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Using analytic and numerical techniques Nielsen-Olesen vortices, which in the context of Ginzburg-

Landau theory are known as Abrikosov vortices of type-II superconductors, are studied for large

Ginzburg-Landau parameter �. We show that their energy is equal to ð�n2=2Þ log� to leading order,

where n is the winding number of the vortex, and find that the limit of the gauge field can be expressed in

terms of the modified Bessel function K1. The leading terms of the asymptotic expansion of the solution

are given, and the different contributions to the energy are analyzed.
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I. INTRODUCTION

Of all the localized finite-energy solutions of classical
gauge theories, the vortices of the Abelian Higgs model in
2 space dimensions, the prototype of a gauge field theory
with spontaneous symmetry breaking, should be the ones
easiest to understand. However, none of these solutions is
given in terms of known functions. Nielsen and Olesen [1]
found the time-independent, radially symmetric, localized
finite-energy solutions of the Abelian Higgs model in
2 space dimensions, the Nielsen-Olesen vortices, by reduc-
ing the equations of motion to two second-order equations
for two radial functions. The mathematically rigorous
proof that the resulting equations for the two radial func-
tions have solutions with the required properties was given
by Tyupkin et al. [2] and Berger and Chen [3].

In the context of Ginzburg-Landau theory, which is the
time-independent Abelian Higgs model without an electric
field, the Nielsen-Olesen vortices are known as Abrikosov
vortices of type-II superconductors [4]. This means that
the properties of Nielsen-Olesen vortices can be, and
have been, studied in experiments. The Nielsen-Olesen
vortices also provide a simple example of cosmic
strings [5], which might explain some of the structures
seen in the Universe today.

With the solution not available in terms of known func-
tions, numerical computations become all the more impor-
tant. For the Nielsen-Olesen vortices the numerical work
started soon after the solutions were found [6,7].
Asymptotic analysis is another technique often applied
when the explicit solution is not known. For the Nielsen-
Olesen vortices, Berger and Chen [3] obtained some
asymptotic results for a large Ginzburg-Landau parameter.
The asymptotic analysis of the monopole structure was
given by Kirkman and Zachos [8]. More recently, the
same techniques were used for the Skyrmion [9] and a
Skyrme-like monopole [10]. In this paper, we perform a
similar asymptotic analysis for the Nielsen-Olesen
vortices.

II. RADIALLY SYMMETRIC SOLUTIONS

The Hamiltonian density of the time-independent
Abelian Higgs model in 2 space dimensions is given by

H ¼ 1

4
FijF

ij þ 1

2
ðDi�ÞðDi�Þ� þ �

8
ðj�j2 � 1Þ2: (1)

Here Di� ¼ @i�� {Ai� and Fij ¼ @iAj � @jAi (i; j ¼
1; 2) are the covariant derivative and the field strength,
respectively, and the metric is g ¼ diagð1; 1Þ. H in
Eq. (1) is also the Ginzburg-Landau free energy of a
superconductor. In this model, the Ginzburg-Landau
parameter � is equal to 1 at the point between type-I
and type-II superconductivity. The corresponding Euler-
Lagrange equations are

DiD
i�� �

2
�ðj�j2 � 1Þ ¼ 0;

@iF
ji þ {

2
½��Dj���ðDj�Þ�� ¼ 0:

(2)

The Euler-Lagrange equations have radially symmetric
solutions of the form

� ¼ fðrÞe{n�; Ai ¼ � aðrÞ
r2

"ijx
j; (3)

where n ¼ �1;�2; . . . is the winding number. The radial
functions satisfy the equations

a00 � 1

r
a0 þ f2ðn� aÞ ¼ 0;

f00 þ 1

r
f0 � ðn� aÞ2

r2
f ¼ �

2
ðf2 � 1Þf;

(4)

and the boundary conditions for regular vortex solutions to
exist are

fð0Þ¼að0Þ¼0; lim
r!1fðrÞ¼1; lim

r!1aðrÞ¼n: (5)

These solutions are the Nielsen-Olesen vortices [1] of the
Abelian Higgs model, or for � > 1 the Abrikosov vortices
of type-II superconductors. The existence proof for such
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solutions was given by Tyupkin et al. [2]. The proof is
based on the fact that the Nielsen-Olesen solution mini-
mizes the energy

E½aðrÞ; fðrÞ� ¼
Z 1

0
Edr

¼ 2�
Z 1

0

�
a02

2r
þ r

2
f02 þ 1

2r
ðn� aÞ2f2

þ �

8
rðf2 � 1Þ2

�
dr: (6)

The asymptotic behavior of the solutions for r � 1 (and
finite �) is

f ¼ fnr
n � ð�þ 4na2Þfn

8ðnþ 1Þ rnþ2 þ � � � ;

a ¼ a2r
2 � f2n

4ðnþ 1Þ r
2nþ2 þ � � � :

(7)

For r � 1 we have [11]

a ¼ nþ �
ffiffiffi
r

p
e�r þ � � � ;

f ¼
�
1þ � e�

ffiffi
�

p
rffiffi

r
p þ � � � ð� � 4Þ;

1þ �2e�2r

ð4��Þr þ � � � ð� > 4Þ:
(8)

Equations (4) with boundary conditions Eq. (5) cannot
be solved analytically. By employing a collocation method
for boundary-value ordinary differential equations
equipped with an adaptive mesh selection procedure in a
compactified grid [12], we have solved numerically the
equations with high accuracy (global tolerance 10�9) for a
large range of values of �. In Fig. 1 we show the energy E
as a function of � for small values of �. We clearly see that
E=n does not depend on n at � ¼ 1 and is increasing with n
for � > 1 and decreasing with n for � < 1. That E=n does

not depend on n means that the forces balance at � ¼ 1,
which makes it possible for solutions corresponding to
vortices at arbitrary separation to exist [13].
Extending the computations for larger values of � we

observe numerically a logarithmic divergence of the en-
ergy. This is exhibited in Fig. 2. One can also see that, to
leading order, the energy increases quadratically with the
vortex number n. A detailed analysis of the numerical data
reveals that the energy follows the following asymptotic
formula:

Enum

n2
¼ �

2
log�þ �ðnÞ þ oð1Þ; (9)

where

�ðnÞ ¼
8<
:
0:471 99; n ¼ 1;
�2:481 72; n ¼ 2;
�3:953 72; n ¼ 3:

(10)

In the next section we will prove rigorously that the energy
behaves like that by performing an asymptotic analysis of
Nielsen-Olesen solutions.

III. ASYMPTOTIC ANALYSIS

For our asymptotic analysis, we first split the energy
Eq. (6) into four parts:

E1 ¼ 2�
Z 1

0

a02

2r
dr; (11)

E2 ¼ 2�
Z 1

0

r

2
f02dr; (12)

E3 ¼ 2�
Z 1

0

1

2r
ðn� aÞ2f2dr; (13)

E4 ¼ 2�
Z 1

0

�

8
rðf2 � 1Þ2dr: (14)
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FIG. 1. Energy per vortex number E=n versus � for Nielsen-
Olesen solutions with n ¼ 1; 2; 3.
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FIG. 2. Energy over n2 versus logð1þ �Þ for Nielsen-Olesen
solutions with n ¼ 1; 2; 3.
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These four contributions to the total energy correspond
to the gauge field contribution (E1), the Higgs dynamical
contribution (E2 and E3), and the contribution of the po-
tential (E4), respectively.

To study the dependence of the energy on � we differ-
entiate Eq. (6) with respect to � and obtain

dE

d�
¼

Z 1

0

�
@E
@�

þ @a

@�

@E
@a

þ @a0

@�

@E
@a0

þ @f

@�

@E
@f

þ @f0

@�

@E
@f0

�
dr

¼
Z 1

0

�r

4
ðf2 � 1Þ2dr > 0: (15)

Here we have used integration by parts, the equations for a
and f [Eq. (4)], and have assumed that ða0=rÞð@a=@�Þ and
rf0ð@f=@�Þ vanish as r ! 0 and as r ! 1. We see that the
energy increases with � and, if the energy is bounded, that
f ¼ 1 (r > 0) in the limit � ! 1.

We will now show that the energy of the Nielsen-Olesen
vortex is not bounded for � ! 1 but that nevertheless f
will approach the singular limit f ¼ 1 (r > 0). We start by
considering both possibilities. If we do not have f ¼ 1
(r > 0) in the limit, the integral in Eq. (15) does not go to
zero and E4 is at least of order � for large �. That is in
contradiction to numerics. In Fig. 3 we exhibit E4 as a
function of �. It clearly tends to n2�=2 in the limit � ! 1,
so it is bounded in that limit.

On numerical evidence, we conclude that function f
tends to the singular limit f ¼ 1 (r > 0) when � ! 1.
[Pursuing this possibility, we will later also conclude that f
must tend to the singular limit f ¼ 1 (r > 0) based on a
series of analytic arguments alone.] The way this limit is
approached may be understood by plotting f as a function

of the scaled radial coordinate
ffiffiffiffi
�

p
r. The shape of fð ffiffiffiffi

�
p

rÞ
depends on � very slightly, reaching the profile of the

limiting case (� ¼ 1) very quickly, above � 	 100. We
show this fact in Fig. 4, where f is plotted as a function offfiffiffiffi
�

p
r for Nielsen-Olesen solutions with n ¼ 1 and several

values of �. The main consequence of this is that the
region where f differs from 1 for large � has a width of

order 1=
ffiffiffiffi
�

p
.

In the limit � ! 1, the function a satisfies the equation

a00 � 1

r
a0 � a ¼ �n ðr > 0Þ: (16)

The general solution of this equation is

a ¼ nþ c1rK1ðrÞ þ c2rI1ðrÞ; (17)

in terms of the modified Bessel functions K1 and I1.
The condition for r ! 1 implies c2 ¼ 0, the condition
að0Þ ¼ 0 means c1 ¼ �n, and we have

E3 ¼ �n2
Z 1

0
rK2

1ðrÞdr; (18)

which is divergent, since the integrand is of order 1=r for
small r. So the energy is definitely not bounded in the limit
� ! 1.
That a ! n� nrK1ðrÞ and therefore F12 ¼ a0ðrÞ=r ¼

nK0ðrÞ as � ! 1 has been shown before by Berger and
Chen [3]. Berger and Chen study the equation for the
magnetic field F12. They show that the equation for F12

linearizes and is of the form

��F12ð ~xÞ þ F12ð ~xÞ ¼ 2�n�ð ~xÞ; (19)

in the limit � ! 1. F12 ¼ nK0ðrÞ is the solution of this
equation.
Before we derive the asymptotic behavior of E3 for

large �, we calculate the � ! 1 limit of E1 and E4. For
a ¼ n� nrK1ðrÞ we have
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FIG. 3. E4 versus logð1þ �Þ for Nielsen-Olesen solutions with
n ¼ 1; 2; 3.
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E1 ¼ �n2
Z 1

0
rK2

0dr ¼
�n2

2
½r2ðK2

0 � K2
1Þ�10 ¼ �n2

2
:

(20)

Because the solution ðaðrÞ; fðrÞÞ minimizes the energy, we
have a family of functions ðað�rÞ; fð�rÞÞ that satisfies

d

d�
E½að�rÞ; fð�rÞ�j�¼1 ¼ d

d�
ð�2E1½aðrÞ� þ E2½fðrÞ�

þ E3½aðrÞ; fðrÞ�
þ ��2E4½fðrÞ�Þj�¼1

¼ 2ðE1½aðrÞ� � E4½fðrÞ�Þ ¼ 0;

(21)

which is a manifestation of Derrick’s theorem. Therefore,
both E1 and E4 approach the finite value �n

2=2 in the limit
� ! 1, in agreement with the numerical computations
(see Fig. 3). Using the asymptotic value of E4 in Eq. (15),
we get

dE

d�
¼ �n2

2�
, E ¼ �n2

2
log�; (22)

to leading order. Since the solution minimizes the energy,
the second possibility, where f tends to f ¼ 1 (r > 0),
must be the one that is realized. We have already seen
that the energy is at least of order � for large �, if f does
not tend to f ¼ 1 (r > 0).

The logarithmic divergence of the energy of Nielsen-
Olesen solutions in the limit of large � comes from the
contributionE3, since E2 remains finite. E2 and E3 have the
following behavior for large �:

E2 ¼ n2�2ðnÞ þ oð1Þ; (23)

E3 ¼ �

2
n2 log�þ n2�3ðnÞ þ oð1Þ; (24)

where the first three values of the functions �2ðnÞ and
�3ðnÞ are

�2ðnÞ ¼
8<
:
0:876 79; n ¼ 1
0:325 89; n ¼ 2
0:177 08; n ¼ 3

(25)

and

�3ðnÞ ¼
8<
:
�3:546 39; n ¼ 1
�5:949 20; n ¼ 2
�7:272 39; n ¼ 3;

(26)

respectively.
Before we continue with our asymptotic analysis,

we look at the variational analysis by Hill, Hodges, and
Turner [7] for a large Ginzburg-Landau parameter. Hill,
Hodges, and Turner use the functions

f ¼ 1� e�	r; a ¼ nð1� e�hrÞ2 (27)

and minimize the energy with respect to 	 and h. (From
our previous discussion we know that 	 should go to
infinity and h should go to a constant as � ! 1, if there
is any chance of approximating the correct asymptotic
results.) With this ansatz the four terms of the energy are

E1 ¼ 4�n2h2 log
9

8
;

E2 ¼ �=4;

E3 ¼ �n2GðsÞ;
E4 ¼ 89��

576	2
;

(28)

where s ¼ 	=h and

GðsÞ ¼ log
34ðsþ 2Þ7ð2sþ 3Þ4ðsþ 4Þ2

211ðsþ 3Þ8ðsþ 1Þ4 : (29)

Minimizing the energy with respect to	 and h leads to the
equations

h

	3 ¼ 288n2G0ðsÞ
89�

;
h3

	
¼ G0ðsÞ

8 logð9=8Þ : (30)

For large s, GðsÞ ¼ logsþ logð34=27Þ þOð1=s2Þ,

	 ¼
ffiffiffiffiffiffiffiffiffi
89�

p

12
ffiffiffi
2

p
n
þO

�
1ffiffiffiffi
�

p
�
; h ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logð9=8Þp þO

�
1

�

�
;

(31)

and

E1 ¼ �n2

2
;

E2 ¼ �=4;

E3 ¼ �n2
�
1

2
log�þ log

33
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
89 logð9=8Þp
28n

�
;

E4 ¼ �n2

2
;

(32)

up to order oð1Þ. We see that this approximation gives the
correct leading terms for E1 and E3. Using the argument
we used in Eq. (21) on the energy Eð	; hÞ we get E1 ¼ E4,
and therefore the leading term of E4 must also be correct.
The Oð1Þ terms in E2 and E3 and the total energy E are not
correct. For n ¼ 1, e.g., the variational method gives the
upper bound E ¼ ð�=2Þ log�þ 0:551, whereas the correct
value is E ¼ ð�=2Þ log�þ 0:472, as we saw previously
[see Eq. (10)]. That we do not obtain the correct values is
no surprise. For � ! 1 the function f in Eq. (27) goes
to the step function, which is the correct asymptotic limit.
The function a in Eq. (27), however, does not go to
n� nrK1ðrÞ. Furthermore, the limit is not approached
using the asymptotic expansions of solutions. The
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functions in Eq. (27) do not even have the correct asymp-
totic behavior [Eq. (8)] for large r.

We now give the correct asymptotic approximation for
large �. Motivated by Fig. 4 and its interpretation, we are
looking for a family of approximations with the following
features: In the outer region, f approaches 1, and a ap-
proaches n� nrK1. In the boundary layer (for r & r0), f
gets steeper with increasing � and the width of the layer
goes to zero in the limit. This means that the outer ap-
proximation a ¼ n� nrK1 extends down to r ¼ 0 in the
limit � ! 1, although n� nrK1 does not have the asymp-
totic behavior [Eq. (7)] of a, since 1� rK1 ¼ �ðr=2Þ
logrþ � � � for small r; i.e., the limit is singular.

Away from the boundary layer, we look for an outer
solution of the form

f¼1� 1

�
~fþ��� ; a¼n�nrK1þ 1

�
~aþ��� ðr>r0Þ

(33)

and find

~f ¼ n2K2
1 ;

~a ¼ knrK1 þ 2n3rK1

Z 1

r
sI1ðsÞK3

1ðsÞds

� 2n3rI1
Z 1

r
sK4

1ðsÞds;

(34)

where kn is a constant. For r � 1 the solutions are of the

form of Eq. (8) with � ¼ ffiffiffiffiffiffiffiffiffi
�=2

p
n. Also ~f=� � 1 holds

for r � 1=
ffiffiffiffi
�

p
.

In the boundary layer, a stays very small and f rises
rapidly. As an approximation we can therefore use for the
inner solution the equation

f00 þ 1

r
f0 � n2

r2
f ¼ �

2
ðf2 � 1Þf ð0< r < r0Þ (35)

with

fð0Þ ¼ 0; fðr0Þ ¼ 1� 1

�
~fðr0Þ; (36)

instead of using the second-order equation for f in Eq. (4).
The solution of this boundary-value problem, denoted

by f̂, has to be found numerically. Given f̂, we then have
to solve the equation

a00 � 1

r
a0 þ f̂2ðn� aÞ ¼ 0 (37)

with

að0Þ ¼ 0; aðr0Þ ¼ n� nrK1ðr0Þ þ 1

�
~aðr0Þ: (38)

We will denote this inner function a by â.

In order to show that a good linear approximation of the
functions a and f for large � is given by Eq. (33) away

from the boundary layer and â and f̂ in the boundary layer,
we compare in Fig. 5 the numerical (exact) functions a and
f with the corresponding linear approximations aapprox and

fapprox for n ¼ 1 and � ¼ 100. We observe that for a value

of the location of the layer r0 such that
ffiffiffiffi
�

p
r0 	 20, the

relative deviation of the approximation with respect to the
exact values is of the order of 10�5. This agreement
improves as � is increased.

IV. CONCLUSIONS

To complete the study of the four terms which contribute
to the energy, we have used numerical computations. The
asymptotic result for the total energy [Eq. (22)], however,
follows from a simple chain of analytic arguments, as we
have seen. In contrast to Hill, Hodges, and Turner [7] we
make no assumptions about the class of functions to be
considered. An important step in our chain of arguments is
that in the � ! 1 limit the Higgs field takes its vacuum
value for r > 0. In this regard, the vortex behaves like the
monopole [8]. The crucial difference is that after the Higgs
field has decoupled, the energy from the interaction of the
Higgs field and the gauge field diverges in the case of
vortices, whereas it is finite in the case of monopoles.
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and f̂ in the boundary layer.

NIELSEN-OLESEN VORTICES FOR LARGE GINZBURG- . . . PHYSICAL REVIEW D 82, 125033 (2010)

125033-5



[1] H. B. Nielsen and P. Olesen, Nucl. Phys. B61, 45 (1973).
[2] Y. S. Tyupkin, V. A. Fateev, and A. S. Shvarts, Zh. Eksp.

Teor. Fiz. 21, 91 (1975) [JETP Lett. 21, 41 (1975)].
[3] M. S. Berger and Y.Y. Chen, J. Funct. Anal. 82, 259

(1989).
[4] A. A. Abrikosov, Zh. Eksp. Teor. Fiz. 32, 1442 (1957)

[Sov. Phys. JETP 5, 1174 (1957)].
[5] M.B. Hindmarsh and T.W.B. Kibble, Rep. Prog. Phys.

58, 477 (1995).
[6] L. Jacobs and C. Rebbi, Phys. Rev. B 19, 4486 (1979).
[7] C. T. Hill, H.M. Hodges, and M. S. Turner, Phys. Rev. D

37, 263 (1988).

[8] T.W. Kirkman and C.K. Zachos, Phys. Rev. D 24, 999
(1981).

[9] Y. Brihaye, C. T. Hill, and C.K. Zachos, Phys. Rev. D 70,
111502 (2004).

[10] Y. Brihaye, J. Burzlaff, and D.H. Tchrakian, Phys. Rev. D
77, 107701 (2008).

[11] L. Perivolaropoulos, Phys. Rev. D 48, 5961
(1993).

[12] U. Asher, J. Christiansen, and R.D. Russel, Math.
Comput. 33, 659 (1979); ACM Trans. Math. Softw. 7,
209 (1981).

[13] C. Taubes, Commun. Math. Phys. 72, 277 (1980).
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