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One can define generalized models of gaugino condensation as theories that dynamically break a

discrete R symmetry but do not break supersymmetry. We consider general examples consisting of gauge

and matter fields and the minimal number of gauge-singlet fields to avoid flat directions in the potential.

We explore which R symmetries can arise and their spontaneous breaking. In general, we find that the

discrete symmetry is Z2b0R, and the number of supersymmetric vacua is b0, where b0 is the coefficient of

the one-loop beta function. Results are presented for various groups, including SUðNcÞ, SOðNcÞ, Spð2NcÞ,
and G2, for various numbers of flavors, Nf, by several methods. This analysis can also apply to the other

exceptional groups and, thus, all simple Lie groups. We also comment on model-building applications

where a discrete R symmetry, broken by the singlet vacuum expectation values, can account for �-type

terms and allow a realistic Higgs spectrum naturally.
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I. INTRODUCTION

Gaugino condensation [1] is frequently discussed in
considering problems of supersymmetry dynamics and
model building. There are several distinguishing features
of this nonperturbative effect: (i) it does not break super-
symmetry, (ii) it breaks a discrete R symmetry, and (iii) it
generates a scale dynamically (used, for instance, in the
‘‘retrofitting’’ procedure of [2]). In [3], a large class of
theories with gauge, matter, and gauge-singlet fields with
these features was introduced. This is a generalization of
gaugino condensation, possessing the above properties.
In particular, [3] explored the significant model-building
consequences of the R symmetry being broken by an
order parameter with a mass dimension of less than three.
Generalized gaugino condensation also has some similar-
ities to a confining phase superpotential [4] and related
techniques [5] (especially when we consider integrating
out heavy flavors). Discrete symmetries have also been
studied extensively elsewhere, especially in the con-
text of supersymmetric model building and forbidding
baryon- or lepton-number–violating (e.g., proton decay)
operators [6].

In this work, we explore theories with generalized gau-
gino condensation in more detail and for a wide range of
gauge groups. This extends and generalizes the supersym-
metric SUðNcÞ theory used in [3], which was also consid-
ered earlier by Yanagida in [7]. It is interesting to consider
this class of theories in more detail for a range of gauge
groups and understand their dynamics. We find, quite
generally, that the discrete symmetry and number of
supersymmetric vacua are counted by the one-loop beta-
function coefficient, b0. The discrete R symmetry is found
by considering the R charge of an instanton in the theory

with a continuous R symmetry at the classical level. We

find that requiring that the instanton be uncharged under a

discrete subgroup gives Z2b0R. This calculation method is

even more general than finding the number of vacua, since

the instanton calculation is done without assuming the

group or even the representations of the matter content.
In all of the theories we study, the R symmetry is broken

to a Z2 by gaugino condensation and the singlet vacuum

expectation values (VEVs), leading to a discrete set of

supersymmetric vacua. The dynamics responsible for

breaking the symmetry depend on the coupling regime.

In some regions, the vacua can be calculated, in general, by

utilizing a generic effective superpotential motivated by

(and matching) several known examples, or by integrating

out heavy quarks. In other regions of a particular theory,

the specific low-energy dynamics are important. We find

the number of vacua to be b0, matching what one expects

from the breaking of the R symmetry. These results are

shown explicitly in several examples with different gauge

groups, and it seems possible that this holds, in at least

some regions, for any simple Lie group.
The paper is organized as follows: in the next section, we

derive general results for the discrete R symmetry and
number of vacua. In Sec. III, these results are derived
in different regions of the parameter space for SUðNcÞ
models and for a wide range of Nf, the number of flavors.

Depending on the value of Nf, a few different methods are

used. Section IV shows that these results hold for SOðNcÞ,
Spð2NcÞ, and G2 models. We also comment on the diffi-
culties with the exceptional groups and why it is possible
these results may apply here as well. This would, then,
encompass all the simple Lie groups. This work also
extends the model building introduced in [3], which we
comment on [including using a recent model similar to
the Next-to-Minimal Supersymmetric Standard Model*kehayias@physics.ucsc.edu
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(NMSSM)] in Sec. V. A brief discussion and concluding
remarks follow that.

II. GENERAL RESULTS

Many of the topics and techniques used in this work are
well-summarized in the review by Peskin [8]. Let us first
define some relevant quantities and conventions before the
general calculations.

Nc will denote the number of colors [i.e., as in SUðNcÞ],
although some care must be taken with factors of 2 for the
symplectic group. The quark superfields are Qi and �Qi,
which will be in the fundamental or antifundamental rep-
resentation of the group, as appropriate for the given gauge
group [in the vector representation in the case of SOðNcÞ].
However, for the general calculation of the discrete R
symmetry, the quarks may be in any representation. We
define the (gauge-invariant) ‘‘meson’’ superfield Mij ¼
Qi

�Qj, where i and j run from 1 to Nf. For our purposes,

it suffices to take derivatives of the superpotential W with
respect to M, but one can also work directly with the Q’s.
The gauge singlets will be denoted by Sij, where i and j

again run from 1 to Nf (up to a 2 for Sp); there are N2
f

singlets, corresponding to each of the possible flavor
combinations.

Although we will use gauge singlets throughout this
work, one could use some other representation of the gauge
group. We rely only on a cubic self-coupling for these
fields and no dimensionful couplings in the superpotential,
so fields in the adjoint could also work, for instance. In a
practical sense, choosing a different representation may be
of use in model building or further constrained by other
requirements.

The gauginos are represented by � (in general, spinor
indices will be dropped). We will also assume flavor-
symmetric solutions and single-coupling constants (rather
than a matrix in flavor space).

Our normalization for the group-theory constants
CðriÞ�ab ¼ Trftatbgri , where ri denotes the representation,
is such that the fundamental representation has C ¼ 1=2.
Then, for instance, the adjoint of SUðNcÞ has C ¼ Nc.

A. The discrete R symmetry

To find the (nonanomalous) discrete R symmetry, we
start with a continuous Uð1ÞR. The instanton breaks
this symmetry, and we look at what discrete subgroup
can remain (i.e., the instanton is not charged under the
subgroup).

First, let us define the R charges of the superfields, where
our superpotential will have interactions of the form
SQ �Qþ S3. We will start by defining the gaugino trans-
formation parameter, �:

� ! ��: (1)

The requirement, familiar in the case of a continuous R
symmetry, thatW (andW2

�) must have R charge 2 becomes
a transformation by an overall factor of �2. In other words,
in this notation, the actual R charge is given by powers
of �. Gaugino condensation, h��i, and a cubic self-
interaction of the singlets (in W) both have the same total
R charge. The S’s must transform as follows:

Sij ! �2=3Sij: (2)

Finally, the quark superfields will be coupled to the singlets
as QS �Q, which also must transform with a factor of �2.
Qi and �Qi have the same R charge, and the fermionic
component differs by a power of � from this (due to the
charge of the Grassmann � coordinate, which transforms
like �)1:

Qi ! �2=3Qi; (3)

c Q ! ��1=3c Q: (4)

The interaction terms mentioned above will be made more
explicit in the later sections.
To determine the R charge of the instanton, we only need

to know how many fermions are involved. The number of
zero modes for a fermion in the representation ri appearing
in the instanton is given by twice the group theoretical
coefficient defined previously:

ni ¼ 2CðriÞ: (5)

The calculation is now very simple: we have the gaugi-
nos in the adjoint representation (denoted A) and quarks
in the fundamental or antifundamental representation2

(denoted as just ri). The total R charge (power of �) is,
then,

2CðAÞ � 1

3

X
i

2CðriÞ ¼ 2

3

�
3C2ðAÞ �

X
i

CðriÞ
�
; (6)

where we used the fact that, in the adjoint, CðAÞ ¼ C2ðAÞ,
where C2ðAÞ is the quadratic Casimir operator of the
adjoint representation. We recognize this as being propor-
tional to the coefficient of the one-loop beta function

b0 ¼ 3C2ðAÞ �
X
i

CðriÞ: (7)

Therefore, the discrete subgroup of the Uð1ÞR that is left
over by the instanton is Z2b0R. Since this will ultimately be

1We note that these R charges are the same as the usual
nonanomalous R charges for SUðNcÞ, SOðNcÞ, and Spð2NcÞ
when taking into account the discrete arithmetic of the group
we find below.

2Actually, nothing here depends on the representation of the
quarks; the calculation is general. In the following sections,
however, we will have the quarks in the fundamental or anti-
fundamental representations.
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broken down to just a Z2 by gaugino condensation and the
singlet VEV, we expect to see b0 vacuum states, which we
will show in the next section.

B. The number of vacua

We will calculate the number of vacua by considering a
general superpotential, including an effective superpoten-
tial term. This analysis is only for when such a term exists,
but we will see how to extend this result quite generally.

The interaction terms in the general superpotential, from
including the singlets, Sij, are

WS ¼ ySijMij þ �

3
TrS3; (8)

with y and � as coupling constants (for simplicity, we do
not write them as more general matrices).

Let us consider an effective superpotential term of a
generic form, which can incorporate the known effective
superpotential term, when it exists, from SUðNcÞ, SOðNcÞ,
Spð2NcÞ, and G2 supersymmetric gauge theories. The in-
gredients are the energy scale of the theory, �, which has a
power determined by the beta function; the meson super-
field, which we take to just be some power of the matrix
elements [this is easy to see in, e.g., flavor-symmetric
solutions of SUðNcÞ]; and the fact that the total mass
dimension must be 3:

Weff ¼ C

�
�b0

Ma
ij

�
1=b

; (9)

whereC is a normalization constant. We have the condition
that

ðb0 � 2aÞ=b ¼ 3; (10)

since Mij has a mass of dimension 2.

Taking a derivative with respect to Mij,

@W

@Mij
¼ 0 ¼ �C

a

b

�
�b0

Ma
ij

�ð1�bÞ=b �b0

Maþ1
ij

þ ySij; (11)

0 ¼ �C
a

b

�b0=b

Mða=bÞþ1
ij

þ ySij; (12)

) Mij ¼
�
C a

b�
b0=b

ySij

�
1=½ða=bÞþ1�

: (13)

We will assume that, at the minimum, we have solutions
of the form Mij ¼ v2�ij and Sij ¼ s�ij. Then, the final

equation above is an equation for v2 in terms of s, while a
derivative with respect to Sij is

@W

@Sij
¼ 0 ¼ yMij þ �ðS2Þij: (14)

Plugging in Mij in terms of Sij from above and evaluating

everything at the minimum (in terms of v and s),

0 ¼ y

�
C a

b�
b0=b

ys

�
1=½ða=bÞþ1� þ �s2; (15)

0 ¼ y

�
Ca

yb
�b0=b

�
1=½ða=bÞþ1�

sf�1=½ða=bÞþ1�g�2 þ �; (16)

� �

y

�
Ca

yb
�b0=b

��1=½ða=bÞþ1� ¼ s�½2ða=bÞþ3�=½ða=bÞþ1�; (17)

s ¼
���

y

��½ða=bÞþ1�=½2ða=bÞþ3��Ca
yb

�b0=b

�
1=½2ða=bÞþ3�

: (18)

Using the mass-dimension constraint to write ð2a=bÞ þ
3 ¼ b0=b,

s ¼
��ya

�aþb

�
C
a

b

�
b
�
1=b0

�: (19)

Therefore, there are potentially b0 solutions and super-
symmetric vacua.
The above analysis seems to be limited to the region of a

theory with an effective superpotential, like SUðNcÞ with
Nf < Nc, which we will explore in more detail below.

However, we shall see several ways in which the same
result for the number of supersymmetric vacua, b0, holds in
regions where there is not an effective superpotential. For
instance, one can work in the limit of very heavy quarks
and integrate them out. We will show this explicitly for
SUðNcÞ, and this is again a very general procedure
(although we will not do this for a general theory).

III. SUðNcÞ MODELS

A. Nf < Nc

Working with SUðNcÞ supersymmetric gauge theory,
with Nf < Nc flavors and b0 ¼ 3Nc � Nf, there is an

effective superpotential [9] given by

Weff ¼ ðNc � NfÞ
�
�b0

detM

�
1=ðNc�NfÞ

: (20)

Adding in the N2
f gauge-singlet superfields Sij, the super-

potential is now

W ¼ ySff0Mff0 þ �

3
TrS3 þWeff : (21)

For simplicity, the singlet-quark couplings are all the same
here, but the features below are stable with small changes
to the couplings. One could also do a field redefinition.
This is the theory considered in [3], and earlier in [7]. We
also take yS such that the quarks have a mass less than �.
We look for flavor-symmetric solutions with all the Q’s
having the same VEV, v, and Mff0 ¼ v2�ff0 . Similarly,

Sff0 ¼ s�ff0 . Then, detM ¼ ðv2ÞNf at this point. Taking a

derivative here,

@Weff

@Mff0
¼ ��b0=ðNc�NfÞðdetMÞ�½1=ðNc�NfÞ��1 @ detM

@Mff0
;

(22)
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¼ ��b0=ðNc�NfÞv�2NfðNc�Nfþ1Þ=ðNc�NfÞðv2ÞNf�2; (23)

@Weff

@Mff0
¼ ��b0=ðNc�NfÞvð�2NcÞ=ðNc�NfÞ�ff0 ; (24)

where we have used @ detA=@Aij ¼ ðA�1Þji detA. Then, we
have

@W

@Mff0
¼ ys�ff0 ��b0=ðNc�NfÞvð�2NcÞ=ðNc�NfÞ�ff0 ; (25)

and setting this equal to zero and solving for v2 (explicitly
putting in the phase),

v2 ¼ �b0=Nc

�
e2�ik

ys

�ðNc�NfÞ=Nc

: (26)

Taking a derivative of the superpotential with respect to Sij
and setting this equal to zero,3

@W

@Sff0
¼ 0 ¼ yMff0 þ ðS2Þf0f: (27)

Working at the flavor-symmetric minimum, plugging in
Mff0 ¼ v2�ff0 from above, and using Sff0 ¼ s�ff0 ,

0 ¼ y�b0=Nc

�
e2�ik

ys

�ðNc�NfÞ=Nc þ �s2; (28)

0 ¼ yNf=Nc

�
�b0=Nce2�ikðNc�NfÞ=Ncs�ð3Nc�NfÞ=Nc þ 1; (29)

) s ¼
�
yNfe2�ikðNc�NfÞ

ð��ÞNc

�
1=ð3Nc�NfÞ

�: (30)

Since Nc and Nf are integers, this implies 3Nc � Nf ¼ b0
solutions. This matches the general calculation in the
previous section.

We note that when � � y, s is very large, and, thus, the
quarks are heavy while the singlets are lighter. In the
opposite limit, all the fields are much lighter. We can
also rewrite v2 just in terms of the constants of the theory:

v2 ¼
���e4�ik

y3

�ðNc�NfÞ=ð3Nc�NfÞ
�2: (31)

B. Nf � Nc

There are (at least) two ways we can proceed to analyze
the caseNf � Nc: we can use the electric-magnetic duality

or make all the flavors heavy and integrate them out. Let us
start with the latter.

The concept of ‘‘holomorphic decoupling’’ (see, for
instance, the review [8]) allows one to get the superpoten-

tial of the theory from a known one of a theory with more
flavors. By making these extra flavors heavy and integrat-
ing them out, one should properly recover the behavior of
the theory with fewer flavors. This is, then, also a constraint
on the theory with more flavors, as it needs to properly
describe theories with fewer flavors in the decoupling
limit. In the models we are considering here, the singlet
interactions always provide a mass term for the quarks. If
these masses are made heavy by taking the singlet VEVs to
be large (compared to the dynamical scale of the theory),
the theory should have a superpotential analogous to the
case studied previously, with Nf < Nc.

For these values of Nf, there are now also ‘‘baryons’’:

Bi1i2���iNf�Nc
¼ 	i1i2���iNf�Nc j1j2���jNc 	k1k2���kNc

�Qj1k1Qj2k2 � � �QjNckNc
; (32)

where the j’s are flavor indices and the k’s are color
indices. There is a similar definition for ‘‘antibaryons,’’
�B, where the Q’s are �Q’s. The baryons give new flat
directions, and we will add additional singlets to lift these,
as well.
Additionally, when Nf ¼ Nc, the classical constraint

of detM ¼ B �B is modified to be detM� B �B ¼ �b0 by
nonperturbative effects [10]. There is no superpotential
generated. This constraint can be implemented through a
Lagrange multiplier field.
We take all the fields but the singlets to be very heavy

(i.e., � is small, so the quarks get a heavier mass than the
singlets from the singlet VEV) and assume that �B ¼ B ¼ 0
at the minimum. Integrating out all the heavy degrees
of freedom at the scale s (the singlet VEV), the effective
superpotential is

Weff ¼ h��i ¼ s3e�fð8�2Þ=½Ncg
2ðsÞ�g; (33)

where the denominator of the exponential has an Nc

because the beta-function coefficient is now for a pure
gauge theory, 3Nc, and the 3 cancels due to cubing the
scale. We have

8�2

g2ðsÞ ¼ 8�2

g2ð�Þ þ b0 ln

�
s

�

�
; (34)

and b0 is the coefficient of the beta function of the theory
with the massive quarks [ ¼ 3Nc � Nf for SUðNcÞ].
Substituting this in and rewriting,

Weff ¼ e�fð8�2Þ=½Ncg
2ð�Þ�g�b0=Ncs3�½ðb0Þ=ðNcÞ�: (35)

Again, after including an additional s3 interaction term,
minimizing W easily yields b0ð¼ 3Nc � NfÞ solutions.

This is a very general procedure and can be used in the
other theories we consider as a way of extending the
calculation of the number of vacua beyond the region of
an effective superpotential.
To enforce that the baryons are zero at the minimum, we

can use additional singlets, 
 and ~
, one for each of the B’s3Also using @TrS3=@Sff0 ¼ 3ðS2Þf0f.
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and �B’s. The additional terms in the superpotential are,
then, proportional to 
B and ~
 �B (with all indices sup-
pressed). The partial derivatives, with respect to the new
singlets and baryons, enforce that both are at zero. These
couplings also need to be large enough to prevent a run-
away in this direction. In general, the R symmetry restricts
any further terms with the new singlets, but in some cases
(due to the specific R charges of the theory), it may be
necessary to impose some other symmetry, as well.

Now, let us see this using the electric-magnetic duality
[11]. The duality takes a theory at strong coupling to one at
weak coupling, and vice versa. So, here, we are not in the
same coupling region as above, but we can consider our
original theory at strong coupling for a range of flavors of
light quarks (relative to �) and study its analog at weak
coupling through the duality. Again, there are a few ways
to proceed here, but we will use the duality to make a direct
connection with the calculation for Nf < Nc. We will do

this by showing that the effective superpotential can be
extended to larger values of Nf by including the singlets.

(See also the detailed work of [12] for extending the
effective superpotential for larger number of flavors in
Su and Sp theories; in Dijkgraaf-Vafa theory [13], there
have also been related studies [14] and the review [15]).

The effective superpotential we studied above is not
valid for Nf � Nc, and the theory can, instead, be studied

in its dual ‘‘magnetic’’ description [11] (besides [8], an-
other good review is [16]). Below is basically a summary
of some material in, e.g., [16]; this is a well-known way to
extend the previous results to larger Nf.

The magnetic gauge group is SUðNf � NcÞ (matching

the number of indices of the baryon operators), with Nf

flavors of quarks, qi and �qi, and Nij, a gauge-invariant

field. The superpotential for the dual theory is

W ¼ 1

�
qM �q: (36)

The scale � relates the M of the magnetic theory, Mm

(which we will not use explicitly), with the M of the
electric theory, Mij ¼ Qi

�Qj: M ¼ �Mm. The scale of

the magnetic theory is related to the electric theory by

�b0�bm0
m ¼ ð�1ÞNf�Nc�Nf ; (37)

where the m subscript denotes the magnetic theory, and
bm0 ¼ 3ðNf � NcÞ � Nf is b0 for the magnetic theory.

In this dual picture, let us consider arbitrary values of
hMi, so the magnetic quarks are massive, with a mass
hMi=�. Now, the low-energy theory has no matter besides
the singlets, and the new scale of the theory is

�bLm0

Lm ¼ detM

�Nf
�bm0

m ; (38)

where the low-energy theory has the beta-function coeffi-
cient bLm0 ¼ 3ðNf � NcÞ.

Gaugino condensation again leads to an effective super-
potential:

Weff ¼ ðNf � NcÞ�3
Lm ¼ ðNc � NfÞ

�
�b0

detM

�
1=ðNc�NfÞ

:

(39)

This is exactly the effective superpotential for SUðNcÞwith
Nf < Nc flavors of quarks that we analyzed earlier, con-

tinued to this value of Nf.

IV. SOðNcÞ, Spð2NcÞ, AND G2 MODELS

Supersymmetric SOðNcÞ theories exhibit a very rich set
of phenomena [17]. In particular, aside from some special
cases, there is a dynamically generated effective super-
potential, which fits into the general form of Eq. (9).
This is generated by gaugino condensation, as well, when
Nf < Nc � 4 (and in some branch of the theory when

Nc � 4 � Nf < Nc � 2) and Nc � 4, where Nf is the

number of flavors of quarks in the vector representation:

Weff ¼ A

�
�b0

detM

�
1=ðNc�Nf�2Þ

; (40)

where Mij ¼ QiQj, b0 ¼ 3ðNc � 2Þ � Nf, and A is a

normalization constant. The anomaly coefficients are
2ðNc � 2Þ for the adjoint and 2 for the fundamental
representations.
Since the effective superpotential for the SOðNcÞ theory

is of the same form as in the generic calculations of Sec. II,
we will again have a Z2b0R discrete R symmetry and b0
supersymmetric vacua. For larger Nf, we can again inte-

grate out all the quarks (made heavy by the singlet VEVs)
or use a magnetic duality to a SOðNf � Nc þ 4Þ [17],

similar to the SUðNcÞ calculations previously.
However, there are also several special cases for the

SOðNcÞ theories. When Nf ¼ Nc � 4, the theory is broken

to SOð4Þ ¼ SUð2Þ � SUð2Þ, and so there are two gaugino
condensates. Only when the condensates have the same
relative sign does the theory have the effective superpoten-
tial above. On the other branch of the theory, there is no
dynamically generated superpotential; there is a moduli
space, which includes confinement without chiral sym-
metry breaking [17]. When Nf ¼ Nc � 3, there is also a

branch of the theory that includes the effective superpo-
tential. Additionally, when Nc ¼ 3; 4, there are other con-
siderations [17].
Spð2NcÞ theories also fit easily into the general frame-

work of Sec. II and are a bit simpler. Here, we have 2Nf

flavors of quarks in the fundamental representation. The
anomaly coefficients are 4ðNc þ 2Þ for the adjoint and 2 for
the fundamental representations. For Nf � Nc, there is a

dynamically generated superpotential (from gaugino con-
densation or through instantons) [18]:
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Weff ¼ A

�
�b0

PfM

�
1=ðNcþ1�NfÞ

; (41)

where b0 ¼ 3ð2Nc þ 2Þ � 2Nf, Mij ¼ QiQj is an anti-

symmetric tensor (e.g., the Q’s are combined with the
antisymmetric tensor that the group preserves), and A is a
normalization constant. Again, for larger Nf, the theory

can be analyzed by integrating out heavy quarks or using a
duality to a Sp½2ðNf � Nc � 2Þ� theory. There are no

baryons for the Spð2NcÞ theories, as they break up into
mesons by virtue of the 	 tensor being expressible in terms
of the antisymmetric tensor preserved by Spð2NcÞ.

The exceptional group G2 also fits into this analysis
quite easily [19,20]. The beta-function coefficient is b0 ¼
12� Nf, and there are Nf flavors of quarks in the funda-

mental 7 representation. There are several gauge-invariant
fields;M denotes the dimension-two composite superfield.
The effective superpotential is

Weff ¼ A

�
�b0

detM

�
1=ð4�NfÞ

; (42)

which again matches our general form. This superpotential
is generated by gluino condensation for Nf � 2 and by

instantons for Nf ¼ 3. For larger Nf, there is again a

quantum modified moduli space and, then, a dual picture
for Nf � 6.

The exceptional groups present some difficulties in at-
tempting to extend this analysis, which is already apparent
in the G2 theory [20]. The more complicated group struc-
ture gives rise to many gauge-invariant composite fields,
and so the effective potential form cannot be completely
fixed from general considerations. Even so, the same argu-
ments (such as the R symmetry and flavor symmetry) that
give rise to the effective superpotential of, e.g., SUðNcÞ are
very general and could possibly give the effective super-
potential for at least some region of the theories with other
exceptional groups [20]. One way to do this is to consider
subgroups, which are reached by VEVs of the different
gauge-invariant composite fields. For instance, the 27 of E6

can break the group to SOð10Þwith a singlet, fundamental,
and spinor representation (1þ 10þ 16). This can have a
generated superpotential, and turning on the VEVs will
break this into smaller and smaller subgroups. So, it seems
quite possible that these results could hold, with some
restrictions, for theories with any simple Lie group.

V. APPLICATIONS TO MODEL BUILDING

We will now briefly discuss our results in the context of
building supersymmetric models, in a similar spirit to [3].
As in [3], we have presented a mechanism for incorporat-
ing a discrete R symmetry and retrofitting (generating)
mass scales of a model by using the VEVof a singlet field.
The overall goal of this process is to make a model more
‘‘natural’’: a mass hierarchy from marginal or irrelevant

couplings, rather than imposed by hand. The R symmetry
can also be used to forbid unwanted operators.
First, let us consider how to build general models. As a

general method, take the superpotential of the model to be
modified and replace masses by an interaction with a
singlet field. One may need more than one singlet in order
to generate different scales or use different coupling con-
stants at the expense of some tuning or imposing a hier-
archy. Additionally, one can choose the group, number of
colors, and number of flavors for the gauge theory the
singlet(s) are coupled to in order to produce the discrete
R symmetry desired. The R charges of the model are now
(at least partially) fixed due to the singlet interactions. This
can forbid unwanted operators.
As an example, we consider a generalization of the

Next-to-Minimal Supersymmetric Standard Model
(NMSSM)—the Minimal Supersymmetric Standard
Model (MSSM), plus a singlet—as in the recent work
[21] (see also, the earlier work [22]). The superpotential
of the Higgs and singlet superfields is

W ¼ ð�þ �SÞHuHd þ 1
2�sS

2; (43)

where the cubic and linear terms for S are assumed to be
negligible or set to zero. This does not solve the� problem
and, in fact, adds another, �s. However, this model closely
resembles the MSSM phenomenologically and, without
tuning the scalar potential, can have the lightest neutral
Higgs mass above current bounds and light top squarks.
At first glance, this model seems rather unnatural: there

are two free-mass parameters, and some unwanted terms
in the superpotential are simply set to zero. However, it is
quite simple in our framework to alleviate these problems.

We can use just a single additional singlet, ~S, coupled to
this model to make it more natural and only require slight
tuning of coupling constants to get any desired hierarchy
between � and �s:

W ¼
�
�~S2

Mp

þ �S

�
HuHd þ �

1

2

~S2

Mp

S2: (44)

In order to have all these terms have R charge 2, the R
charge of the Higgs and S must be the same, and S has

twice the R charge of ~S (all mod 2b0). Then, cubic and
linear terms of S are forbidden. In [21], � and �s are free
parameters taken at or below the TeV scale;� ¼ 500 GeV
and �s ¼ 2 TeV are used in the plots. Here, one would
require � � 4� to generate these relative scales. This
is now the same solution to the � problem considered
in [3,7].

VI. DISCUSSION AND CONCLUSION

We have constructed models with a discrete R symmetry
that is respected by the instanton, but gaugino condensa-
tion and the singlet VEV ultimately break it down to just
a Z2R. In [3], it was argued that this is not really an R
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symmetry; combined with a 2� rotation from the Lorentz
group, this is just a non-R Z2. However, as discussed in [3],
models with a discrete R symmetry (larger than Z2R)
can be very important in models with low-energy
supersymmetry.

Because of the gaugino condensation and singlet VEV,
we showed that there are b0 vacuum states generally, and
then in detail for the SUðNcÞ theories. This is basically a
generalization of the discrete Z2Nc

symmetry and resulting

states in SUðNcÞ, with Nf < Nc flavor of quarks and gau-

gino condensation. We have analyzed general theories with
singlet interactions to construct the discrete R symmetry.
The discrete R symmetry was found by considering an
instanton and finding what discrete subgroup of the
Uð1ÞR it respects: Z2b0R.

We have analyzed many of the more common vectorlike
supersymmetric gauge theories with an effective super-
potential generated by gaugino condensation or instanton
effects. We studied these with some simplifications of the
couplings. Although these different theories share many
common features, in different regions of couplings, there
are different behaviors. The common form of the effective
superpotential for these gauge theories motivated a general
expression, which we used to show that we expect b0
vacuum states. For the known examples, the form of the
effective superpotential follows from renormalization,
gauge symmetry, and the R symmetry. These are quite
general arguments for any gauge group, but the exact
form of the effective superpotential is not completely fixed
for the exceptional groups. These groups have several
gauge-invariant composite fields, and so there is still am-
biguity in the form of the effective superpotential. On the
other hand, our analysis of the discrete R symmetry, its

breaking, and the number of vacua calculated through
integrating out heavy quarks, still applies. While a more
detailed study may be possible, our general results apply
here, as well, and, thus, to all simple Lie groups.
There are still several open questions to pursue. We

did not explicitly analyze the theories in the so-called
‘‘conformal window,’’ where the couplings and number
of flavors would place the theory in a conformal regime.
Although the previous analysis of integrating out heavy
quarks (where � is very small) still works, it would be
interesting to understand the dynamics of the theory in this
regime. How do the singlet interactions change the theory
in this region? Are there general statements to be made
here, as well? We have also restricted our analysis to
certain regions of the parameter space (largely ignoring
baryons), and have also limited cases of integrating out
heavy-matter fields. Perhaps this can be made more pre-
cise, or maybe there are interesting special cases to be
found. Theories like the SOðNcÞ case also have more
involved dynamics depending on the number of flavors.
Again, maybe there is more to be said here, as well.
However, even at this point, the picture we have presented
is quite general and prevalent in supersymmetric Yang-
Mills theories.
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