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We perform a systematic study of stationary sphaleron-antisphaleron systems of Weinberg-Salam

theory at the physical value of the weak mixing angle. These systems include rotating sphaleron-

antisphaleron pairs, chains, and vortex rings. We show that the angular momentum of these solutions

is proportional to their electric charge. We study the dependence of their energy and magnetic moment on

their angular momentum. We also investigate the influence of their angular momentum on their local

properties, in particular, on their energy density and on the node structure of their Higgs field

configuration. Furthermore, we discuss the equilibrium condition for these solutions.
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I. INTRODUCTION

It came as a surprise when ’t Hooft [1] observed in 1976
that because of the Adler-Bell-Jackiw anomaly, the stan-
dard model does not absolutely conserve baryon and lepton
number. The process ’t Hooft considered was spontaneous
fermion number violation due to instanton induced tran-
sitions. Later, Ringwald [2] argued that such tunneling
transitions between topologically distinct vacua might be
observable at high energies at future accelerators.

The presence of baryon and lepton number violating
processes in the standard model was considered by
Manton [3] from another point of view. He investigated
the topological structure of the configuration space of
Weinberg-Salam theory and found the existence of non-
contractible loops. From these he predicted the existence of
a static, unstable solution of the bosonic field equations,
representing the top of the energy barrier between topo-
logically distinct vacua. Because of its instability this
classical electroweak solution was termed sphaleron by
Klinkhamer and Manton [4].

At finite temperature the energy barrier between topo-
logically distinct vacua can be overcome due to thermal
fluctuations of the fields, and baryon number violating
vacuum to vacuum transitions involving changes of baryon
and lepton number can occur. The rate for such baryon
number violating processes is largely determined by a
Boltzmann factor, containing the height of the barrier at
a given temperature and thus the energy of the sphaleron
[5–8]. Entailing baryon number violating processes, the
sphaleron itself carries baryon number QB ¼ 1=2 [4].

The energy of the sphaleron increases with increasing
Higgs mass and ranges roughly between 7 and 13 TeV
[4,9,10]. The energy is that high, since its scale is not set by
MW but by MW=�w. For the physical value of the weak
mixing angle the sphaleron energy is only slightly de-
creased as compared to the vanishing mixing angle

[11,12]. However, the configuration is no longer spheri-
cally symmetric, and retains only axial symmetry. At the
same time, one finds a large value for the magnetic dipole
moment of the sphaleron, �S � 1:8e=ð�wMWÞ [4,11,12].
Whereas the static electroweak sphaleron does not carry

electric charge, it was argued before [13] and demonstrated
recently in nonperturbative studies [14,15] that the addition
of electric charge leads to a nonvanishing Poynting vector
and thus a finite angular momentum density of the system.
Consequently, a branch of electrically charged sphalerons
arises that carry, at the same time, angular momentum. In
particular, their angular momentum and charge are propor-
tional. Since these charged sphalerons carry nonvanishing
baryon number as well, they can also entail baryon number
violating processes.
Besides the sphaleron, the nontrivial topology of the

configuration space of Weinberg-Salam theory gives rise
to further unstable classical solutions. A superposition of n
sphalerons, for instance, can lead to static axially symmetric
solutions, multisphalerons, which carry baryon number
QB ¼ n=2 and whose energy density is toruslike [16–18].
A superposition of a sphaleron and an antisphaleron, on the
other hand, can give rise to a bound sphaleron-antisphaleron
system, in which a sphaleron and an antisphaleron are
located at an equilibrium distance on the symmetry axis
[19–21]. Such a sphaleron-antisphaleron pair has vanishing
baryon number, QB ¼ 0, since the antisphaleron carries
QB ¼ �1=2. The sphaleron-antisphaleron pair therefore
does not mediate baryon number violating processes.
Recently, the sphaleron-antisphaleron pair solutions

have been generalized, leading to sphaleron-antisphaleron
chains, where m sphalerons and antisphalerons are located
on the symmetry axis in static equilibrium [22], in close
analogy to the monopole-antimonopole chains encoun-
tered in the Georgi-Glashow model [23]. When systems
of multisphalerons and multiantisphalerons are considered,
instead of the anticipated pairs and chains a new type of
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solutions arises, when n � 3 [22]. In these vortex ring
solutions the Higgs field vanishes not (only) on isolated
points on the symmetry axis but (also) on one or more
rings, centered around the symmetry axis [24,25].

In this paper we perform a systematic study of multi-
sphalerons and sphaleron-antisphaleron systems endowed
with electric charge [26]. As for the simple sphaleron, the
nonvanishing Poynting vector leads to a finite angular
momentum density for these configurations. Thus branches
of rotating electrically charged sphaleron-antisphaleron
systems emerge from the respective static electrically neu-
tral configurations. We construct these solutions explicitly
for m, n � 6 and discuss their properties. We demonstrate
that the angular momentum and the electric charge of the
solutions are proportional [14,22,26,27].

In Sec. II we present the action, the Ansatz for the
stationary axially symmetric configurations, and the
boundary conditions. We then consider the relevant physi-
cal properties and, in particular, derive the linear relation
between angular momentum and electric charge. We
present and discuss the numerical results in Sec. III.
These include global properties of the solutions, such as
their energy, their angular momentum, their charge, and
their magnetic moments, but also local properties, such
as their energy density, their angular momentum density,
and the modulus of their Higgs field. Moreover, we discuss
the equilibrium condition for these solutions. We give our
conclusions in Sec. IV.

II. ACTION, ANSATZ, AND PROPERTIES

A. Weinberg-Salam Lagrangian

We consider the bosonic sector of Weinberg-Salam
theory,

L ¼ � 1

2
TrðF��F

��Þ � 1

4
f��f

�� � ðD��ÞyðD��Þ

� �

�
�y�� v2

2

�
2
; (1)

with the suð2Þ field strength tensor

F�� ¼ @�V� � @�V� þ ig½V�; V��; (2)

the suð2Þ gauge potential V� ¼ Va
��a=2, the uð1Þ field

strength tensor

f�� ¼ @�A� � @�A�; (3)

and the covariant derivative of the Higgs field

D�� ¼
�
@� þ igV� þ i

g0

2
A�

�
�; (4)

where g and g0 denote the SUð2Þ and Uð1Þ gauge cou-
pling constants, respectively, � denotes the strength of the
Higgs self-interaction and v the norm of the vacuum
expectation value of the Higgs field.

The gauge symmetry is spontaneously broken due to the
nonvanishing vacuum expectation value of the Higgs field

h�i ¼ vffiffiffi
2

p 0
1

� �
; (5)

leading to the boson masses

MW ¼ 1

2
gv; MZ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg2 þ g02Þ

q
v;

MH ¼ v
ffiffiffiffiffiffi
2�

p
: (6)

tan�w ¼ g0=g determines the weak mixing angle �w, defin-
ing the electric charge e ¼ g sin�w. We also denote the
weak fine-structure constant �W ¼ g2=4�.

B. Stationary axially symmetric Ansatz

To obtain stationary rotating solutions of the bosonic
sector of Weinberg-Salam theory, we employ the time-
independent axially symmetric Ansatz

V�dx
� ¼

�
B1

�ðn;mÞ
r

2g
þ B2

�ðn;mÞ
�

2g

�
dt

� n sin�

�
H3

�ðn;mÞ
r

2g
þH4

�ðn;mÞ
�

2g

�
d’

þ
�
H1

r
drþ ð1�H2Þd�

�
�ðnÞ’

2g
; (7)

A�dx
� ¼ ða1dtþ a2sin

2�d’Þ=g0; (8)

and

� ¼ ið�1�
ðn;mÞ
r þ�2�

ðn;mÞ
� Þ vffiffiffi

2
p 0

1

� �
; (9)

where

�ðn;mÞ
r ¼ sinm�ðcosn’�x þ sinn’�yÞ þ cosm��z;

�ðn;mÞ
� ¼ cosm�ðcosn’�x þ sinn’�yÞ � sinm��z;

�ðnÞ’ ¼ ð� sinn’�x þ cosn’�yÞ;
n and m are integers, and �x, �y, and �z denote the Pauli

matrices.
The two integers n and m determine the type of con-

figuration that is put into rotation. For n ¼ m ¼ 1 the
solutions correspond to rotating sphalerons. Rotating mul-
tisphaleron configurations arise for n > 1 and m ¼ 1. For
n ¼ 1 and m> 1 rotating sphaleron-antisphaleron pairs
(m ¼ 2) or sphaleron-antisphaleron chains arise, and for
n � 3 rotating vortex ring solutions are obtained.
The ten functions B1, B2,H1; . . . ; H4, a1, a2,�1, and�2

depend on r and � only. With this Ansatz the full set of field
equations reduces to a system of ten coupled partial
differential equations in the independent variables r and
�. A residual Uð1Þ gauge degree of freedom is fixed by the
condition r@rH1 � @�H2 ¼ 0 [11].

C. Boundary conditions

Requiring regularity and finite energy, we impose for
odd m configurations the boundary conditions
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r¼ 0: B1 sinm�þB2 cosm�¼ 0; @rðB1 cosm��B2 sinm�Þ ¼ 0; H1 ¼H3 ¼H4 ¼ 0; H2 ¼ 1;

@ra1 ¼ 0; a2 ¼ 0; �1 ¼ 0; �2 ¼ 0

r!1: B1 ¼ 	cosm�; B2 ¼ 	 sinm�; H1 ¼H3 ¼ 0; H2 ¼ 1� 2m; H4 ¼ 2sinm�

sin�
;

a1 ¼ 	; a2 ¼ 0; �1 ¼ 1; �2 ¼ 0; where 	¼ const:

�¼ 0: @�B1 ¼ 0; B2 ¼ 0; H1 ¼H3 ¼ 0; @�H2 ¼ @�H4 ¼ 0; @�a1 ¼ @�a2 ¼ 0; @��1 ¼ 0; �2 ¼ 0; (10)

where the latter hold also at � ¼ �=2, except for B1 ¼ 0
and @�B2 ¼ 0. For even m configurations the same set of
boundary conditions holds except for

r ¼ 0: �1 sinm�þ�2 cosm� ¼ 0;

@rð�1 cosm���2 sinm�Þ ¼ 0;

� ¼ �=2: @�B1 ¼ 0; B2 ¼ 0;

@�H3 ¼ 0; H4 ¼ 0: (11)

D. Mass, angular momentum, and charge

We now address the global charges of the sphaleron-
antisphaleron systems, their energy, their angular momen-
tum, their electric charge, and their baryon number. The
energy E and angular momentum J are defined in terms of
volume integrals of the respective components of the
energy-momentum tensor. The energy is obtained from

E ¼ �
Z

Tt
td

3r; (12)

while the angular momentum

J ¼
Z

Tt
’d

3r

¼
Z
½2TrðFt�F’�Þ þ ft�f’� þ 2ðDt�ÞyðD’�Þ�d3r

(13)

can be reexpressed with the help of the equations of motion
and the symmetry properties of the Ansatz [27–30] as a
surface integral at spatial infinity,

J ¼
Z
S2

�
2Tr

��
V’ � n�z

2g

�
Frt

�

þ
�
A’ � n

g0

�
frt

�
r2 sin�d�d’: (14)

The power law falloff of the Uð1Þ field of a charged
solution allows for a finite flux integral at infinity and
thus a finite angular momentum. Insertion of the asymp-
totic expansion for the Uð1Þ field,

a1 ¼ 	� 


r
þO

�
1

r2

�
; a2 ¼ �

r
þO

�
1

r2

�
; (15)

and of the analogous expansion for the SUð2Þ fields then
yields for the angular momentum

J

4�
¼ n


g2
þ n


g02
¼ n


g2sin2�w
¼ n


e2
: (16)

The field strength tensor F �� of the electromagnetic

field A�,

A � ¼ sin�wV
3
� þ cos�wA�; (17)

as given in a gauge where the Higgs field asymptotically
tends to Eq. (5), then defines the electric charge Q,

Q ¼
Z
S2

�F �’d�d’ ¼ 4�

�
sin�w


g
þ cos�w


g0

�

¼ 4�



e
; (18)

where the integral is evaluated at spatial infinity.
Comparison of Eqs. (16) and (18) then yields a linear
relation between the angular momentum J and the electric
charge Q [14,15],

J ¼ nQ
e

: (19)

This relation corresponds to the relation for monopole-
antimonopole systems without magnetic charge [31]. The
magnetic moment � is obtained from the asymptotic
expansion Eq. (15), analogously to the electric charge,

� ¼ 4��

e
: (20)

E. Baryon number

Addressing finally the baryon number QB, its rate of
change is given by

dQB

dt
¼

Z
d3r@tj

0
B

¼
Z

d3r

�
~r � ~jB þ 1

32�2
���
�

�
g2TrðF��F
�Þ

þ 1

2
g02f��f
�

��
: (21)

Starting at time t ¼ �1 at the vacuum with QB ¼ 0, one
obtains the baryon number of a sphaleron solution at time
t ¼ t0 [4],

QB ¼
Z t0

�1
dt

Z
S

~K � d ~Sþ
Z
t¼t0

d3rK0; (22)
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where the ~r � ~jB term is neglected, and the anomaly term is
reexpressed in terms of the Chern-Simons current

K� ¼ 1

16�2
"��
�

�
g2Tr

�
F�
V� � 2

3
igV�V
V�

�

þ 1

2
g02f�
A�

�
: (23)

In a gauge, where

V� ! i

g
@�ÛÛy; Ûð1Þ ¼ 1; (24)

~K vanishes at infinity. Subject to the above Ansatz and
boundary conditions the baryon charge of the sphaleron
solution [17,32] is then

QB ¼
Z
t¼t0

d3rK0 ¼ nð1� ð�1ÞmÞ
4

: (25)

III. RESULTS AND DISCUSSION

A. Numerical technique

We have solved the set of ten coupled nonlinear elliptic
partial differential equations numerically, subject to the
above boundary conditions. We have employed the com-
pactified dimensionless coordinate

x ¼ ~r=ð1þ ~rÞ; ~r ¼ gvr; (26)

instead of ~r, to map spatial infinity to the finite value x ¼ 1.
The numerical calculations are performed with the help

of the program FIDISOL [33]. The equations are discretized
on a nonequidistant grid in x and �. Typical grids used have
sizes in the range 100� 60 to 120� 80, covering the
integration region 0 � x � 1 and 0 � � � �=2.

The numerical method is based on the Newton-Raphson
method, an iterative procedure to find a good approxima-
tion to the exact solution. The iteration stops when the
Newton residual is smaller than a prescribed tolerance.
Thus it is essential to have a good first guess, to start the
iteration procedure. Our strategy therefore is to use a

known solution as a guess and then vary some parameter
to obtain the next solution.
Restricting to MH ¼ MW , and employing the physical

value for themixing angle �w, we have performed a system-
atic study of the rotating sphaleron-antisphaleron systems
with 1 � m � 6 and 1 � n � 6. We have also obtained
samples of solutions for MH ¼ 2MW , showing that the
basic features of these solutions do not depend on the
particular value of the Higgs mass (in this range of masses).
Starting from a given static neutral solution for a

sphaleron-antisphaleron system characterized by the inte-
gers n and m, we have constructed the corresponding
branch of rotating solutions, by slowly increasing the value
of the parameter ~	 ¼ 	=gv, which specifies the boundary
conditions for the time components of the gauge fields.
The rotating branch ends when the limiting value

~	max ¼ 1=2 is reached. In the asymptotic expansion, the
exponential decay is determined by a decay constant pro-

portional to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4~	2

p
. Beyond ~	max some of the gauge

field functions would no longer decay exponentially, pre-
cluding localized solutions for larger values of ~	.
Consequently, at ~	max the respective solution has maximal
angular momentum, maximal charge, and maximal energy.
We have used the linear relation (19) between the charge

Q and the angular momentum J as a check of the accuracy
of the solutions. According to this relation, we should
obtain a single straight line, when exhibiting the charge
versus the scaled angular momentum J=n.
We demonstrate this in Fig. 1 for the sets of solutions with

m ¼ 2 and m ¼ 6 by exhibiting the charge parameter 

(which is proportional to the charge Q) versus the scaled
angular momentum J=n. We indeed observe sets of super-
imposed straight line segments. Since the charge parameter
has been extracted from the asymptotic falloff of the Uð1Þ
function a1, whereas the angular momentum has been ob-
tained from the volume integral of the angular momentum
density Tt

’, this agreement reflects the good numerical

quality of the solutions.
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FIG. 1. Quality of the solution set: the charge parameter 
 versus the scaled angular momentum J=n (in units of J0 ¼ 4�=g2).
(a) m ¼ 2, n ¼ 1; . . . ; 6, and (b) m ¼ 6, n ¼ 1; . . . ; 6.
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B. Global properties

We first address the domain of existence of these solu-
tions. For that purpose we exhibit in Fig. 2 the asymptotic
gauge field parameter ~	 ¼ 	=gv versus the scaled angular
momentum of the solutions J=n, which corresponds to the
charge Q=e (choosing units of J0 ¼ 4�=g2). As ~	 in-
creases from zero to its maximal value ~	max ¼ 1=2,
the angular momentum increases monotonically.

Consequently, the solutions have maximal angular mo-
mentum at ~	max.
We observe that for fixed m the maximal value of the

scaled angular momentum J=n (respectively, chargeQ=e)
increases with n. Thus the value of the maximal angular
momentum Jmax increases faster than linearly with n. For
m ¼ 1 the solutions are multisphaleron solutions, with n
sphalerons superimposed at the origin. We thus see that the
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FIG. 2. Domain of existence of the solutions: the asymptotic value of the Uð1Þ field ~	 ¼ 	=gv versus the scaled angular momentum
J=n (in units of J0 ¼ 4�=g2). (a) m ¼ 1, n ¼ 1; . . . ; 6, (b) m ¼ 2, n ¼ 1; . . . ; 6, (c) m ¼ 3, n ¼ 1; . . . ; 6, (d) m ¼ 4, n ¼ 1; . . . ; 6,
(e) m ¼ 5, n ¼ 1; . . . ; 6, and (f) m ¼ 6, n ¼ 1; . . . ; 6.
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more sphalerons a configuration consists of, the more
angular momentum the constituents can carry. We reach
the analogous conclusion by considering a fixed value of n
and varying m. The maximal value of the scaled angular
momentum Jmax=n increases with m. Thus the higher the
number of constituents of a configuration (encoded in
the product mn), the more angular momentum each of
the constituents can carry.

We exhibit in Fig. 3 the energy of the sets of solutions.
In Fig. 3(a) the energy of the multisphaleron solutions is

shown. For multisphalerons consisting of n sphalerons,
the energy is on the order of n times the energy of a single
sphaleron; thus E=n is roughly constant. The deviations of
the energy per sphaleron E=n from the energy of a single
sphaleron can be attributed to the interaction of the n
sphalerons and therefore be interpreted in terms of the
binding energy of these multisphaleron configurations.
For the employed value of the Higgs mass the static
solutions with n ¼ 2–4 represent bound states, since
E=n is smaller than the energy of a single sphaleron,
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FIG. 3. Properties of the solutions: the scaled energy E=mn (in units of E0 ¼ 4�v=g) versus the scaled angular momentum J=n (in
units of J0 ¼ 4�=g2). (a) m ¼ 1, n ¼ 1; . . . ; 6, (b) m ¼ 2, n ¼ 1; . . . ; 6, (c) m ¼ 3, n ¼ 1; . . . ; 6, (d) m ¼ 4, n ¼ 1; . . . ; 6, (e) m ¼ 5,
n ¼ 1; . . . ; 6, and (f) m ¼ 6, n ¼ 1; . . . ; 6.
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whereas the static solutions with n > 4 are slightly un-
bound [17]. Since the binding energy is, however, sensi-
tive to the value of the Higgs mass, bound configurations
may turn into unbound configurations, when the value of
the Higgs mass is sufficiently changed. When charge is
added to these static multisphaleron configurations and
the solutions begin to rotate, their energy increases mono-
tonically with their angular momentum. The increase of
the energy per sphaleron E=n with the angular momentum
per sphaleron J=n is strongest for the branch of single

sphaleron solutions. The more sphalerons a multispha-
leron configuration consists of, the weaker is the increase
of its energy per sphaleron E=n with increasing angular
momentum per sphaleron J=n. Thus charge and rotation
contribute relatively less to the total energy for these
‘‘many sphaleron’’ configurations (e.g. only 8% for
n ¼ 6 as compared to 30% for n ¼ 1). Consequently,
the rotating multisphaleron configurations turn into bound
states beyond some critical value of the angular
momentum.

 1.35

 1.4

 1.45

 1.5

 1.55

 1.6

 1.65

 1.7

 1.75

 1.8

 0  1  2  3  4  5  6  7  8  9  10

µ/
m

n

J/n

m = 5

n=1
n=2
n=3
n=4
n=5
n=6

(a)

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

 0  0.5  1  1.5  2  2.5  3  3.5  4

µ/
m

n

J/n

m = 1

n=1
n=2
n=3
n=4
n=5
n=6

(b)

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 0  1  2  3  4  5  6  7
µ/

m
n

J/n

m = 2

n=1
n=2
n=3
n=4
n=5
n=6

(c)

 1.5

 1.55

 1.6

 1.65

 1.7

 1.75

 1.8

 1.85

 1.9

 0  1  2  3  4  5  6  7  8

µ/
m

n

J/n

m = 3

n=1
n=2
n=3
n=4
n=5
n=6

(d)

 1.4

 1.45

 1.5

 1.55

 1.6

 1.65

 1.7

 1.75

 1.8

 1.85

 0  1  2  3  4  5  6  7  8  9

µ/
m

n

J/n

m = 4

n=1
n=2
n=3
n=4
n=5
n=6

(e) (f )

 1.3

 1.35

 1.4

 1.45

 1.5

 1.55

 1.6

 1.65

 1.7

 1.75

 1.8

 0  2  4  6  8  10  12

µ/
m

n

J/n

m = 6

n=1
n=2
n=3
n=4
n=5
n=6
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We next address the energy of the general sphaleron-
antisphaleron systems, which we like to think of as con-
sisting of the number mn of constituents. We therefore
exhibit the scaled energy E=mn, i.e., the energy per con-
stituent, in Figs. 3(b)–3(f). We see that for all m> 1 the
energy per constituent E=mn is of the same order of
magnitude. The deviations of E=mn from the energy of a
single sphaleron are attributed to the interaction of the
sphalerons and antisphalerons in the system (as long as
these can be discerned) and can again be interpreted in
terms of their binding energy. We note that the binding
energy increases with an increasing number of constitu-
ents. Charge and rotation therefore contribute relatively
less to the total energy in the ‘‘many constituents’’
configurations.

Finally, we exhibit in Fig. 4 the magnetic moment of the
sets of solutions. Sphalerons possess a large magnetic
moment�. For multisphalerons consisting of n sphalerons,
one expects from the superposition picture that the mag-
netic moment should be roughly n times the magnetic
moment of a single sphaleron. As seen in Fig. 4(a), where
we exhibit the magnetic moment per sphaleron �=n of the
multisphaleron configurations versus the angular momen-
tum per sphaleron J=n, this guess is not that good for the
static multisphalerons configurations. In fact, for these
configurations the interaction between the sphalerons gives
rise to an almost linear increase of the magnetic moment
per sphaleron �=n with the number of sphalerons. When
charge, and thus angular momentum, is added to these
multisphaleron configurations, their magnetic moment in-
creases monotonically with increasing angular momentum.
This increase is strongest for the branch of single sphaleron
solutions, and the more sphalerons a configuration consists
of, the weaker is the increase.

Addressing finally the magnetic moment � of
the sphaleron-antisphaleron systems, we exhibit in
Figs. 4(b)–4(f) the magnetic moment per constituent
�=mn. Interestingly, for the chain configurations with
n ¼ 1, the magnetic moment per constituent�=m is almost
independent of m. However, generically the interaction
between the constituents leads to a decrease of the magnetic
moment per constituent �=mn with increasing m.

C. Local properties

Having discussed the global properties of the
sphaleron-antisphaleron systems, we now turn to their
local properties. In particular, we address the effect of
the presence of charge and rotation on the energy density
�Tt

t , and on the modulus of the Higgs field j�j. We also
consider the angular momentum density Tt

’ and the com-

ponent of the stress-energy density Tz
z , relevant for

equilibrium.
In multisphalerons (m ¼ 1, n > 1), the region with large

energy density is toruslike and the maximum is forming a
ring in the equatorial plane. When we add electric charge

and angular momentum to the static configuration, we
observe that the energy density is spreading further out,
while at the same time its overall magnitude is reduced.
Such a spreading of the energy density with increasing
charge is also seen in dyons, for instance. We therefore
attribute this effect to the presence of charge and the
associated repulsion. Indeed, this spreading becomes quite
pronounced for large values of the charge. The expected
effect of the presence of angular momentum, on the other
hand, is a centrifugal shift of the energy density. Indeed, we
observe that with increasing angular momentum the torus-
like region of large energy density moves further outward
to larger values of 
. These effects are seen in Fig. 5(a),
where we exhibit the energy density �Tt

t for a multispha-
leron solution (m ¼ 1, n ¼ 2) in the static case (~	 ¼ 0)
and for the almost maximally rotating case (~	 � 0:5). In
Figs. 5(b)–5(d) we also exhibit the magnitude of the Higgs
field j�j, the angular momentum density Tt

’, and the

stress-energy density component Tz
z for these two

solutions.
The modulus of the Higgs field of the multisphaleron

solutions has a single node at the origin, from where it
starts to increase linearly in the direction of the symmetry
axis, to reach its vacuum expectation value at infinity. In
the equatorial plane, in contrast, the modulus of the Higgs
field starts to increase from the origin much more slowly
(i.e., only with power 
n). As the configurations are en-
dowed with charge and rotation, the Higgs field changes
only slightly. Indeed, the effect of charge and rotation
on the modulus of the Higgs field is barely noticeable in
Fig. 5(c) even at the maximal strength.
The angular momentum density for the multisphaleron

solutions is toruslike and centered in the equatorial plane
analogous to the energy density. However, the region of
large angular momentum density is located further out-
wards at larger values of 
, while it vanishes on the
symmetry axis. The angular momentum density Tt

’ for

the multisphaleron solution (m ¼ 1, n ¼ 2) for the maxi-
mally rotating case (	 � 0:5) is seen in Fig. 5(b).
Let us now turn to sphaleron-antisphaleron systems. For

n ¼ 1 they represent sphaleron-antisphaleron chains,
where m sphalerons and antisphalerons are located on the
symmetry axis, in static equilibrium. For n ¼ 2 the chain is
formed from m multisphalerons and multiantisphalerons;
thus the modulus of the Higgs field still possesses only
isolated nodes on the symmetry axis.
We demonstrate the effect of charge and rotation on

these sphaleron-antisphaleron chains with n ¼ 2, exhibit-
ing the configurations withm ¼ 3 andm ¼ 5 in Figs. 6 and
7, respectively. Associated with each multisphaleron and
multiantisphaleron is a toruslike part of the energy density.
Thus a configuration with m multi(anti)sphalerons has m
tori, located symmetrically with respect to the equatorial
plane. As for the single multisphaleron, we observe that
when we add electric charge and angular momentum to the

IBADOV et al. PHYSICAL REVIEW D 82, 125037 (2010)

125037-8



static configuration, the energy density is spreading further
out, while its overall magnitude is reduced. Indeed, we
observe that the toruslike regions of large energy density
move further outward to larger values of 
 and further from
each other to larger values of jzj. These effects are seen in
Figs. 6(a) and 7(a). As clearly observable in Figs. 6(c) and

7(c), the nodes of the Higgs field move further apart, as the
chains become charged and the rotation sets in.
Let us turn now to more complicated sphaleron-

antisphaleron systems. As n increases beyond the value
2, the character of the solutions changes, and new types of
configurations appear, where the modulus of the Higgs
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field vanishes on rings centered around the symmetry axis.
Therefore, we refer to these solutions as vortex ring solu-
tions. We note that the precise evolution of the isolated
nodes on the symmetry axis and the vortex rings in the bulk

with increasing n is somewhat sensitive to the value of the
Higgs mass [22].
The nodes of the sphaleron-antisphaleron systems in the

range m ¼ 2–6 and n ¼ 3–6 are exhibited in Fig. 8 for

m=3, n=2, γ~ = 0.0000

 0
 2

 4
 6

 8
 10

 12
 14

ρ

 0 2 4 6 8 10 12 14

z

-0.8

-0.4

 0

 0.4

 0.8

Tz
z

m=3, n=2, γ~ = 0.4990

 0
 2

 4
 6

 8
 10

 12
 14

ρ

 0 2 4 6 8 10 12 14

z

-0.8

-0.4

 0

 0.4

 0.8

Tz
z

(a1)

m=3, n=2, γ~ = 0.0000

 0
 2

 4
 6

 8
 10

 12
 14

ρ

 0 2 4 6 8 10 12 14

z

 0
 0.5

 1
 1.5

 2

-Tt
t

(a2)

m=3, n=2, γ~ = 0.4990

 0
 2

 4
 6

 8
 10

 12
 14

ρ

 0 2 4 6 8 10 12 14

z

 0
 0.5

 1
 1.5

 2

-Tt
t

(b1)

m=3, n=2, γ~ = 0.0000

 0
 2

 4
 6

 8
 10

 12
 14

ρ

 0 2 4 6 8 10 12 14

z

-0.2

 0

 0.2

Tt
φ

(b2)

m=3, n=2, γ~ = 0.4990

 0
 2

 4
 6

 8
 10

 12
 14

ρ

 0 2 4 6 8 10 12 14

z

-0.2

 0

 0.2

Tt
φ

(c1)

m=3, n=2, γ~ = 0.0000

 0
 2

 4
 6

 8
 10

 12
 14

ρ

 0 2 4 6 8 10 12 14

z

 0

 0.5

 1

|Φ|

(c2)

m=3, n=2, γ~ = 0.4990

 0
 2

 4
 6

 8
 10

 12
 14

ρ

 0 2 4 6 8 10 12 14

z

 0

 0.5

 1

|Φ|

(d1) (d2)

FIG. 6. The energy density �Tt
t (a), the angular momentum density Tt

’ (b), the modulus of the Higgs field j�j (c), and the
stress-energy density Tz

z (d) are exhibited for m ¼ 3, n ¼ 2 solutions with ~	 ¼ 0 (left panels) and ~	 � 0:5 (right panels).

IBADOV et al. PHYSICAL REVIEW D 82, 125037 (2010)

125037-10



vanishing charge and rotation. For the chosen parameters,
the modulus of the Higgs field of the simplest vortex ring
configuration, i.e., the system withm ¼ 2, n ¼ 3, vanishes
on a single ring located in the equatorial plane. As the
winding number n increases, this single ring merely

increases in size, as seen in the figure. For n � 5 this
increase is, to a high degree, linear.
The m ¼ 3, n ¼ 3 configuration has one node at the

origin and, in addition, two tiny rings, located symmetri-
cally above and below the xy plane. As n increases, the
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rings grow in size and move towards each other. For n ¼ 6
the rings have merged into a single ring in the equatorial
plane. This ring then grows in size as n increases further,
while the central node is always retained.

The static m ¼ 4, n ¼ 3 configuration has two vortex
rings, located symmetrically with respect to the xy plane.
While the rings increase in size with increasing n, they
hardly change their mutual distance for intermediate values
of n, as depicted in the figure. To see the further evolution
of the nodes and be able to decide whether they merge into
a single ring in the equatorial plane, we have continued the
calculations up to n ¼ 72. Here the rings are already rather

close, but they have still not merged. Extrapolating the
curve zringðnÞ indicates that a merging may happen only

beyond n ¼ 100.
For m ¼ 5, n ¼ 3 there are two symmetrically located

vortex rings supplemented by a node at the origin.
As n increases, the rings again increase in size, at first
roughly retaining their distance. However, they slowly
move towards each other and merge into a single ring at
n ¼ 37.
For m ¼ 6, n ¼ 3 there are two symmetrical vortex

rings and two inner nodes on the symmetry axis. For
n ¼ 4 the inner nodes have already formed a ring in the
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equatorial plane. With increasing n all three rings then
grow in size. For n ¼ 83 the outer rings have come closer
to the equatorial plane, but merging has not yet taken place.
An extrapolation of zringðnÞ and 
ringðnÞ for the three rings
shows that a merging of the rings will most likely not
happen until n is well above 100. We display zringðnÞ and

ringðnÞ in Fig. 9 for the solutions with m ¼ 4, 5, 6.

In the following, we demonstrate the effect of charge
and rotation on these sphaleron-antisphaleron systems.
Concerning the location and type of nodes, we observe
only a small effect. For m ¼ 2, n ¼ 3 the location of the
rings changes by about 20%, between the static case and
maximal rotation, but typically the changes are on the
order of 10%. Only in the vicinity of transitions between
the numbers and types of nodes, the effects of charge and
rotation on the nodes become rather important.

Let us now illustrate our discussion of the effect of charge
and rotation by considering the configurations m ¼ 6 and
n ¼ 3, 4, 5. These are exhibited in Figs. 10–12, where we
again display the energy density �Tt

t , the modulus of the
Higgs field j�j, the angular momentum density Tt

’, and the

stress-energy density component Tz
z for static solutions and

solutions with maximal rotation.
In these sphaleron-antisphaleron systems, the regions

with large energy density are toruslike, where the configu-
rations possess six such tori. Their location depends on n
and on the parameters. With increasing n these tori degen-
erate, basically forming a single cylinder. As before, the
effect of the presence of electric charge is that the energy
density spreads further out, while at the same time its
overall magnitude reduces. Likewise, the effect of the
presence of angular momentum is a centrifugal shift of
the energy density. With increasing angular momentum the
toruslike regions of large energy density move further
outward to larger values of 
.

The modulus of the Higgs field of the sphaleron-
antisphaleron systems changes only slightly with increas-
ing charge and angular momentum. Indeed the change is
barely noticeable in these figures, even though the static

systems are compared to those that carry maximal charge
and angular momentum. We therefore address the effect on
the nodes of the Higgs field separately in Fig. 13, where we
exhibit for the system m ¼ 6, n ¼ 5 the modulus of the
Higgs field in the equatorial plane with increasing charge
parameter ~	. The effect on the size of the ring is an
increase of roughly 10% due to charge and rotation. For
comparison, we also exhibit the modulus of the Higgs field
on the z axis, choosing the systemm ¼ 5, n ¼ 2, where the
nodes are pointlike. Here we observe an increase of the
distance between the nodes also on the order of 10% due to
charge and rotation.
The angular momentum density of the sphaleron-

antisphaleron systems is also characterized by the presence
of tori. There are tori of large positive angular momentum
density as well as negative angular momentum density. The
tori of the angular momentum density are spatially related
to the tori of the energy density. In particular, the location
of the positive tori is associated with the location of the tori
of the energy density, with the negative tori in between.

D. Equilibrium condition

Let us finally address the question of the equilibrium of
such composite configurations as sphaleron-antisphaleron
pairs and more general sphaleron-antisphaleron systems.
As discussed previously [34–36], a necessary condition for
the equilibrium of such axially symmetric configurations is

Z
S
TzzdS ¼ 0; (27)

where Tzz is the respective component of the stress-energy
tensor and S is the equatorial plane. When this condition is
satisfied, the net force between the constituents in the
upper and in the lower hemisphere vanishes, thus yielding
equilibrium. If Tzz vanishes everywhere in the equatorial
plane, this condition is met trivially; if on the other hand,
Tzz does not identically vanish, the various contributions to
the surface integral (27) must precisely cancel each other.
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FIG. 9. Distance of vortex rings from the xy plane (a) and their radius (b) for m ¼ 4, 5, 6, ~	 ¼ 0, as a function of winding number n.
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To understand how the equilibrium condition is satisfied
in these sphaleron-antisphaleron systems, we have ex-
tracted the Tzz component of the stress-energy tensor. We
illustrate Tzz for two rather different configurations in
Fig. 14. In Fig. 14(a) we display Tzz for the static
sphaleron-antisphaleron chain with m ¼ 4, n ¼ 1 in the

upper hemisphere. In the equatorial plane Tzz appears to
almost vanish. We therefore focus on the equatorial plane
in Fig. 14(c). Here Tzz is small, but finite (except when it
changes sign). To gain further insight into how the equi-
librium results from the various forces present in the
system, we consider the contributions from the respective
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parts of the Lagrangian separately. We exhibit these also in
Fig. 14(c). We note that the positive contribution from the
SUð2Þ gauge field part almost cancels the negative contri-
butions from the Uð1Þ and Higgs parts, yielding, in total, a
Tzz which is almost but not quite vanishing in the equatorial
plane. In the inner region the total Tzz is slightly positive,

while in the outer region it is slightly negative, yielding
together a vanishing surface integral (27), within the
numerical accuracy.
The situation is similar for other sphaleron-antisphaleron

chains with even m and n ¼ 1, including the sphaleron-
antisphaleron pair. Also, the inclusion of rotation does not
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change this overall behavior of these types of solutions. For
most other systems, however, Tzz does not nearly vanish in
the equatorial plane. This is exhibited exemplarily in
Fig. 14(b) for the fast rotating sphaleron-antisphaleron
system with m ¼ 6, n ¼ 5. The features of Tzz seen here

are very typical, and hardly change with rotation: the effect
of rotation is basically a slight shift in magnitude. However,
while Tzz is rather large in the equatorial plane for these
configurations, its positive and negative contributions to the
surface integral do cancel as required for equilibrium.
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IV. CONCLUSIONS

We have considered sphaleron-antisphaleron pairs,
chains, and vortex ring solutions in Weinberg-Salam the-
ory, which are characterized by two integers, n and m.
Starting from the respective neutral electroweak configu-
rations, we have obtained the corresponding branches of

rotating electrically charged solutions. These branches ex-
ist up to maximal values of the charge and angular mo-
mentum, beyond which localized solutions are no longer
possible.
We have performed a complete study of all configu-

rations with m ¼ 1–6 and n ¼ 2–6, fixing the weak
mixing angle at its physical value and taking a fixed
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value of the Higgs mass. The chain configurations with
m ¼ 2–6 and n ¼ 1 have only partially been obtained
with sufficiently high accuracy, to include their global
properties such as their energy and magnetic moment
into our systematic survey. For these chains our efforts
are still continuing.

On the other hand, in order to clarify the evolution of
the nodal structure of these sphaleron-antisphaleron
systems, we have gone to rather high values of n, for static
configurations, while extrapolating from the full study that
the nodal structure is not much affected by the presence of
charge and rotation. In particular, we have observed that
the various rings in the vortex ring configurations tend to
increase in size linearly with n, while at the same time
tending to merge into a single ring in the equatorial
plane. For m ¼ 3 this merging transition occurs at n ¼ 6,
and for m ¼ 5 at n ¼ 37, while for the even m cases 4
and 6, a merging may occur only beyond n ¼ 100.

The angular momentum J and the charge Q of these
sphaleron-antisphaleron systems are proportional,

J ¼ nQ=e:

Their energy and binding energy increase with increasing
rotation, and so does their magnetic moment. With increas-
ing charge the energy density of the configurations spreads
further out, while its overall magnitude reduces. At the
same time, the effect of the rotation is a centrifugal shift of
the energy density tori to larger radii.

We have also addressed the equilibrium condition (27)
for these sphaleron-antisphaleron systems. In all systems,
it is the surface integral that vanishes to give equilibrium,
and not the stress-energy tensor component Tzz by itself.
However, for the sphaleron-antisphaleron pair (and other
even m chains) the stress-energy tensor component Tzz

almost vanishes in the equatorial plane. In these configu-
rations the positive contribution from the SUð2Þ part al-
most cancels the negative contributions from the Uð1Þ and
Higgs parts, thus yielding an almost vanishing total Tzz in
the equatorial plane.

These configurations carry baryon number QB ¼
ðnð1� ð�1ÞmÞÞ=4; i.e., the baryon number vanishes
for even m, while it is finite for odd m, independent
of electric charge and rotation. We conjecture that for
odd m noncontractible loops can be constructed, leading
from a vacuum with vanishing baryon charge to a topo-
logically distinct vacuum with charge QB ¼ n, passing a

sphaleron-antisphaleron system configuration with QB ¼
n=2 midway.
We expect that at least some of the sphaleron-

antisphaleron systems should persist at finite temperature,
when temperature-dependent effective potentials are in-
cluded, analogous to the case of the single sphaleron
[37]. Then, at finite temperature, paths involving appropri-
ate sphaleron-antisphaleron systems should allow for ther-
mal fermion number violating transitions. While the
energy of the configurations will be larger than that of
the single static sphaleron, for low and intermediate values
ofm and n it should still be of the same order of magnitude.
Thus some of the new configurations may offer alternative
passages between the distinct vacua and consequently
affect the rate of baryon and lepton number violating
transitions.
The finite temperature paths involving appropriate

sphaleron-antisphaleron systems may be compared to
tunneling transitions via multi-instantons at zero tem-
perature. Since multi-instantons with winding number n
possess n fermion zero modes, we expect to encounter
n fermion zero modes along vacuum to vacuum paths,
passing a sphaleron-antisphaleron system configuration
with QB ¼ n=2. Therefore, one of the next steps will be
to study the fermion modes in the background of rotat-
ing electroweak configurations, furthering our under-
standing of their relevance for baryon number
violating processes [38].
We also expect that the sphaleron-antisphaleron system

configurations can be embedded in more elaborate models
like the minimal supersymmetric extensions of the stan-
dard model. Calculation of these solutions is clearly an-
other important step. Moreover, it will be interesting to
include the effect of gravitation [39] to obtain rotating
gravitating regular configurations as well as black hole
solutions. Here a fascinating possibility would be the
existence of a pair of black holes kept apart by the non-
Abelian interactions between the sphaleron and antispha-
leron configurations without the need for a conical
singularity.
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