2;v2	
that saturate (2.6), or at least for which the left-hand side is
of order c. It is then interesting to ask what happens to
these operators for x < 1=2. Do they simply cease to exist?
Or does their two-point function become parametrically
smaller? Finding explicit examples of operators with such
behavior would not just constitute strong evidence in favor
of the RT formula, but also clarify in what sense the density
matrix factorizes.

C. Universality in the large c limit?

Given any family of CFTs C that admit a large c limit,
such as holographic ones, we can consider the expansion of
the MRI in powers of c�1. Since the number of degrees of
freedom is of order c, the leading term will be at most of
that order, so we have

Ið�ÞðxÞ ¼ Ið�Þ1 ðxÞcþ Ið�Þ0 ðxÞ þOðc�1Þ: (4.17)

In particular, we focus our attention on the leading function

Ið�Þ1 ðxÞ. In the previous subsection, we used the RT formula

to compute, for holographic theories,

Ið1Þ1 ðxÞ ¼
8<
: 0; x � 1=2
ð1=3Þ lnðx=ð1� xÞÞ; x � 1=2

; (4.18)

and argued that this result should hold no matter what the
bulk gravitational theory is. As discussed, (4.18) has two
striking qualitative features, namely, its discontinuous
first derivative at x ¼ 1=2 and the fact that it vanishes for

x � 1=2. In the rest of this section, we will study Ið�Þ1 ðxÞ
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using the replica trick, and find independent evidence for
both phenomena. In the next subsection, we will compute

Ið2Þ1 ðxÞ in holographic theories, and show that the result is
independent of the details of the bulk theory (e.g. the
presence of higher-curvature corrections), and applies also
to symmetric product theories C ¼ CN0 =SN, even though

their large c limit is not described by classical gravity. Like
(4.18), the result will have a phase transition at x ¼ 1=2. In
Subsection IVE we will argue that this phase transition

occurs also in IðnÞ1 ðxÞ for n > 2, at least in holographic

theories. Then in the last subsection we will use CFT

techniques to study the expansion of Ið�Þ1 ðxÞ in powers of x
for general�, and find evidence that every coefficient in this
expansion goes to 0 in the limit � ! 1. That analysis will
assume very little about the CFT C, essentially just that the
number of operators below any given dimension stays finite
as c goes to infinity, a condition that holds for both holo-
graphic and symmetric product theories (but not, for ex-
ample, in the power theory CN0 without the orbifold).

These results not only give strong quantitative support to
the RT formula, but point to a broader picture, namely, that
a large class of large c CFTs—including holographic and
symmetric product theories—share the same leading MRI

Ið�Þ1 ðxÞ, as a function of both � and x. Although we do not

know the explicit form of this function except for � ¼ 1, 2,
we can deduce that it is analytic in x except at x ¼ 1=2,
where it has a discontinuous first derivative, and satisfies
the following properties:

lim
x!0

Ið�Þ1 ðxÞ ¼ 0; (4.19)

Ið�Þ1 ð1� xÞ ¼ Ið�Þ1 ðxÞ þ 1

6

�
1þ 1

�

�
ln
1� x

x
: (4.20)

Based on these considerations, it appears that in the
range 0< x � 1=2 the MRI is parametrically larger for
� � 1 (where it is of order c) than for � ¼ 1 (where it is of
order 1). This is similar to what we found in the perturba-
tive calculation of Subsection II B. It would be interesting
to find a simple toy model of a system with N degrees of
freedom, in which the MRI between two subsystems is of
order N, but the MI is only of order 1.

D. MRI for n ¼ 2

In this subsection we will begin by expressing the mu-

tual Rényi information Ið2ÞðxÞ (sometimes called the mu-
tual collision information) in a general CFT in terms of its
torus partition function. Using this expression, we will

calculate the order c part Ið2Þ1 ðxÞ in a general holographic

CFT, finding that—like the RT prediction (4.18) for

Ið1Þ1 ðxÞ—it is analytic except at x ¼ 1=2, where it has a
discontinuous first derivative. We will then show that

Ið2Þ1 ðxÞ is precisely the same function in large N symmetric

product theories, supporting the idea of universality (i.e.
theory independence in the large c limit) proposed in the
previous subsection.
We begin by applying the formula (4.6) for n ¼ 2. In the

C2=Z2 orbifold theory, there is a unique twist operator � �
�1 ¼ ��1. Lunin and Mathur [17] showed that its four-
point function is given by13

h�ð0Þ�ðxÞ�ð1Þ�0ð1Þi ¼ ð28xð1� xÞÞ�c=12Zil; (4.21)

where Zil is the partition function for C on a flat rectangular
torus14 with modular parameter 
 ¼ il; x and l are related
by

x ¼ �42ðilÞ
�43ðilÞ

: (4.22)

As x goes from 0 to 1, l goes from 1 to 0, with x ¼ 1=2
corresponding to l ¼ 1 (see Fig. 2). Since

1� x ¼ �44ðilÞ
�43ðilÞ

¼ �42ði=lÞ
�43ði=lÞ

; (4.23)

the invariance of the four-point function (4.21), and hence
of the ERE, can be traced to the modular invariance of the

0.2 0.4 0.6 0.8 1.0
x

0.5

1.0

1.5

2.0

l

FIG. 2 (color online). Modular parameter 
 ¼ il for the two-
sheeted Riemann surface with branch points at 0, x, 1, 1. The
relation between x and l is given by Eq. (4.22).

13In terms of Lunin and Mathur’s variables, x ¼ 1=w and il ¼

 ¼ �1=
Lunin-Mathur. The four-point function of twist fields was
computed in [27] in the case where the underlying CFT is a free
scalar field.
14The fermion sign flips explained in footnote 6 imply that
fermionic fields should have antiperiodic (NS) boundary con-
ditions on both cycles of the torus. The reason is that, on the
double-sheeted plane, in going around either cycle one encoun-
ters two sign flips, so no overall flip. The coordinate trans-
formation to the torus introduces a flip, just as when passing
from the plane to the cylinder. Hence the partition function is not
invariant under the full modular group, but it is invariant under

 ! �1=
.
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torus partition function, Zil ¼ Zi=l. The reason for the

appearance of the torus partition function of C is that the
four-point function of twist operators is the (renormalized)
zero-point function on the two-sheeted Riemann surface
E2 with a branch cut connecting 0 to x and another one
connecting 1 to1, which is a torus with complex structure

 ¼ il. The Weyl transformation that flattens it, when
plugged into the Liouville action, leads to the prefactor

ð28xð1� xÞÞ�c=12.
Plugging (4.21) into (4.6), we obtain

Ið2ÞðxÞ ¼ lnZil � c

12
ln

�
28ð1� xÞ

x2

�

¼ lnZil � c

3
ln

�
4�4ðilÞ�3ðilÞ

�22ðilÞ
�
: (4.24)

The first term in (4.24) is (� l times) the free energy of C
on a circle of unit circumference at temperature l�1. (Note
however that the basic cycles of this torus, which we
interpret as space and Euclidean-time directions when we
speak of the free energy, are not the same as the space and
time directions of the Euclidean plane E where the theory
was originally defined, whose double cover is E2. Rather,
the spatial circle of the torus encircles the points 0 and x,
staying on one sheet, while its Euclidean-time circle en-
circles x and 1, crossing each branch cut once.)

Let us consider the expansion of (4.24) for small values
of x, where x � 16e��l.15 The behavior of the torus par-
tition function is universal in this limit (for compact unitary
CFTs), lnZil � 2�cl=12, which precisely cancels the lead-
ing behavior of the second term in (4.24), giving a vanish-
ing MRI as expected (Eq. (4.10)). The leading x
dependence depends on the gap in the operator spectrum

of C. If the lowest nonunit operator Â has dimension d̂ and
multiplicity m̂ (where fermionic operators are counted
negatively), then

lnZil ¼ 2�cl

12
þ m̂e�2�d̂l þ � � � ; (4.29)

so

Ið2ÞðxÞ�

8>>><
>>>:

2ce�2�l�2�7cx2; d̂>1

ð2cþm̂Þe�2�l�2�8ð2cþm̂Þx2; d̂¼1

m̂e�2�d̂l�m̂ðx=16Þ2d̂; d̂<1g

9>>>=
>>>;

ðx
1Þ: (4.30)

This term can be matched onto the leading term in the
expansion in intermediate states (4.7), by noting that the
lowest-dimension operator of C2=Z2 appearing in the ��

OPE, other than the unit operator, is Â � Â if d̂ � 1, and

the stress tensor if d̂ � 1. The OPE coefficients are com-
puted and matched to (4.30) in Appendix A 1 (see also the
discussion around (4.39)), where we also consider more
generally the matching between the Lunin-Mathur formula
for the four-point function (4.21) and its expansion in
intermediate states.
A simple example of the application of (4.24) is to a free

scalar compactified on a circle of radius R. The torus
partition function is

Zil ¼ �3ðil=R2Þ�3ðilR2Þ
�2ðilÞ ; (4.31)

so [3,28]

Ið2ÞðxÞ ¼ ln

0
@�3ðil=R2Þ�3ðilR2Þ�2=32 ðilÞ
22=3�2ðilÞ�1=34 ðilÞ�1=33 ðilÞ

1
A: (4.32)

This is plotted against x for several values of R in Fig. 3.
The small x behavior is as predicted by (4.30), with the

0.0 0.2 0.4 0.6 0.8 1.0
x0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

I 2

FIG. 3 (color online). Mutual Rényi information of intervals
½0; x	 and ½1;1	 for a free scalar field of radius R, with (from
bottom to top) R2 ¼ 1, 2, 4, 8, 16.

15Defining q ¼ e2�i
 ¼ e�2�l, the expansions of the theta
functions for small q are as follows:

�2ð
Þ ¼ 2q1=8ð1þ qþOðq3ÞÞ (4.25)

�3ð
Þ ¼ 1þ 2q1=2 þOðq2Þ (4.26)

�4ð
Þ ¼ 1� 2q1=2 þOðq2Þ: (4.27)Hence

4�4ð
Þ�3ð
Þ
�22ð
Þ

¼ q�1=4ð1� 6qþOðq2ÞÞ: (4.28)
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lowest nonunit operator having dimension d̂ ¼ 1=ð2R2Þ
(for R2 � 1) and multiplicity m̂ ¼ 2 (except for R ¼ 1,
where the lightest winding and momentum modes are
degenerate, so m̂ ¼ 4) [3,28]. We now turn to holographic
CFTs, briefly reviewing Maldacena and Strominger’s re-
sult for the torus partition function [9]. Expanding the free
energy in powers of c�1 �GN, the leading term is of order
c and is given by the Euclidean action of the dominant
saddle point. Here the boundary condition is simply that
the conformal boundary should be the torus with 
 ¼ il;
there are no operators inserted in the path integral so
no fields other than the metric are sourced. For l > 1
(x < 1=2) the dominant saddle point is the Euclidean
BTZ black hole, which is topologically a solid torus in
which the Euclidean-time circle (the circle of length l) is
contractible. For l < 1 (x > 1=2) the dominant saddle point
is Euclidean AdS3 with the Euclidean-time direction peri-
odically identified; the topology is a solid torus in which
the spatial circle is contractible.16 The phase transition
between the two saddles, the Hawking-Page transition, is

first order, so the free energy, and hence Ið2Þ1 ðxÞ, has a

discontinuous first derivative. Specifically, the Euclidean
actions of the two saddle points yield [9]

lnZil ¼
�
2�c=ð12lÞ þOðc0Þ; l < 1
2�cl=12þOðc0Þ; l > 1

; (4.33)

so

Ið2Þ1 ðxÞ ¼ � 1

3
ln

�
4�4ðilÞ�3ðilÞ

�22ðilÞ
�

þ
�
2�=ð12lÞ; l < 1
2�l=12; l > 1

; (4.34)

which is plotted in Fig. 4. Note that, although Ið2Þ1 ðxÞ does
not vanish in the region x < 1=2, it is numerically quite

small—smaller than Ið2ÞðxÞ for the free scalar by two orders
of magnitude or more. The expansion for small x is 2�7x2;
comparing to (4.30), it is as if the lowest-dimension opera-
tor of C2=Z2 is the stress tensor. In fact, there are other
operators, but since their multiplicity is finite in the limit

c ! 1, they do not contribute to Ið2Þ1 . We will discuss this

expansion in detail in Subsection IV F.
If we compare the bulk saddle point geometries used to

derive (4.33) to the ones obtained from Fursaev’s construc-
tion, we see that they are topologically identical but met-
rically different. To describe the geometry obtained from
Fursaev’s construction, we add a Euclidean-time direction,
coming out of the page, to each diagram in Fig. 1,
and consider the double cover of the resulting
three-dimensional geometry, branched over rdis and rcon

respectively. On the left-hand diagram, relevant when
x < 1=2, the cycle on the boundary that encircles u1 and
v1, staying on one sheet, is contractible through the bulk;
this is the spatial circle of the torus. On the right-hand
diagram, relevant when x > 1=2, the boundary cycle that
encircles v1 and u2, crossing both branch cuts, is contract-
ible through the bulk; this is the time circle of the torus.
Hence in each case the topology is precisely the same as
that of the true saddle point geometry. However, their
metrics are different; in particular, while the former are
singular, the latter are smooth.
The formula (4.33) for the torus partition function, and

therefore the formula (4.34) for the MRI, applies not only
to holographic CFTs but also to symmetric product theo-
ries C ¼ CN0 =SN at large N, where C0 is any (compact

unitary) CFT [29]. The basic reason is that, for l < 1, the

0.2 0.4 0.6 0.8 1.0
x

0.5

1.0

1.5

I1
2
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FIG. 4 (color online). Coefficient of c in the mutual Rényi
information of intervals ½0; x	 and ½1;1	 in a general holographic
CFT. The two plots differ only in the scale of the vertical axis. In

particular, the plot on the right shows that Ið2Þ1 is nonzero

(although quite small) for x < 1=2.

16Note that the contractibility of the two cycles of the boundary
torus requires antiperiodicity of fermions on both. As explained
in footnote 14, these are precisely the boundary conditions we
have in this case.
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effective temperature for the long strings, which dominate
the partition function, is enhanced by a factor of N, so the
theory is effectively always in the high-temperature limit;
the partition function for l > 1 is then given by modular
invariance. An example is the supersymmetric ðT4ÞN=SN
theory, which is conjectured to be connected in a moduli
space to type IIB string theory on AdS3 � S3 � T4. It
would seem reasonable then to guess that the torus parti-
tion function is given by (4.33) for all theories on this
moduli space. In other words, the MRI appears to enjoy a
nonrenormalization theorem.

The phase transition at x ¼ 1=2 can be understood in

terms of the expansion Zil ¼
P

ie
�2�ðdiþc=12Þl, where the di

are the scaling dimensions of the operators of C. In any
fixed theory, with finite c, this expansion converges and is
analytic for all x 2 ½0; 1Þ. In the large c limit, the operators
of C can (roughly speaking) be divided into those with
scaling dimensions of order 1 (‘‘short strings’’) and those
with scaling dimensions of order c (‘‘long strings’’). Each
long-string operator makes a contribution to the sum that is
exponentially suppressed in c. However, the number of
long-string operators is exponentially large in c, so they
may actually dominate the sum. In fact, whether the short
strings or the long strings dominate depends on the value of
l, and hence of x. In both holographic and large N sym-
metric product theories, short strings dominate for x < 1=2
and long strings for x > 1=2. Thus the order c part of the
free energy is due entirely to short strings for x < 1=2 and
to long strings for x > 1=2.

E. MRI for n > 2

In this subsection we will extend our study of IðnÞðxÞ to
larger values of n. Although we will not be able to give
explicit formulas, we will argue that all the main qualita-
tive features carry through. In particular, the existence

for all n > 1 of a discontinuous first derivative in IðnÞ1 ðxÞ
at x ¼ 1=2 constitutes significant evidence in favor of the
RT formula, which predicts precisely such a phase transi-
tion for n ¼ 1.

According to Eq. (4.6), the MRI IðnÞðxÞ for general n is
given in terms of the four-point function of twist operators
in the symmetric product theory Cn=Sn. This four-point
function is in turn equal to the (renormalized) zero-point
function of C on the surface En, made of n sheets connected
by a branch cut running from 0 to x and another from 1 to
1. This is the Riemann surface for the equation yn ¼
zðz� 1Þ=ðz� xÞ, which has genus n� 1 and a complex
structure that depends on x. As in the genus-1 case studied
in the previous subsection, the surface En can be taken by a
Weyl transformation to a fiduciary metric with the same
complex structure, for example, the constant-curvature

metric. Hence there is an analogue of (4.6), in which IðnÞ
is written as a sum two terms:

IðnÞðxÞ ¼ lnZðnÞ
x þ cIðnÞ1;geometricðxÞ: (4.35)

ZðnÞ
x is the partition function of C on the surface carrying the

fiduciary metric. The second term is derived from the
Liouville action for the Weyl transformation from En to
the fiduciary metric; aside from the overall coefficient c, it
is independent of the particular theory C, giving a universal
contribution to IðnÞ1 .

The geometrical term IðnÞ1;geometric has not been explicitly

computed for n > 2. However, assuming that the fiduciary
metric is chosen to depend smoothly on x (as does, for
example, the constant-curvature metric), the Weyl transfor-

mation and hence IðnÞ1;geometric will be smooth functions of x.

Meanwhile, the genus (n� 1) partition function ZðnÞ
x is

known explicitly for n > 2 only in a small number of
CFTs. For holographic theories, despite considerable
progress (especially in the context of pure gravity theo-
ries), explicit formulas are not available, even in the large c
limit; see for example [30–34]. Even in the absence of an
explicit formula, however, we can argue that the partition
function is smooth except at x ¼ 1=2, where it has a
discontinuous first derivative, just as we saw for n ¼ 2 in
the last subsection. It is known that phase transitions,
analogous to the Hawking-Page transition, occur at fixed
points of the mapping-class group (the group of large
diffeomorphisms of the Riemann surface). The reason is
that different saddle points of the bulk gravitational action
are effectively mapped onto each other by the action of the
mapping-class group, and therefore at a fixed point they
necessarily have the same action.17 On the surface En,
there is an element of the mapping-class group that effec-
tively takes x to 1� x; for example, the surfaces En with
x ¼ 1=3 and x ¼ 2=3 have the same complex structure up
to the action of an element of the mapping-class group.
That element permutes the cycle that encircles 0 and xwith
the one that encircles x and 1. It has a unique fixed point,
namely x ¼ 1=2. Hence we expect a phase transition in

(the order c part of) lnZðnÞ
x , and therefore in IðnÞ1 ðxÞ, at

x ¼ 1=2, and only there. This is precisely the property

predicted by the RT formula for Ið1Þ1 ðxÞ (see (4.18)).

(Furthermore, it seems likely that, as we saw for n ¼ 2,
the dominant saddle has the same topology as predicted by
Fursaev, i.e for x < 1=2 the cycle encircling 0 and x is
contractible in the bulk, while for x > 1=2 the cycle encir-
cling x and 1 is contractible in the bulk.)
In the previous subsection we used the fact that the torus

partition function is the same (at leading order in c) for
large N symmetric product theories (CN0 =SN) as for holo-
graphic ones, to support the claim of universality (theory

independence) for Ið2Þ1 ðxÞ. It would be interesting to inves-

tigate whether the same holds for ZðnÞ
x for n > 2. Our

results in the next subsection, which apply for all n, support
such universality.

17We thank A. Maloney for helpful discussions on this point.
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F. Expansion in x

In Subsection IVD we derived an explicit expression for

Ið2Þ1 ðxÞ that applied to both holographic and large N sym-

metric product theories. Unfortunately, as we discussed in
the last subsection, the computation of higher-genus parti-

tion functions, and therefore IðnÞ1 ðxÞ, remains out of reach
technically in such theories. Even if we could find explicit
expressions, their analytic continuation to general �, and,
in particular, to � ¼ 1, may not be feasible.18 (For ex-
ample, Calabrese, Cardy, and Tonni were able to compute

IðnÞðxÞ for n > 1 for a compactified free boson [3].
However, the analytic continuation of the resulting expres-
sion, which involves a Riemann-Siegel theta function, is
unknown.) In this subsection, therefore, we will take a

different approach, and compute IðnÞ1 ðxÞ order by order in

x for general n > 1. The coefficient of each power of x will
be a simple enough function of n to allow us to analytically
continue it straightforwardly.19 As discussed in the pre-

vious subsection, for each n > 1, IðnÞ1 ðxÞ is analytic on

½0; 1=2	, but not on larger intervals. Assuming that this

property continues to hold for Ið�Þ1 ðxÞ for general �, the
formulas we derive will be valid on that interval. We are
particularly interested in testing two hypotheses concern-
ing the coefficient of each term in the power series expan-

sion of Ið�Þ1 ðxÞ: that it is ‘‘universal’’ in the sense of
Subsection IVC, i.e. the same for all theories in the
class we are considering; and that it goes to zero in the
limit � ! 1, in agreement with the RT prediction (4.18).
We will find significant evidence in favor of both
hypotheses.

We are considering theories C for which the number of
operators with any given dimension is finite in the large c
limit. This condition applies to holographic and CN0 =SN
theories (where C0 is held fixed as we take c� N ! 1),
but not, for example, to the theory CN0 without the orbifold.

We will also assume that the n-point functions of primaries
in C do not diverge in the large c limit; again, this property
holds for holographic and CN0 =SN theories.

We begin with the relation (4.7), in the form

expððn� 1ÞIðnÞðxÞÞ ¼ X
m

c�1
�1mc

m
�1��1

xdm: (4.36)

At this stage we have not taken the large c limit, and the
convergence of the OPE dictates that the sum on the right-
hand side converges and is analytic for all x 2 ½0; 1Þ. Only
untwisted-sector operators occur in the �1��1 OPE; these
are of the form A0

m ¼ ðAi1 � � � � �AinÞsym, where the

Ai are operators of C (‘‘sym’’ means average over all
permutations; if some of the Ai are identical, then this
is the same as the average over distinct permutations).
Before considering the large c limit, it is interesting to

ask what the assumed analyticity in � of Ið�ÞðxÞ implies
about the coefficients on the right-hand side of (4.36). First,
except for the leading term, 1, the total coefficient of each
power of x must be a multiple of n� 1 (i.e. when analyti-
cally continued must have a root at n ¼ 1). Although we
do not know a CFT proof of this statement, it can be tested
to any given order. For example, for the holomorphic and
antiholomorphic parts of the stress tensor, T0 and ~T0, we
have

c�1
�1T

0 ¼ c�1

�1
~T0 ¼ d�

2
: (4.37)

The Zamolodchikov metric on these operators is GT0T0 ¼
G ~T0 ~T0 ¼ nc=2, since the central charge of the orbifold
theory is nc; they do not mix with each other or with other

operators, so GT0T0 ¼ G ~T0 ~T0 ¼ 2=ðncÞ, and

cT
0
�1��1

¼ c
~T0
�1��1

¼ d�
nc

: (4.38)

Hence their contribution to the sum on the right-hand side
of (4.36) is 2ax2, where

a � d2�
2nc

¼ ðn2 � 1Þ2c
288n3

; (4.39)

which has the required factor of n� 1. The contribution of
the operator ðOi �Oi � I � � � � � IÞsym, where Oi is a pri-

mary of C, is computed in Appendix A 2 (for integer values
of the scaling dimension ofOi); the result again has a zero at

n ¼ 1. More generally, analyticity of Ið�ÞðxÞ demands that
the contribution of an operator made up of k nonunit opera-
tors of C, ðAi1 � � � � �Aik � I � � � � � IÞsym, should con-
tain a factor ðn� 1Þðn� 2Þ � � � ðn� kþ 1Þ, simply
because that operator only exists for n � k.
We now consider the large c limit. Since we are working

order by order in x, we will consider only ‘‘short-string’’
operators of C, i.e. those whose scaling dimensions are
finite in the large c limit. A convenient machinery for
systematically computing terms in the sum (4.36) is pro-
vided by the conformal blocks. We thus write it as a sum
over primaries O0

m (of Cn=Sn):

expððn� 1ÞIðnÞðxÞÞ ¼ X
m

CmF ðhm; xÞF ð~hm; xÞxhmþ~hm ;

(4.40)

where Cm � c�1
�1mc

m
�1��1

, hm and ~hm are the weights of

O0
m, and F ðhm; xÞ is (up to a factor of x2d��hm) the con-

formal block with all 4 external operators of weight h� ¼
~h� ¼ d�=2. (Cm and the conformal blocks also depend

18We remind the reader that throughout this paper we use n to
denote a positive integer and � a non-negative real number. We
assume that all quantities are analytic functions of �.
19This procedure was applied to the compactified free boson
in [3].
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implicitly on c and n.) The conformal blocks can be
computed straightforwardly (albeit somewhat tediously)
to any desired order in x. Using Mathematica,20 we com-
puted them to order x5. In the following expression, the
first two terms are exact, while the subsequent ones have
been expanded in powers of a�1 � c�1:

F ðhm; xÞ ¼ 1þ hm
2
xþ ðaþ f20 þOða�1ÞÞx2

þ
��

1þ hm
2

�
aþ f30 þOða�1Þ

�
x3

þ
�
1

2
a2 þ f41aþ f40 þOða�1Þ

�
x4

þ
��

1þ hm
4

�
a2 þ f51aþ f50 þOða�1Þ

�
x5

þOðx6Þ: (4.41)

The fij are rational functions of hm and n (regular at

n ¼ 1); their precise form is not important for us, except
for one feature we will point out below. We now factor out
the positive powers of a (i.e. of c), since those determine

IðnÞ1 ðxÞ. It turns out that they organize themselves naturally

into an exponential:

F ðhm; xÞ ¼ Fðhm; xÞ expðax2 þ ax3 þ g4ax
4

þ g5ax
5 þOðx6ÞÞ; (4.42)

where, by definition, F contains only nonpositive powers
of a:

Fðhm; xÞ ¼ 1þ hm
2
xþ ðf20 þOða�1ÞÞx2

þ ðf30 þOða�1ÞÞx3 þOðx4Þ: (4.43)

Remarkably, thanks to some cancellations among the fij,

the coefficients of ax4 and ax5 turn out to be independent
of hm:

g4 ¼ f41 � f20 � hm
2

¼ 1309n4 � 2n2 � 11

1440n4

g5 ¼ f51 � f30 � f20 � g4
hm
2

¼ 589n4 � 2n2 � 11

720n4
:

(4.44)

Assuming that this pattern continues to higher orders, it
allows us to pull the exponential out of the sum (4.40), and
write

IðnÞ1 ðxÞ ¼ JðnÞðxÞ þ ðn� 1Þðnþ 1Þ2
144n3

ðx2 þ x3 þ g4x
4

þ g5x
5 þOðx6ÞÞ; (4.45)

where JðnÞðxÞ is the contribution to IðnÞ1 ðxÞ (if any) from the

OPE coefficients Cm:

JðnÞðxÞ � 1

n� 1
lim
c!1

1

c
ln

�X
m

CmFðhm; xÞFð~hm; xÞxhmþ~hm

�
:

(4.46)

Before discussing JðnÞðxÞ, let us point out several note-
worthy features of the second term of (4.45). First, it does
not depend at all on the particular theory, supporting the
universality proposed in Subsection IVC; this is a conse-
quence of the cancellation of the hm-dependence in g4 and
g5, (4.44). Second, if we set n ¼ 2, it agrees with the

expansion to fifth order of (4.34); hence Jð2ÞðxÞ vanishes
at least to fifth order. Third, it can be straightforwardly
continued to noninteger values of �, and vanishes at
� ¼ 1:

Ið�Þ1 ðxÞ ¼ Jð�ÞðxÞ þ ð�� 1Þð�þ 1Þ2
144�3

ðx2 þ x3

þ g4x
4 þ g5x

5 þOðx6ÞÞ: (4.47)

The fact that the second term vanishes at � ¼ 1, which
provides strong quantitative evidence in favor of the RT
formula, can be traced to the fact that the conformal block
(4.41) depends on c through a� ðn� 1Þ2c.
It remains to ask what we can say about JðnÞðxÞ. Since we

are disallowing theories in which the number of primaries

of a given dimension is proportional to c, JðnÞðxÞ will be
nonzero if and only if some of the coefficients Cm contain
positive powers of c. Some (but not all) of the primaries of
Cn=Sn are products of primaries of C: O0

m ¼ ðOi1 � � � � �
OinÞsym. For these, as we show in Appendix A 2, the OPE

coefficient c�1
�1m is given by the (symmetrized) n-point

function in C of Oi1 ; . . . ;Oin , where the operators are

placed at distinct nth roots of unity (see (A19)). In holo-
graphic and CN=SN theories, these n-point functions go like

c1�k=2, where k is the number of nonidentity operators, so
Cm � c2�k (this is for k > 1; for k ¼ 0, i.e. the identity of
CN=SN , C1 ¼ 1, while for k ¼ 1, Cm ¼ 0, since the one-
point function of a nonidentity operator vanishes). For
example, for k ¼ 2 we have a two-point function, which
is clearly independent of c (Cm is computed in this case in
Appendix A 2). Hence primaries of Cn=Sn that are products
of primaries of C do not contribute to JðnÞðxÞ. However,
there are other primaries of Cn=Sn that are made up of
descendants of C. The simplest example is

�
L�1L�1Oi �Oi � I � � � � � I �

�
1þ 1

2hi

�

� L�1Oi � L�1Oi � I � � � � � I

�
sym

: (4.48)20For these computations we used the package Virasoro.nb,
available at http://people.brandeis.edu/~headrick/physics/.
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The computation of Cm for such operators is more in-
volved, because of the more complicated transformation
law of the C-descendants (L�1Oi and L�1L�1Oi, in the
above example) in going from the n-sheeted plane to the
standard plane. It is possible that such operators contribute

to JðnÞðxÞ. If so, the conjecture is then that Jð�ÞðxÞ
is independent of the particular theory C, and vanishes at
� ¼ 1. It should be straightforward to compute Cm and test
these conjectures in specific examples, such as (4.48). We
leave this to future work.

In this subsection, we have provided nontrivial evidence,

based on the expansion (4.36), that Ið�Þ1 ðxÞ is theory inde-

pendent and, for 0 � x � 1=2, vanishes at � ¼ 1. In view
of the pattern we have found, it would clearly be desirable
to have some general understanding of the structure of the
OPE coefficients at large c that leads to these properties.
We leave the exploration of this structure to future work.

V. GENERALIZATIONS, OPEN QUESTIONS,
AND DISCUSSION

In the previous section, through the study of Rényi en-
tropies, we provided strong evidence in favor of the Ryu-
Takayanagi formula. We focused on one of the simplest
nontrivial field theory examples, namely, two disjoint inter-
vals in the vacuum of a two-dimensional CFT. Along the
way, we found evidence that a large class of large c theories
share the same entanglement (Rényi) entropies. It would be
interesting to extend our analysis to more general situations,
including: more than two intervals; states other than the
vacuum, such as thermal states; CFTs on the circle rather
than the line; CFTs in more than two dimensions; and
nonconformal field theories. In particular, it is clear that
the two key qualitative predictions of the RT formula persist
in all these examples, namely, that there is a phase transition
in the mutual information between two regions as a function
of their sizes and separations, and that it vanishes on one
side of the phase transition. One should be able to test these
predictions using similar techniques to the ones used in this
paper, namely, classical gravity and the OPE. One should
also be able to test whether the EREs are the same for
nonholographic theories with large central charges.

Our analysis leaves a number of open questions. We will
start with the more technical ones, and move towards the

more conceptual. First, our calculation of IðnÞ1 ðxÞ in

Subsection IV F left out the term JðnÞðxÞ, which comes
from primary operators of Cn=Sn, such as (4.48), that are
composed of descendants of C. It would be useful to
evaluate this term, at least up to some power of x, to
confirm both its theory independence and that it vanishes
at n ¼ 1. More generally, it should be possible to under-
stand on general CFT grounds the pattern found in
Subsection IVF that, in the four-point function of twist
operators, every factor of c is accompanied by a factor of
ðn� 1Þ2.

Second, it would be very interesting to compute the MRI

IðnÞ1 ðxÞ explicitly for n > 2 in holographic and large
N symmetric product theories, to see, first, if they agree,
and second, if they indeed have a phase transition at
x ¼ 1=2. Better yet would be to analytically continue the
resulting expressions to general �, and directly confirm or
refute the RT formula in this case.
Third, as discussed in Subsection IVB, the RT formula

predicts that the mutual information between the two in-
tervals is of order c when they are close together, but only
of order 1 when they are far apart. It would be quite
illuminating to find operators A½u1;v1	, A½u2;v2	 that satu-
rate the inequality for x > 1=2 (2.6) (or at least such that
the left-hand side is of order c), and to understand what
happens to them for x � 1=2. A related question is raised
by the fact that, for x � 1=2, the MRI is of order c (for� �
1). In order to understand the behavior better, it would be
interesting to find a simple toy model system with a large
number of degrees of freedom, in which the MRI between
two subsystems is of order of the number of degrees of
freedom while the MI is only of order 1.
Lastly, and perhaps most importantly, we should ask

what the status of the RT formula is, given the results of
this paper. On the one hand, we have provided strong
evidence that it is correct. On the other hand, have we
understood any better why it should be true? In particular,
why does the minimal surface play a critical role in the
entanglement entropy, and what is the physical signifi-
cance of the bulk region rA that it bounds? Fursaev’s proof
[7], though incorrect, had the advantage of explaining in a
simple and elegant manner the role of the minimal surface.
On the other hand, in the Rényi entropy calculations we
have performed in this paper, this role is not so clear.
Rather, the agreement between the Rényi entropies and
the RT formula appeared to be almost fortuitous. Clearly,
while the RT formula provides a tantalizing hint about the
structure of quantum information in holographic theories,
most of that structure still remains hidden from view.
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APPENDIX A: SYMMETRIC PRODUCT CFT
COMPUTATIONS

1. Analysis of four-point function of twist
operators in C2=Z2

In this Appendix, we consider a general modular-
invariant, compact, unitary CFT C with central charge c,
and its symmetric product C2=Z2. (At the end we also make
some comments about the general symmetric product
Cn=Sn.) The orbifold theory has central charge 2c, and
contains a single twist operator � with conformal weights

h� ¼ ~h� ¼ c=16. Lunin and Mathur [17] computed the
four-point function of these operators, showing that it is
determined by the partition function Z
 of C on a flat torus
with modular parameter 
,

h�ð0Þ�ðxÞ�ð1Þ�0ð1Þi ¼ j28xð1� xÞj�c=12Z
; (A1)

where 
 and x are related by21

x ¼ �42ð
Þ
�43ð
Þ

: (A2)

The reason for the appearance of the torus partition func-
tion of C is that the four-point function of twist operators is
the (renormalized) zero-point function on the two-sheeted
Riemann surface E2 with a branch cut connecting 0 to x
and another one connecting 1 to 1. E2 is a torus with
complex structure 
. The Weyl transformation that flattens

it leads to the prefactor j28xð1� xÞj�c=12.
Both sides of (A1) can be decomposed into a sum of

states, and we would like to understand the relationship
between these two decompositions. The torus partition
function is a sum over states Am in C22:

Z
 ¼
X
m

qhm�c=24 �q
~hm�c=24 ¼ X

i


c;hiðqÞ
c;~hi
ð �qÞ; (A3)

where q � e2�i
. In the second equality, we have grouped
the states into conformal families. Each family is labeled
by its primary operator Oi, and 
c;hi is its Virasoro

character


c;hiðqÞ ¼ q�c=24þhi
X1
N¼0

dðNÞqN; (A4)

where dðNÞ is the number of descendants of Oi at level N.
The decomposition (A3) can be obtained by cutting the
torus along a cycle and inserting a complete set of states. In
the usual presentation of the torus as C=ðZþ 
ZÞ, that
cycle should be horizontal.

Meanwhile, the left-hand side of (A1) can be written as a
sum over intermediate states A0

l of C
2=Z2, with weights

ðh0l; ~h0lÞ:
h�ð0Þ�ðxÞ�ð1Þ�0ð1Þi ¼ X

l

c��lc
l
��x

h0
l
�c=8 �x

~h0l�c=8;

(A5)

where c��l ¼ h�0ð1Þ�ð1ÞA0
lð0Þi and cl�� is the coeffi-

cient of A0
l in the �-� OPE. Assuming for clarity that

jxj< 1, this decomposition is obtained by cutting the
sphere on a circle of radius r (jxj< r < 1) around the
origin, which separates the twist operators located at 0
and x from those located at 1 and 1, and inserting a
complete set of states.
The intermediate states in (A5) can also be organized

into conformal families, leading to a sum of conformal
blocks. However, since the conformal families of C2=Z2

are not in one-to-one correspondence with the conformal
families of C, and we are trying to reproduce the sum (A3)
which is over the latter, we will organize the intermediate
states slightly differently. First we note that only untwisted
states appear in the sum, and these are of the form A0

l ¼
Am �An þAn �Am, whereAm,An are states of C.
We are inserting this state on the circle of radius r men-
tioned in the previous paragraph. In the presence of the
twist operators, we can consider that we are working in the
theory C on the Riemann surface E2, where the circle is two
circles, one on each sheet; we are inserting An on one
circle and Am on the other. These two circles both repre-
sent the same cycle of the torus, namely, the horizontal
cycle mentioned below (A4). In other words we have cut
the torus into two finite cylinders. Each cylinder has An

inserted on one boundary and Am inserted on the other.
We now perform the Weyl transformation that turns E2

into the flat torus. Two things will happen. First, we get the

geometrical factor j28xð1� xÞj�c=12, as computed by
Lunin and Mathur, which is independent of the states.
Second, each state gets mapped by the action of the con-
formal group to a linear combination of states. By defini-
tion, this group acts within conformal families. Hence if
An and Am are not in the same family, then the cylinder
amplitude vanishes. Sowe can gather the terms in (A5) into
conformal families of C:

h�ð0Þ�ðxÞ�ð1Þ�0ð1Þi ¼ X
i

Kiðx; �xÞ; (A6)

where

Kiðx; �xÞ ¼
X

Am;An descendants of Oi

c��ðm;nÞcðm;nÞ
��x

hmþhn�c=8 �x
~hmþ~hn�c=8: (A7)

(The set of operators in C2=Z2 of the form Am �An þ
An �Am where Am and An are both descendants of
the primary Oi in C, is the union of several conformal

21In terms of Lunin and Mathur’s variables, x ¼ 1=w and 
 ¼
�1=
Lunin-Mathur. In the bulk of the paper we consider x to be real
and lying in the interval 0< x< 1, but in this Appendix we will
let x be a general complex number. As in the main text, �0

1ð1Þ �
limz!1zd��1ðzÞ.
22For simplicity we are taking all states to be bosonic.
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families of C2=Z2. Hence Ki includes several conformal
blocks of C2=Z2.) Each term of (A6) corresponds to pre-
cisely one term in the sum on the right-hand side of (A3),
and the Lunin-Mathur formula tells us that

Kiðx; �xÞ ¼ j28xð1� xÞj�c=12
c;hiðqÞ
c;~hi
ð �qÞ: (A8)

It is interesting thatKi factorizes as a holomorphic times an
antiholomorphic function.

Each state in the sum (A7) contributes to Ki a monomial
in x, �x, while each state in the sum (A4) contributes to

c;hiðqÞ a monomial in q. The complicated mixing between

states due to the action of the conformal group is reflected
in the complicated relationship between x and q. However,
the leading terms for small x on the two sides of (A8) can
be matched easily. On the right-hand side the leading term
is due to the primary Oi itself, so we have

j28xj�c=12q�c=24þhi �q�c=24þ~hi � 2�8hi�8~hix�c=8þ2hi �x�c=8þ2~hi ;

(A9)

where we used the expansion for small x, q � 2�8x2. The
leading term on the left-hand side is due to the operator

O0
i ¼ Oi �Oi, which has weights ðh0i; ~h0iÞ ¼ ð2hi; 2~hiÞ. O0

i

is primary, so (taking it to be normalized in the

Zamolodchikov metric) we have c��i0 ¼ ci
0
�� ¼

h�ð0ÞO0
ið1Þ�0ð1Þi. To evaluate this three-point function,

we consider the theory C on the two-sheeted Riemann
surface with a branch cut extending from 0 to 1, and
with Oi inserted at the point z ¼ 1 on both sheets. We
can use the map z ¼ t2 to relate this to the two-point
function hOið�1ÞOið1Þi in the t frame. (The factor arising
from the Weyl transformation is absorbed in the renormal-
ization of the twist fields.) All in all we find

c��i0 ¼ ci
0
�� ¼ 2�4hi�4~hi ; (A10)

which leads immediately to agreement with (A9).
In principle Eq. (A8) can be checked to higher orders.

Consider, for example, the conformal family of the iden-
tity. For convenience, let us divide both sides of (A8) by the
leading term

jxjc=4K1ðx; �xÞ ¼
��������
�
28

1� x

x2

��c=24

c;0ðqÞ

��������
2

: (A11)

Generically, the conformal family of the identity is a full
Verma module except the states L�1j0i and ~L�1j0i and
their would-be descendants, which vanish. (For the mini-
mal models there are also other missing states.) In that case
the character is


c;0ðqÞ ¼ q�c=24
Y1
n¼2

1

1� qn
¼ q�c=24 q

1=24ð1� qÞ
�ðqÞ ;

(A12)

so the holomorphic part of (A11) is

�
28

1� x

x2
q

��c=24 Y1
n¼2

1

1� qn
: (A13)

The first few terms in the expansion in powers of x are

1þ 2�8cx2 þ 2�8cx3 þ 2�17ðc2 þ 465cþ 2Þx4: (A14)

In the expansion in states of C2=Z2, (A7), the quadratic
term is due to the stress tensor, while the cubic term is due
to L�3j0i ffi @T. The correct matching of the coefficient
for the former can be seen by setting n ¼ 2 in (4.39).
Modular invariance means that the torus partition func-

tion can bewritten as a sum of characters in a different way,
namely

Z
 ¼
X
i


c;hiðq̂Þ
c;~hi
ð �̂qÞ; (A15)

where q̂ � e�2�i=
. This decomposition is produced by
cutting the torus along its ‘‘vertical’’ cycle. Meanwhile,
associativity of the OPE means that the four-point function
of twist operators can be decomposed in intermediate
states with each state contributing a power of 1� x (in-
stead of x as in (A5)), by cutting along a circle centered on
1 that separates 1 and x from 0 and 1. That circle corre-
sponds to two circles on E2, both representing the vertical
cycle. Thus the two decompositions can be mapped to each
other just as we did above. It is interesting that the asso-
ciativity of the OPE in C2=Z2 is directly related to the
modular invariance of C.
If we attempt to generalize the above analysis to the

analogous four-point function of twist operators

h�1ð0Þ��1ðxÞ�1ð1Þ�0�1ð1Þi (A16)

in the Cn=Sn orbifold theory, the following structure
emerges. The Riemann surface En has n sheets joined by
a branch cut extending from 0 to x and another one
extending from 1 to 1. This surface has genus n� 1,
and the circle centered on 0, that separates the twist opera-
tors located at 0 and x from those located at 1 and 1
decomposes into n circles, which separate En into two
n-punctured spheres. Again, only untwisted states, which
are of the form ðAm1

� � � � �Amn
Þsym, enter in the sum

we insert on that circle. We are left with a sum of squares of
n-point functions of C (to be contrasted with (A5), which is
a sum of squares of three-point functions of C2=Z2, or in
this case Cn=Sn). Unlike in the C2=Z2 case, theAmi

do not

all have to belong to the same conformal family of C to
contribute to this sum. For this reason, this decomposition
is less immediately useful than for the case n ¼ 2. There
will also be an overall geometrical factor coming from the
appropriate Weyl transformation.
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2. Computation of certain OPE coefficients in Cn=Sn

In this Appendix we will consider primary operators in
the symmetric product theory Cn=Sn, of the form

O 0
m ¼ ðOi1 � � � � �OinÞsym; (A17)

where the Oi are primaries of C. We will first show that
c�1

�1m, the OPE coefficient with the twist operator �1, is

given in terms of the n-point function (in C) of the compo-
nent operators Oi. We will then focus on the simplest
nontrivial case, with only two nonidentity operators (nec-
essarily the same, for c�1

�1m to be nonzero):

O 0
m ¼ ðOi �Oi � � � � I � � � � � IÞsym: (A18)

We calculate Cm ¼ c�1
�1mc

m
�1��1

in the case where the

scaling dimension di of Oi is an integer, showing that its
analytic continuation to noninteger n vanishes in the limit
n ! 1.

We begin with the more general operator (A17). We
compute

c�1
�1m ¼ c��1m�1

¼ h��1ð0ÞO0
mð1Þ�0

1ð1ÞiCn=Sn
¼ h���1ð0Þ��

1ð1Þi�1
Cn=Sn

h���1ð0ÞO0
mð1Þ��0

1 ð1ÞiCn=Sn
¼ h���1ð0Þ��

1ð1Þi�1
Cn=Sn

�
�
hOi1ðe2�iÞOi2ðe4�iÞ � � �Oinðe2�inÞiC on En

�
sym

¼ n
�P

j

dij ðhOi1ðe2�i=nÞOi2ðe4�i=nÞ � � �Oinð1ÞiCÞsym:
(A19)

(All correlators except the one marked ‘‘C on En’’ are
evaluated on the Riemann sphere.) In the first line we
used the fact that the twist operators are normalized, and
both they and O0

m are primary. In the fourth we used the
definition of the twist operators to move to the original
theory C on the n-sheeted surface En, where the sheets are
connected by a branch cut running from 0 to 1 (the
positions of the twist operators). The operator Oij is posi-

tioned at 1 on the jth sheet, denoted e2�ij. In the last line

we conformally mapped En to the plane by t ¼ z1=n. The
geometrical factor from the associated Weyl tranformation
is independent of the operator insertions, cancelling the
factor h���1ð0Þ��

1ð1Þi�1. The operator positions are
mapped to the nth roots of unity. Since eachOij is primary,

under the conformal transformation it becomes, in the t

frame, j@z=@tj�dijOij ¼ n
�dijOij (we are assuming for

simplicity that the operators are scalars; including spin
there are additional phase factors, which depend on the
position and therefore have to be included before the
symmetrization over permutations).

To compute Cm one also needs to know the
Zamolodchikov metric for O0

m. A bit of combinatorics
shows that this is

G mm ¼ n1! � � � nk!
n!

; (A20)

where k is the number of types of operators Oi in O0
m

and the nl are the number of operators of each type (soP
lnl ¼ n).
We now specialize to the operator (A18). From (A19)

we obtain

c�1
�1m ¼ n�2di

2

nðn� 1Þ
Xn
j;k¼1
j<k

hOiðe2�ij=nÞOiðe2�ik=nÞi

¼ n�2di
1

n� 1

Xn�1

j¼1

j1� e2�ij=nj�2di : (A21)

We wish to analytically continue this expression in n.23 We
were not able to do this for general dimension di, but in the
next paragraph we will show that, when di is a (positive)
integer, the sum in (A21) is a polynomial in n of degree 2di,
with a root at n ¼ 1. Hence c�1

�1m is a rational function of n

that is regular at n ¼ 1. Since Gmm ¼ 2=ðnðn� 1ÞÞ, Cm ¼
G�1

mmðc�1
�1mÞ2 is a rational function with a zero at n ¼ 1.

This was the statement that was used in Subsection IVF.
In order to analytically continue the sum in (A21), we

note that the summand equals the reside of the pole at t ¼
e2�ij=n of the function

fðtÞ ¼ n

zðzn � 1Þð1� zÞdið1� 1=zÞdi : (A22)

We are assuming that di is a positive integer, so fðtÞ is
single-valued. It is easy to show that it is regular every-
where on the Riemann sphere except for a pole at each nth
root of unity. In particular, at t ¼ 1 there is a pole of order
2di þ 1, and the sum in (A21) equals minus its residue.
Writing u ¼ t� 1, this is the coefficient of u2di�1 in the
expansion of the function

nð�1Þdiþ1 ð1þ uÞdi�1

ð1þ uÞn � 1
: (A23)

Now, it is clear that this coefficient is zero for n ¼ 1, since
u�1ð1þ uÞdi�1 has no term of order u2di�1. It remains to
show that it is a polynomial of degree 2di. To do this we
rewrite (A23) as

ð�1Þdiþ1ð1þ uÞdi�1

�X1
k¼0

nk

ðkþ 1Þ! ðlnð1þ uÞÞkþ1

��1
:

(A24)

23The analytic continuation of the sum in (A21) was also
considered in [3]. In particular, an expression was derived that
allowed numerical approximations to be computed.
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When we expand the sum in large parentheses in powers
of u, the leading term is u, and after that the coefficient
of um is a polynomial in n of degree m� 1. It follows
that, when we expand the whole expression in powers

of u, the leading term is u�1, and after that the coefficient
of um is a polynomial in n of degree mþ 1. So, in
particular, the coefficient of u2di�1 is a polynomial of
degree 2di.
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