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We write down exact solutions in the collective field theory of the c ¼ 1 matrix model and in dilaton-

gravity coupled to a massless scalar. Using a known correspondence between these two theories at the null

boundaries of spacetime, we make a connection between scalar fields in these two theories in the bulk of

spacetime. In the process, we gain insight into how a theory containing gravity can be equivalent to one

without gravity. We analyze a simple time-dependent background as an example.
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I. INTRODUCTION

One of the hallmarks of gauge/gravity correspondence is
the emergent nature of a noncompact spacetime dimen-
sion, with the gauge theory dual living on the boundary of
the gravitational—or string theory—spacetime. The situ-
ation with c ¼ 1 string theory is somewhat similar. On the
string side, we have Liouville string theory, which is a
subcritical string theory with a two dimensional target
spacetime. The corresponding effective spacetime action
is dilaton-gravity coupled to a massless scalar known as the
‘‘tachyon’’. On the gauge side, we have a gauged Matrix
Quantum Mechanics in a double scaling limit, which is a
large N system living in one dimension: time. Using col-
lective field formalism, this MQM can be rewritten as a
1þ 1 dimensional field theory of a single scalar, describ-
ing the density of matrix eigenvalues. The spacial dimen-
sion in which Liouville strings propagate is emergent, as it
is generated from collective behavior of matrix eigenval-
ues. It is less clear how gravity emerges in this picture.

The purpose of this paper is to explore in some detail
how gravity arises from the c ¼ 1 matrix model when the
so called ‘‘leg pole’’ factors are taken into account, ex-
tending the results of [1]. We can think about this con-
struction as a toy model for holography, as follows. The
spacetime of Liouville string theory [see Fig. 1(a)] is flat,
and can be parametrized by two coordinates x and t, or
x� ¼ t� x. String coupling varies with spacelike gs �
expð2xÞ and the strong coupling region at large x is
shielded by the presence of a tachyon background, T0 �
expð2xÞ, which repels strings away from this region. In
addition, the same quantum improvement which leads to
the inhomogeneous string coupling (and which is neces-
sary in a noncritical string theory) also makes the tachyon
massless. Finally, in two target space dimensions, there are
no transverse oscillators in the quantization of the string
world sheet, so the tachyon is the only propagating degree
of freedom. From the infinite ladder of string states, only
some special discrete states at discrete Euclidean momenta
remain. These lead to short distance bulk interactions
between the tachyon quanta, described at the lowest order
in �0 by dilaton-gravity. Tachyon pulses enter from I� to

be scattered by the tachyon wall and return to Iþ. In the
bulk, these pulses can interact with each other via either
tachyon three-point (and higher) vertices, or by exchanging
gravitons and dilatons (and more massive string fields).
The matrix model and the corresponding collective field

theory can be thought of as providing boundary data for
tachyon scattering. In particular, together with the leg pole
transform, the matrix model allows us to calculate the
exact shape of the outgoing tachyon pulse given the in-
coming pulse. It is in this sense that the matrix model
provides us with a holographic description of dilaton-
gravity. We have a gravity background which two null
boundaries, I�, and a one dimensional ‘‘gauge theory’’
which supplies the scattering matrix between them.
At the same time, we have an equivalence between two

different theories involving a scalar field in 1þ 1 dimen-
sions: one with gravity (dilaton-gravity interacting with
the tachyon field) and one without (collective field theory
for MQM). We will see in detail how it is possible for these
two theories to be equivalent, shedding perhaps some light
on how gravity can be an emergent theory.
Our strategy for making connections between the bulk

fields in these two theories is as follows. Given a solution to
the collective field theory for MQM, we reconstruct (per-
turbatively in the size of the fluctuation) the boundary data

FIG. 1. (a) Penrose diagram of Liouville string theory. The
shaded region is inaccessible to string degrees of freedom due to
the tachyon wall. Massless tachyon pulses scatter from I� to
Iþ. Shape of the outgoing pulse encodes information about the
interior metric and dilaton fields. (b) Penrose diagram of the
collective field theory for �> 0.
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in that model. We then use the leg pole transform to
compute the boundary tachyon field. Finally, we use this
boundary field to integrate inwards in the dilaton-gravity
theory to third order in the tachyon field, reconstructing the
metric, the dilaton and higher-order tachyon field correc-
tions. As a result, we can explicitly write the metric, dilaton
and tachyon field as a (nonlocal) function of the bulk field
in the collective field theory (Eqs. (60) and (62)).

Naively, the spacetime on which the collective field
theory lives is fixed. As was first pointed out in [2], this
is not the case. Sufficiently large fluctuations of the Fermi
sea of eigenvalues can in fact make the spacetime on which
the collective field lives time-dependent, changing its
structure, for example, by introducing spacelike infinities
[3]. In such scenarios, it would be most interesting to be
able to calculate the metric and dilaton of the equivalent
string theory target space. We will see that our methods
make this partially possible, and will calculate the metric
and the dilaton for a particular time-dependent scenario.

We work in the convention where �0 ¼ 1. In order to
avoid complications arising from the tachyon background,
we focus on bulk processes which do not involve it. To
separate these bulk processes from the interactions with
the background, we make the background parametrically
small by taking the string coupling at the tachyon wall to
be large.

The reminder of the paper is organized as follows: In
Sec. II we discuss exact solutions to the collective field
equations of motion, in the chiral, or light cone, formalism.
In Sec. III we solve the equations of motion of dilaton-
gravity coupled to a scalar, perturbatively to third order in
the scalar field. In Sec. IV we tie the results of two previous
sections together, and extract information about the rela-
tionship between the tachyon and the collective field of
matrix eigenvalues. Finally, in Sec. V, we use our tech-
niques to study a particular time-dependent background.

II. SOLUTIONS IN CHIRAL FORMALISM

In this section, we will obtain explicit formulas linking
the profile of outgoing fluctuations in the collective field to
the profile of incoming fluctuations. We will start with a
brief review of the salient facts and definitions in the matrix
model. For more details, please see [4–6] (chapter 5).

The c ¼ 1 MQM has as its fundamental degrees of
freedom noninteracting fermions in the upside down har-
monic oscillator potential, with the Hamiltonian

H ¼ 1

2
p2 � 1

2
x2: (1)

Curvature of the potential is fixed by taking �0 ¼ 1. The
effective (or bosonized) picture for this system is that of a
Fermi fluid moving in phase space ðx; pÞ. Because of the
incompressibility of this fluid, in the classical limit it is
sufficient to give the position of the Fermi surface, often
presented as p�ðx; tÞ, the upper and lower branches of the

Fermi surface as a function of x. Local density of fermions
is then given by the distance between the two branches
of p:

’ðx; tÞ � 1

2
ðpþðx; tÞ � p�ðx; tÞÞ: (2)

Static Fermi surfaces are constant energy hyperbolas given
by E ¼ 1

2p
2 � 1

2 x
2 ¼ �. For �< 0 the left and the right

branches of the hyperbola do not interact: any small fluc-
tuation around this static background evolves by moving
along one arm from x ¼ 1 towards finite x and back out to
x ¼ 1 along the other arm of the same branch.
Unfortunately, this description is singular at the place

where the upper and the lower edge of the Fermi sea join.
To avoid this singularity, we will use an equivalent descrip-
tion with �> 0 and allow the fluctuation to propagate
from left to right along the upper branch of the hyperbola
p2 � x2 ¼ 2�.
To calculate the relationship between the incoming and

the outgoing pulse, we will use the chiral (or light cone)
formalism [7]. Our implementation of the chiral formalism
is based on a simple observation that if the Fermi surface is
given at t ¼ 0 by Gðx; pÞ ¼ 0 for some function G, then
the time evolution of this Fermi surface is given by

G

�
1

2
ðpþ xÞe�t � 1

2
ðp� xÞet; 1

2
ðpþ xÞe�t

þ 1

2
ðp� xÞet

�
¼ 0: (3)

Consider now the fluctuations of the upper branch of the
hyperbola given by p2 � x2 ¼ 2�, with �> 0. We define
the fluctuation field � with

pðx; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�þ x2

q
þ 2

ffiffiffiffi
�

p
@x�: (4)

It will turn out that � is best thought of as a function

of � such that x ¼ ffiffiffiffiffiffiffi
2�

p
sinh�, so that @x� ¼ ð2�þ

x2Þ�1=2@��ð�Þ � j1=xj@��ð�Þ for large jxj. Fluctuations
come in from x ! �1 and exit at x ! 1. We would like
to write down an expression connecting �ðx; tÞ at either
infinity to the corresponding profile at finite x and t.
To achieve this, consider that any pertubation around the
static hyperbola can be written in the form p2 � x2 ¼
2�þ fluctuations. If the fluctuations are expressed solely
in terms of either ðp� xÞet or ðpþ xÞe�t, Eq. (3) tells
us that we have a solution to the equations of motion. In
this parametrization it will turn out to be easy to study the
x ! �1 limits.
Consider then the following general exact time-

dependent profile of type (3) for some function
finð�Þ<<� (whose meaning will become clear in a
moment):

p2 � x2 ¼ 2�� 2f0in
�
ln

� ffiffiffiffiffiffiffi
1

2�

s
ðp� xÞet

��
: (5)
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This can be rewritten as

pþ x ¼ 2�

p� x
� 2

p� x
f0in

�
ln

� ffiffiffiffiffiffiffi
1

2�

s
ðp� xÞ

�
þ t

�
: (6)

Assuming that finðyÞ has finite support on some interval
near y ¼ 0, for t ! �1, fin is nonzero only if p� x
is large. Then, for t ! �1, the right hand side of our
equation is small, and we must have p � �x. Therefore,
x is large and negative, and p� x � �2x. Substituting
this in, we get

p ¼ �x��

x
þ 1

x
f0in

�
ln

�
�

ffiffiffiffi
2

�

s
x

�
þ t

�
; (7)

which for large negative x can be rewritten as

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 2�

q
� 1

jxj f
0
inðt� �Þ; (8)

with x ¼ ffiffiffiffiffiffiffi
2�

p
sinh� � � ffiffiffiffiffiffiffiffiffi

�=2
p

expð��Þ. We can now
identify fin with the early time � in Eq. (4), which is
right-moving as expected. To be precise, for t ! �1,
�ð�; tÞ ¼ ð2 ffiffiffiffi

�
p Þ�1finðt� �Þ.

The same analysis applies to late time fluctuations at
large positive x. Starting with a time-dependent profile
given by

p2 � x2 ¼ 2�� 2f0out
�
� ln

� ffiffiffiffiffiffiffi
1

2�

s
ðpþ xÞe�t

��
; (9)

we can identify �ð�; tÞ ¼ ð2 ffiffiffiffi
�

p Þ�1foutðt� �Þ at late

times, t ! 1, with x � ffiffiffiffiffiffiffiffiffi
�=2

p
expð�Þ.

The crucial observation is that the profiles in Eqs. (5)
and (9) are exact solutions and valid at all times. Assuming
they describe the same surface, if the incoming profile is
fin, the outgoing profile can be obtained from setting the
right-hand sides of Eqs. (5) and (9) equal:

f0in
�
ln

� ffiffiffiffiffiffiffi
1

2�

s
ðp� xÞet

��
¼ f0out

�
� ln

� ffiffiffiffiffiffiffi
1

2�

s
ðpþ xÞe�t

��
:

(10)

We now substitute the expression for xþ p from Eq. (6),
and define y ¼ lnððp� xÞet= ffiffiffiffiffiffiffi

2�
p Þ to get

f0inðyÞ ¼ f0outðy� lnð1���1f0inðyÞÞÞ; (11)

or, defining yðzÞ by z ¼ y� lnð1���1f0inðyÞÞ, f0outðzÞ ¼
f0inðyðzÞÞ, which is nothing more but the time delay equa-

tion in [1,8]. More interestingly, we can find the profile
at any time. Given the incoming profile fin, Eq. (5) can be
solved for p as a function of x treating fin as a small
perturbation. � as a function of x (or �) and t can then
be read off.

To second order in fin, we get

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 2�

q
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ 2�
p f0inðt� �Þ

þ e�ffiffiffiffiffiffiffi
2�

p ð2�þ x2Þ f
0
inðt� �Þf00inðt� �Þ

� 1

2ð2�þ x2Þ3=2 ðf
0
inðt� �ÞÞ2 þ oððf0inÞ3Þ; (12)

or

2
ffiffiffiffi
�

p
@��ð�; tÞ ¼ �f0inðt� �Þ þ e�

2� cosh�
f0inðt� �Þ

� f00inðt� �Þ � ðf0inðt� �ÞÞ2
4�cosh2�

þ oððf0inÞ3Þ: (13)

This can be integrated with respect to �

2
ffiffiffiffi
�

p
�ð�; tÞ ¼ finðt� �Þ � e�

4� cosh�
ðf0inðt� �ÞÞ2

þ oððf0inÞ3Þ: (14)

As a consistency check, we notice that in the large
negative � regime, � ¼ �in, as expected, and that in the
large positive � regime, there are no left-moving terms
(everything is a function of t� �). In particular, if we take
� ! 1 in the above equation, then

2
ffiffiffiffi
�

p
�ð� ! 1Þ ¼ finðt� �Þ � 1

2�
ðf0inðt� �ÞÞ2

þ oððf0inÞ3Þ: (15)

To third order, the calculation is a bit more messy.
The result for �0 is again a total derivative, and can be
integrated to give

2
ffiffiffiffi
�

p
�ð�; tÞ ¼ finðt� �Þ � e�

4� cosh�
ðf0inðt� �ÞÞ2

� ðe2� þ 3Þe�
48�2cosh3ð�Þ ðf

0
inðt� �ÞÞ3

þ e2�

8�2cosh2ð�Þ ðf
0
inðt� �ÞÞ2f00inðt� �Þ

þ oððf0inÞ4Þ: (16)

Our procedure can be extended to any order, and gives
both the collective field profile at any time, and the out-
going profile for t ! 1 in terms of the incoming field,
as illustrated in Fig. 1(b) and further elaborated on in
Appendix A.

III. DILATON-GRAVITY COUPLED
TO A MASSLESS SCALAR

Having studied the behavior of the collective field at
finite x and t (i.e., interior behavior, away from the past
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and future null boundaries) in the collective field theory,
we now turn our attention to interior behavior of the
dilaton-gravity theory.

As was described above, effective field theory for
Liouville string theory is dilaton-gravity coupled to the
(massless) tachyon scalar. Since the tachyon is a massless
field and not actually tachyonic, the action for these
3 degrees of freedom is perfectly well defined.
Denoting the dilaton field with � and the tachyon with
T, we have [1]

S ¼ 1

2

Z
dtdx

ffiffiffiffiffiffiffiffi�G
p

e�2�½a1½Rþ 4ðr�Þ2 þ 16�
� ðrTÞ þ 4T2 � 2VðTÞ�; (17)

where we will take the tachyon potential to be

VðTÞ ¼ a2T
3

3
: (18)

Here a1 and a2 are constants which were determined in [1]

to be a1 ¼ 1
2 and a2 ¼ �2

ffiffiffi
2

p
.

In conformal gauge, where the metric is ds2 ¼
�e2�dxþdx�, the equations of motion are [9]

2@2þ�� 4@þ�@þ� ¼ a�1
1 @þT@þT (19)

2@2��� 4@��@�� ¼ a�1
1 @�T@�T (20)

2@þ@��� 4@þ�@��� 4e2� ¼ a�1
1 e2�

�
T2 � a2

6
T3

�

(21)

4@þ@��� 4@þ�@��� 2@þ@��� 4e2�

¼ a�1
1 @þT@�T þ a�1

1 e2�
�
T2 � a2

6
T3

�
(22)

e�2�ð@þ@�T � @þ�@�T � @��@þTÞ � T ¼ �a2
4
T2:

(23)

The first three equations are for the metric, the fourth is
for the dilaton and the last is for the tachyon field. The last
two equations can be combined to give a particularly
simple relationship,

2@þ@�ð���Þ þ a�1
1 @�T@þT ¼ 0: (24)

In the absence of a tachyon field, above equation becomes
@þ@�ð���Þ ¼ 0. Using up the leftover coordinate free-
dom x� ! ~x�ðx�Þ, we could set � ¼ �, the Kruskal
gauge. However, since we are dealing with a linear dilaton
background, a more natural gauge choice is the modified
Kruskal gauge � ¼ xþ � x� þ �. Either gauge choice is
only possible in regions where the tachyon field is zero.

We will expand in powers of the tachyon field. To zeroth
order, we have the linear dilaton background,

�0 ¼ 2x ¼ xþ � x�; �0 ¼ 0: (25)

The tachyon background is a solution to the linearized
version of Eq. (23) in this background,

@þ@�T � @�T þ @þT � T ¼ 0: (26)

The most general static solution to this equation is

T0 ¼ ðb1xþ b2Þe2x: (27)

We are working in the limit where the tachyon background
can be neglected, b1, b2 ! 0, and will be expanding in

powers of the incoming tachyon field: T ¼ Tð1Þ þ Tð2Þ þ
Tð3Þ þ . . . , ignoring T0.
It will be convenient to absorb a factor of the dilaton

background into T by defining a new field S ¼ e��0

T ¼ e�2xT ¼ Sð1Þ þ Sð2Þ þ Sð3Þ þ . . . . To lowest order
the equation of motion is simply

@�@þSð1Þ ¼ 0: (28)

The rescaled tachyon field S is a massless scalar; above

equation has solutions of the form Sð1Þ ¼ Sð1Þ� ðx�Þ þ
Sð1Þþ ðxþÞ. Since the region x ! þ1 is the strong coupling
region, protected by the tachyon condensate, S cannot
have left-moving incoming excitations, and we are left

with Sð1Þ ¼ Sð1Þ� ðx�Þ. We are ignoring here any reflections
from the tachyon wall itself.
To second order, we can linearize Eqs. (19)–(22) in

gravity and dilaton fluctuations about the background,
� ¼ �0 þ �, to obtain

@2þ�� 2@þ� ¼ 1

2a1
ð@þTð1ÞÞ2 (29)

@2��þ 2@�� ¼ 1

2a1
ð@�Tð1ÞÞ2 (30)

@þ@��� 4�þ 2@þ�� 2@�� ¼ 1

2a1
ðTð1ÞÞ2 (31)

2@þ@��þ 2@þ�� 2@��� @�@þ�� 4�

¼ 1

2a1
ð@þTð1Þ@�Tð1Þ þ ðTð1ÞÞ2Þ: (32)

The tachyon equation of motion at this level is

@þ@�Tð2Þ �@�Tð2Þ þ@þTð2Þ �Tð2Þ ¼�a2
4
ðTð1ÞÞ2 (33)

or

@�@þSð2Þ ¼ � a2
4
e2xðSð1ÞÞ2: (34)

This last equation is easy to solve for Sð2Þðx�Þ,

Sð2Þ ¼ �a2
4
ex

þ Z x�
dx�e�x�ðSð1Þðx�ÞÞ2: (35)
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Defining � ¼ 2ð@� � @þÞ�þ 4�, we can combine
Eqs. (29)–(31) into

ð@þ � 2Þ� ¼ 1

a1
ððTð1ÞÞ2 � ð@þTð1ÞÞ2Þ (36)

ð@� þ 2Þ� ¼ 1

a1
ð�ðTð1ÞÞ2 þ ð@�Tð1ÞÞ2Þ (37)

@þ@�� ¼ �þ 1

2a1
ðTð1ÞÞ2 (38)

while Eqs. (31) and (32) give

@þ@�ð�� �Þ ¼ 1

2a1
@þTð1Þ@�Tð1Þ: (39)

These four equations can be integrated explicitly to give
� and �. Note that there are more equations (four) than
unknown functions (two), and consistency between them
requires that T satisfy the 1st order Eq. (26), whose most
general solution is

Tð1Þ ¼ ffiffiffiffiffi
a1

p
ex

þ�x�ðfþðxþÞ þ f�ðx�ÞÞ: (40)

It is easy to show that in that case, the first two equations
give [10]

� ¼ �e2x
þ�2x�

�
f2þ þ 2f�fþ þ f2� �

Z
xþ

dxþðf0þÞ2

�
Z x�

dx�ðf0�Þ2 þ 4A

�
; (41)

and the third gives

� ¼ 1

4

Z x�
dx�e2xþ�2x�½ðf0�Þ2 � f2��

þ 1

4

Z
xþ

dxþe2xþ�2x�½ðf0þÞ2 � f2þ�

� 1

4
e2x

þ�2x�
Z
xþ

dxþðf0þÞ2 �
1

4
e2x

þ�2x�

�
Z x�

dx�ðf0�Þ2 þ
Z x�

dx�e�2x�f�

�
Z
xþ

dxþe2xþfþ � Ae2x
þ�2x�

þ �þðxþÞ � ��ðx�Þ: (42)

From the definition of �, � is then

� ¼ 1

4

Z x�
dx�e2xþ�2x�½ðf0�Þ2 � f2��

þ 1

4

Z
xþ

dxþe2xþ�2x�½ðf0þÞ2 � f2þ�

� 1

8
e2x

þ�2x�
�
f2þ þ 4f�fþ þ f2� þ 2

Z
xþ

dxþðf0þÞ2

þ 2
Z x�

dx�ðf0�Þ2
�
� 1

2
e2x

þ
fþ

Z x�
dx�e�2x�f�

� 1

2
e�2x�f�

Z
xþ

dxþe2xþfþ � Ae2x
þ�2x�

þ 1

2
@þ�þðxþÞ þ 1

2
@���ðx�Þ: (43)

The fourth equation is satisfied automatically (it is in fact
implied by the other three combined with (26)).
In the above solution, A is an arbitrary integration con-

stant, and �� are arbitrary integration functions. �� can be
removed from the solution by a coordinate transformation
which respects conformal gauge, namely, (to linear order)
x� ! x� þ ��ðx�Þ. In the interest of simplicity, we will
adopt a coordinate system where �� ¼ 0, and return to
the issue of coordinate ambiguity later.
In contrast with ��, the constant A cannot be set to zero

by a coordinate change. Its presence, however, is contrary

to our implicit boundary conditions, since Ae2x
þ�2x� is

large for x� ! �1. If we imagine that the incoming
tachyon pulse is localized (as shown in Fig. 1(a)], the
metric before the pulse arrives should be flat. As we will
see in a moment, inclusion of a nonzero A corresponds
to a black hole background. We will therefore set A ¼ 0
as well. Similar arguments apply to the region of spacetime
where xþ ! 1.
The general solution in Eqs. (41)–(43) can be simplified

for a certain class of problems. Because our theory has
only one asymptotic weakly coupled region, and because
we have ignored the presence of the background which can

reflect back a scalar pulse, Sð1Þ has only one component,

and not two: Sð1Þ ¼ Sð1Þðx�Þ ¼ ffiffiffiffiffi
a1

p
f�ðx�Þ. Therefore

(dropping the (1) subscript on S for brevity),

� ¼ � 1

a1
e2x

þ�2x�
�
S2� �

Z x�
dx�ðS0�Þ2

�
; (44)

� ¼ 1

4a1

Z x�
dx�e2xþ�2x�½ðS0�Þ2 � S2��

� 1

4a1
e2x

þ�2x�
Z x�

dx�ðS0�Þ2 (45)

and

� ¼ 1

4a1

Z x�
dx�e2xþ�2x�½ðS0�Þ2 � S2��

� 1

8a1
e2x

þ�2x�
�
S2� þ 2

Z x�
dx�ðS0�Þ2

�
: (46)
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Let us now return to the issue of integration constant A.
If the incoming pulse is localized around some x�, and we
look at larger values of x�, the metric and the dilaton
outside the pulse simplify to

� ¼ � ¼ 1

4a1
e2x

þ Z
dx�e�2x�½ðS0�Þ2 � S2��

� 1

4a1
e2x

þ�2x�
Z

dx�ðS0�Þ2; (47)

which imply

� ¼ 1

a1
e2x

þ�2x�
Z

dx�ðS0�Þ2: (48)

This is nothing else but the 2D black hole, which in
Kruskal gauge � ¼ � is given by

e�2� ¼ e�2� ¼ m

2
� 4ðyþ � yþ0 Þðy� � y�0 Þ: (49)

Changing variables y� � y�0 ¼ �e�2~y� and linearizing,

we get

e2� ¼ 1�m

8
e2~y

þ�2~y� and

e2� ¼ 1

4
e2~y

þ�2~y�
�
1�m

8
e2~y

þ�2~y�
�

(50)

or

� ¼ � m

16
e2~y

þ�2~y� and

� ¼ const:þ ð~yþ � ~y�Þ � m

16
e2~y

þ�2~y� : (51)

To compare with Eq. (47), let ~yþ ¼ xþ þ Ce2x
þ

and
~y� ¼ x�. Then, for large negative xþ, the metric and the
dilaton in (47) and (51) agree, with

m ¼ 4

a1

Z
dx�ðS0�Þ2 and

C ¼ 1

4a1

Z
dx�e�2x�½ðS0�Þ2 � S2��: (52)

Notice that the mass is simply the integral over the stress
energy of the incoming pulse, as expected, and that, had we
included the integration constant A, it would have contrib-
uted to the mass, signaling the presence of an undesirable
black hole background unrelated to the tachyon pulse.

To compute the tachyon field to third order, we need the
tachyon equation, which now includes interactions with
the metric and the dilaton,

@�@þSð3Þ ¼ � a2
2
e2xðSð1ÞÞðSð2ÞÞ þ 1

2
�Sð1Þ

þ @þ�@�Sð1Þ þ @��@þSð1Þ: (53)

With explicit forms of� and � above, this equation can
be integrated as well. Since the general answer is long
and not illuminating, we will not include it. It is easy to

integrate the above equation given a specific tachyon
profile.

IV. RELATIONSHIP BETWEEN SPACETIME
AND MATRIX MODEL

In this section, we will confirm that the results of the two
preceding sections are related by the leg pole transform
on the boundary, and discuss a strategy towards extending
the correspondence into the bulk.
The leg pole transform connects incoming tachyon field

profile to incoming collective field profile via [1]

Sinðx�Þ ¼ �
Z

dvKðv� x�Þ�inðvÞ (54)

�inð��Þ ¼ �
Z

dvKð�� � vÞSinðvÞ; (55)

and the outgoing profiles via

SoutðxþÞ ¼
Z

dvKðxþ � vþ lnð�=2ÞÞ�outðvÞ (56)

�outð��Þ ¼
Z

dvKðv� �� þ lnð�=2ÞÞSoutðvÞ: (57)

x� ¼ t� x and �� ¼ t� � are light cone coordinates in
spacetime and in collective field theory, as shown in Fig. 1.
Kernel K of the leg pole transform is given by

KðvÞ ¼ �w

2
J1ðwÞ; where w ¼ 2

�
2

�

�
1=8

ev=2: (58)

It derives its name from the poles in its Fourier transform,

Kð!Þ ¼
Z

dve�i!vKðvÞ ¼
�
2

�

�
i!=4 �ð�i!Þ

�ði!Þ : (59)

This frequency space expression was originally derived by
comparing the S-matrix of the matrix model with world
sheet results in Liouville string theory [11,12].
Shifts of lnð�=2Þ in the outgoing formulas (56) and (57)

are related to the position of the tachyon wall. We will be
taking � ! 0, which takes the tachyon wall deeply into
the strong coupling region and allows us to neglect, for the
most part, scattering from the tachyon background.
Minus signs in Eqs. (54) and (55) arise from using the

positive energy hyperbola to calculate the collective field
scattering in Sec. II.
In Appendix A we check that our boundary results are

consistent with the boundary fields being related by the leg
pole transform both in the past and the future (on both Iþ
and I�). In particular, we reproduce the results of [1],
showing that the leg pole transform of the outgoing col-
lective field � agrees to third order with the outgoing
tachyon field T if the corresponding incoming fields were
related by the leg pole transform on I�. To this effect,
Appendix B collects some useful formulas about the leg
pole kernel, which are easily derived in frequency space.
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Once we know the boundary profiles match up, we can
explore the relationship between bulk fields. In Sec. III
we computed the bulk tachyon field S from the boundary
field Sin to be

Sðx�; xþÞ ¼ Sinðx�Þ þ 1ffiffiffi
2

p ex
þ

�
Z x�

dx�e�x�ðSinðx�ÞÞ2 þ Sð3Þ: (60)

To write the above, we used Eq. (35). Sð3Þ is written
explicitly in Eq. (53). We can now obtain our desired
relationship between S and � at the same time t up to third
order by solving for Sin in terms of �ð�; tÞ at a fixed time t.
Equation (16) implies that, to third order in �,

�inðyÞ ¼ �ðt� y; tÞ þ
ffiffiffiffi
�

p
et�y

2� coshðt� yÞ ð@y�ðt� y; tÞÞ2

þ �ðe2ðt�yÞ þ 3Þet�y

12�2cosh3ðt� yÞ ð@y�ðt� y; tÞÞ3 þ oð�4Þ:
(61)

We will now apply the equal-time leg pole transform to
obtain Sin

Sinðt� xÞ ¼
Z

dvKð�vþ xÞ�inðt� vÞ

¼
Z

dvKð�vþ xÞ
�
�ðv; tÞ þ

ffiffiffiffi
�

p
ev

2� coshv

� ð@v�ðv; tÞÞ2 � �ðe2v þ 3Þev
12�2cosh3v

ð@v�ðv; tÞÞ3
�

(62)

which we can then plug into Eq. (60), to obtain S to third
order in �. Moreover, we can substitute (62) into (46) and
(45) to obtain the metric and the dilaton [13]. Since the
third order expression is quite cumbersome, here we just
state the result to second order:

Sðx�; xþÞ ¼
Z

dvKð�vþ xÞ
�
�ðv; tÞ

þ
ffiffiffiffi
�

p
ev

2� coshv
ð@v�ðv; tÞÞ2

�
þ 1ffiffiffi

2
p ex

þ

�
Z x�

dx�e�x�
�Z

dvKð�vþ xÞ�ðv; tÞ
�
2
:

(63)

The above formula gives the bulk tachyon field S as a
function of the bulk collective field �. The procedure
outlined above can be used to obtain a similar result to
third order, but little is to be gained from writing it
down explicitly. It follows from simply combining
Eqs. (46), (45), (53), (60), and (62).

Our procedure could be extended to even higher orders
in perturbation theory. Therefore, at least in principle, it is

possible write explicit field redefinitions linking dilaton-
gravity coupled to a massless scalar to a theory with only a
single scalar field. The resulting map is nonlocal, which
should come as no surprise, since it is a result of integrating
out dilaton-gravity. Notice that going beyond the third
order would require the inclusion of effects of heavy string
states into the gravity action.
Because of diffeomorphism invariance in the dilaton-

gravity theory, this field redefinition cannot be unique. We
have implicitly fixed the coordinate invariance by asking
that the fields to be related at equal times, hence picking
a particular coordinate system in the gravity theory. For
localized pulses, the coordinate ambiguity results in at
most exponentially small corrections at large x.
The argument for this last fact rests on form of the

detailed agreement between the collective field and the
tachyon on the boundary. Let us assume a well localized
incoming tachyon pulse. Under the transform (55), for ��
large and negative, the incoming collective field has a form
�in ¼ A1e

�� þ A2e
2�� þ . . . , while for �� large and

positive, the falloff is much more rapid. The outgoing
collective field has the same form. Therefore, the outgoing
tachyon field for large negative xþ must also be sum of
terms of the form ekx

�
with k a positive integer. Now,

consider the effect of a change of coordinates xþ ! ~xþ
on Eqs. (35) and (A8). For these equations to only contrib-
ute terms in the form ek�

�
, the change of coordinates

much be limited to xþ ! xþ þP
kBke

kx� . Therefore, on
the boundary the coordinates can be fixed up to exponen-
tially small ambiguity. A similar argument holds for the
incoming boundary, and the coordinate x�.
In the bulk, the coordinate changes are limited to those

which maintain conformal gauge. This is because at the
lowest order, both the collective field and the rescaled
tachyon field S are massless scalars, with equations of
motion @þ@�S ¼ @þ@�� ¼ 0. To maintain conformal
gauge, the bulk coordinate changes must be of the form
x� ! X�ðx�Þ, where the functions X� must be of the form
discussed in the previous paragraph, and are fixed up to
exponentially small corrections.
While explicit, our procedure for connecting bulk fields

in the two theories described in this section is not straight-
forward. In practice, it is probably easier to match incom-
ing field shapes and solve equations of motion in the two
theories independently. In the next section, we will do just
that to analyze an interesting example which goes beyond
localized pulses.

V. EXAMPLE: TIME-DEPENDENT
BACKGROUND

In this section we will employ our results to make a
connection between the matrix model and spacetime phys-
ics in a time-dependent scenario. For convenience, espe-
cially when comparing our results with previous work on
this background [2,16–19], in this section we take our
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matrix model background to be the left branch of
x2 � p2 ¼ 2�, and define the fluctuation field � in the

standard way [20], ðpþ � p�Þ=2 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 2�

p þ ffiffiffiffi
�

p
@x�,

which is compatible with our definition in Eq. (4). On the
left branch of the hyperbola, we have x ¼ � ffiffiffiffiffiffiffi

2�
p

cosh�
and we will take � to be negative, so that for large x,

x � � ffiffiffiffiffiffiffiffiffi
�=2

p
expð��Þ.

We will focus on the following exact time-dependent
profile in eigenvalue phase space [2]

ðxþ pþ �etÞðx� pÞ ¼ 2�; (64)

which at large x and large negative t corresponds to � �
� �

2
ffiffiffi
�

p etx � �
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�=2�

p
et��. This is the incoming � profile.

As has been shown in [16,19], exact effective action for
the fluctuation � in the background with � � 0 is the same
as the effective action in the static background (� ¼ 0)
under a change of coordinates from � to ~� given byffiffiffiffiffiffiffi
2�

p
cosh� ¼ ffiffiffiffiffiffiffi

2�
p

cosh ~�þ ð�=2Þet. For � and ~� large
and negative, the change of coordinates is

e��þ ¼ e� ~�þ þ ~� (65)

with ~� ¼ �=
ffiffiffiffiffiffiffi
2�

p
, �þ ¼ tþ � and ~�þ ¼ tþ ~�.

To analyze spacetime behavior in this background, we
first notice that under the leg pole transform, the incoming
profile �in � et�� changes only by an infinite normaliza-
tion constant. We have, therefore, an incoming field given
by Sin � ex

�
. Consider, therefore, a tachyon background

T� ¼ ~�ðexþ�x� þ �̂ex
þÞ where �̂ is a renormalized con-

stant, and we have added back the standard stationary
background term to regularize our problem. In this back-
ground, small tachyon fluctuations must satisfy a linear
version of Eq. (23),

@þ@�S ¼ � a2
2
T�S: (66)

This equation can be transformed into one where the

background is simply T0 ¼ ~�e~x
þ�~x� by the following

change of variables

e�~x� ¼ e�x� � �̂x�; ~xþ ¼ xþ: (67)

In the matrix model the time-dependent background
is equivalent to one which is static, and the same appears
to be true in dilaton-gravity. The combined change of
coordinates (65) and (67) relate these static backgrounds
to each other, at least at large x (or �). Behavior near the
potential barrier is more complicated, and hard to study in
the spacetime picture since the exact form of the tachyon
potential is not well defined.

The physical picture is illustrated in Fig. 2. Figure 2(a)
shows the time-dependent spacetime generated by the
decaying Fermi sea [16] whose Iþ is incomplete and
which ends on a ‘‘moving tachyon wall’’. Figure 2(b)
shows how this incomplete spacetime is related to the static
spacetime obtained from the collective theory in the new

coordinates. Figure 2(c) shows this relationship for dilaton-
gravity. The metric and the dilaton are trivial in the
~x� coordinates to this order.
To next order, we can calculate the second order tachyon

field, as well as the metric and the dilaton:

Tð2Þ ¼ 1ffiffiffi
2

p ð ~� �̂Þ2e2xþ (68)

� ¼ 1

4
ð ~� �̂Þ2e2xþ (69)

� ¼ 1

2
ð ~� �̂Þ2e2xþ : (70)

For sake of completeness, let us also find the tachyon field
to third order:

Tð3Þ ¼ ð ~� �̂Þ3e3xþ : (71)

While the general conformal structure and the presence of
the moving tachyon wall has been studied extensively in
[2,16–18], the metric has not been determined before. Our
result that the metric and the dilaton are both nontrivial in
the vicinity of the wall complements the analysis in the
above works: not only does spacetime ‘‘dissolve’’ [16] but
length scales are distorted as well. Away from the wall,
the metric, the dilaton and higher corrections to the tachyon
field are all small, and do not have an effect on the spacetime.

VI. CONCLUSION AND FURTHER DIRECTIONS

The results of Sec. III can be used to rewrite the theory
of a scalar coupled to dilaton-gravity without the need for
the dilaton and gravity fields, at least to lowest order in
those fields. Simply take the expressions (42) and (43) and
substitute them back to the tachyon equation of motion,
(23). The resulting equation of motion is of course non-
local, as is expected when trying to integrate out gravita-
tional interaction. Diffeomorphism invariance of the
original theory manifest itself in the presence of the inte-
gration functions ��ðx�Þ.
In Sec. IV we outlined a procedure for relating the

solution of this nonlocal action to the simpler solutions

FIG. 2. Spacetime of the time-dependent solution in different
coordinate systems. (a) �� or x� (b) ~�� (c) ~x�. Dashed arrows
indicate coordinate change relating the regions in (b) and (c) to
the region in (a).
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of the collective field theory, using the known boundary
correspondence. This is a toy model for the much more
complicated problem of reconstructing spacetime dynam-
ics in AdS/CFT. Our simple example in Sec. V demon-
strates how our results can be used to study time-dependent
scenarios in Liouville string theory. It would be very
interesting to see how these results can be used in more
complicated scenarios, such as those involving spacelike
future boundaries [3,21].
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APPENDIX A: COMPARISON WITH THE
KNOWN BOUNDARY RESULTS

In this Appendix, we will compare our bulk expressions
with known results for the scattering matrix in flat space-
time, following the work of [1].

First, let us compute the large � limit of expression (16).
We could do it directly, but as a useful check, let us
compute it instead from the time delay Eq. (10) y ¼ zþ
lnð1���1f0inðyÞÞ. Expanding, we get that

yðzÞ ¼ z���1f0inðzÞ þ��2f0inðzÞf00inðzÞ
� 1

2
��2ðf0inðzÞÞ2 þ oððf0inÞ3Þ; (A1)

and therefore

f0outðzÞ ¼ f0inðyðzÞÞ ¼ f0inðzÞ ���1f0inðzÞf00inðzÞ
þ��2ðf0inðzÞðf00inðzÞÞ2 �

1

2
��2ðf0inðzÞÞ2f00inðzÞÞ

þ 1

2
��2ðf0inðzÞÞ2f000in ðzÞ þ oððf0inÞ4Þ; (A2)

which can be integrated to give

fout ¼ fin � 1

2�
ðf0inÞ2 �

1

6�2
ðf0inÞ3

þ 1

2�2
f00inðf0inÞ2 þ oððfinÞ4Þ; (A3)

implying that

�out ¼ �in �
ffiffiffiffi
�

p
�

ð�0
inÞ2 �

2�

3�2
ð�0

inÞ3

þ 2�

�2
�00
inð�0

inÞ2 þ oðð�inÞ4Þ: (A4)

This agrees with Eq. (16) when � ! 1.
Next, let us treat a special case, of Eq. (53) where we

will imagine that the incoming field is made up of two

well separated pulses with finite support, Sð1Þ� ðx�Þ ¼
Sð1AÞ� ðx�Þ þ Sð1BÞ� ðx�Þ, with the A pulse centered around
x�A and the B pulse centered around x�B ¼ x�A þ T, with T

large. We will think of Sð1AÞ� ðx�Þ as a source for the second
order fields (tachyon, dilaton and metric) and examine
scattering of the second pulse, B, from this background.
For x� ! þ1, the outgoing third order tachyon field is

Sð3Þ ¼ � a2
2

Z xþ
dxþ

Z
dx�exþ�x�ðSð1BÞ� ÞðSð2ÞA� Þ (A5)

þ
Z xþ

dxþ
Z

dx�
�
1

2
�� @þ@��

�
Sð1BÞ� : (A6)

Combining all our previous results,

� a2
2
ex

þ�x�ðSð2ÞAÞ þ 1

2
�� @þ@��

¼ a22
8
e2x

þ�x�
Z

dx�e�x�ðSð1AÞðx�ÞÞ2

� 1

2a1
e2x

þ�2x�
Z

dx�ð@x�Sð1AÞ� Þ2; (A7)

and therefore

Sð3Þ ¼ a22
16

e2x
þ Z

dx�e�x�Sð1BÞðx�Þ
Z

dx�e�x�ðSð1AÞðx�ÞÞ2

� 1

4a1
e2x

þ Z
dx�e�2x�Sð1BÞðx�Þ

�
Z

dx�ð@x�Sð1AÞ� ðx�ÞÞ2: (A8)

The first term is due to a Feynman diagram shown
in Fig. 3(a) and the second due to that in Fig. 3(b). In the
latter case, it is the total stress energy of the pulse which
determines the result, in other words, pulse B scatters from
the dilaton-gravity background created by the first pulse.
We will now combine the scattering formula (A4) with

the leg pole transforms to reproduce this result from the
matrix model. We will assume that the incoming pulse is
well localized (with Gaussian falloff, for example) around
x� ¼ 0. Our calculation will reproduce the results of [1].

FIG. 3. Feynman diagram for the third order scattering of
tachyons: (a) with a tachyon as an intermediate state (b) with
a dilaton or a graviton as an intermediate state.
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To first order in Sin (and �in) we have

Sð1ÞoutðxþÞ ¼ �
Z

du

�Z
dvKðxþ

þ lnð�=2Þ � vÞKðv� uÞ
�
SinðuÞ: (A9)

The kernel in the bracket can be, at first approximation,
thought to be local, and centered around u ¼ xþ þ
lnð�=2Þ. Therefore, for an incoming pulse centered around
x�, the bulk of the outgoing pulse is centered around
xþ ¼ x� � lnð�=2Þ, indicating that the scattering takes

place at string coupling e2x ¼ ex
þ�x� ¼ 1=� ¼ gst, as ex-

pected (up to a coupling independent shift). The shape of the
tachyon background can be deduced from the detailed
shape of the scattered pulse, but we are not interested in it.

To second order, we have

Sð2ÞoutðxþÞ ¼
Z

dvKðxþ þ lnð�=2Þ � vÞ
�
�

ffiffiffiffi
�

p
�

�0
inðvÞ2

�

¼ � 1

2�

Z
du1du2

�Z
dvKðxþ þ lnð�=2Þ

� vÞK0ðv� u1ÞK0ðv� u2Þ
�
Sinðu1ÞSinðu2Þ:

(A10)

We are interested in the region where xþ þ ln� is large
and negative, so we can use formula (B3) in the
Appendix B to obtain

Sð2ÞoutðxþÞ ¼
ffiffiffi
2

p
�

Z
du ex

þþlnð�=2Þ�uðSinðuÞÞ2

¼ 1ffiffiffi
2

p
Z

du ex
þ�uðSinðuÞÞ2: (A11)

Notice that the answer is independent of �; this is bulk
scattering, and does not depend on the position of the
tachyon wall. The answer is in agreement with Eq. (35),

with a2 ¼ �2
ffiffiffi
2

p
.

To third order, we will assume that the incoming tachyon
profile is made up of two pulses, just like we did in Sec. II.
Then,

Sð3ÞoutðxþÞ ¼
Z

dvKðxþ þ lnð�=2Þ � vÞ

�
�
2�

3�2
ð@v � 1Þð�0

inðvÞÞ3
�

¼ 2�

3�2

Z
du1du2du3 ð3SBinðu1ÞSAinðu2Þ

� SAinðu3ÞÞ
�Z

dvð1� @ÞKðxþ þ lnð�=2Þ � vÞ

� K0ðv� u1ÞK0ðv� u2ÞK0ðv� u3Þ
�
: (A12)

Using Eq. (B4) in the Appendix B, this becomes

Sð3ÞoutðxþÞ ¼ 1

2

Z
du1du2du3ðe2xþ�u1�u2�ðu2 � u3Þ

þ e2x
þ�2u1�00ðu2 � u3ÞÞSBinðu1ÞSAinðu2ÞSAinðu3Þ

¼ 1

2

Z
du1e

2xþ�u1SBinðu1Þ
Z

du2e
�u2ðSAinðu2ÞÞ2

� 1

2

Z
du1e

2xþ�2u1SBinðu1Þ
Z

du2ð@SAinðu2ÞÞ2;
(A13)

which agrees with Eq. (A8) for a1 ¼ 1
2 , and a2 ¼ �2

ffiffiffi
2

p
as before.

APPENDIX B: INTEGRALS INVOLVING
THE LEG POLE KERNEL K

Using the Fourier transform form ofK, it is easy to show
that the following integrals are true:

Z
dyKðy� x1ÞKðy� x2Þ ¼ �ðx1 � x2Þ; (B1)

for any x1 and x2;

Z
dyKðx� yÞKðy� x1Þ

¼
ffiffiffiffi
2

�

s �
ðx� x1Þ þ 4	� 2þ ln

ffiffiffiffi
2

�

s �
ex�x1 ; (B2)

for x� x1 large and negative;

Z
dyKðx� yÞ@Kðy� x1Þ@Kðy� x2Þ

¼ �
ffiffiffiffi
2

�

s
ex�x1�ðx1 � x2Þ; (B3)

for x� xi, i ¼ 1, 2 large and negative; and finally, for x�
xi large and negative, and with x1 � x2 	 jx2 � x3j,

Z
dyð1� @ÞKðx� yÞ@Kðy� x1Þ@Kðy� x2Þ@Kðy� x3Þ

¼ 1

�
e2x�x1�x2�ðx2 � x3Þ þ 1

�
e2x�2x1�00ðx2 � x3Þ:

(B4)
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