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We study the high-energy limit of tree-level string production amplitudes from decaying D-branes in

bosonic string theory, interpreting the vertex operators as external charges interacting with a Coulomb gas

corresponding to the rolling tachyon background, and performing an electrostatic analysis. In particular,

we consider two open string–one closed string amplitudes and four open string amplitudes, and calculate

explicit formulas for the leading exponential behavior.
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I. INTRODUCTION

A famous feature of string theory is the soft behavior of
scattering amplitudes in the high-energy limit.
Remarkably, at each order (worldsheet genus) in the per-
turbation theory, the dominant saddle-point contribution
has a simple electrostatic interpretation—the exponent can
be identified as the electrostatic energy of point charges at
the equilibrium [1–3]. Recently, the electrostatic approach
was applied to string scattering from decaying D-branes
[4,5]. In the original work [1–3], there was no background
charge in addition to the point charges, due to momentum
conservation. A new ingredient for strings scattering from
a decaying D-brane is the condensing tachyon on the
brane, which provides a background charge distribution
that interacts with the point charges. More precisely, the
background consists of a Coulomb gas of unit charges at
finite temperature and (imaginary) chemical potential. This
electrostatic interpretation is valid at all energies. Exact
calculations are very complicated, but simplifications can
be found in the high-energy limit. In a previous work, we
applied this approach to study closed string pair production
from a decaying D-brane at disk amplitude level [5].

In this paper, we study further examples of the electro-
static approach to decay amplitude calculations. We start
with a detailed general description of the approach. For a
uniform discussion, we review previous calculations be-
fore applying the method to new cases. We verify that the
approach predicts the known high-energy behavior of the
bulk-boundary amplitude [6] and show that the amplitude
does not diverge at high energies in the kinematically
allowed region. We also present an improved analysis of
the (‘‘antipodal’’) two-point function, related to open string
pair production by the decaying brane. Then we discuss
n-point functions with n > 2 and the associated string

production amplitudes.1 As a completely new result, we
apply our method to calculate the high-energy limit of a
three-point amplitude involving a pair of open strings and a
closed string. For stable D-branes, such amplitudes are,
e.g., relevant for emission from or absortion by a charged
black hole [7]. Finally, we extend previous work on n-point
boundary functions [8] and study the high-energy asymp-
totic behavior of the amplitude for production of four open
strings, before ending with conclusions and an outlook.
Technical details are presented in two appendices.

II. AMPLITUDES FROM
ELECTROSTATICS APPROACH

A. Preliminaries

We review quickly the structure of the disk amplitudes
for string scattering from a decaying D-brane in bosonic
string theory, with the ‘‘half S-brane’’ rolling tachyon
background [9,10]. The correlation functions are path in-
tegrals

Anðf!a; ~kagna¼1Þ ¼
Z Yn

a¼1

d2wa

2�

�
�Yn
a¼1

Vðwa; �waÞe��Sbdry

�
free

; (1)

where the rolling tachyon boundary deformation represent-
ing the half S-brane decay mode for the D-brane is

�Sbdry ¼ �
Z

dteX
0ðtÞ: (2)

The calculational complications arising from rolling
tachyon background are similar for all open and closed
string vertex operators, when they are represented in time-
like gauge [11]:
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VðkÞ ¼ Vspð ~kÞe�i!X0þi ~k� ~X; (3)

where Vspð ~kÞ involves only space directions ~X. The con-

tributions from the contractions from the spacelike sector
are similar to those in scattering from stable (or nonde-
formed unstable) D-branes, as they do not involve the
timelike background (2). Our focus is in developing tech-
niques for calculating the contribution from the nontrivial
timelike sector. Therefore, for our purposes it is sufficient
to focus on scattering amplitudes which involve only
closed and open string tachyon vertex operators

Vðwa; �waÞ ¼ eika�Xðwa; �waÞ: (4)

Closed string vertices are placed in the interior of the unit
disk jwaj< 1, whereas the open string vertices lie at the
boundary wa ¼ ei�a , �a ¼ 0 . . . 2�. We will consider
open-closed n-point amplitudes, with n ¼ nc þ no where
nc (no) is the number of closed (open) strings. We adopt a
notation �a ¼ �i!a and break up the spatial momentum
to parallel and perpendicular directions to the unstable

Dp-brane: ~ka ¼ ð ~kka; ~k?a Þ. On-shell conditions for the bo-

sonic closed string tachyons are k2a ¼ �2
a þ ð ~kaÞ2 ¼

�4ðNa � 1Þ and for the open string tachyons they read

k2a ¼ �2
a þ ð ~kkaÞ2 ¼ �ðNa � 1Þ [6]. The overall spatial par-

allel momentum will be conserved:
P

n
a¼1

~kka ¼ 0.
The worldsheet correlation functions can be evaluated

by first isolating the zero modes from the oscillators, X� ¼
x� þ X0�, and then expanding the boundary deformation
into a power series in �. This yields

Ancþno ¼
Z

dx0dp ~xkei
P

a
k
�
a x�

X1
N¼0

ð�zÞN
N!

�
Z Ync

a¼1

d2wa

2�

Yn
a¼ncþ1

d�a
2�

�YN
i¼1

dti
2�

�
�YN
i¼1

eX
00ðtiÞ

Yn
a¼1

eika�X0ðwa; �waÞ
�
; (5)

where we introduced z ¼ 2��ex
0
and fixed the indexing of

the vertex operators such that closed strings have smaller
values of a.

After a straightforward calculation (see Appendix A),
we can write (5) as

Ancþno ¼
Z

dx0dp ~xkei
P

a
k�a x� �Ancþnoðx0Þ; (6)

�A ncþnoðx0Þ ¼
X1
N¼0

ð�zÞNIncþnoðfwa; kag;NÞ; (7)

¼ X1
N¼0

ð�zÞN
Z Ync

a¼1

d2wa

2�

Yn
a¼ncþ1

d�a
2�

� Y
1�a<b�n

jwa � wbj2 ~kka� ~kkb

� Y
1�a<b�nc

jwa � wbj�kka�kkbþ ~k?a � ~k?b

� Ync
a;b¼1

j1� wa �wbj1=2ðkka�kkb� ~k?a � ~k?b Þ

� Zncþnoðfwa; kag;NÞ;

(8)

where

Zncþnoðfwa; kag;NÞ ¼ 1

N!

Y
1�a<b�n

jwa � wbj2�a�b

�
Z YN

i¼1

dti
2�

Y
1�i<j�N

jeiti � eitj j2

� Yn
a¼1

j1� wae
�iti j2�a : (9)

B. Applying the electrostatic approach

In general, (9) is too complicated to calculate, so we
look for an approximation scheme in a special limit. As
suggested by the notation, Zncþno can be interpreted as a

Coulomb gas partition function2 at the inverse temperature
� ¼ 2. We can evaluate the partition function in a saddle-
point approximation corresponding to electrostatic equi-
librium, at largeN and �a (with the ratios �a=N fixed). The
method is discussed in detail in a companion paper [4].
The leading term of logZncþno can be found by evaluating

the electrostatic energy of the Coulomb gas, unless nc þ
no is too large. The next-to-leading term was also analyzed
in [4]. In this article we shall continue the analysis of [4] by
discussing in detail how the high-energy limit of string
amplitudes arises from the electrostatic approach. String
production at large �a ¼ �i!a is a physically interesting
regime, since we expect the unstable D-brane to mainly
decay to very massive string modes [11].
First we note that the correlator �Zncþno needs to be

summed over N and integrated over x0 to obtain the string
scattering amplitude,

Ancþno /
Z

dx0e

P
a

�ax
0 X1
N¼0

ð�zÞNZncþnoðf�ag;NÞ; (10)

where z ¼ 2��ex
0
and we dropped the complicated pro-

portionality factor for clarity. As discussed in [8], under

2We have explored many other aspects of this connection
for decaying D-branes in bosonic and superstring theories in
[12–16].
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certain conditions the sum and the integral can be carried
out exactly,

Z
dx0e

P
a

�ax
0 X1
N¼0

ð�zÞNZncþnoðf�ag;NÞ

¼ �ð2��Þ�
P

a
�a

sinð�P
a �aÞ Zncþno

�
f�ag;N ¼ �X

a

�a

�
: (11)

This result was originally found in [17] in the context of
Liouville field theory. Zncþno is in general unknown but

simplifies in the large N limit (N; �a ! 1 with N=�a

fixed) [4]. Since N ¼ �P
a�a in (11), the large N limit

corresponds to the high-energy (!a ¼ i�a) limit for the
string production amplitudes. In particular, the leading
term gives the saddle-point approximation

Ancþno ¼
�ð2��Þ�

P
a
�a

sinð�P
a �aÞ

Z
ðdwd �wd�Þ�ðw; �w; �Þ

� exp

�
�2EjN¼�P

a
�a

�
; (12)

where E is the electrostatic energy of the corresponding
Coulomb gas configuration in the continuum limit and can
be computed explicitly [4]. Above

Rðdwd �wd�Þ denotes the
wa and �a integrals, and �ðw; �w; �Þ denotes the contribu-
tion from spacelike contractions in (6). Their explicit form
depends on the particular amplitude. Note that in general
also E is wa, �a dependent. If possible, we perform the
integrals explicitly, but in general we follow the approach
of [1] and replace wa by their electrostatic equilibrium
values (for details, see Appendix B and the examples in
Secs. III and IV).

The use of (11) requires an analytic continuation of
ZncþnoðNÞ in the parameter N to noninteger N, which is

subject to some constraints. The partition function should
be analytic for ReN > 0, and it should not grow exponen-
tially as N ! 1, when j argNj<�=2. The asymptotic
behavior of Zncþno (with �a fixed) may be analyzed using

random matrix theory techniques. Using a random matrix
theory interpretation, Zncþno describes an expectation

value of a periodic function in the circular ensemble of
UðNÞ random matrices, CUEðNÞ. The expectation value
can in turn be converted to a Toeplitz determinant of the
Fourier coefficients of periodic function (see [6,18,19] for
more discussion); the advantage then is that the asymptotic
behavior of the determinant at N ! 1 simplifies, and is
described by the Szegö formula and its generalization.
Using the result of [20], we find the power-law behavior

ZncþnoðNÞ �N!1 N
P

n
a¼ncþ1

�2
a (13)

(see [5] for a discussion with nc ¼ 0). This result holds
also for the leading term in the N ! 1 limit when N=�a is

fixed, an explicit discussion for the boundary one-point
partition function is given in [4].
The above analysis needs to be modified if the large N

limit of the partition function is not analytic in N. As
explained in [4,5], nonanalytic behavior may be associated
with suddenly appearing or disappearing gaps3 in the
continuous charge distribution of the Coulomb gas picture,
created in the vicinity of the external charges at some large
value of N. This may happen in the presence of bulk
charges: a charge near the boundary of the disk generates
a gap, which disappears at sufficiently large N [5]. Similar
phenomenon may occur in higher order boundary ampli-
tudes: two nearby charges will create only one gap for
small N, which separates into two gaps as N increases. In
these cases, as suggested in [5], one can first integrate over
the locations of the charges. The integrated partition func-
tion is analytic in N, and one can proceed with the analytic
continuation.4

In order to calculate the electrostatic energy, we need to
first assume that �a are real valued, and then continue
analytically to physical energies !a ¼ i�a in the end. We
justify this by noting that Zncþno is analytic for Re�a �
�1=2, as seen from (9).5

In summary, we have developed a prescription for cal-
culating the high-energy approximation of the string scat-
tering amplitudes, containing the following steps:
(1) Find the series expansion for the scattering ampli-

tude [see Eqs. (6)–(9)] and identify the Coulomb gas
partition function.

(2) Solve the electrostatic potential problem to find E,
and the leading partition function logZ ’ �2E at
� ¼ 2.

(3) If necessary, integrate the leading result over the
positions of the external charges (the unfixed modu-
lar parameters of the string vertex operators).

(4) Do the summation over N and integration over time
by continuing analytically N to the total external
charge N ! �P

a�a in the result for logZ, as shown
in Eq. (11).

(5) Continue analytically to physical energies !a ¼
i�a.

Finally, let us comment on the precision of the obtained
approximation. We only used the leading term of logZncþno

in the large N limit, which was shown to be OðN2Þ in [4].
Since we fixed N ¼ �P

a�a, our result (12) is the leading

3A gap may also exist first and then disappear, or many gaps
may be created or join together.

4Another method which typically avoids nonanalyticities is to
fix the positions by the equilibrium equations, which follow from
minimizing the electrostatic energy and will be discussed in
Appendix B.

5There may be one caveat: the amplitude contains an integra-
tion over the unfixed moduli parameters, which might in prin-
ciple cause problems in the case of higher-point amplitudes,
since the integrals are not necessarily well defined for all
Re�a � 0. This needs to be checked case by case.
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Oð!2Þ term of logAncþno in the limit of large ! ¼ P
!a

with the ratios !a=!b fixed. We also calculated the next-
to-leading OðNÞ term of logZncþno in [4]. However, this

term vanishes at � ¼ 2. Therefore, the first nontrivial
corrections to our high-energy approximation are obtained
from the OðN0Þ term of logZncþno , resulting in Oð!0Þ
(possibly logarithmic) corrections to logAncþno .

C. Electrostatic energies

In the remainder of the paper we study the easiest string
scattering amplitudes following the above systematic pre-
scription. In the second step, we need the electrostatic
potential energy E, as in Eq. (12). We have already studied
this problem in [4,5], and summarize the results here. First,
the energy with one bulk charge � ¼ �1 at w ¼ w1 ¼ r
(0< r < 1) reads [5]

EðbulkÞ ¼ 	ðrc � rÞ�
2

2
logð1� r2Þ þ 	ðr� rcÞ

�
�
�ðN þ 2�Þ2

4
log

1þ 


1þ �ðrÞ �
N2

4

� log
1� 


1� �ðrÞ þ
�2

2
log

4


ð1þ �ðrÞÞ2
�
;

(14)

where

rc ¼ N

N þ 2�
; �ðrÞ ¼ 1� r

1þ r
; 
 ¼ �

N þ �
:

(15)

Several configurations with charges on the boundary of the
disk were solved in [4]. In the simplest case there is one
boundary charge � on the boundary, giving

E ð1ptÞ ¼ 1
2½�2Fð�Þ þ Fð2�Þ � FðNÞ � FðN þ 2�Þ
þ 2FðN þ �Þ�; (16)

where

FðxÞ ¼ 1
2xfðxÞ ¼ 1

2x
2 logx: (17)

We will also use the result for the configuration where two
boundary charges �1 and �2 lie at exactly antipodal points
on the unit circle. Then

Eð2ptÞ ¼ fFðN þ �1 þ �2Þ � Fð�1 þ �2Þ � 1
4½FðN þ 2�1

þ 2�2Þ þ FðN þ 2�1Þ þ FðN þ 2�2Þ þ FðNÞ�
þ 1

4½Fð2�1 þ 2�2Þ þ Fð2�1Þ þ Fð2�2Þ�
� �1�2 log2g: (18)

As an example of a more complicated situation we con-
sider a symmetric four-point case where two particles with
equal charges �1 are, say, at � ¼ argw ¼ 0 and at � ¼ �,
and two additional particles with charges �2 are at � ¼
�=2 and at � ¼ 3�=2. This configuration gives

Eð4ptÞ ¼ 2FðN=2þ �1 þ �2Þ � 2Fð�1 þ �2Þ � 1
2½FðN=2

þ 2�1 þ 2�2Þ þ FðN=2þ 2�1Þ þ FðN=2þ 2�2Þ
þ FðN=2Þ� þ 1

2½Fð2�1 þ 2�2Þ þ Fð2�1Þ
þ Fð2�2Þ� � ð�1 þ �2Þ2 log2: (19)

III. TWO-POINTAMPLITUDES

A. Bulk-bulk amplitude

The high-energy production amplitude of two closed
strings from a decaying D-branewas derived in [5] by using
the framework of Sec. II with the result of Eq. (14).
For completeness, we review the results here. We fix the
charge �2 at w2 ¼ 0, and the charge �1 at 0<w1 ¼ r < 1
by using conformal symmetry. In this case Eq. (12)
becomes

A0þ2ð�1; �2Þ ¼ �ð2��Þ��1��2

sin�ð�1 þ �2Þ
�Z 1

0
drkðrÞ

� exp½�2EðbulkÞ�
�
N¼��1��2

; (20)

where we restored the proportionality factor

kðrÞ ¼ rrk1�k2ð1� r2Þ1=2ððkjj1 Þ2�ð ~k?1 Þ2Þ: (21)

For the special case where the strings have equal energies,
!1 ¼ !2 � !, the result simplifies to

A0þ2ð!Þ ¼ � i�eið�s=2Þð2��Þ2i!
2 sinh2�!

�
2
4eið�u=2Þ

�ðt2 � 1Þ
�ðtþu

2 � 2Þ þ
�ðs2 þ 1Þ
�ðsþu

2 Þ

3
5�

�
u

2
� 1

�
;

(22)

where

s ¼ k1 � k2
t ¼ 2ðkjj1 Þ2 ¼ 2ðkjj2 Þ2 ¼ 8� ð ~k?1 Þ2 � ð ~k?2 Þ2

u ¼ ð ~k?1 � ~k?2 Þ2
2

:

(23)

In the definitions of the parameters we used the on-shell

conditions k2a ¼ �!2
a þ ~k2a ¼ �4ðNa � 1Þ for the ta-

chyonic states Na ¼ 0. Notice that the results for the lead-
ing high-energy asymptotics (see [5] for an extensive
analysis) remain valid also for higher Na’s as long as they
are much smaller than the (squared) energy scale.

B. Bulk-boundary amplitude

Let us then discuss the asymptotics of the bulk-boundary
scattering amplitude, and verify that our result matches the
exact one [6]. We follow [6,11,18] and use conformal
symmetry to place the bulk operator (charge �c) to the

NIKO JOKELA, MATTI JÄRVINEN, AND ESKO KESKI-VAKKURI PHYSICAL REVIEW D 82, 126009 (2010)

126009-4



origin, rather than integrating over its position as suggested
in (8). Then the bulk charge decouples from the Coulomb
gas calculation, and we may use the results with one
boundary charge (�o) for the partition function.
According to Eq. (12), analytic continuation of (16) to
N ¼ ��c � �o at � ¼ 2 gives

A1þ1ð�c; �oÞ ’ �ð2��Þ��c��o

sin�ð�c þ �oÞ
� exp½�2Eð1ptÞ�j�¼�o;N¼��c��o

: (24)

Setting here �a ¼ �i!a we find the asymptotics

A1þ1ð!o;!cÞ ¼ i�ð2��Þið!cþ!oÞ

sinh�ð!c þ!oÞ exp
�
!2

o log
!o

!c þ!o

þ!2
c log

!c

!c þ!o

� 1

2
ð!c �!oÞ2

� log
!c �!o

!c þ!o

þ!2
oð2 log2	 i�Þ

þOðlog!Þ
�
; (25)

where we restored the expected size of the next-to-leading
order correction. This indeed matches with the asymptotics
of the exact amplitude [6] up to the branch choice of the
logarithm [	 in the phase factor, on the last line in (25)]
which is hard to obtain from the electrostatic approach.
Notice, however, that the absolute value of the amplitude is
independent of the branch.

Let us make one comment about this result. After using
momentum conservation parallel to the D-brane, 26-
momenta of the strings become

kc ¼ ð!c; ~k
k; ~k?Þ; ko ¼ ð!o;� ~kk; 0Þ: (26)

At high energy, and for low-lying excitations (Na 
 !2
a),

the mass-shell conditions �!2
c þ ~k2c ¼ �4ðNc � 1Þ and

�!2
o þ ~k2o ¼ �ðNo � 1Þ give

!c ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~kkÞ2 þ ð ~k?Þ2

q
!o ’ j ~kkj; (27)

so asymptotically !c � !o. The leading term in (25) can
be written as

!2
o log

!o

!c þ!o

þ!2
c log

!c

!c þ!o

� 1

2
ð!c �!oÞ2

� log
!c �!o

!c þ!o

þ 2!2
o log2 ¼ ð!c þ!oÞ2

�
�
�2 log�þ ð1� �Þ2 logð1� �Þ

� 1

2
ð1� 2�Þ2 logð1� 2�Þ þ 2�2 log2

�
;

(28)

where � � !o=ð!c þ!oÞ. In the kinematically allowed
region 0<�< 1=2 the function in the square brackets in
(28) is negative, and it vanishes at the endpoints � ¼ 0,

1=2. Thus the amplitude vanishes for high energies in the

kinematically allowed region as A� e��ð!cþ!oÞ if !c �
!o or !c ¼ !o, and faster (� e�#ð!cþ!oÞ2) if the energies
are comparable but unequal. We observed similar behavior
for the bulk two-point amplitude (22) at high energies
in [5].

C. Boundary-boundary amplitude

Finally, we shall analyze the boundary two-point ampli-

tude. Momentum conservation fixes ~kk1 ¼ � ~kk2 � ~kk and
from the on-shell conditions for low mass excitations

�!2
a þ ~k2a ¼ Oð!0Þ we get !1 ’ !2 � ! at high energy.

The electrostatic two-point partition function at equal
charges was found only numerically for general � ¼ �2 �
�1 in [4]. Therefore, we shall calculate the amplitude in the
equilibrium configuration. Notice that due to symmetry the
configuration where the charges lie at antipodal points,
�2 ¼ �1 þ �, is always a solution to the equilibrium equa-
tions (B5): if we set �1 ¼ 0 and �2 ¼ � the charge distri-
bution is symmetric with respect to the real axis, and the
imaginary parts in both of the terms of (B5) vanish. The
total energy is found by setting �1 ¼ �2 in Eq. (18) which
yields

Eð2pt;sÞ ¼ 1
2FðN þ 2�Þ � 1

4FðNÞ � 1
4FðN þ 4�Þ þ �2 log4�:

(29)

Including the spatial momentum dependence from Eq. (8),
and by using Eq. (11), we find

A0þ2ð!Þ ’ i�ð2��Þ2i!
sinh2�!

2�2ð ~kkÞ2 expð�2Eð2pt;sÞjN¼2i!;�¼�i!Þ:
(30)

After using the on-shell condition�!2 þ ~k2k ¼ Oð!0Þ the
amplitude becomes

A0þ2ð!Þ ¼ i�ð2��Þ2i!
sinh2�!

e	i�!2þOðlog!Þ: (31)

The result vanishes for large energies as A� e�2�!. It is in
accord with the one suggested in [21] and also matches
with the bulk-boundary amplitude (25) asymptotically at
!c ¼ !o.

IV. HIGHER-POINT AMPLITUDES

A. Bulk-boundary-boundary amplitude

We can extend our method also to the three-point am-
plitude A1þ2. As above, we place the bulk charge at the
origin, where it decouples from the Coulomb gas analysis.
We then fix the boundary charges at the equilibrium con-
figuration, where they are at antipodal points on the circle.
The relevant total energy is given by Eq. (18). By using
Eqs. (8) and (11), we find
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A1þ2ð!c;!1; !2Þ ’ i�ð2��Þi
P

a
!a

sinhð�P
a !aÞ 2

2 ~kk1� ~kk2

� exp

�
�2Eð2ptÞjN¼i

P
a
!a;�a¼�i!a

�
;

(32)

where the subscripts 1, 2 (c) refer to the open strings
(closed string), and a ¼ 1, 2, c in the sums. The 26-
momenta can be written as

k1 ¼ ð!1; ~k
k
1; 0Þ; k2 ¼ ð!2; ~k

k
2; 0Þ;

kc ¼ ð!c;� ~kk1 � ~kk2; ~k
?Þ:

(33)

At high energies mass-shell conditions give !a ’ j ~kkaj,
a ¼ 1, 2, and therefore

!2
c ’ ð ~kk1 þ ~kk2Þ2 þ ð ~k?Þ2 � !2

1 þ!2
2 þ 2!1!2 cos�

� ð!1 �!2Þ2; (34)

where � is the angle between the vectors ~kk1 and ~kk2. The
result for the amplitude may be written as

A1þ2ð!c;!1;!2Þ ¼ i�ð2��Þi
P

a
!a

sinhð�P
a!aÞ

� expfð!1 þ!2 þ!cÞ2½�ð�1;�2;�Þ
	 i��ð�1;�2Þ�þOðlog!Þg: (35)

Here the functions � and � are defined as

�ð�1; �2; �Þ ¼ �1
2½Fðj1� 2�1 � 2�2jÞ þ Fð1� 2�1Þ

þ Fð1� 2�2Þ� þ 1
2½Fð2�1 þ 2�2Þ

þ Fð2�1Þ þ Fð2�2Þ� � 2Fð�1 þ �2Þ
þ 2Fð1� �1 � �2Þ � 2ð1� cos�Þ
� �1�2 log2; (36)

�ð�1; �2Þ ¼ �2
1 þ �2

2 � 1
4ð1� 2�1 � 2�2Þ2

� 	ð2�1 þ 2�2 � 1Þ; (37)

where FðxÞ ¼ ðx2 logxÞ=2 as usual, 	 is the step function,
and �a ¼ !a=

P
b!b. Notice that the second inequality in

Eq. (34) restricts 0 � �a � 1=2, i.e., neither of the open
strings can alone carry more than half of the total emitted
energy.

It is crucial that the function � is negative in the
physical region for the result to make sense: the amplitude
must not diverge at high energies. The first inequality in
Eq. (34) may be written as

2�1�2ð1� cos�Þ � 2�1 þ 2�2 � 1: (38)

We verified numerically that� is negative (or zero) when-
ever this inequality is satisfied. Figure 1 shows the situation
for cos� ¼ 0:6: � is indeed negative in the whole
kinematically allowed (striped) region. This is a most non-
trivial check of our result. Notice that � vanishes if
cos� ¼ 	1 and Eq. (38) is saturated. In fact, � vanishes
if and only if the spatial momenta of all the strings are
(asymptotically) parallel, with the understanding that zero
is always parallel to any vector. Thus the amplitude decays
exponentially

A1þ2ð!c;!1; !2Þ � e��
P

a
!a (39)

for large energies in these configurations, and the decay is
even faster

A1þ2ð!c;!1; !2Þ � exp

�
�#

�X
a

!a

�
2
�

(40)

in other cases.

B. Boundary amplitudes

We can also give other conjectures on the asymptotics of
n-point amplitudes with n � 3. We are, however, limited to
special kinematic settings, which can be accessed by solu-
tions for the symmetric potential problems in [4]. For
example, let us consider ‘‘pairwise’’ production of four

open strings, with ~kk1 ¼ � ~kk3, and ~kk2 ¼ � ~kk4, and with

possibly different energies !a ’ j ~kkaj, a ¼ 1, 2. We fix
the charges symmetrically as explained above before
Eq. (19). In the case of production to orthogonal directions

( ~kk1 � ~kk2 ¼ 0) this configuration also solves the equilibrium

equations (B5). Proceeding as above with Eð4ptÞ from
Eq. (19),
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FIG. 1. The function � for cos� ¼ 0:6. The curves lie at
constant � as indicated by the labels, and the striped region is
the kinematically allowed one, given by Eq. (38).
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A0þ4ð!1; !2Þ ’ i�ð2��Þ2ið!1þ!2Þ

sinh½2�ð!1 þ!2Þ�
� exp½Fð2!1Þ þ Fð2!2Þ
� 2Fð!1 þ!2Þ � 2Fðj!1 �!2jÞ
� 2ð!2

1 þ!2
2Þ log2�: (41)

One can check that the result vanishes asymptotically for

any fixed ratio !1=!2 as A� e�#ð!1þ!2Þ2 .

V. CONCLUSIONS AND OUTLOOK

In this paper we used electrostatic techniques to inves-
tigate string scattering amplitudes of D-brane decay in
bosonic string theory. In particular, we studied the high-
energy limits of open and closed string emission ampli-
tudes in the half S-brane background. We considered pair
production of open strings and closed strings. We also
derived a result for a mixed amplitude with one closed
string and a pair of open strings and briefly discussed
n-point open string amplitudes with n � 3.

Overall, our analysis revealed the expected exponential
falloff behavior at high energies—the amplitudes decay
with sums of the emitted energies in the exponent.
However, in many cases the decay was found to be even
faster, depending on the conditions for the spatial
momenta.

An attractive feature of the electrostatic method is that it
provides intuitive insight into the high-energy behavior of
the string amplitudes. It would be worthwhile to generalize
our investigations to other unstable systems. Some cases to
study are (1) full S-brane, which corresponds to a collec-
tion of positive and negative unit charges [14], (2) non-BPS
Dp-branes for p odd/even in Type IIA/B superstring,
corresponding to paired Coulomb gases [15], and (3) inho-
mogeneous or lightlike decays, possibly corresponding to
two sets of distinct Coulomb gases. The continuum limit
with appropriate external bulk or boundary charges in each
case would help one to find an approximate high-energy
emission amplitude for closed or open strings.

The high-energy closed string pair production amplitude
which we obtained is currently the only explicit result for
this process. There are two remaining puzzles which we
have so far failed to solve. First, in order to maintain
symmetry in exchanging the closed strings we had to fix
the energies of the closed strings to be equal [5]. This
requirement is a limitation. It does not arise from the
electrostatic approximation—in the exact power series ex-
pression of the amplitude, each term in the expansion is by
itself asymmetric.6 However, it would be natural for the
final amplitude to depend symmetrically on the energies of
the emitted closed strings.

The second puzzle is associated with open-closed dual-
ity [22]. (For discussion on the issue, see e.g. [23–26].) A
striking mismatch of the duality is the failure to connect the
closed string IR channel to the open string UV channel.
Consider an open string annulus diagram, with rolling
tachyon background on a decaying p-brane at both edges.
The two natural ways of cutting the annulus, and the two
corresponding different kinematical limits, give total am-
plitudes for open string or closed string pair production,
with UV region of the open string channel corresponding
to the IR region in the closed string channel [23]. However,
the closed string production rate is finite for p � 23,
whereas the open string pair production rate in the UV is
finite for p � 22. In an ongoing work, we have tried to
improve the open string analysis by including logarithmic
corrections to the exponent, using the electrostatic ap-
proach, as in (31). However, the mismatch between the
open string and closed string production rates seems to
become even more pronounced. We have estimated the
correction numerically and have found the open string
pair production rate to become UV finite for all
Dp-branes, with a bound p � 26.7 So the question re-
mains, is it valid to think of the bulk one-point and the
boundary two-point amplitudes as coming from the same
vacuum open string one-loop amplitude?
There are some caveats. First, there is no rigorous jus-

tification of the analytic continuation method from
Euclidean to Minkowski signature, proposed in [21], to
obtain the exact open string pair production amplitude.
Furthermore, it seems to be very difficult to extract the
IR limit of the open string amplitude in [21], in order to
make contact with the closed string UV channel. As far as
we know, no results in the open string IR channel are
known. Second, there are no results for amplitudes in
superstring theory beyond the bulk-boundary amplitude
[18]. Bulk one-point amplitudes have been calculated in
[27], and the closed string production rate in the IR can be
easily extracted to be finite for p � 7. It would be interest-
ing to generalize our electrostatics methods to type II
superstring and find out how the open string pair produc-
tion amplitude behaves at high energies.
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APPENDIX A: VARIOUS CONTRACTIONS

In this appendix we will fill in some gaps between (5)
and (6). For ease of reference, let us record (5)

Ancþno ¼
Z

dx0dp ~xke
i
P
a

kðaÞ� x� X1
N¼0

ð�zÞN
N!

Z Ync
a¼1

d2wa

2�

� Yn
a¼ncþ1

d�a
2�

�YN
i¼1

dti
2�

�
�YN
i¼1

eX
00ðtiÞ

Yncþno

a¼1

eika�X0ðwa; �waÞ
�
: (A1)

To calculate the full contraction, it is useful to include
various contributions one by one. Denote

Kncþno �
� Yncþno

a¼1

eika�X0ðwa; �waÞ
�
: (A2)

Let us first focus just on closed strings, no ¼ 0. It is
important to recall that the closed strings have mixed
boundary conditions, Neumann for parallel ones ð� ¼
0; . . . ; pÞ and Dirichlet for perpendicular directions ð� ¼
pþ 1; . . . ; 25Þ. This is encoded in the Green’s functions [6]

hX0�ðwa; �waÞX0
ðwb; �wbÞi ¼
(
� 1

2�
�
ðlogjwa � wbj2 þ logj1� wa �wbj2Þ; Neumann

� 1
2�

�
ðlogjwa � wbj2 � logj1� wa �wbj2Þ; Dirichlet:
(A3)

These yield (the singular self-contractions are dropped)

Kncþ0 ¼
Y

1�a<b�nc

j1� wa �wbjkka�kkb� ~k?a � ~k?b jwa

� wbjkka�kkbþ ~k?a � ~k?b
Ync
a¼1

j1� wa �waj1=2ðkkaÞ2�ð1=2Þð ~k?a Þ2 :

(A4)

Now we wish to take into account open strings, i.e.,
no � 0. They only couple to the parallel parts of the fields
and have the Neumann boundary conditions. The contri-
bution is thus easily accounted for as follows:

Kncþno ¼ Kncþ0

Y
ncþ1�a<b�n

jwa � wbj2kka�kkb
Ync
a¼1

Yn
b¼ncþ1

� jwa � wbj2kka�kkb : (A5)

Notice that there is a factor of 2 relative to bulk-bulk case
in the exponents, since the two terms in (A3) add up.

Finally, we wish to include the contribution from the
boundary deformation. Since the deformation only in-
volves the field X0, we get the contribution only from the
temporal direction:

�YN
i¼1

eX
00ðtiÞ

Yncþno

a¼1

eika�X0ðwa; �waÞ
�
¼ Kncþno

Y
1�i<j�N

� jeiti � eitj j2 YN
i¼1

Yncþno

a¼1

jwa � eiti j2�a : (A6)

Inserting (A6) to (A1), with the expression for Kncþno (A5)

and for Kncþ0 in (A4), yields (6).

APPENDIX B: EQUILIBRIUM CONDITIONS

We shall look for the (global) equilibrium configuration,
which is the electrostatic configuration in the Coulomb gas
picture. Let us start with the boundary n-point amplitude

A0þn and set all spatial momenta at zero, ~ka ¼ 0. Since the
external charges lie on the unit circle, �wa ¼ w�1

a .
Therefore, we may extend the Coulomb gas partition func-
tion to an analytic function of wa:

ZðNÞ ¼ 1

N!

Z YN
i¼1

dti
2�

Y
1�i<j�N

jeiti � eitj j2

� exp

�X
i;a

�a½logðeiti � waÞ þ logðe�iti � w�1
a Þ�

þ X
a<b

�a�b½logðwa � wbÞ þ logðw�1
a � w�1

b Þ�
�
:

(B1)

We find that the saddle-point equations can be written as

0 ¼ 1

2
@wc

logZðNÞ

¼ �c

2
4X

a�c

�a

wa � wc

þ N

�
1

eit1 � wc

�
þ

N þ P
a�c

�a

2wc

3
5;

(B2)

where the expectation value is defined by ZðNÞ. Notice that
(B2) is basically (the expectation value of the conjugate of)
the electric force felt by the particle at w ¼ wc. The first
term is due to the self-interactions of the external charges
at w ¼ wa, and the second term is the expectation value of
force due to the unit charges created by the tachyon profile.
This suggests that the solution of the equations for all wc is
the equilibrium configuration.
The last term in (B2) is an electric force due to a special

charge at w ¼ 0. The origin of this term is understood as
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follows. Note that (B1) is real (for real �a) when all wa are
on the unit circle. Hence the complex derivative with
respect to any wc must return a tangential force, i.e., /
iw�1

c where the proportionality constant is real. The radial
force equation is automatically satisfied when all jwaj ¼ 1.
In Eq. (B2), this is explicitly realized by the additional
charge at the origin, which cancels the radial pressure due
to the interactions of the charged particles.

We may verify these arguments explicitly by splitting
(B2) into radial and tangential components. We write

wc

2
@wc

logZðNÞ þ �wc

2
@wc

logZðNÞ

¼ 1

N

X
a�c

�
�awc

wa � wc

þ �a �wc

�wa � �wc

�

þ
�

wc

eit1 � wc

þ �wc

e�it1 � �wc

�
þ

N þ P
a�c

�a

N
;

iwc

2
@wc

logZðNÞ � i �wc

2
@wc

logZðNÞ

¼ i

N

X
a�c

�
�awc

wa � wc

� �a �wc

�wa � �wc

�

þ i

�
wc

eit1 � wc

� �wc

e�it1 � �wc

�
;

(B3)

where the former expression is the radial force and the
latter one is tangential. Since bothwa andwc lie on the unit
circle,

wc

wa � wc
þ �wc

�wa � �wc

¼ �1; jwaj ¼ jwcj ¼ 1;

(B4)

i.e., the radial electric field at wc due to a particle at wa is
independent of both wa and wc. Hence one sees immedi-
ately that the radial component in (B3) vanishes identi-
cally, so the equilibrium configuration is fixed by the
tangential equation. If one uses rotational symmetry to
fix wc ¼ 1 the tangential equation becomes

1

N

X
a�c

�a Im
1

wa � 1
þ Im

�
1

eit1 � 1

�
¼ 0: (B5)

The above derivation was done for fixed N. When the
partition function is summed over N we expect that the
final equilibrium equations are found by continuing ana-
lytically to N ¼ �P

a�a, in analogue with the partition
function. In the text we shall apply the equations only to
such cases where the saddle-point configuration is inde-
pendent of N.

The case of nonzero ~ka is also interesting. As is easy to
see from (6), for the boundary amplitude this means re-

placing �a by an effective charge �
ðcÞ
a ¼ �a þ ~kka � ~kkc=�c in

the above formulas. Extension to bulk charges is simple as
well. In this case wa and �wa can be taken to be indepen-
dent, and the electric force obtained by differentiation has
two nontrivial components.
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