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We study the strange quark mass dependence of the tricritical point of the Uð3ÞL �Uð3ÞR linear sigma

model in the chiral limit. Assuming that the tricritical point is at a large strange mass value, the strange

sector as well as the �� a0 sector decouples from the light degrees of freedom which determines the

thermodynamics. By tracing this decoupling we arrive from the original Uð3ÞL � Uð3ÞR symmetric

model, going through the Uð2ÞL �Uð2ÞR symmetric one, at the SUð2ÞL � SUð2ÞR linear sigma model.

One-loop level beta functions for the running of the parameters in each of these models and tree-level

matching of the coupling of these models performed at intermediate scales are used to determine the

influence of the heavy sector on the parameters of the SUð2ÞL � SUð2ÞR linear sigma model.

By investigating the thermodynamics of this latter model we identified the tricritical surface of the

Uð3ÞL �Uð3ÞR linear sigma model in the chiral limit. To apply the results for QCD we used different

scenarios for the ms and �q dependence of the effective model parameters, and then the �TCP
q ðmsÞ

function can be determined. Depending on the details, a curve bending upwards or downwards near

�q ¼ 0 can be obtained, while with explicit chemical potential dependence of the parameters the

direction of the curve can change with ms, too.
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I. INTRODUCTION

The phase diagram of QCD is a much-studied phenome-
non, but still its characteristics, at finite baryon chemical
potential, in particular, are far from being settled [1–4].
While at zero chemical potential all the Monte Carlo (MC)
and effective model studies tend to support a common
picture, at nonzero chemical potential the MC results are
inconclusive.

At zero chemical potential the widely accepted phase
diagram in the mud-ms plane exhibits both at small and at
large quark masses regions of first-order phase transition
each bounded by a line of second-order critical end points
(CEPs). In between these regions, the transition is of the
analytic crossover type. If we introduce a nonzero quark
baryon chemical potential �q, the second-order CEP lines

extend to a critical surface. If the critical surface lying
closer to the origin of the mass plane bends upwards, that
is, to larger quark masses, then there is a possibility that a
crossover transition becomes at larger chemical potential a
second- and subsequently a first-order phase transition.
Direct MC simulations [5,6] and also the estimates in
[7,8] give a finite �CEP

q value, and similar conclusions

can be drawn from other lattice techniques, too [9–11].
However, the second-order surface seems to bend down-
wards, to smaller quark masses, according to studies of the
curvature performed on N� ¼ 4 lattices for Nf ¼ 3 and

Nf ¼ 2þ 1 cases in [12–16] using imaginary chemical

potential. These lattice studies performed at imaginary
chemical potential seem to exclude the existence of a
CEP for �q < 166 MeV even on a finer, Nt ¼ 6 lattice

used in the Nf ¼ 3 case [17], although there the curvature

of the critical surface is consistent with zero, but the sign of
the curvature is not yet constrained because the cutoff
effects appear to be larger than finite density effects.
Although all these lattice results do not necessarily contra-
dict each other, they could imply a scenario in which the
critical surface has a nontrivial shape. Some numerical
evidence for such a possibility is given in [18].
Beyond direct simulations one can approach the study of

the phase structure of QCD through effective theories; see
e.g. [3,19] for reviews. At finite chemical potential there are
several results on the chiral phase transition for two flavors
in Nambu–Jona-Lasinio models, as well as in linear sigma
models [20–23]. Using the SUð2ÞL � SUð2ÞR linear sigma
model an interesting phase structure with two CEPs in the
�q � T plane was reported for low values of the pion mass

in [23]. Considering three flavors, one can study in these
models the properties of the chiral critical surface [24–29].
In [24–26] the authors used the Uð3ÞL �Uð3ÞR chiral
sigma model near the physical point and found that in the
available parameter space the critical surface bends up-
wards, supporting the direct MC result. In [27–29], in the
framework of the extended Nambu–Jona-Lasinio model the
authors found a down-bending surface for a small chemical
potential which eventually turns back at higher values of
�q: This behavior would conciliate the two MC scenarios
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within a single critical surface if the turning happens at
positive values ofmud andms and finite values of�q. Other

possible behaviors of the critical surface were discussed in
[30,31] using the Gibbs’ phase rule for phase coexistence.

In the chiral limit (mud ¼ 0), there are two well-known
limits: the �q ¼ 0 and the infinite strange quark mass

(ms ¼ 1) limits. At �q ¼ 0 we have a first-order phase

transition region for small ms, a second-order transition
region at large ms, and a tricritical point (TCP) separating
them, with a characteristic value mTCP

s . At ms ¼ 1 and
small chemical potential we have second order, for large
�q a first-order phase transition, with again a TCP in

between. The line of TCPs is the intercept of the critical
surface and the mud � 0 plane of the mud �ms ��q

space. According to the above scenarios the two TCPs at
the �q ¼ 0 and ms ¼ 1 can be connected by a single line

with definite curvature, a backbending line, or they may
belong to two distinct TCP lines. In the latter case there
must be two disjunct critical surfaces in the mud �ms �
�q space, of which these two TCP lines are just the end

points in the mud � 0 plane [30,31].
In this paper we attempt to describe the behavior of the

tricritical line in the chiral limit of the Uð3ÞL �Uð3ÞR
sigma model [24,32,33], assuming in addition that the
mass of the constituent strange quark and the anomaly scale
are much larger than the critical temperature. The study of
the chiral limit has some advantages, since one can work
with much less parameters than in a generic situation. A
disadvantage, though, is that in this case there are no direct
measurements which could connect the effective model
parameters with the QCD (although, strictly speaking, there
are no such measurements anywhere, apart from the physi-
cal point, especially not for a possible chemical potential
dependence of the parameters). The goal of this study is to
explore the parameter dependence of the TCP line.

The assumption that the constituent strange mass is much
larger than Tc is based on the observation that even at the
physical point of the mass plane the constituent strange
quark mass is above 450–500 MeV (see Ref. [34] and
references therein), while Tc � 160 MeV, and the critical

line in the mud �ms plane behaves as m
TCP
s �ms �m2=5

ud ,

as one approaches the ms axis, which predicts form
TCP
s and

for the mass of the strange constituent quark a higher value
than the corresponding mass at the physical point. Actually,
in the lattice study of [35] it was estimated that mTCP

s ’
2:8Tc, while in [33] using the Uð3ÞL �Uð3ÞR sigma model
mTCP

s was estimated to be 1 order of magnitude bigger than
the value of ms at the physical point. A similar observation
can be made for the anomaly scale, which is connected to
the mass of the �0 meson. In this physical situation we have
a multiscale system, where a simple one-loop analysis
would lose the contribution of the heavy sector. Instead,
we have to work with decoupling theory [36], which results
in a hierarchy of effective models describing the physics at
lower and lower scales. First the ms strange quark sector

decouples with the corresponding bosonic degrees of free-
dom, and we obtain an effective Uð2ÞL �Uð2ÞR symmetric
theory. Then the �0 sector (which has semilarge masses at
ms ! 1 because of the anomaly) decouples, and we are left
with the SUð2ÞL � SUð2ÞR chiral sigma model consisting
of pion and sigma mesons, as well as the u and d constituent
quarks. Here we can use the results of [22] to determine the
position of TCP for a given parameter set. The effect of
the strange sector on the position of the TCP is only through
the modified parameters of the SUð2ÞL � SUð2ÞR chiral
sigma model. To determine the parameters of the different
effective models involved in the analysis we use the one-
loop �-function-governed running of these parameters and
matching of the corresponding n-point functions in the
common validity range of the models. Some extra assump-
tions on the original parameters of the Uð3ÞL �Uð3ÞR
sigma model are unavoidable.
The setup of the paper is as follows. First, we discuss the

model in Sec. II. Then, we overview the generic ideas how
the decoupling works in Sec. III. Next, we perform the
decoupling in the Uð3ÞL �Uð3ÞR model in Sec. IV. We
study the thermodynamics in the resulting effective
SUð2ÞL � SUð2ÞR linear sigma model in Sec. V. We close
with conclusions in Sec. VI.

II. THE MODEL

We first construct the starting model [24,32], which is
the Uð3ÞL �Uð3ÞR symmetric linear sigma model defined
by the Lagrangian:

L Uð3Þ ¼ �c ½i@� 2gTað�a þ i�5�aÞ�c
þ Trð@��y@��Þ �Uð�Þ; (1)

where Ta are the Uð3Þ generators, Ta ¼ �a=2 for a ¼
1; . . . ; 7, and T0 � Tx, T8 � Ty [33], with

Tx ¼ 1

2

1 0 0
0 1 0
0 0 0

0
@

1
A; Ty ¼ 1ffiffiffi

2
p

0 0 0
0 0 0
0 0 1

0
@

1
A: (2)

The meson matrix � ¼ � þ i� ¼ Tað�a þ i�aÞ is given
in terms of the physical degrees of freedom as

� ¼ 1ffiffiffi
2

p
1ffiffi
2

p ð�x þ a00Þ aþ0 	þ

a�0
1ffiffi
2

p ð�x � a00Þ 	0

	� �	0 �y

0
BBB@

1
CCCA;

� ¼ 1ffiffiffi
2

p
1ffiffi
2

p ð�x þ�0Þ �þ Kþ

�� 1ffiffi
2

p ð�x ��0Þ K0

K� �K0 �y

0
BBB@

1
CCCA:

(3)

Finally, the potential for � reads

Uð�Þ ¼ M2 Trð�y�Þ þ �1½Trð�y�Þ�2 þ �2 Tr½ð�y�Þ2�
� ffiffiffi

2
p

Cðdet�þ det�yÞ þ Tr½Hð�þ�yÞ�: (4)
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Here, C governs the Uð1Þ anomaly which breaks the
symmetry to SUð3ÞL � SUð3ÞR. The last H-dependent
term explicitly breaks also this symmetry. As a conse-
quence we consider the case when vacuum expectation
values develop for those scalar fields which belong to the
center elements of the symmetry group. These are taken
into account through the shifts: �x ! �x þ x and �y !
�y þ y. In this paper we are interested in the regime where

the vacuum structure of the theory contains a heavy
s-quark sector and a light ud sector, with a corresponding
meson sector. For the constituent quark sector this mass
hierarchy can be fulfilled with y � x, since at tree level the

s-quark mass is ms ¼
ffiffiffi
2

p
gy, while mud ¼ gx. We assume

that the mesons containing s quarks have a mass of order
ms, while the rest have a mass of order mud. No splitting is
assumed between u and d quark masses.

After having made all these assumptions, the mass spec-
trum, and correspondingly the physics, splits into a heavy
and a light part. The light sector influences only very little
the symmetry breaking pattern of the heavy sector; there-
fore we may set x ¼ 0 when dealing with the determina-
tion of the heavy masses. Then we find the following mass
relations:

m2
x ¼ M2 þ �1y

2 � Cy; m2
a ¼ M2 þ �1y

2 þ Cy;

m2
K ¼ M2 þ ð�1 þ �2Þy2; m2

y ¼ M2 þ 3ð�1 þ �2Þy2;
m2

s ¼ 2g2y2; (5)

wherem2
x is the mass squared for�i and�x,m

2
a is the mass

squared of �x and a0i , m
2
K applies for �y, K, and 	 modes,

m2
y is the mass squared of �y, and finally, ms is the strange

quark mass. In the case of a large strange quark mass, i.e.
large y values, the lightness of the pion-sigma sector
requires that m2

x � m2
s . This can be achieved only with

fine-tuning m2—after all, this is the manifestation of
the hierarchy problem, where the high energy sector
influences, through radiative corrections and spontaneous
symmetry breaking, the light sector. To circumvent the
problem, we parametrize everything with the light x mass:

m2
a ¼ m2

x þ 2Cy;

m2
K ¼ m2

x þ �2y
2;

m2
y ¼ m2

x þ ð2�1 þ 3�2Þy2:
(6)

We see that there is a third mass scale, associated to Cy.
SinceC has the dimension of a mass, we can relate its value
to y or mx, and it is a matter of the low-lying dynamics
determining the details of the effective model to know
which is the ‘‘true’’ ratio between them. In this work we
try to play around with the possible values of C to see its
effect on the thermodynamics.

So, after all, we have three possibly very different mass
scales: ms, ma, and mx. The thermodynamics of the sys-
tem, which is related to the spontaneous breaking in the
nonstrange sector, must take place at the light scales, that

is, at T �mx. To treat a physical system with vastly differ-
ent mass scales is possible only using the fact that for the
light physics the heavy degrees of freedom decouple, and
their presence can be identified through the values of the
parameters of the Lagrangian containing the light degrees
of freedom. How this decoupling works in detail is sum-
marized in the next section.

III. DECOUPLING OF MASS SCALES

Here we review the generic principles of decoupling
incorporating ideas of heavy mass decoupling (cf.
Ref. [36]) and, whenever we switch to a new theory with
different degrees of freedom, matching principles (cf.
Ref. [37]).
Let us start with a theory with Lagrangian L, coupling

constant set fgigi¼1...u (this includes also the masses), and
field contents generically denoted with � and ’. Let us
assume that� is much heavier than’, and their masses are
denoted by M and m, respectively.1 Then we want to
establish an effective theory based exclusively on the light
degrees of freedom. Let us denote the Lagrangian of this

effective theory by L̂, its couplings are fĝigi¼1...û (û � u),
and the field content is ’̂ with mass m̂�m. We emphasize
that, although ’̂ corresponds to the light degrees of free-
dom ’ of the complete theory, they can differ by wave
function renormalization. In general the wave function
renormalization and the renormalized couplings of the
effective theory depend on the coupling constants of the
original theory:

’̂ ¼ z1=2ðgÞ’; ĝi ¼ fiðgÞ: (7)

If we assume that the couplings of the effective model at
tree level are linear combinations of the original couplings,
then we can write

ĝ i ¼
Xu
j¼1

Gijgj þ �giðgÞ; i 2 ½i . . . û�; (8)

where �giðgÞ denotes the loop corrections which depend
on all of the original couplings.
In order to determine these relations we use matching.

We take ûþ 1 correlators of the light fields at some
external momentum and require that their physical value
be the same in the original and in the effective model. If we
denote the n-point functions of the original and effective
model by

Gnðx1; . . . xnÞ ¼ hT’ðx1Þ . . .’ðxnÞi;
Ĝnðx1; . . . xnÞ ¼ hT’̂ðx1Þ . . . ’̂ðxnÞi;

(9)

then we require in Fourier space

1For the sake of simplicity we only consider one heavy and
one light degree of freedom.
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Ĝ nðk1; . . . knÞ ¼ zn=2Gnðk1; . . . knÞ (10)

for fixed k1; . . . kn. The right-hand side contains, as radia-
tive corrections, the effect of heavy modes.

In perturbation theory the n-point functions depend also
on the renormalization scales � and �̂, respectively. In
general, we expect to obtain all types of logarithmic cor-
rections lna�=E, where E is any energy scale which shows
up in the given n-point function. In loop integrals we
typically find E2 �maxðk2i ;mass2Þ, where the mass can
be m and M on the right- or m̂ on the left-hand side. In
order not to have multiple mass scales in the n-point
functions (which would lead to large logarithms) we shall
choose jkij �M, and then all scales are of the order of M.
This means that for the best convergence of the perturba-
tive series we shall also choose �; �̂�M. In consequence
the relation (7) is in fact established at scale M:

ĝ iðMÞ ¼ Xu
j¼1

GijgjðMÞ þ �giðgðMÞÞ: (11)

In the original theory the couplings may be defined on a
different energy scale M0. Then, we have to run the cou-
plings according to L in order to find giðMÞ which is
needed above. On the other hand, (11) defines ĝi on the
scale M. If we need them on a lower energy scaleM0, then
we have to run them according to L̂, the effective model
Lagrangian.

If there are multiple scales to decouple, we have a

series of effective models LðaÞ with coupling constants

fgðaÞi gi¼1...ua where the heaviest field has a mass MðaÞ.
Then the matching conditions described above lead to the
series of equations

gðaþ1Þ
i ðMðaÞÞ ¼

Xua
j¼1

Gijg
ðaÞ
i ðMðaÞÞ þ �gðaÞi ðgðMðaÞÞÞ: (12)

This defines the new couplings gðaþ1Þ
i at the mass scale

MðaÞ which, from the point of view of the aþ 1th effective
model, is a high energy scale. Then the running of the
couplings between MðaÞ ! Mðaþ1Þ is governed by the

Lagrangian Lðaþ1Þ. This process leads to the schematic
running depicted in Fig. 1.
In the most simple version we use tree-level matching,

which means that we neglect the �gi terms. We use this
approximation throughout this work. Moreover, we use the
lowest-order (one-loop) beta functions for running.
We start with the Uð3ÞL �Uð3ÞR symmetric linear

sigma model which is parametrized at the heavy, strange
mass scale in order to avoid the need for running. After
the decoupling of the strange sector we are left with a
Uð2ÞL �Uð2ÞR model, starting at ms scale. The beta func-
tions of this model determine the running of the coupling
down to ma, when we switch to SUð2ÞL � SUð2ÞR model
containing only the � and � mesons and the u and d
constituent quarks. We perform in this model the running
of their couplings from ma down to the T scale, where the
finite temperature study is performed.
A separate treatment is needed when we treat the light

masses of the system. On one hand, due to the renormal-
ization group (RG) running, they acquire logarithmic de-
pendence on the heavy scale. On the other hand, because of
the hierarchy problem discussed in the previous section,
the light mass squared m2 has to be fine-tuned by M2 in
order to keep the light sector truly light. Therefore in
bosonic models the logarithmic corrections from the RG
running are subleading, and so they should be neglected.

IV. DECOUPLING OF THE HEAVY SECTOR

We use (1) with a background y taken into account via
the shift �y ! �y þ y. The first step is to parametrize the

heavy sector by determining the parameters of the model at
scale ms. Then, as a next step, we perform the decoupling
of the heavy (strange) sector.

A. Parametrization of the heavy sector

We should fix the parameters of the heavy sector by
measurements, but there exist no direct mass measure-
ments in this regime. Therefore we are forced to make
some assumptions. Since we are in a large quark mass
regime, we cannot use the results of the chiral perturbation
theory. Instead, the heavy constituent quark model ap-
proach, where the masses of the heavy particles are simply
the sum of the constituent quark masses, seems to be more
adequate. In case of the light-heavy mesons this works
nicely, since we can require

mK ¼ ms ) �2 ¼ 2g2: (13)

In the doubly heavy sector there is a mismatch between the
scalar (�y) and pseudoscalar (�y) meson masses, although

the constituent quark model would give the same mass for

0

g

M M M M3 2 1

FIG. 1. Schematic plot of the running of a coupling constant.
The running between MðaÞ and Mðaþ1Þ is governed by Lðaþ1Þ.
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both. The reason in this model is that there is a symmetry
breaking effect in addition to the constituent quark masses.

To treat this situation we introduce a free parameter �A and
require that some average of the two masses squared is
ð2msÞ2:

�Am2
y þ ð1� �AÞm2

K ¼ ð2msÞ2; (14)

which results in a relation between the two quartic cou-
pling constants �1 and �2:

�1 ¼
�

3

2 �A
� 1

�
�2: (15)

If �A ¼ 1, i.e. when my ¼ 2ms, �1 ¼ g2 is the smallest

value for �1. Another plausible choice is �A ¼ 1=2;

then �1 ¼ 2�2 ¼ 4g2. Therefore, introducingA ¼ �2þ
3= �A we may set

�1 ¼ Ag2; where A 2 ½1;1�: (16)

The parameter range A 2 ½1; 4� will be used later in the
analysis.

For fixing the other parameters we will use the infrared
(IR) sector. We will determinem� at its own scale, and this
will give the mass unit in the study. For fixing the ms value
at � ¼ ms scale we also use an IR observable. This will be

that mð0Þ
s value where we have a TCP at zero chemical

potential (but, of course, at finite temperature). Through
the decoupling equations this value will determine the
original, zero temperature strange quark mass.

B. Tree-level decoupling

The next step is to eliminate the strange sector and
determine the parameters of the resulting effective model.
The effective model will contain the following degrees of
freedom: the upper two ðu; dÞ components in c , denoted
by c 2; and the upper left 2� 2 submatrix in�, denoted by
�2 and containing the � � �x, a0, �x, and � fields:

c ¼ c 2

s

 !
;

� ¼
�2

1ffiffi
2

p Kþ
1ffiffi
2

p Ky� 1ffiffi
2

p ð�y þ i�yÞ

0
@

1
A;

K	 ¼ �	 iK ¼ 	þ 	 iKþ

	0 	 iK0

 !
:

(17)

We split the Lagrangian (1)–(4) according to this charac-
terization of degrees of freedom. The shifted Lagrangian
reads

L Uð3Þ ¼ LUð2Þ þLheavy þ const: (18)

Here, Lheavy contains the heavy part, the ‘‘const’’ term

refers to the y-dependent part of the potential, while
LUð2Þ contains the terms which consist of the light fields:

LUð2Þ ¼ �c 2½i@� g�ið�2i þ i�5�2iÞ�c 2 þ Trð@��y
2@��2Þ

� ðM2 þ �1y
2ÞTr½�y

2�2� � �1½Trð�y
2�2Þ�2

� �2 Tr½ð�y
2�2Þ2� þCy½det�2 þ det�y

2 �: (19)

Tree-level matching means that we simply neglect the
heavy part and go on with the Lagrangian described
above. We can argue for this simple choice as follows. The
parametrization of the heavy sector of the model could
be done only very heuristically, in which case only
the leading-order effects could be taken into account.
Therefore, it would be inconsistent to work with a detailed
decoupling scheme, determining �g�Oðg2Þ or Oðg3Þ
corrections to the tree-level values which are not known
precisely. For this reason the leading-order approach is the
most consistent here. As a result of this approximation we
shall trust only the most robust consequences of this study.

C. Running in the Uð2ÞL � Uð2ÞR linear sigma model

In component fields (19) can be written as

LUð2Þ ¼ �c 2½i@� gð’5 � i�5a5Þ�c 2 þ 1

2
ð@�’Þ2 �

m2
’

2
’2

þ 1

2
ð@�aÞ2 �m2

a

2
a2 � �

4
ð’2 þ a2Þ2

� �2

2
ð’2a2 � ð’aÞ2Þ; (20)

where we introduced the following notations: ’5 ¼ �0 þ
�i�i, a5 ¼ ��0 � �i�i, with �i being the Pauli matrices,
� ¼ �1 þ �2=2, ’ ¼ ð�;�iÞ, and a ¼ ð��; aiÞ. The
squared masses are m2

’=a ¼ m2 
 c, where m2 ¼
M2 þ �1y

2 and c ¼ Cy [cf. (5)].
The running of the couplings are determined by the beta

functions given in Appendix A, under Eq. (A32). By solv-
ing (A32a) the running of g can be obtained explicitly:

g2ð�Þ ¼ g2ð�0Þ
1� 5g2ð�0Þ

12�2 ln�
2

�2
0

¼ 12�2

5 ln
��2
0

�2

; (21)

where ��2
0 ¼ �2

0 exp½12�2=ð5g2ð�0ÞÞ�. This has an UV

Landau pole, while it goes to zero when � ! 0.
For the other two equations, (A32b) and (A32c), we

introduce the ratios

u ¼ 2�

g2
; u2 ¼ �2

g2
; (22)

and a new function Xð�Þ monotonous in � which satisfies

1

g2
dX

d ln�
¼ 1

4�2
: (23)

Using (21), this equation has the solution
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Xð�Þ ¼ 3

10
ln

�
ln�ð�0=�0Þ
lnð ��0=�Þ

�
;

ln
�0

�
¼ ln

��0

�0

ðe�ð10=3ÞX � 1Þ ¼ ln
��0

�
ð1� e10=3XÞ:

(24)

Here we have chosen the condition Xð�0Þ ¼ 0, where �0

is chosen to be the strange quark mass ms. Then we find

@u

@X
¼ 4u2 þ 3uu2 þ 3u2 � 4� 14

3
u;

@u2
@X

¼ 3uu2 þ u22 � 4� 14

3
u2:

(25)

Conforming to Sec. IVA, the phenomenologically moti-
vated initial conditions are u2 ¼ 2 and u ¼ 2ðAþ 1Þ ¼
4 . . . 10, at the scale of the s quark. The solution of (25) is
depicted in Fig. 2. As this plot also demonstrates, for a wide
range of�, u2 stays in the interval ½1; 2�, while u decreases
continuously as we lower the scale � from �0 ¼ ms down
to �<ms. Sooner or later (depending the initial condi-
tions) u crosses zero which signals the instability of the
theory. Probably it means that in order to maintain stability
higher-order corrections are needed.

D. Running in the SUð2ÞL � SUð2ÞR linear sigma model

If we are well below the ma scale, then we can use the
model containing the �� � sector of (20) and the u; d
constituent quarks. This model is the SUð2ÞL � SUð2ÞR
linear sigma model defined by

LSUð2Þ ¼ �c 2½i@� gð�þ i�5�i�iÞ�c 2 þ 1

2
ð@�’Þ2

�m2
’

2
’2 � �

4
’4; (26)

where c 2 and m2
’ were defined in the previous two sub-

sections. The parameters of the model are defined at scale
ma, so we have to apply renormalization group running to
find the values of the coupling at the phase transition
temperature T �m�.

The RG equation is determined in Appendix B,
Eq. (B14). The running of g can be solved:

g2ð�Þ ¼ g2ð�0Þ
1þ 5g2ð�0Þ

24�2 ln�
2

�2
0

¼ 24�2

5 ln�
2

�2
0

; (27)

where �2
0 ¼ �2

0 exp½�24�2=ð5g2ð�0ÞÞ�. This has an IR

Landau pole, while it goes to zero when � ! 1. The
definition of �0 is RG invariant. Comparing (27) with
(21), and taking into account that the change of scaling is
at �0 ¼ ma, we find

�� 2
0 ¼

m3
a

�0

: (28)

For the running of � we introduce again Xð�Þ defined in
(23) where now g is the coupling of the SUð2ÞL � SUð2ÞR
linear sigma model. Using (27) we obtain

Xð�Þ ¼ 3

5
ln

�
lnð�=�0Þ
lnð�0=�0Þ

�
; ln

�0

�
¼ ln

�0

�0

ð1� e5=3XÞ:
(29)

We introduce the same ratio as in (22): 2� ¼ ug2, and find

du

dX
¼ 3u2 þ u� 4: (30)

The solution of this equation reads

u� 1

3uþ 4
¼ u0 � 1

3u0 þ 4

�
1� lnð�0=�Þ

lnð�0=�0Þ
�
21=5

: (31)

This equation has a fixed point at u ¼ 1, as is shown in
Fig. 3
In the SUð2ÞL � SUð2ÞR linear sigma model we can

follow the running of the light mass, using (B14). The
same running is true for the tree-level sigma mass m2

� �
�2m2

’. Then we find

m2
�ð�Þ ¼ m2

�ð�0Þ exp
�

1

12�2

Z ln�=�0

0
dðlnð�0=�0ÞÞg2ð�0Þ

�
�
9

2
uð�0Þ � 1

��
: (32)
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FIG. 2. Running of the ratios u ¼ 2�=g2 and u2 ¼ �2=g
2

starting from different initial conditions.
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With the help of (27) and (31) we obtain

m2
�ð�Þ ¼ m2

�ð�0Þ exp
�
7g2ð�0Þ
24�2

Z ln�=�0

0

ds

1þ bg2ð�0Þs
� 1þ 6Y0zðsÞ

1� 3Y0zðsÞ
�
; (33)

where zðsÞ ¼ ð1þ s
lnð�0=�0ÞÞ21=5, b ¼ 5=ð12�2Þ, and Y0 ¼

ðuð�0Þ � 1Þ=ð3uð�0Þ þ 4Þ.

V. THERMODYNAMICS OF
THE TRICRITICAL POINT

The one-loop study of the tricritical point in the
SUð2ÞL � SUð2ÞR linear sigma model was done in [22]
using an expansion in the number of flavors. We quote
below Eqs. (12) and (14) of that work which determine the
position of the tricritical point in the �q � T plane. Using

the present notation for the couplings these equations read

m2
’ þ T2

�
�

3
þ g2 þ 3g2

�2

2

�
¼ 0;

�þ 3g4

�2
½lnð��Þ �F ð
Þ� ¼ 0;

(34)

where � ¼ 1=T is the inverse temperature and 
 ¼ ��q

with �q the quark baryon chemical potential. The function

F reads

F ð
Þ ¼ 1��E þ ln2� @

@s
½Lisð�e
ÞþLisð�e�
Þ�js¼0:

(35)

This is a monotonously increasing function of its argument
and F ð0Þ ¼ 1:5675.

We choose the scale � ¼ e�T, where � is a number of
Oð1Þ. Then the logarithm yields �, which effectively modi-

fies F ! �F ¼ F � �. In the case of spontaneous sym-
metry breaking m2

’ < 0, and it is useful to rescale all the

masses with the tree-level sigma mass m2
� ¼ �2m2

’ at

scale �. Then the equations to solve will be

1

2
¼ T2g2ð�Þ

�
uð�Þ
6

þ 1þ 3

�2

2

�
;

uð�Þ ¼ 6

�2
g2ð�Þ �F ð
Þ:

(36)

In the complete problem therefore there are 5þ 2
parameters. At the UV scale ms we have ms, ma, g

2, u,
and u2, and also we have� and T at the IR scale. The light
massm’ or the correspondingm� is used as a mass unit. At

the TCP
 ¼ ��q and T can be determined as functions of

the UV parameters:

G 0: ms;ma; g
2; u; u2 � 
c; Tc: (37)

The final output of the investigation should be, of course,

cðmsÞ and TcðmsÞ. But as we just have seen, even in the
chiral limit of mud ¼ 0 the problem is five-dimensional
instead of one-dimensional. For a sensible prediction we
have to say something about the strange mass dependence
of ma, g

2, u, and u2—these functions should come from
the underlying theory, now QCD. Since we do not have this
information, we have to assume something sensible.
In the light of the previous subsections we make

some approximations. We can fix u2ðmsÞ ¼ 2, and for u
we consider two cases: uðmsÞ ¼ 4 and uðmsÞ ¼ 10. The
remaining function

G : ms;ma; g
2 � 
c; Tc (38)

can be plotted as shown in Fig. 4. The detailed numerical
strategy to solve the system and obtain this plot is given in
Appendix C. Figure 4 shows surfaces in thems,ma, and g

2

parameter space leading to some fixed value of 
c. The
�q=T ¼ 0 critical surface is a limiting one, in the sense

that surfaces with�q=T > 0 all lie on one of its sides; they

never cross each other. Moreover the normal vector of the
surface pointing to positive �q=T always has negative ms

component—in this sense we can say that going on the
direction of the largest �q=T change, the surfaces bend

downwards in ms.
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ms/mσ

ma/mσ

g2

ms/mσ ma/mσ

 1.5

 2.5

 3.5

 4.5

g2

µq/T=0.8

u=10
u=6

 0 10 20 30 40 50  0  2  4  6  8  10

g2

FIG. 4. The dependence of 
c (�q=T at the TCP) on the parameters for u2ðmsÞ ¼ 2. The left panel is obtained with uðmsÞ ¼ 10.
The value of�0 is fixed along the lines of the surfaces directed towards the origin of thems �ma plane. For further information see the
main text.
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In order to show that different values of u do not change
qualitatively the result we plot the �q=T ¼ 0:8 surface

obtained using uðmsÞ ¼ 10 and uðmsÞ ¼ 6 and rescale
the g2 values of the latter by a factor of 1.5. The two
surfaces can be seen in the right panel of Fig. 4. As the
plot shows, the surfaces have the same characteristics.

Implication of the results for QCD

In real QCD we cannot change ma, ms, and g2 indepen-
dently. If we knew the ms dependence of ma and g2, then
we would have a curve in thems �ma � g2 space parame-
trized by ms. This line would go through the critical
surfaces characterized by fix �q=T, and then we could

determine the msð�q=TÞ function. Since we do not have

any information on the ms dependence of the parameters,
we explore several possibilities by fixing the value of one
of the parameters.

For a constant value of g2 the ms dependence of
the critical �q=T is shown in Fig. 5. One can see that the

behavior of this curve depends strongly on how ma de-
pends on ms. Characterized by dma=dms at �q ¼ 0, there

is a limiting value, and tricritical curves with smaller value
of dma=dms bend downwards (negative curvature); for
larger values they bend upwards (positive curvature).

The standard characterization of the behavior of msð�qÞ
near �q ¼ 0 is through the Taylor series [1]:

msð�qÞ
msð0Þ

¼ 1þ X
k¼1

ck

�
�q

�T

�
2k
: (39)

The first two nontrivial terms c2 and c4 are shown in Fig. 5
in the case of a constant g2. The singularity corresponds to
that value of thems for which the curvature changes sign. It
is remarkable that by changing continuously from negative
to positive curvatures (c2 values) we have to go through a
singularity.

To have a hint on which curve could be the physical one
we recall that the anomaly is mainly a gauge effect,

connected to the presence of the instantons [38,39]. This
suggests that the dependence of ma on ms should be quite
small, so the physical line is near to dma=dms ¼ 0. Note
that all tricritical surfaces in this model with ma ¼
constant bend downwards.
We see from Fig. 5 that for a wide range of parameter

space the c2 and c4 are roughly correlated with c4 � 10c2
if c2 < 0 and c4 � 20c2 if c2 > 0. In the rest of the cases
c2 has a large negative value, in which case c4 is positive.
This qualitative behavior can be compared with the re-
sults of the numerical simulations. In [12] the authors
found c2 ¼ �3:3ð3Þ and c4 ¼ �47ð20Þ with Nf ¼ 3 de-

generate quarks, which seems to be in the first regime. In
[16] with nf ¼ 2þ 1 the coefficient c2 decreased to �39

which means that the results are off the above scaling
regime, and we expect a large positive c4 coefficient—
from the behavior of B4 in the given work c4 � 10 000
with large error bars. Closer to the continuum limit (cf.
[17], Nf ¼ 3) the value of c2 is not yet known exactly, but

the sign probably remains the same and it is small. This
would suggest then again the scaling, c4 � 10c2 case. We
note, however, that our results are at the chiral limit, and
therefore the lattice results may not follow this chiral
scaling behavior.
In Ref. [29] it was shown that if the strength of the Uð1Þ

anomaly, parameter C in the Lagrangian (4), is made
�q-dependent, then the critical surface can have a non-

monotonic shape. Since C influences ma, we can observe
the same effect by considering the following dependence
of ma on �q, when solving (36):

mað�qÞ
m�

¼ 1þ
�
mað0Þ
m�

� 1

�
e��2

q=�
2
q;0 : (40)

For most of the curves with this chemical potential depen-
dent anomaly parameter the results are very similar to what
was obtained earlier; however, one can observe more ex-
otic behavior, too, for some cases. For�q;0=m� ¼ 0:17 the

result is shown in Fig. 6. Here the surface starts to bend
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A. JAKOVÁC AND ZS. SZÉP PHYSICAL REVIEW D 82, 125038 (2010)

125038-8



upwards, and later it turns back. This behavior can be very
mild (as in our example with �=m� ¼ 208). In this case
the coarse lattice measurement would only detect the
negative curvature; a high precision lattice measurement
is necessary to reveal the positive curvature near�q ¼ 0. It

is interesting that, considering the global behavior of the
curve, the coarser lattice would give a more reliable result
in this case.

VI. CONCLUSIONS

We discussed the behavior of the line of TCPs in the
chiral limit (mud ¼ 0) of the Uð3ÞL �Uð3ÞR quark model.
We assumed that the value of the strange quark mass, where
the TCP hits the�q � 0 line of thems ��q plane, is much

larger than the critical temperature Tc. This is a good
approximation in QCD, where the critical temperature is
of order 160MeV, while the constituent strange quark mass
is about 450–500 MeValready at the physical point, and we
expect that the second-order line reaches the chiral line
(mud ¼ 0) at much higherms masses. To estimate the value
in the chiral limit we can use the results of [33,35], where

the authors estimated mTCP
s � 3–15mphys

s . Since we do not
know exactly this value, we scanned a wide parameter
range mTCP

s ð�q ¼ 0Þ � 2–50m�, where ms � Tc is ful-

filled. We also assumed that the �� a0 meson sector,
which is heavier than the �� � sector because of the
anomaly, is also much heavier than Tc. This is again
plausible, since already at the physical point ma � 1 GeV.

Under these circumstances the strange and the �� a0
sector decouple from the point of view of the thermody-
namics, which is completely determined by the light
degrees of freedom, the �� � sector. This means that
the nave one-loop perturbation theory would have an ex-
ponentially small sensitivity to the strange and anomaly
scale. The only way the heavy sector can influence the
thermodynamics is through the values of the parameters of

the effective theory, i.e. when we include the renormaliza-
tion group ideas into the analysis. We have to follow the
running of the different parameters as well as the change in
the degrees of freedom from the heavy scales down to the
thermodynamic scale. This can be performed by following
the RG flow with given degrees of freedom and determin-
ing the parameters of the effective theories by matching
when the degrees of freedom change. The former yield
logarithmic dependence on the heavy scale, and the latter
effect is power-suppressed. Therefore in this work the RG
flow is determined at one-loop level, and the matching is
kept at tree level.
With the decoupling of the strange and �� a0 meson

sector, respectively, there are two stages of effective
models in the Uð3ÞL �Uð3ÞR linear sigma model. The
first is the Uð2ÞL �Uð2ÞR, while the second is the
SUð2ÞL � SUð2ÞR linear sigma model. We determined
the corresponding beta functions in these models and
solved the RG flow down to the scale of the temperature
T. The thermodynamics is determined at one-loop level in
[22]—we now included the running coupling constant in
the result.
As a result we can determine the free energy for any

given parameter sets, and we can determine the location of
the TCP on the �q � T plane. With some plausible as-

sumptions, the TCPs with fixed 
 ¼ �q=T (where �q is

the quark chemical potential) form a surface in the ms �
ma � g2 space in the Uð3ÞL �Uð3ÞR linear sigma model.
Surfaces for different 
 never cross; therefore the 
 ¼ 0
surface is a limiting surface.
If we want to draw consequences for QCD, we have to

specify how ma and g2 depend on ms in the chiral u; d
regime. Since it is not known, we explored several
possibilities. Depending on the details, this improved
SUð2Þ � SUð2Þ linear sigma model can describe an up-
ward bending (positive curvature) surface or a downward
bending (negative curvature) surface. Taking into account
the explicit chemical potential dependence of the anomaly
constant, the curvature can change from positive to nega-
tive values along the curve. In this case the value of the
curvature at �q ¼ 0 would yield false information about

the global behavior of the curve.
We hope that future MC studies shed more light on the

so far unknown dependencies of ma and g2 on ms.
Although it would be a hard task at the chiral limit, a
qualitative understanding could be gained with a fixed
mud, variable (but large) ms measurement. If such infor-
mation was provided, we could decide between the various
scenarios described in this paper.
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APPENDIX A: RENORMALIZATION GROUP
EQUATIONS IN THE Uð2ÞL � Uð2ÞR MODEL

We start from the renormalized Lagrangian of (20) and
introduce the counterterm Lagrangian, which in Fourier
space reads

�LUð2Þ ¼ �Zc
�c 2kc 2 � �g �c 2ð’5 � i�5a5Þc 2

þ �Z

2
’ðk2 � �m2

’Þ’þ �Z

2
aðk2 � �m2

aÞa

� ��

4
ð’2 þ a2Þ2 � ��2

2
ð’2a2 � ð’aÞ2Þ; (A1)

where we used the shorthand �m2
’=a ¼ �m2 
 �c and the

observation that the wave function renormalization for the
’ and a sector is the same.

The goal is to determine the counterterms at one-loop
level. To this end we work at zero temperature in the
symmetric phase. The method is to determine the expecta-
tion value of some physical observables and require finite-
ness. In order to simplify the treatment we introduce
a background field for the � field through the shift � !
�þ x. The expansion in x is used for zero momentum
external legs. The new Lagrangian obtained from (20) reads

LUð2Þ ¼�m2
’

2
x2��

4
x4��xðm2

’þ�x2Þþ �c 2ði@�mc Þc 2

þ1

2
ð@�’Þ2þ1

2
ð@�aÞ2�m2

�

2
�2�m2

�

2
�2

i �
m2

�

2
�2

�m2
A

2
a2i �g �c 2ð’5� i�5a5Þc 2��x�ð’2þa2Þ

��2x�a
2
i ��2x��iai��

4
ð’2þa2Þ2

��2

2
½’2a2�ð’aÞ2�; (A2)

where

mc ¼ gx; m2
� ¼ m2

’ þ 3�x2; m2
� ¼ m2

’ þ �x2;

m2
� ¼ m2

a þ �x2; m2
A ¼ m2

a þ �x2 þ �2x
2; (A3)

with m2
’ and m2

a defined below (20).

1. The fermionic wave function and g renormalization

We calculate on the x background the fermion self-

energy�c ¼ ihTc 2
�c 2iamp. Introducing the notation

R
p ¼R d4p

ð2�Þ4 and using standard Feynman rules we find

�c ðkÞ ¼ ��Zc kþ x�g� ig2
Z
p
½ðiG�ðp� kÞ

þ 3iGaðp� kÞÞiGðpÞ � ðiG�ðp� kÞ
þ 3iG�ðp� kÞÞ�5iGðpÞ�5�; (A4)

where G and G are the bosonic and fermionic propagators
defined as

GðpÞ ¼ 1

p2 �m2 þ i"
; GðpÞ ¼ pþm

p2 �m2 þ i"
; (A5)

with the corresponding masses.
Since the integral has mass dimension, the parts propor-

tional to k or x are dimensionless, which means that they
are at most logarithmically divergent. Therefore the masses
should be taken into account only through a Taylor expan-
sion. But the expansion in the bosonic masses yields
m2 � x2 terms, which are convergent, so we can forget
about the bosonic masses. The same is true for the fermi-
onic mass in the denominator. What remains for the diver-
gent piece is

�div
c ðkÞ ¼ ��Zc kþ x�gþ 4ig2

�
Z
p
Gðp� kÞ½GðpÞ � �5GðpÞ�5�: (A6)

In the numerator we find pþm� �5ðpþmÞ�s ¼ 2p,
which results in

�g ¼ 0: (A7)

For �Zc we have to calculate the remaining integral.

Doing this with standard techniques (cf., for example,
[40]) using cutoff regularization we find

�div
c ðkÞ ¼

�
��Zc � g2

4�2
ln
�2

�2

�
k; (A8)

and so, the counterterm ensuring the finiteness of �c ðkÞ is

�Zc ¼ � g2

4�2
ln
�2

�2
: (A9)

2. The bosonic wave function and � renormalization

We calculate next the � self-energy on the given x
background. We find

��ðkÞ ¼ ��Zk2 þ �m2
’ þ 3��x2 þ 3�

Z
p
iG�ðpÞ þ 3�

Z
p
iG�ðpÞ þ �

Z
p
iG�ðpÞ þ 3ð�þ �2Þ

Z
p
iGaðpÞ

� ig2
Z
p
Tr½Gðp� kÞGðpÞ� þ 18i�2x2

Z
p
G�ðp� kÞG�ðpÞ þ 6i�2x2

Z
p
G�ðp� kÞG�ðpÞ

þ 2i�2x2
Z
p
G�ðp� kÞG�ðpÞ þ 6ið�þ �2Þ2x2

Z
p
Gaðp� kÞGaðpÞ: (A10)
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The minus sign is because the fermionic bubble involves a
closed fermion loop. To determine �Z and �m’ we need
only the x ¼ 0 sector:

��ðk; x ¼ 0Þ ¼ ��Zk2 þ �m2
’ þ 6�

Z
p
iG’ðpÞ

þ ð4�þ 3�2Þ
Z
p
iGaðpÞ

� ig2
Z
p
Tr½Gðp� kÞGðpÞ�: (A11)

After evaluating the integrals, without writing the �2

corrections we find

�div
� ðk; x ¼ 0Þ ¼ ��Zk2 þ �m2

’ þ 6�

16�2
m2

’ ln
m2

’

�2

þ 4�þ 3�2

16�2
m2

a ln
m2

a

�2
� g2

24�2
k2 ln

k2

�2
:

(A12)

Therefore

�Z ¼ g2

12�2
ln
�2

�2
;

�m2
’ ¼ 1

16�2
ln
�2

�2
½6�m2

’ þ ð4�þ 3�2Þm2
a�:

(A13)

For the determination of �� we need the self-energy at
k ¼ 0. After evaluating the integrals we find

�div
� ðk¼ 0Þ ¼ �m2

’� 1

16�2
ln
�2

�2
½6�m2

’þð4�þ 3�2Þm2
a�

þ 3��x2� 3x2

16�2
ln
�2

�2
½13�2þ 3ð�þ�2Þ2� 4g4�:

(A14)

We obtain for �m2
’ the previous result given in (A13), and

we also have

�� ¼ 1

16�2
ln
�2

�2
½13�2 þ 3ð�þ �2Þ2 � 4g4�: (A15)

3. Renormalization of �2

We apply the procedure above, but now for the a self-
energy. Since the wave function renormalization is the
same as for ’, we need only the k ¼ 0 case. We find

�aðk ¼ 0Þ ¼ �m2
a þ ð��þ ��2Þx2 þ 5�

Z
p
iGaðpÞ

þ ð3�þ 2�2Þ
Z
p
iG�ðpÞ þ �

Z
p
iG�ðpÞ

þ ð�þ �2Þ
Z
p
iG�ðpÞ � ig2

Z
p
Tr½GðpÞGðpÞ�

þ 4ið�þ �2Þ2x2
Z
p
G�ðpÞGaðpÞ

þ i�2
2x

2
Z
p
G�ðpÞG�ðpÞ: (A16)

After evaluating the integrals we find for the divergent
pieces

�div
a ðk ¼ 0Þ ¼ �m2

a þ ð��þ ��2Þx2

� 1

16�2
ln
�2

�2
½6�m2

a þ ð4�þ 3�2Þm2
’�

� x2

16�2
ln
�2

�2
½16�2 þ 18��2 þ 5�2

2 � 12g4�: (A17)

For the a-mass counterterm we find the following expres-
sion:

�m2
a ¼ 1

16�2
ln
�2

�2
½6�m2

a þ ð4�þ 3�2Þm2
’�; (A18)

which is the same as the expression for the�mass, with the
m’ $ ma interchange. This shows that the sum and the

difference of the masses are renormalized multiplicatively.
Since m2

’=a ¼ m2 
 c, so we find

�c ¼ c
2�� 3�2

16�2
ln
�2

�2
;

�m2 ¼ m2 10�þ 3�2

16�2
ln
�2

�2
:

(A19)

From (A17) we can also read off the counterterm for
�þ �2:

��þ ��2 ¼ 1

16�2
ln
�2

�2
½16�2 þ 18��2 þ 5�2

2 � 12g4�:
(A20)

Comparing it with the expression of �� given in (A15)
we find

��2 ¼ 2

16�2
ln
�2

�2
½�2ð6�þ �2Þ � 4g4�: (A21)

4. � functions

The bare-field Lagrangian reads

LUð2Þ;0 ¼ �c 02½i@�g0ð’05 � i�5a05Þ�c 02þ 1

2
ð@�’0Þ2

þ 1

2
ð@�a0Þ2 �

m2
0’

2
’2

0 �
m2

0a

2
a20 �

�0

4
ð’2

0 þa20Þ2

��02

2
½’2

0a
2
0 �ð’0a0Þ2�; (A22)

where all the fields and couplings are bare. The bare
couplings are RG invariant, since they depend only on
the regularization:

dg0
d ln�

¼ dm2
0’

d ln�
¼ dm2

0a

d ln�
¼ d�0

d ln�
¼ d�02

d ln�
¼ 0; (A23)

where
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d

d ln�
¼ @

@ ln�
þ �g

@

@g
þ ��

@

@�
þ �2

@

@�2

þ �’

@

@m2
’

þ �a

@

@m2
a

: (A24)

To obtain the bare quantities from the counterterms, we

first have to change to renormalized fields c 02 ¼ Z1=2
c c 2,

’0 ¼ Z1=2’, and a0 ¼ Z1=2a:

L2 ¼ �c 2½Zc i@�ZcZ
1=2g0ð’5 � i�5a5Þ�c 2

þZ

2
ð@�’Þ2 þZ

2
ð@�aÞ2 �

Zm2
0’

2
’2 �Zm2

0a

2
a2

�Z2�0

4
ð’2 þa2Þ2 �Z2�02

2
½’2a2 �ð’aÞ2�: (A25)

Comparing it with the renormalized Lagrangian defined as
the sum of (20) and (A1) we find Zc ¼ 1þ �Zc and Z ¼
1þ �Z, so that the relations between the bare couplings
and counterterms read

ZcZ
1=2g0 ¼ gþ �g; Zm2

0’ ¼ m2
’ þ �m2

’;

Zm2
0a ¼ m2

a þ �m2
a; Z2�0 ¼ �þ ��;

Z2�02 ¼ �2 þ ��2:

(A26)

These relations can be inverted, and at one-loop level we
obtain

g0 ¼ g� ð12�Zþ �Zc Þgþ �g;

m2
0’ ¼ m2

’ � �Zm2
’ þ �m2

’;

m2
0a ¼ m2

a � �Zm2
a þ �m2

a;

�0 ¼ �� 2�Z�þ ��;

�02 ¼ �2 � 2�Z�2 þ ��2:

(A27)

Perturbative hierarchy requires that when there is a ln�
dependence in the quantity, then only the @=ð@ ln�Þ
derivative acts on it. Then, using (A24) we find

dg0
d ln�

¼ �g � @

@ ln�

��
1

2
�Zþ �Zc

�
g� �g

�
¼ 0;

(A28)

and in consequence

�g ¼ @

@ ln�

��
1

2
�Zþ �Zc

�
g� �g

�
: (A29)

In a similar way we find

�’ ¼ @

@ ln�
½�Zm2

’ � �m2
’�;

�a ¼ @

@ ln�
½�Zm2

a � �m2
a�;

�� ¼ @

@ ln�
½2�Z�� ���;

�2 ¼ @

@ ln�
½2�Z�2 � ��2�:

(A30)

Using the expression of the counterterms determined in
previous subsections of this sections we have

@�Zc

@ ln�
¼ g2

2�2
;

@�Z

@ ln�
¼ � g2

6�2
;

@�g

@ ln�
¼ 0;

@��

@ ln�
¼ � 1

8�2
½13�2 þ 3ð�þ �2Þ2 � 4g4�;

@��2

@ ln�
¼ � 1

4�2
½�2ð6�þ �2Þ � 4g4�;

@�m2
’=a

@ ln�
¼ � 1

8�2
½6�m2

’=a þ ð4�þ 3�2Þm2
a=’�: (A31)

With these expressions, we obtain from (A29) and (A30)
the following one-loop � functions:

dg

d ln�
¼�g¼ 5g3

12�2
; (A32a)

d�

d ln�
¼��¼ 1

8�2

�
13�2þ3ð�þ�2Þ2�4g4�8

3
g2�

�
;

(A32b)

d�2

d ln�
¼�2¼ 1

4�2

�
�2ð6�þ�2Þ�4g4�4

3
g2�2

�
;

(A32c)

dm2
’=a

d ln�
¼�’=a¼ 1

8�2

��
6��4

3
g2
�
m2

’=aþð4�þ3�2Þm2
a=’

�
:

(A32d)

APPENDIX B: RENORMALIZATION GROUP IN
THE SUð2ÞL � SUð2ÞR LINEAR SIGMA MODEL

We start from the renormalized Lagrangian (26) and add
to it the following counterterm Lagrangian:

�LSUð2Þ ¼ �c ½Zc i@� �gð�þ i�i�iÞ�c þ Z

2
ð@�’Þ2

� �m2
’

2
’2 � ��

4
ð�2 þ �2

i Þ2: (B1)
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The goal is to determine the counterterms at one-loop level.
To do this, we will follow the same strategy as in
Appendix A. To facilitate the discussion we introduce
again the background field x. After the shift � ! �þ x
the Lagrangian reads

LSUð2Þ ¼�m2
’

2
x2��

4
x2��xðm2

’þ�x2Þþ �c ði@�mc Þc

�g �c ð�þ i�i�iÞc þ1

2
ð@��Þ2�m2

�

2
�2þ1

2
ð@��Þ2

�m2
�

2
�2��x�ð�2þ�2

i Þ�
�

4
ð�2þ�2

i Þ2; (B2)

where

m2
c ¼ gx; m2

� ¼ m2
’ þ 3�x2; m2

� ¼ m2
’ þ �x2:

(B3)

1. The fermion wave function and g renormalization

We calculate the fermion self-energy on the background
x:

�c ðk; xÞ ¼ ��Zc kþ �gx� ig2
Z
p
½iG�ðp� kÞiGðpÞ

� 3iG�ðp� kÞ�5iGðpÞ�5�; (B4)

where G�, G�, and G are the bosonic and fermion propa-
gators introduced in (A5) with the corresponding masses
given in (B3). Taylor expanding the bosonic propagators in
x and using that �5 anticommutes with all the other gamma
matrices, we find

�c ðkÞ ¼ �gx� �Zc k

þ 2ig2
Z
p

2p�mc

ððp� kÞ2 �m2
’ þ i"Þðp2 �m2

c þ i"Þ :

(B5)

After evaluating the integrals, finiteness of the result re-
quires the following expressions for the counterterms:

�Zc ¼ � g2

8�2
ln
�2

�2
; �g ¼ � g3

8�2
ln
�2

�2
: (B6)

2. The � mass, wave function, and � renormalization

Next, we calculate the � self-energy:

��ðkÞ ¼ ��Zk2 þ �m2
’ þ 3��x2 þ 3�

Z
p
iG�ðpÞ

þ 3�
Z
p
iG�ðpÞ � ig2

Z
p
Tr½Gðp� kÞGðpÞ�

þ 18i�2x2
Z
p
G�ðp� kÞG�ðpÞ

þ 6i�2x2
Z
p
G�ðp� kÞG�ðpÞ: (B7)

The minus sign is because of the fermionic bubble.
After evaluating the integrals we find, neglecting the �2

corrections

�div
� ðkÞ ¼ ��Zk2 þ �m2

’ þ 3��x2 � 3�

16�2
ð2m2

’ þ 4�x2Þ

� ln
�2

�2
þ g2

4�2

�
k2

6
þ 3g2x2

�
ln
�2

�2
� 3�2

2�2
ln
�2

�2
:

(B8)

Therefore, the expression of the counterterms is

�Z ¼ g2

24�2
ln
�2

�2
;

�m2
’ ¼ 3�

8�2
m2

’ ln
�2

�2
;

�� ¼ 3�2 � g4

4�2
ln
�2

�2
:

(B9)

3. � functions

We again use the fact that the bare couplings are renor-
malization group invariant:

dg0
d ln�

¼ dm2
0

d ln�
¼ d�0

d ln�
¼ 0; (B10)

where

d

d ln�
¼ @

@ ln�
þ �g

@

@g
þ ��

@

@�
þ �’

@

@m2
’

: (B11)

This leads to

�g ¼ @

@ ln�

��
�Zþ 1

2
�Zc

�
g� �g

�
;

� ¼ @

@ ln�
½�Zm2

’ � �m2
’�;

�� ¼ @

@ ln�
½2�Z�� ���:

(B12)

Using the counterterms determined in the previous two
subsections one has

@�Zc

@ ln�
¼ g2

4�2
;

@�Z

@ ln�
¼ � g2

12�2
;

@�g

@ ln�
¼ g3

4�2
;

@��

@ ln�
¼ �3�2 þ g4

2�2
;

@�m2
’

@ ln�
¼ � 3�m2

’

4�2
: (B13)
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Then, we find the following one-loop � functions:

dg

d ln�
¼ �g ¼ � 5g3

24�2
;

d�

d ln�
¼ �� ¼ 9�2 � 3g4 � �g2

6�2
;

1

m2
’

dm2
’

d ln�
¼ � ¼ 9�� g2

12�2
m2

’:

(B14)

APPENDIX C: NUMERICAL STRATEGY TO
SOLVE THE TCP EQUATIONS

For numerical purposes it is advantageous to choose 
,
g2 ¼ g2ð�Þ, andma as parametrization variables. Then we
can proceed as follows. From (36) we find

uð�Þ ¼ 6 �F ð
Þ
�2

g2; T2 ¼ 1

2g2½g2 �F ð
Þ
�2 þ 1þ 3

�2 

2�
;

(C1)

and then from (27)

�2
0 ¼ �2e�ð24�2=5g2ð�ÞÞ ¼ e2��ð24�2=5g2ð�ÞÞ

2g2ð�Þ½g2ð�Þ �F ð
Þ
�2 þ 1þ 3

�2 

2�
:

(C2)

Once we know g2ð�Þ, T,�0, and uð�Þwe can computem�

by solving m2
� ¼ m2

�ð� ¼ m�Þ using (33). Since now

m�ð�Þ ¼ 1 is the mass scale, in view of (33) we have to
solve

m� ¼ exp

�
7g20
24�2

Z lnm�=�

0

ds

1þ bg2ð�Þs
1þ 6YzðsÞ
1� 3YzðsÞ

�
;

(C3)

where Y ¼ ðuð�Þ � 1Þ=ð3uð�Þ þ 4Þ. If we know m�, then
we can have g2ðm�Þ from (27) which can be kept fixed.
From the running of g (27) and u (31) we find

g2ðmaÞ ¼ g2

1þ 5g2

12�2 ln
ma

�

;

2uðmaÞ � 1

3uðmaÞ þ 4
¼ 2uð�Þ � 1

3uð�Þ þ 4

�
1þ lnðma=�Þ

lnð�=�0Þ
�
21=5

:
(C4)

From (28) we find

�� 4
0 ¼ 2m6

ag
2ð�Þ

�
g2ð�Þ �F ð
Þ

�2
þ 1þ 3

�2

2

�
e24�

2=5g2ð�Þ:

(C5)

Having ��4
0, uðmaÞ, and uðmsÞwe can use the solution of the

Uð2ÞL �Uð2ÞR RG running (25) to find ms. Finally from
ms and gðmaÞ we compute from (21):

g2ðmsÞ ¼ g2ðmaÞ
1� 5g2

6�2 ln
ms

ma

: (C6)
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