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One-electron 3þ 1 and 2þ 1 Dirac equations are used to calculate the motion of a relativistic electron

in a vacuum in the presence of an external magnetic field. First, calculations are carried on an operator

level and exact analytical results are obtained for the electron trajectories which contain both intraband

frequency components, identified as the cyclotron motion, as well as interband frequency components,

identified as the trembling motion, Zitterbewegung (ZB). Next, time-dependent Heisenberg operators are

used for the same problem to compute average values of electron position and velocity employing

Gaussian wave packets. It is shown that the presence of a magnetic field and the resulting quantization of

the energy spectrum has pronounced effects on the electron ZB: it introduces intraband frequency

components into the motion, influences all the frequencies, and makes the motion stationary (not decaying

in time) in case of the 2þ 1 Dirac equation. Finally, simulations of the 2þ 1 Dirac equation and the

resulting electron ZB in the presence of a magnetic field are proposed and described employing trapped

ions and laser excitations. Using simulation parameters achieved in recent experiments of Gerritsma and

coworkers, we show that the effects of the simulated magnetic field on ZB are considerable and can

certainly be observed.
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I. INTRODUCTION

The phenomenon of Zitterbewegung (ZB) for free
relativistic electrons in a vacuum goes back to the work
of Schrödinger, who showed in 1930 that, due to a non-
commutativity of the velocity operators with the Dirac
Hamiltonian, relativistic electrons experience a trembling
motion in absence of external fields [1]. The ZB is a strictly
quantum phenomenon as it goes beyond Newton’s first law
of classical motion. Since the Schrödinger prediction, the
subject of ZB has been treated by very many theoretical
papers. It was recognized that ZB is due to an interference
of electron states with positive and negative electron en-
ergies [2,3]. The frequency of ZB oscillations predicted by
Schrödinger is very high, corresponding to ℏ!Z ’ 2mc2,
and its amplitude is very small, being around the Compton

wavelength ℏ=mc ¼ 3:86� 10�3 �A. Thus, it is impossible
to observe this effect in its original form with the currently
available experimental means. In fact, even the principal
observability of ZB in a vacuum was often questioned
in the literature [4,5]. However, in a very recent paper,
Gerritsma et al. [6] simulated the 1þ 1 Dirac equation
(DE) and the resulting Zitterbewegung with the use of
trapped Ca ions excited by appropriate laser beams. The
remarkable advantage of this method is that one can simu-
late the basic parameters of DE, i.e., mc2 and c, and give
them desired values. This results in a much lower ZB
frequency and a much larger ZB amplitude. The simulated
values were in fact experimentally observed.

The general purpose of our work is concerned with the
electron ZB in the presence of a magnetic field. The
presence of a constant magnetic field does not cause elec-
tron transitions between negative and positive electron
energies. On the other hand, it quantizes the energy spec-
trum into Landau levels which brings qualitatively new
features into the ZB. Our work has three objectives. First,
we calculate the Zitterbewegung of relativistic electrons in
a vacuum in the presence of an external magnetic field
at the operator level. We obtain exact analytical formulas
for this problem. Second, we calculate average values
describing the ZB of an electron prepared in the form of
a Gaussian wave packet. These average values can be
directly related to possible observations. However, as men-
tioned above and confirmed by our calculations, the corre-
sponding frequencies and amplitudes of ZB in a vacuum
are not accessible experimentally at present. For this rea-
son, and this is our third objective, we propose and describe
simulations of ZB in the presence of a magnetic field with
the use of trapped ions. We do this keeping in mind the
recent experiments reported by Gerritsma et al.. We show
that, employing the simulation parameters of Ref. [6], one
should be able to observe the magnetic effects in ZB.
The problem of ZB in a magnetic field was treated

before [7], but the results were limited to the operator level
and suffered from various deficiencies which we mention
in Appendix F. A similar problem was treated in Ref. [8] at
the operator level in weak magnetic field limit. Bermudez
et al. [9] treated a related problem of mesoscopic super-
position states in relativistic Landau levels. We come
back to this work in Sec. VI. Our treatment aims to*Tomasz.Rusin@centertel.pl
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calculate directly the observable Zitterbewegung effects.
Preliminary results of our work were published in
Ref. [10].

An important aspect of ZB, which was not considered in
the pioneering work of Schrödinger and most of the papers
that followed it, is an existence of the ‘‘Fermi sea’’ of
electrons filling negative energy states. This feature can
seriously affect the phenomenon of ZB; see Ref. [5]. We
emphasize that both our calculations as well as the simu-
lations using trapped ions [6] are based on the ‘‘empty
Dirac equation’’ for which ZB certainly exists. We come
back to this problem in Sec. VI.

Our paper is organized in the following way. In Sec. II,
we use the 3þ 1 Dirac equation to derive the time depen-
dence of operators describing motion of relativistic elec-
trons in a vacuum in the presence of a magnetic field.
Intraband frequency components (the cyclotron motion)
are distinguished from interband frequency components
(the trembling motion). In Secs. III and IV, we treat the
same subject calculating averages of the time-dependent
Heisenberg operators with the use of Gaussian wave pack-
ets. This formulation is more closely related to possible
experiments. In Sec. V, we simulate the 2þ 1 Dirac equa-
tion and the resulting electron Zitterbewegung employing
trapped ions and laser excitations in connection with the
recent experimental simulation of electron ZB in absence
of magnetic field. In Sec. VI, we discuss our results. The
paper is concluded by a summary. In the Appendixes,
we discuss some technical aspects of the calculations and
the relation of our work to that of other authors.

II. ZITTERBEWEGUNG: OPERATOR FORM

We consider a relativistic electron in a magnetic field.
Its Hamiltonian is

Ĥ ¼ c�x�̂x þ c�y�̂y þ c�z�̂z þ �mc2; (1)

where �̂ ¼ p̂� qA is the generalized momentum, q is
the electron charge, and �i and � are Dirac matrices, in the
standard notation. Taking the magnetic field B k z, we
choose the vector potential A ¼ ð�By; 0; 0Þ. For an elec-
tron, there is q ¼ �e with e > 0. One can look for solu-
tions in the form

�ðrÞ ¼ eikxxþikzz�ðyÞ; (2)

and we obtain an effective Hamiltonian Ĥ

Ĥ ¼ cℏ½ðkx � eBy=ℏÞ�x þ ð@=i@yÞ�y þ kz�z�
þ �mc2: (3)

Introducing the magnetic radius L ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=eB

p
and � ¼

y=L� kxL we have y ¼ �Lþ kxL
2, eB=ℏ ¼ 1=L2,

and @=@y ¼ ð1=LÞ@=@�. Defining the standard raising
and lowering operators for the harmonic oscillator

�
â ¼ ð�þ @=@�Þ= ffiffiffi

2
p

;

âþ ¼ ð�� @=@�Þ= ffiffiffi
2

p
;

(4)

one has ½â; âþ� ¼ 1 and � ¼ ðâþ âþÞ= ffiffiffi
2

p
. The

Hamiltonian Ĥ reads

Ĥ ¼ mc21̂ Ĥ þ Ez�z

Ĥ þ Ez�z �mc21̂

 !
; (5)

where 1̂ is the 2� 2 identity matrix, Ez ¼ cℏkz, and

Ĥ ¼ �ℏ!
0 â
âþ 0

� �
; (6)

with ! ¼ ffiffiffi
2

p
c=L. The frequency ! (which should not

be confused with the cyclotron frequency !c ¼ eB=m) is
often used in our considerations.
Now we introduce an important four-component

operator

Â ¼ diagðÂ; ÂÞ; (7)

where Â ¼ diagðâ; âÞ. Its adjoint operator is
Âþ ¼ diagðÂþ; ÂþÞ; (8)

where Âþ ¼ diagðâþ; âþÞ. Next we define the four-
component position operators

Ŷ ¼ Lffiffiffi
2

p ðÂþ ÂþÞ; (9)

X̂ ¼ L

i
ffiffiffi
2

p ðÂ� ÂþÞ; (10)

in analogy to the position operators ŷ and x̂; see
Appendix A. We intend to calculate the time dependence

of Â and Âþ
and then the time dependence of Ŷ and X̂.

To find the dynamics of Â, we calculate the first

and second time derivatives of Â using the equation of

motion: Ât � dÂ=dt ¼ ði=ℏÞ½Ĥ ;Â�. Since 1̂ and �z

commute with Â and Âþ, we obtain

Â t ¼ i

ℏ
0 ½Ĥ; Â�

½Ĥ; Â� 0

 !
; (11)

Âþ
t ¼ i

ℏ
0 ½Ĥ; Âþ�

½Ĥ; Âþ� 0

 !
: (12)

There is ði=ℏÞ½Ĥ; Â� ¼ Ât ¼ i!
0 0
1 0

� �
and Âþ

t ¼

�i!
0 1
0 0

� �
: In consequence,

Â t ¼ 0 Ât

Ât 0

 !
; (13)
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Âþ
t ¼ 0 Âþ

t

Âþ
t 0

 !
: (14)

The second time derivatives of Â and Âþ
are calcu-

lated following the trick proposed by Schrödinger. We use
two versions of this trick:

Â tt ¼ ði=ℏÞ½Ĥ ;Ât� ¼ 2i

ℏ
ĤÂt � i

ℏ
fĤ ;Âtg; (15)

Âþ
tt ¼ ði=ℏÞ½Ĥ ;Âþ

t � ¼ � 2i

ℏ
Âþ

t Ĥ þ i

ℏ
fĤ ;Âþ

t g:
(16)

The anticommutator of Ât and Ĥ is

i

ℏ
fĤ ;Âtg ¼ i

ℏ
fÂt; Ĥg 0

0 fÂt; Ĥg
 !

: (17)

Similarly,

i

ℏ
fĤ ;Âþ

t g ¼ i

ℏ
fÂþ

t ; Ĥg 0
0 fÂþ

t ; Ĥg
 !

: (18)

We need to know the anticommutators fĤ; Âtg and fĤ; Âþ
t g.

There is ði=ℏÞfĤ; Âtg ¼ !2Â and ði=ℏÞfĤ; Âþ
t g ¼ �!2Âþ,

so that

� i

ℏ
fĤ ;Âtg ¼ !2 Â 0

0 Â

 !
; (19)

i

ℏ
fĤ ;Âþ

t g ¼ �!2 Âþ 0
0 Âþ

 !
: (20)

Thus, we finally obtain from Eqs. (19) and (20) second-

order equations for Â and Âþ
:

Â tt ¼ ð2i=ℏÞĤÂt �!2Â; (21)

Âþ
tt ¼ �ð2i=ℏÞÂþ

t Ĥ � Âþ!2: (22)

To solve the above equations, we eliminate the terms

with the first derivative using the substitutions Â ¼
expðþiĤ t=ℏÞB̂ and Âþ ¼ B̂þ expð�iĤ t=ℏÞ, which
gives

B̂ tt ¼ �ð1=ℏ2ÞĤ 2
B̂�!2B̂; (23)

B̂þ
tt ¼ �ð1=ℏ2ÞB̂þĤ 2 � B̂þ!2: (24)

Finally,

B̂ tt ¼ �ð�̂2 þ!2ÞB̂; (25)

B̂þ
tt ¼ �B̂þð�̂2 þ!2Þ; (26)

where �̂ ¼ Ĥ =ℏ. The solutions of the above equations
are

B̂ ¼ e�iM̂tĈ1 þ eiM̂tĈ2; (27)

B̂þ ¼ Ĉþ1 e�iM̂t þ Ĉþ2 eiM̂t; (28)

where M̂ ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�̂2 þ!2

p
is the positive root of M̂2 ¼

�̂2 þ!2. The operator M̂ is an important quantity in

our considerations. Both Ĉ1 and Ĉþ2 are time-independent

operators. Coming back to ÂðtÞ and ÂþðtÞ, we have
ÂðtÞ ¼ ei�̂te�iM̂tĈ1 þ ei�̂teþiM̂tC2; (29)

ÂþðtÞ ¼ Ĉþ1 eþiM̂te�i�̂t þ Ĉþ2 e�iM̂te�i�̂t: (30)

In order to find the final forms of ÂðtÞ and ÂþðtÞ, one has
to use the initial conditions. They are

Âð0Þ ¼ Ĉ1 þ Ĉ2; Âþð0Þ ¼ Ĉþ1 þ Ĉþ2 ;

Âtð0Þ ¼ ið�̂� M̂ÞĈ1 þ ið�̂þ M̂ÞĈ2;
Âþ

t ð0Þ ¼ �iĈþ1 ð�̂� M̂Þ � iĈþ2 ð�̂þ M̂Þ:
Simple manipulations give

Ĉ 1 ¼ i

2
M̂�1Âtð0Þ þ 1

2
M̂�1�̂Âð0Þ þ 1

2
Âð0Þ; (31)

Ĉ 2 ¼ � i

2
M̂�1Âtð0Þ � 1

2
M̂�1�̂Âð0Þ þ 1

2
Âð0Þ:

(32)

Similarly,

Ĉ þ
1 ¼ � i

2
Âþ

t ð0ÞM̂�1 þ 1

2
Âþð0Þ�̂M̂�1 þ 1

2
Âþð0Þ;

(33)

Ĉ þ
2 ¼ i

2
Âþ

t ð0ÞM̂�1 � 1

2
Âþð0Þ�̂M̂�1 þ 1

2
Âþð0Þ:

(34)

One can see by inspection that the initial conditions for

Âð0Þ and Âtð0Þ are satisfied. It is convenient to express

Ât in terms of Â and �̂ using the equation of motion

iÂt ¼ Â �̂��̂Â . Then, the first and second terms in
Eqs. (31) and (33) partially cancel out, and the operator

ÂðtÞ can be expressed as a sum ÂðtÞ ¼ Â1ðtÞ þ Â2ðtÞ,
where

Â 1ðtÞ ¼ 1

2
ei�̂te�iM̂t½Âð0Þ þ M̂�1Âð0Þ�̂�; (35)

Â 2ðtÞ ¼ 1

2
ei�̂teþiM̂t½Âð0Þ � M̂�1Âð0Þ�̂�: (36)
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Similarly, one can break ÂþðtÞ ¼ Âþ
1 ðtÞ þ Âþ

2 ðtÞ,
where

Âþ
1 ðtÞ ¼

1

2
½Âþð0Þ þ �̂Âþð0ÞM�1�eþiM̂te�i�̂t; (37)

Âþ
2 ðtÞ ¼

1

2
½Âþð0Þ � �̂Âþð0ÞM�1�e�iM̂te�i�̂t: (38)

Using Eqs. (9) and (10), we obtain

ŶðtÞ ¼ Lffiffiffi
2

p ðÂ1ðtÞ þ Â2ðtÞ þ Âþ
1 ðtÞ þ Âþ

2 ðtÞÞ; (39)

X̂ðtÞ ¼ L

i
ffiffiffi
2

p ðÂ1ðtÞþÂ2ðtÞ�Âþ
1 ðtÞ�Âþ

2 ðtÞÞ: (40)

The above compact equations are our final expressions

for the time dependence of ÂðtÞ and ÂþðtÞ operators and,
by means of Eqs. (39) and (40), for the time dependence of

the position operators ŶðtÞ and X̂ðtÞ. These equations are
exact and, as such, they are quite fundamental for relativ-
istic electrons in a magnetic field. The results are given in

terms of operators �̂ and M̂. To finalize this description,
one needs to specify the physical sense of functions of
these operators appearing in Eqs. (35)–(40).

As we shall see below, operators �̂ and M̂ have the
same eigenfunctions, so they commute. Then the product
of two exponential functions in Eqs. (35)–(38) is given by
the exponential function with the sum of two exponents.
In consequence, there appear two sets of frequencies !þ
and !� corresponding to the sum and the difference:

!� � M̂� �̂, and !þ � M̂þ �̂, respectively. The first
frequencies !�, being of the intraband type, lead in
the nonrelativistic limit to the cyclotron frequency
!c. The interband frequencies !þ correspond to the
Zitterbewegung. The electron motion is a sum of different
frequency components when it is averaged over a wave
packet. In absence of a magnetic field, there are no intra-
band frequencies and only one interband frequency of the
order of 2mc2=ℏ; see Ref. [1].

Each of the ÂðtÞ or ÂþðtÞ operators contains both
intraband and interband terms. One could infer from
Eqs. (36) and (38) that the amplitudes of interband and
intraband terms are similar. However, when the explicit

forms of the matrix elements of ÂðtÞ and ÂþðtÞ are
calculated, it will be seen that the ZB terms are much
smaller than the cyclotron terms, except at very high
magnetic fields.

The operators �̂ and M̂ do not commute with Â or

Âþ
. In Eq. (36), the operator Â acts on the exponential

terms from the right-hand side, while in Eq. (38) the

operator Âþ
acts from the left-hand side. The proper order

of operators is to be retained in further calculations involv-

ing ÂðtÞ or ÂþðtÞ.

Let us consider the operator M̂2 ¼ �̂2 þ!2. Let En=ℏ
and jni be the eigenvalue and eigenvector of �̂, respec-
tively. Then

M̂ 2jni ¼ ð�̂2 þ!2Þjni ¼ 1

ℏ2
ðE2

n þ ℏ2!2Þjni: (41)

Thus, every state jni is also an eigenstate of the operator

M̂2
with the eigenvalue �2

n ¼ E2
n=ℏ2 þ!2. To find a

more convenient form of �n, we must find an explicit
form of En. To do this, we choose again the Landau gauge
A ¼ ð�By; 0; 0Þ. Then, the eigenstate jni is characterized
by five quantum numbers: n; kx; kz; �; s, where n is the
harmonic oscillator number, kx and kz are the wave vectors
in x and z directions, respectively, � ¼ �1 labels the
positive and negative energy branches, and s ¼ �1 is the
spin index. In the representation of Johnson and Lippman
[11], the state jni is

jni ¼ Nn�pz

s1ð�En;kz þmc2Þ jn� 1i
s2ð�En;kz þmc2Þ jni
ðs1pzc� s2ℏ!nÞ jn� 1i
�ðs1ℏ!n þ s2pzcÞ jni

0
BBB@

1
CCCA; (42)

where s1 ¼ ðsþ 1Þ=2 and s2 ¼ ðs� 1Þ=2 select the states
s ¼ �1, respectively. The frequency is !n ¼ !

ffiffiffi
n

p
, the

energy is

En;kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmc2Þ2 þ ðℏ!nÞ2 þ ðℏkzcÞ2

q
; (43)

and the norm is Nn�kz ¼ ð2E2
n;kz

þ 2�mc2En;kzÞ�1=2. In this

representation the energy En;kz does not depend explicitly

on s. Then the eigenvalue of operator �̂ is En ¼ �En;kz=ℏ.
The harmonic oscillator states are

hrjni ¼ eikxxþikzz

2�
ffiffiffiffi
L

p
Cn

Hnð�Þe�1=2�2
; (44)

where Hnð�Þ are the Hermite polynomials and Cn ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nn!

ffiffiffiffi
�

pp
. Using the above forms for jni and En;kz , we

obtain from Eq. (41)

M̂ 2jni ¼ 1

ℏ2
E2
nþ1;kz

jni; (45)

i.e., �n ¼ �n;kz ¼ �Enþ1;kz=ℏ. In further calculations we

assume �n;kz to be positive. The operator M̂2
is diagonal.

As follows from Eq. (41), the explicit form of M̂2
is

M̂ 2 ¼ diag½d1; d2; d1; d2� (46)

with

ℏ 2d1 ¼ ðmc2Þ2 þ ðcp2
zÞ þ ℏ2!2 þ ℏ2!2ââþ; (47)

ℏ 2d2 ¼ ðmc2Þ2 þ ðcp2
zÞ þ ℏ2!2 þ ℏ2!2âþâ: (48)
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Because M̂2 ¼ �2 þ!2, eigenstates of M̂2
do not

depend on the energy branch index �.

To calculate functions of operators �̂ and M̂, we use
the fact that, for every reasonable function f of operators

�̂ or M̂2
, there is fð�̂Þ ¼ P

nfð�En;kz=ℏÞjnihnj, and

fðM̂2Þ ¼ P
nfðE2

nþ1;kz
=ℏ2Þjnihnj, see, e.g., Ref. [12].

Thus,

e�i�̂t ¼ X
n

e�i�tEn;kz =ℏjnihnj; (49)

M̂ ¼ ðM̂2Þ1=2 ¼ �
X
n

Enþ1;kz

ℏ
jnihnj; (50)

M̂�1 ¼ ðM̂2Þ�1=2 ¼ �
X
n

ℏ
Enþ1;kz

jnihnj; (51)

e�iM̂t ¼ e�itðM̂2Þ1=2 ¼ X
n

e�i�tEnþ1;kz =ℏjnihnj; (52)

where � ¼ �1. Without loss of generality, we take
� ¼ þ1. The above formulas can be used in calculating

the matrix elements of ÂðtÞ and ÂþðtÞ.
Taking the eigenvectors jni ¼ jn; kx; kz; �; si and jn0i ¼

jn0; k0x; k0z; �0; s0i with n0 ¼ nþ 1, we calculate matrix ele-

ments Ân;n0 ðtÞ using ÂðtÞ given in Eqs. (35) and (36). The
selection rules for Ân;n0 ð0Þ are kx ¼ k0x and kz ¼ k0z, while
�; �0; s; s0 do not obey any selection rules. The matrix

element of M̂�1Âð0Þ�̂ appearing in Eqs. (35) and (36) is

hnjM̂�1Âð0Þ�̂jn0i ¼ 1

�n;kz

Âð0Þn;n0
�0En0;kz

ℏ
¼ �0Âð0Þn;n0 :

(53)

In the last equation, we used En0;kz ¼ Enþ1;kz and �n;kz ¼
Enþ1;kz=ℏ. Introducing !n;kz ¼ En;kz=ℏ, we obtain

Â 1ðtÞn;n0 ¼ 1

2
eið�!n;kz��n;kz Þtð1þ �0ÞÂð0Þn;n0 ; (54)

Â 2ðtÞn;n0 ¼ 1

2
eið�!n;kzþ�n;kz Þtð1� �0ÞÂð0Þn;n0 : (55)

Thus, the matrix element of ÂðtÞn;n0 ¼ Â1ðtÞn;n0 þ
Â2ðtÞn;n0 is the sum of two terms, of which the first is

nonzero for �0 ¼ þ1, while the second is nonzero for
�0 ¼ �1. As shown in Appendix B, the matrix elements
obtained in Eqs. (54) and (55) are equal to the matrix

elements of the Heisengerg operator ÂðtÞn;n0 ¼
hnjei�tÂð0Þe�i�tjn0i.

For ÂþðtÞn0;n ¼ Âþ
1 ðtÞn0;n þ Âþ

2 ðtÞn0;n, we obtain in a

similar way

Âþ
1 ðtÞn0;n ¼

1

2
eiðþ�n;kz��!n;kz Þtð1þ �0ÞÂþð0Þn0;n; (56)

Âþ
2 ðtÞn0;n ¼

1

2
eið��n;kz��!n;kz Þtð1� �0ÞÂþð0Þn0;n: (57)

Formulas (54)–(57) describe the time evolution of the

matrix elements of ÂðtÞ and ÂþðtÞ calculated between

two eigenstates of �̂. The frequencies appearing in the
exponents are of the form ��n;kz �!n;kz ¼ �!nþ1;kz �
!n;kz . The intraband terms characterized by !c

n ¼
!nþ1;kz �!n;kz correspond to the cyclotron motion, while

the interband terms characterized by!Z
n ¼ !nþ1;kz þ!n;kz

describe ZB. Different values of �; �0 in the matrix

elements of Â1ðtÞn;n0 ;Â2ðtÞn0;n;Âþ
1 ðtÞn0;n;Âþ

2 ðtÞn0;n give
contributions either to the cyclotron or to the ZB motion.
In Appendix B, we tabulate the above matrix elements for
all combinations of �; �0. The exact compact results given

in Eqs. (54)–(57) indicate that our choice of ÂðtÞ and

ÂþðtÞ operators for the description of relativistic electrons
in a magnetic field was appropriate.
To complete the operator considerations of ZB we esti-

mate low-field and high-field limits of Ân;n0 ðtÞ. Consider
first the matrix element between two states of positive
energies and s ¼ �1. We take jni ¼ jn; kx; kz;þ1;�1i
and jn0i ¼ jnþ 1; kx; kz;þ1;�1i. Then,
ÂðtÞcn;n0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
eiðEn;kz�Enþ1;kz Þt=ℏ

� ðEn;kz þEnþ1;kzÞðEn;kz þmc2Þ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
En;kzEnþ1;kzðEn;kz þmc2ÞðEnþ1;kz þmc2Þ

q :

(58)

This equals Â1ðtÞn;n0 given in Eq. (54) because

Â2ðtÞn;n0 ¼ 0 for �0 ¼ þ1. At low magnetic fields, there is

Enþ1;kz � En;kz ¼
ℏ2!2

Enþ1;kz þ En;kz

’ ℏeB
m

� ℏ!c; (59)

where in the denominators we approximated En;kz ’
Enþ1;kz ’ mc2 and used ! ¼ ffiffiffi

2
p

c=L [see Eq. (6)].

Setting again En;kz ’ Enþ1;kz ’ mc2 in the numerator and

denominator of Eq. (58), we recover the well-known result
for the matrix elements of the lowering operator â in the
nonrelativistic limit

ÂðtÞn;n0 ’
ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
e�i!ct: (60)

Consider now the above state jni from the positive energy
branch and the state jn0i from the negative energy branch
jn0i ¼ jnþ 1; kz; kz;�1;�1i. Then, the matrix element is

ÂðtÞn;n0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
eiðEn;kzþEnþ1;kz Þt=ℏ

� ðEn;kz �Enþ1;kzÞðEn;kz þmc2Þ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
En;kzEnþ1;kzðEn;kz þmc2ÞðEnþ1;kz �mc2Þ

q :

(61)
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Assuming low magnetic fields and small k0z values, and
using the above approximations, we obtain

ÂðtÞZBn;n0 ’
ffiffiffiffiffiffiffiffiffiffiffi
ℏ!c

2mc2

s
e�2imc2t=ℏ: (62)

Since, at low magnetic fields, there is ℏ!c � mc2, the
amplitude of interband (Zitterbewegung) oscillations is
much lower than that of the cyclotron motion. At low
magnetic fields, both the amplitude and the frequency of
ZB do not depend on the quantum number n.

Let us consider now the opposite case of very strong
magnetic fields, when ℏ! � mc2 and ℏ! � ℏckz. Such
a situation is difficult to realize experimentally, since

the condition ℏ! ¼ mc2 corresponds to L ¼ ffiffiffi
2

p
�c, i.e.,

the magnetic length is of the order of the Compton wave-
length. Within this limit, En;kz ’ En ¼ ℏ!

ffiffiffi
n

p
, and the

matrix elements of ÂðtÞn;n0 for the cyclotron and ZB

components are

ÂðtÞn;n0 ¼ ð ffiffiffi
n

p � ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p Þei!ð ffiffinp 	 ffiffiffiffiffiffiffi
nþ1

p Þt; (63)

where the upper signs correspond to the cyclotron and the
lower ones to the ZB motion, respectively.

The conclusion from the above analysis is that at low
magnetic fields of a few tenths Tesla, the ZB amplitude
is eight orders of magnitude smaller than the cyclotron
amplitude. In fields of the order of 4:4� 109 T, the ZB
motion and cyclotron motion are of the same orders of
magnitude. This completes our derivation and analysis of
the operators describing electron motion in a magnetic
field according to the ‘‘empty’’ Dirac equation. However,
it is well known that observable quantities are given by
average values.

III. ZITTERBEWEGUNG: AVERAGE VALUES

In this section, we concentrate on observable quantities,
i.e., on electron positions and velocities averaged over a
wave packet fðrÞ. We analyze the one-electron Dirac equa-
tion, neglecting many-body effects. Our calculations are
first performed for a general form of fðrÞ and then speci-
alized for the Gaussian form of the packet.

A. Averaging procedure

We take a packet with one or two nonzero components,
i.e., fðrÞða1; a2; 0; 0ÞT with ja1j2 þ ja2j2 ¼ 1. According
to the procedure adopted in the previous section, we first

calculate the averages of ÂðtÞ and ÂþðtÞ operators and
then the position operators ŶðtÞ and X̂ðtÞ. We do not
consider multicomponent packets because they are diffi-
cult to prepare and their physical sense is not clear.

Averaging of operators ÂðtÞ and ÂþðtÞ can be per-
formed using formulas from Sec. II [see Eqs. (35)–(38)].
However, a simpler and more general method is to

average the Heisenberg time-dependent form ÂðtÞ ¼

ei�̂tÂð0Þe�i�̂t with the use of two unity operators

1̂ ¼ P
njnihnj. Then, the average of ÂðtÞ is

hÂðtÞi ¼ hfjÂðtÞjfi ¼ hfjeiĤt=ℏÂe�iĤt=ℏjfi
¼ X

nn0
ei�En;kz t=ℏe�i�0En0kz t=ℏhnjfihfjn0ihnjÂjn0i; (64)

and similarly for hÂþðtÞi. There is
X
nn0

) X
n;n0

X
��0

X
s;s0

Z
dkxdk

0
xdkzdk

0
z: (65)

The selection rules for the matrix elements hnjÂjn0i are
n0 ¼ nþ 1, k0x ¼ kx, k0z ¼ kz, while for hnjÂþjn0i
we have n0 ¼ n� 1, k0x ¼ kx, k

0
z ¼ kz. The wave packet

is assumed to be separable fðrÞ ¼ fzðzÞfxyðx; yÞ. Then, we
have

hnjfi ¼ 	n�kzgzðkzÞðs1a1Fn�1 þ s2a2FnÞ; (66)

where 	n�kz ¼ ð�En;kz þmc2ÞNn�kz , and

FnðkxÞ ¼ 1ffiffiffiffiffiffi
2L

p
Cn

Z 1

�1
gxyðkx; yÞe�ð1=2Þ�2

Hnð�Þdy; (67)

in which

gxyðkx; yÞ ¼ 1ffiffiffiffiffiffiffi
2�

p
Z 1

�1
fxyðx; yÞeikxxdx; (68)

and

gzðkzÞ ¼ 1ffiffiffiffiffiffiffi
2�

p
Z 1

�1
fzðzÞeikzzdz: (69)

To proceed further, we must specify nonzero components
a1, a2 of the wave packet. First, we limit our calculations to
a one-component packet with the nonzero second compo-
nent corresponding to the state with the spin sz ¼ �1=2.
Setting a1 ¼ 0, a2 ¼ 1, we obtain from Eq. (66): hnjfi ¼
s2	n�kzgzðkzÞFnðkzÞ. This gives

hÂðtÞi2;2 ¼ X
n;n0

Z 1

�1
dkzdk

0
zg



zðkzÞgzðk0zÞ

�X
�;�0

eið�En;kz��0En0kz Þt=ℏ	n�kz	n0�0k0z

�
Z 1

�1
dkxdk

0
xF



nðkxÞFn0 ðk0xÞ

X
s;s0

s2s
0
2hnjÂjn0i:

(70)

The upper indices in hÂðtÞi2;2 indicate the second nonzero
component of the wave packet involved. The matrix

element hnjÂjn0i2;2 has 10 nonzero terms. The summationP
s0ss2s

0
2hnjÂjn0i gives only three nonzero terms,

being the products of ðs2s02Þ2, since s1s2 ¼ s01s
0
2 ¼ 0.

Rearranging summations and integrations, we obtain
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hÂðtÞi2;2 ¼ X
n

Un;nþ1

ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p �
Z 1

�1
dkzjgzðkzÞj2

�X
�;�0

eið�En;kz��0Enþ1;kz Þt=ℏ � ½	2
n�kz

	2
nþ1�kz

þ 
n�kz
nþ1;�kzðc2p2
z þ ℏ2!2

nÞ�; (71)

where 
n�kz ¼ 	n�kzNn�kz . We define

Um;n ¼
Z 1

�1
F

mðkxÞFnðkxÞdkx: (72)

Since 	2
n�kz

¼ ð1=2Þ þ �mc2=ð2En;kzÞ, 
n�kz ¼ �=ð2En;kzÞ,
and E2

n;kz
¼ ðmc2Þ2 þ ðcpzÞ2 þ ðℏ!nÞ2, we have

hÂðtÞi2;2 ¼X
n

Un;nþ1

ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p �
Z 1

�1
dkzjgzðkzÞj2

�X
�;�0

eið�En;kz��0Enþ1;kz Þt=ℏ

� 1

4

�
1þ ��0

En;kz

Enþ1;kz

þmc2
�

�

En;kz

þ �0

Enþ1;kz

��
:

(73)

The summations over � and �0 lead to combinations of sine

and cosine functions. The calculation of hÂþðtÞi is similar

to that shown above, but the selection rules for hnjÂþjn0i
are n0 ¼ n� 1, k0x ¼ kx, k

0
z ¼ kz. Performing the summa-

tions, we finally obtain

hÂðtÞi2;2 ¼ 1

2

X
n

ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
Un;nþ1 � ðIþc þ I�c � iIþs � iI�s Þ;

(74)

hÂþðtÞi2;2 ¼ 1

2

X
n

ffiffiffiffiffiffiffiffiffiffiffi
nþ1

p
Unþ1;n�ðIþc þ I�c þ iIþs þ iI�s Þ;

(75)

where

I�c ¼
Z 1

�1

�
1� En;kz

Enþ1;kz

�
jgzðkzÞj2

� cos½ðEnþ1;kz 	 En;kzÞt=ℏ�dkz; (76)

I�s ¼ mc2
Z 1

�1

�
1

En;kz

� 1

Enþ1;kz

�
jgzðkzÞj2

� sin½ðEnþ1;kz 	 En;kzÞt=ℏ�dkz: (77)

Finally, average electron positions hŶðtÞi2;2 and hX̂ðtÞi2;2
for the 3þ 1Dirac equation in a vacuum are [see Eqs. (39),
(40), (74), and (75)]

hŶðtÞi2;2 ¼ L

2
ffiffiffi
2

p X
n

ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p �ðUn;nþ1 þUnþ1;nÞðIþc þ I�c Þ

þ k0xL
2; (78)

hX̂ðtÞi2;2 ¼ L

2
ffiffiffi
2

p X
n

ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p �ðUn;nþ1þUnþ1;nÞðIþs þ I�s Þ:

(79)

For a packet with the first nonzero component, we obtain
similar results. In both cases, there appear the same fre-
quencies, but they enter to the motion with different
amplitudes. This is illustrated in Fig. 7 of Sec. V for the

2þ 1 DE. The averages hŶðtÞi and hX̂ðtÞi are equal, up to
a constant y0 ¼ k0xL

2, to the averages of the usual position
operators hŷðtÞi and hx̂ðtÞi; see Appendix A.
Finally, we consider a two-component wave pac-

ket hrjfi ¼ fðrÞða1; a2; 0; 0ÞT with ja1j2 þ ja2j2 ¼ 1.
Defining f1 ¼ a1f and f2 ¼ a2f, we have

hf1 þ f2jÂðtÞjf1 þ f2i
¼ hf1jÂðtÞjf1i þ hf2jÂðtÞjf2i þ hf1jÂðtÞjf2i

þ hf2jÂðtÞjf1i; (80)

and similarly for hf1 þ f2jÂþðtÞjf1 þ f2i. The first two
terms were calculated above. The other two terms are

hÂðtÞi2;1 ¼ 1

2
a
2a1

X
n

Un;nðJþc þ J�c Þ; (81)

hÂþðtÞi1;2 ¼ 1

2
a
1a2

X
n

Un;nðJþ

c þ J�


c Þ; (82)

and hÂðtÞi1;2 ¼ hÂþðtÞi2;1 ¼ 0. We define

J�c ¼ �
Z 1

�1
cpzℏ!

En;kzEnþ1;kz

g
zðkzÞgzðkzÞ

� cos½ðEnþ1;kz 	 En;kzÞt=ℏ�dkz: (83)

The integrals J�c describe mixing of the states with differ-
ent components sz. Since J

�
c are odd functions of kz, they

vanish for the wave packet with k0z ¼ 0. Contributions
from these integrals are relevant only for magnetic fields
of the order of B ’ 5� 109 T, where the magnetic length
L is comparable to �c. The velocity of the packet in the z
direction vz ¼ ℏk0z=m must be comparable to c. At low
magnetic fields, the mixing terms are negligible.
All the above results were obtained for the 3þ 1 DE. A

reduction to the 2þ 1 DE is obtained by setting jgðkzÞj2 ¼
�ðkzÞ in Eqs. (76) and (77) and performing integrations

over kz. Below, we quote final results for hŶðtÞi2;2 and

hX̂ðtÞi2;2 for the latter case
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hŶðtÞi2;2 ¼ L

2
ffiffiffi
2

p X
n

ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p ðUn;nþ1 þUnþ1;nÞ
��
1þ En

Enþ1

�
cosð!c

ntÞ þ
�
1� En

Enþ1

�
cosð!Z

ntÞ
�
þ k0xL

2; (84)

hX̂ðtÞi2;2 ¼ L

2
ffiffiffi
2

p X
n

ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p ðUn;nþ1 þUnþ1;nÞ
��
mc2

En

þ mc2

Enþ1

�
sinð!c

ntÞ þ
�
mc2

En

� mc2

Enþ1

�
sinð!Z

ntÞ
�
: (85)

In the above equations, we used the notation En �
En;kz¼0; !c

n ¼ ðEnþ1 � EnÞ=ℏ, and !Z
n ¼ ðEnþ1 þ

EnÞ=ℏ. For the 2þ 1 DE, the final expressions for
hŶðtÞi2;2 and hX̂ðtÞi2;2 are given in the form of infinite
sums, while for the 3þ 1 DE they are given by infinite
sums and integrals over kz. As is known from the Riemann-
Lesbegues theorem (see Ref. [13]), the kz integrals over
rapidly oscillating functions of time, appearing in Eqs. (76)
and (77), decay to zero after sufficiently long times.
Therefore, the packet motion for the 3þ 1 DE has a
transient character, while that for the 2þ 1 DE is persis-
tent. Transient and persistent ZB motions in the two cases
are illustrated in Fig. 8 of Sec. V.

B. Gaussian wave packet

We perform specific calculations for one- or two-
component wave packets, taking the function fðrÞ in the
form of an ellipsoidal Gaussian packet characterized by
three widths dx, dy, dz and having a nonzero momentum

ℏk0 ¼ ℏðk0x; 0; k0zÞ:

fðrÞ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3dxdydz

q exp

�
� x2

2d2x
� y2

2d2y
� z2

2d2z
þ ik0r

�
: (86)

The wave packet is multiplied by a four-component Dirac
spinor ða1; a2; 0; 0ÞT . Using the definitions of gxyðkx; yÞ,
FnðkxÞ, and Um;n, we obtain (see Refs. [14,15])

gxyðkx; yÞ ¼
ffiffiffiffiffiffiffiffiffi
dx
�dy

s
e�ð1=2Þd2xðkx�k0xÞ2e�ððy2Þ=ð2d2yÞÞ (87)

and

FnðkxÞ ¼ An

ffiffiffiffiffiffiffiffiffi
Ldx

p
ffiffiffiffiffiffiffiffiffiffiffi
2�dy

p
Cn

e�ð1=2Þd2xðkx�k0xÞ2e�ð1=2Þk2xD2
Hnð�kxcÞ;

(88)

where D ¼ L2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ d2y

q
, c ¼ L3=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L4 � d4y

q
, and

An ¼
ffiffiffiffiffiffiffi
2�

p
dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2 þ d2y

q �
L2 � d2y

L2 þ d2y

�
n=2

; (89)

Um;n ¼ A

mAnLQdx

ffiffiffiffi
�

p
e�W2

�CmCndy

Xminfm;ng

l¼0

2ll!
m

l

 !
n

l

 !

� ðð1� ðcQÞ2Þðmþn�2lÞ=2Hmþn�2l

� �cQYffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðcQÞ2p �

;

(90)

in which Q ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2x þD2

p
, W ¼ dxDQk0x, and Y ¼

d2xk0xQ. For the special case of dy ¼ L, the formula for

Um;n is much simpler:

Um;n ¼ 2

ffiffiffiffi
�

p ð�iÞmþndx
CmCnL

�
L

2P

�
mþnþ1

� exp

�
� d2xk

2
0xL

2

2P2

�
Hmþn

��id2xk0x
P

�
; (91)

where P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2x þ 1

2L
2

q
. In the above expressions, the

coefficients Um;n are real numbers and they are symmetric

in m; n indices. For further discussion of Um;n, see

Appendix C and Ref. [14].
The coefficients Um;n given in Eqs. (90) and (91), apart

from the kz dependent parts of the integrals I�c and I�s ,
describe the amplitudes of oscillation terms. In the special
case of n ¼ m, they are the probabilities of the expansion

of a packet fðrÞ in eigenstates of the Hamiltonian Ĥ ¼
ðℏ2=2mÞðp̂� eAÞ2 of an electron in a uniform magnetic
field. This ensures that all Un;n are non-negative and nor-

malized to unity, so that in practice there is a finite number
of non-negligible Un;n coefficients. There is also a sum-

mation rule for
ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
Unþ1;n; see Appendix C, which

reduces the number of non-negligible coefficients Unþ1;n.

A finite number of non-negligible coefficients Un;m limits

the number of frequencies contributing to the cyclotron and
ZB motions. Simpler formula (91) for Um;n shows that the

coefficients Un;nþ1 are relevant if all the quantities dx, dy,

k�1
0x , and the magnetic length L are of the same order of

magnitude. The remaining parameters, i.e., dz and k0z, can
be arbitrary with only the requirement that the total initial
packet velocity jv0j ¼ ℏjk0j=m must be smaller than c,

which is equivalent to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20x þ k20z

q
< ��1

c . Because of

the x-y symmetry of our problem, it is natural to take
dx � dy. In our calculations, we keep dx � dy � dz,

but they do not have to be equal. Because a constant
magnetic field does not create electron-hole pairs, there
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is no restriction on B, and the magnetic length L can be
arbitrarily small.

Before presenting numerical calculations for the motion
of a wave packet in a magnetic field, we analyze qualita-
tively possible regimes of parameters for realistic physical
situations. This problem has two characteristic lengths:

the Compton wavelength �c ¼ 3:86� 10�3 �A and the
magnetic length L. For a magnetic field B ¼ 40 T,

there is L ¼ 40:6 �A. The magnetic length is equal to �c

for B ¼ 4:4� 109 T. We then distinguish two regimes of
parameters: i) the low-field limit, in which packet widths
dx, dy, k

�1
0x , and the magnetic length L are of the order of

nanometers, and ii) the relativistic regime, in which all
quantities dx, dy, k

�1
0x , and L are of the order of �c.

C. Low magnetic fields

At low magnetic fields, the electron moves on a circular
orbit with the frequency !c ¼ eB=m and the radius r ¼
mv=eB. The aim of this subsection is to retrieve the non-
relativistic cyclotron motion from the general formulas in
Eqs. (78) and (79). Additionally, we show that ZB exists
even at low magnetic fields but its amplitude is much
smaller than �c.

At low magnetic fields, we approximate En;kz ’ mc2 and

Enþ1;kz � En;kz ’ ℏ!c. Then, I
�
c and I�s in Eqs. (76) and

(77) reduce to

I�c ¼ 2 cosð!ctÞ
Z 1

�1
jgzðkzÞj2dkz; (92)

I�s ¼ 2 sinð!ctÞ
Z 1

�1
jgzðkzÞj2dkz; (93)

and they do not depend on n. The integrals over kz give
unity due to the normalization of the wave packet. The
summation over n in Eqs. (78) and (79) is performed with
the use of the formula (see Appendix C)

X1
n¼1

ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
Unþ1;n ¼ � 1ffiffiffi

2
p k0xL: (94)

We find

hyðtÞi ’ �k0xL
2 cosð!ctÞ þ k0xL

2; (95)

hxðtÞi ’ �k0xL
2 sinð!ctÞ: (96)

Since L2 ¼ ℏ=eB and v0x ¼ ℏk0x=m, we obtain k0xL
2 ¼

mv0x=eB, which is equal to the radius of the cyclotron
motion. Taking the time derivative of hyðtÞi and hxðtÞi and
using definitions of L and !c, we have

hvyðtÞi ’ ℏk0x
m

sinð!ctÞ; (97)

hvxðtÞi ’ �ℏk0x
m

cosð!ctÞ: (98)

Thus, we recover the cyclotron motion of a nonrelativistic
electron in a constant magnetic field.
Now, we turn to the ZB motion. At the low-field limit,

we again separate the integration over kz from the summa-
tion over n. The integration over kz selects kz ’ 0, so the
amplitude D of the ZB motion is [see Eq. (78)]

D ’ L

2
ffiffiffi
2

p
�
1� En;0

Enþ1;0

�X
n

ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p ðUnþ1;n þUn;nþ1Þ

’ L

2
ffiffiffi
2

p � ℏ2!2

2m2c4
� 2k0xLffiffiffi

2
p ¼ 1

2
�cðk0x�cÞ: (99)

Thus, at low magnetic fields, the amplitude of the ZB
motion is a small fraction of �c, since k0x�c � 1. This
agrees with the old predictions of Lock in Ref. [13]. An
interesting feature of ZB motion at low magnetic fields is

its slow decay in time, proportional to t�1=2. A similar

decay of ZB proportional to t�1=2 was also predicted for a
one-dimensional electron Zitterbewegung in carbon nano-
tubes [16]. To understand this behavior, we consider the
integral Iþc ðtÞ in Eq. (76). Retaining only the cosine func-
tion and taking a Gaussian wave packet, we obtain

Iþc ðtÞ ’D0Z 1

�1
cos½ðEnþ1;kz þEn;kzÞt=h�e�d2zk

2
z dkz; (100)

where D0 is a constant independent of kz and proportional
to D, as given in Eq. (99). Expanding the energy En;kz in

Eq. (43) to the lowest terms in kz, we have

Iþc ðtÞ ’ D0 Z 1

�1
cos

�
ð2þ k2z�

2
cÞmc2t

ℏ

�
e�d2zk

2
z dkz: (101)

The direct integration gives

Iþc ðtÞ ’ D0 FoscðtÞ
½d4z þ ðℏt=mÞ2�1=4 ; (102)

where FoscðtÞ is a function oscillating with the frequency
! ¼ 2mc2=ℏ and having the amplitude of the order of

unity. Therefore, the ZB oscillations decay as t�1=2, and
they persist even at times of picoseconds. This is illustrated
in Fig. 4 of Sec. IV.

IV. RESULTS: 3þ 1 DIRAC EQUATION

We present our results for the 3þ 1 Dirac equation in a
vacuum, beginning with the relativistic limit for a wave
packet with the second nonzero component. The average

packet positions ŶðtÞ and X̂ðtÞ, given by Eqs. (78) and (79),
are calculated computing numerically the coefficientsUm;n

[see Eqs. (90) and (91)]. In our calculations, we use the
first n ¼ 400 Hermite polynomials. For each set of
parameters L; dx; dy; k0x, we check the summation rules

for Un;n and
ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
Unþ1;n; see Appendix C. With the

numerical procedures we use, these rules are fulfilled
with the accuracy of ten or more digits. In Fig. 1, we
plot the electron positions calculated for the first 200tc ’
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0:25 attoseconds of motion for various packet parameters.
The time scale is in units tc ¼ ℏ=mc2 ¼ 1:29� 10�21 s.
We chose magnetic field B ¼ 4:4� 109 T and an elliptic
wave packet with k0x ¼ 0:998��1

c and k0z ¼ 0. It is seen
that the ZB oscillations consist of several frequencies. This
is the main effect of an external magnetic field, which
quantizes both positive and negative electron energies
into the Landau levels. At larger times, the oscillations in
the 3þ 1 space go through decays and revivals, but finally
disappear. Thus, the motion of electrons shown in Fig. 1
has a transient character in which several incommensu-
rable frequencies appear. The calculated motion is a com-
bination of the intraband (cyclotron) and interband (ZB)
components. In the relativistic regime, the components
have comparable amplitudes. The character of motion,
number of oscillations in the indicated time interval, and
the decay times strongly depend on the packet’s parame-
ters. For Fig. 1(c), we chose the packet width dy ¼ 4:8�c.

The number of oscillations is then reduced compared to
Figs. 1(a) and 1(b). This confirms a previous observation
(see Ref. [14]) that the packet parameters have to be care-
fully selected for ZB to be observable. In contrast to the
low-field limit, in the high-field regime the amplitudes of
ZB are of the order of �c.

Motion of nonrelativistic electrons in the z direction,
parallel to the magnetic field, is independent of the circular
motion in x-y plane. However, the motion of relativistic

electrons in the z direction is coupled to the in-plane
motion. To analyze this effect, we calculated positions of
the relativistic wave packet with a nonzero initial velocity
assuming k0 ¼ ðk0x; 0; k0zÞ with the constraint jk0j< ��1

c .
In Fig. 2, we show the calculated packet motion with
fixed k0x ¼ 0:673��1

c and various values of k0z for B ¼
4:4� 109 T. As seen in Figs. 2(a)–2(c), the existence of
nonzero k0z component reduces the number of oscillations
in the cyclotron and ZB motions. Increasing k0z leads to
a faster decay of the motion. The maximum initial ampli-
tudes of oscillations do not depend on k0z, but the ampli-
tudes at larger times decrease with increasing k0z.
To visualize the gradual transition from the nonrelativ-

istic to the relativistic regime, we plot in Fig. 3 the packet
trajectories for four values of magnetic field. In all cases,
the packet parameters are chosen in a systematic way,
keeping constant values of the products: Lk0x ¼ 0:47,
dxk0x ¼ 0:632, dyk0x ¼ 0:569, and dzk0x ¼ 0:474. For

B ¼ 2� 107 T, the trajectories of electron motion are
still circular, as at low magnetic fields. When the field is
increased to B ¼ 2� 108 T, the trajectories are deformed
into slowly decaying spirals. At very high fields B ¼
2� 109 T and B ¼ 2� 1010 T, the trajectories are de-
scribed by fast-decaying spirals. The amplitude of motion
decreases with increasing field, which is caused by the
decrease of magnetic length L.
Finally, in Fig. 4, we plot the ZB part of motion at the

low magnetic field B ¼ 20 T in two scales of time. The

amplitude of ZB motion is D ¼ 6:5� 10�8 �A, which

FIG. 2. Calculated motion of wave packet with the second
nonzero component and nonzero velocity in the z direction.
Packet parameters aredx ¼ 2:0�c, dy ¼ 1:8�c, dz ¼ 1:5�c,

k0x ¼ 0:673��1
c .

FIG. 1. Calculated motion of wave packet with the second
nonzero component during first 200 tc ’ 0:25 attoseconds of
motion for various wave packet parameters. The magnetic field
corresponds to L ¼ �c. Packet parameters are dx ¼ 1:5�c,
dz ¼ 1:8�c, k0x ¼ 0:998��1

c , k0z ¼ 0. Time scale is in tc ¼
ℏ=ðmc2Þ ¼ 1:29� 10�21 s units, while position is in �c ¼
ℏ=ðmcÞ ¼ 3:86� 10�13 m units.
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agrees well with its estimation given in Eq. (99). In
Fig. 4(a), we observe a slow decay of oscillations with its

envelope decaying as t�1=2. In Fig. 4(b), we show rapid
ZB oscillations with the frequency !Z ¼ 2mc2=ℏ ¼
7:76� 1020 s�1. The ZB oscillations exist even, at times,
of the order of picoseconds.
Generally, the ZB effects are observable in magnetic

fields of the order of 4:4� 109 T for wave packets moving
with an initial velocity close to c. These packets should
have width of the order of �c. It is not possible to fulfill all
these requirements using currently available experimental
techniques. In addition, the predicted amplitudes of the ZB
motion are of the order of �c, which makes their experi-
mental detection extremely difficult. However, there exists
now a very powerful experimental possibility to simulate
the Dirac equation and its consequences. We explore this
possibility in the section below.

V. SIMULATIONS BY TRAPPED IONS

The main experimental problem in investigating the
ZB phenomenon in an external magnetic field is the fact
that, for free relativistic electrons in a vacuum, the basic
ZB (interband) frequency corresponds to the energy
ℏ!Z ’ 1 MeV, whereas the cyclotron energy for a mag-
netic field of 100 T is ℏ!c ’ 0:01 eV. Thus, the magnetic
effects in ZB are very small. However, it is now possible to
simulate the Dirac equation, changing at the same time its
basic parameters. This gives us the possibility of strongly
modifying the critical ratio ℏ!c=2mc2, making it more
advantageous. In the following, we propose how to simu-
late the 3þ 1 and 2þ 1 DEs in the presence of a magnetic
field using trapped ions and laser excitations.
First, we transform the DE to the off-diagonal form

Ĥ 0 ¼ c
X
i

�ip̂i þ �mc2; (103)

using the unitary operator P̂ ¼ �ð�þ �Þ= ffiffiffi
2

p
, where � ¼

�x�y�z� [17]. After the transformation, the Hamiltonian

is Ĥ
0 ¼ 0 Ĥ0

Ĥ0y 0

 !
, where

Ĥ 0 ¼ cp̂z � imc2 cp̂x � ℏ!ây
cp̂x � ℏ!âþy �cp̂z � imc2

 !
; (104)

and ây and âþy are given in Eq. (4).

Next, we use the procedures developed earlier and con-
sider a four-level system of Ca or Mg trapped ions [18–20].
Simulations of cpx and cpz terms in the above Hamiltonian
are carried out the same way as for free Dirac particles
using pairs of the Jaynes-Cummings (JC) interactions

Ĥ
�r

JC ¼ ℏ
 ~�ð�þâei�r þ ��âþe�i�rÞ; (105)

and the anti–Jaynes-Cummings (AJC) interactions

FIG. 4. Calculated ZB components of electron motion in a
magnetic field in two very different time scales. Packet parame-
ters are dx ¼ 20 000�c, dy ¼ 18 000�c, dz ¼ 15 000�c, k0x ¼
0:5L�1 ¼ 8:72� 107 m�1, k0z ¼ 0. The ZB oscillations decay
as t�1=2, but they have very small amplitudes. Note the collapse-
and-revival character of ZB oscillations.

FIG. 3. Trajectories of wave packets with the second nonzero
component for 3þ 1 Dirac equation in various magnetic
fields. Packet parameters are dx ¼ 0:632ðBb=BÞ0:5�c, dy ¼
0:569ðBb=BÞ0:5�c, dz ¼ 0:474ðBb=BÞ0:5�c, k0z ¼ 0, k0x ¼
0:999ðB=BbÞ0:5��1

c , where Bb ¼ 2� 1010 T. The products
Lk0x, dxk0x, dyk0x, and dzk0x are the same for all figures. In

all cases the packet motion is transient, but for lower magnetic
fields the decay of oscillations is slow.
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Ĥ
�b

AJC ¼ ℏ
 ~�ð�þâþei�b þ ��âe�i�bÞ: (106)

A simulation of mc2 is done by the so-called carrier
interaction

Ĥ c ¼ ℏ�ð�þei�c þ ��e�i�cÞ: (107)

Here, � and ~� are coupling strengths and 
 is the Lamb-
Dicke parameter [18]. The operators â and âþ are lowering
and raising operators of the one-dimensional harmonic
oscillator, respectively. These operators can be associated
with the three normal trap frequencies and, therefore, with
the motion along the three trap axes. Setting pairs of lasers
beams in the x, y, and z directions, it is possible to simulate
the lowering and raising operators along these directions,
respectively. As an example of this procedure, one selects a
pair of JC and AJC interactions in the x direction, adjusting
their phases �r ¼ ��=2 and �b ¼ þ�=2. This way, one

can simulate the 2� 2 Hamiltonian Ĥpx
�x

¼ Ĥ�r

JC þ Ĥ�r

JC to

get

Ĥ
px
�x

¼ iℏ
 ~��xðâþx � âþx Þ ¼ 2
q
~��x�xpx; (108)

where px ¼ iℏðâþx � âxÞ=�x. Using this technique, the px

and pz-dependent parts of the Dirac Hamiltonian (104) can
be simulated by appropriate combinations of JC and AJC
interactions. On the other hand, a simulation of ây and âþy
operators (which include the magnetic field) can be done
by single JC or AJC interactions. Using the notation
of Refs. [18–20], one simulates the complete 3þ 1

Hamiltonian Ĥ
0
by the following set of excitations:

Ĥ
0
ion ¼ Ĥpx

�xðadÞ þ Ĥpx

�xðbcÞ þ Ĥ�r¼�
JCðadÞ þ Ĥ�b¼�

AJCðbcÞ
þ Ĥ

pz

�xðacÞ � Ĥ
pz

�xðbdÞ þ Ĥc
�yðacÞ þ Ĥc

�yðbdÞ; (109)

where Ĥ
pq
�j

¼ 2
q
~��j�qpq, pq ¼ iℏðâþq � âqÞ=�q,

j; q ¼ x; z. The subscripts in parentheses of Eq. (109)
symbolize states involved in the transition in question.

The spread of the ground ion wave function is �q ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2M�q

q
and the Lamb-Dicke parameter is 
q ¼

k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2M�q

q
, where M is the ion’s mass, �q is the trap’s

frequency in the q direction, and k is the wave vector of the

driving field in a trap. The JC interaction gives ây in Ĥ0
12

and âþy in Ĥ0y
21 elements of the Hamiltonian Ĥ0, respec-

tively, in Eq. (104), while AJC gives ây in Ĥ0
21 and âþy in

Ĥ0y
12 elements, respectively. A simulation of the 3þ 1 DE

by Eq. (109) can be realized with twelve pairs of laser
excitations: two pairs for each of the four interactions
simulating px and pz terms and one pair for each of the
four remaining terms. If one omits the pz interaction,
which corresponds to the 2þ 1 DE, one needs eight pairs
of laser excitations: two pairs for the px terms and one pair
for the each of four remaining terms. Simulated magnetic
field intensity can be found from the following correspon-

dence (see Ref. [18]): ây � âþy ¼ ffiffiffi
2

p
Lð@=@yÞ ¼

2�ð@=@yÞ, which gives L=
ffiffiffi
2

p , �, where �x ¼ �y ¼
�z ¼ �. Since the other simulations are c , 2
�~� and
mc2 , ℏ�, we have for the critical ratio

 ¼ ℏeB
mð2mc2Þ ,


 ~�

�

 !
2

: (110)

Therefore, by adjusting the frequencies � and ~�,
one simulates different values of  ¼ ℏ!c=2mc2. This
illustrates the fundamental advantage of simulations by
trapped ions.
In Fig. 5, we show the calculated Zitterbewegung

for three values of : 16.65, 1.05, 0.116, using a

two-component electron wave packet hrjfi ¼ fðrÞ�
ð ffiffiffi

2
p

=2;
ffiffiffi
2

p
=2; 0; 0Þ. The electron motion is a combination

of hŶi1;1ðtÞ, hŶi2;2ðtÞ, hŶi1;1ðtÞ, and hX̂i2;2ðtÞ components.

There are no mixing terms of the form hŶi1;2ðtÞ, etc., since
they vanish for the 2þ 1 DE due to their proportionality to
pz [see Eq. (83)]. The essential feature of the simulated
characteristics is their low frequency and large amplitude
of ZB. Further, it is seen that, as  gets larger (i.e., the field
intensity increases or the effective gap decreases), the
frequency spectrum of ZB becomes richer. This means
that more interband and intraband frequencies contribute

FIG. 5. Calculated motion of two-component wave packet
simulated by trapped 40Caþ ions for three values of effective
rest energies ℏ�. Trap parameters are 
 ¼ 0:06, ~� ¼ 2��
68 kHz, � ’ 96 �A; packet parameters are k0x ¼ ��1, dy ¼
�

ffiffiffi
2

p
, dx ¼ 0:9dy. Simulations correspond to  ¼ ℏ!c=2mc2 ¼

16:65 (a), 0.26 (b), 0.116 (c), respectively. Positions are given in
L ¼ ffiffiffi

2
p

� units. Oscillations do not decay in time.
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to the spectrum. Both types of frequencies correspond
to the selection rules n0 ¼ n� 1. Thus, for example, one
deals with ZB (interband) energies between the Landau
levels n ¼ 0 and n0 ¼ 1, and n ¼ 1 and n0 ¼ 0, as the
strongest contributions. For simulated high magnetic
fields corresponding to  � 1, the interband and intraband
components are comparable and one can legitimately
talk about ZB. We believe that the ZB oscillations of the
type shown in Fig. 5(a), resulting from the 2þ 1 DE for
 ¼ ℏ!c=2mc2 > 1, are the best candidate for an obser-
vation of the simulated trembling motion in the presence of
a magnetic field. The calculated spectra use the trap and
wave packet parameters already realized experimentally;
see Ref. [6]. We emphasize the tremendous differences of
the position scales between the results for free electrons in
a vacuum, shown in Fig. 1, and the simulated ones shown
in Fig. 5. The anisotropy of ZB with respect to hxðtÞi
and hyðtÞi components, seen in Figs. 1 and 5, is due to
the initial conditions, namely k0x � 0 and k0y ¼ 0. A

similar anisotropy was predicted in the zero-gap situation
in graphene [14].

In Fig. 6, we show the results of our calculations for
different ℏ�, simulating effective values of 2mc2, at a
constant simulated magnetic field. Packet parameters are
the same as in Fig. 5. The results are shown for initial

time intervals of the motion. In the nonrelativistic limit
illustrated in Fig. 6(a), the motion is completely domi-
nated by the intraband frequencies and it represents a
cyclotron orbit. As the gap decreases, the motion is more
relativistic and the circular trajectories turn into spirals.
Simultaneously, the interband Zitterbewegung frequencies
come into play. In highly relativistic regimes (low values of
ℏ�), the trajectories look chaotic. However, the motion is
not chaotic; it consists of a finite number of well-defined
but incommensurable frequencies. The illustrated motion
of the wave packet for the 2þ 1 DE is persistent; its
amplitude experiences infinite series of collapse-and-
revival cycles. In the relativistic regime, the motion is
somewhat anisotropic with respect to the x and y direc-
tions, which is related to the initial conditions k0 ¼
ðk0x; 0Þ. This phenomenon has an analogy in the field-
free case for the relativistic regime, where the ZB oscil-
lations occur in the direction perpendicular to the initial
packet velocity [16,21].
In Fig. 7, we analyze ZB of the one-component packets

having a nonvanishing first or second component.
Interestingly, they look distinctly different, and the x parts
of the motion have different limits for mc2 ! 0 (i.e., for
very small energy gaps ℏ�). The y components of motion
are comparable in both cases, but the x components differ
substantially.

FIG. 6. Trajectories of electron wave packet in a constant
magnetic field for various simulated rest energies ℏ�, as calcu-
lated for 2þ 1 Dirac equation. Trap and packet parameters are
the same as in Fig. 5. Positions are given in magnetic radius L.
In the nonrelativistic limit (a), the ZB is practically absent. As
the rest energy decreases, the motion becomes more relativistic
and the ZB (interband) frequency components become stronger.
The ratio  defined in Eq. (110) is (a) 0.0018, (b) 0.029,
(c) 0.116, (d) 1.05.

FIG. 7. Simulated ZB motion of one-component packets in the
regime  � 1. Simulated gap frequency is� ¼ 2�� 1000 Hz;
other trap and packet parameters are as in Fig. 5. Upper part:
packet with the first nonzero component; lower part: packet with
the second nonzero component. Note largely different magni-
tudes of the x oscillations in the two cases.
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In all the figures presented above, we showed the packet
motion in short time spans. In Fig. 8, we analyze the
long-time packet evolution according to the simulated
3þ 1 and 2þ 1 Dirac equations. In both cases, the
collapse-and-revival cycles occur. However, the motion
according to the 3þ 1 Dirac equation is decaying in
time, while the oscillations in the 2þ 1 case are persistent
in time.

VI. DISCUSSION

We briefly summarize the important new effects brought
to ZB by an external magnetic field: (1) The quantization
of the spectrum for positive and negative electron energies
results in numerous interband frequencies contributing to
ZB, (2) the presence of B introduces an important new
parameter into the phenomenon of ZB affecting all the
frequencies, (3) the presence of intraband frequencies
raises the question of what should be and what should
not be called ZB. In our opinion, the interband frequencies
are the signature of ZBwhile the intraband frequencies (the
cyclotron resonance in our case) are not, (4) The presence
of B ‘‘stabilizes’’ ZB in the 2þ 1 case, making it a sta-
tionary phenomenon, not decaying in time. The last feature
is related to the fact that the magnetic field is represented
by a quadratic potential and, as is well known, the wave
packet in a parabolic potential is not spreading in time.

However, a slow decay of ZB in time might occur if the
trembling electron emits radiation. This does not occur if
the electron is in its eigenstate, but it will happen if the
electron is prepared in the form of a wave packet, because
the latter contains numerous eigenstates of the electron in
a magnetic field [see Eq. (42)]. The emitted radiation can
have multipole character depending on the electron energy
[22–24]; it may also be due to spontaneous radiative
transitions between various Landau levels in the strictly
quantum limit. Finally, in the classical limit of very high
electron energies, one may deal with the synchrotron
radiation, radiative damping, etc., but this limit is beyond
the scope of our paper. Also, a broadening of Landau levels
due to external perturbations results in a transient character
of ZB, cf. Ref. [25].
The time-dependent electron motion, as obtained in the

operator form [see Eqs. (39) and (40)], is described by four
operators. We show in Appendix E that these operators
have different limits for low magnetic fields. However, all
of them contain both interband and intraband frequencies.
Thus, in both operator and average formulations, the
cyclotron and trembling motion components are mixed.
The method of direct averaging of operators in the
Heisenberg form, used in Sec. III, is simpler than that of

averaging the explicit forms of Â and Âþ
, as derived in

Sec. II, since it does not require the detailed knowledge of
these operators. The main disadvantage of the direct aver-
aging is that it obscures the detailed structure of electron
motion shown in Eqs. (39) and (40).
In our considerations, we used one-component and

two-component wave packets and showed that the charac-
ter of ZB oscillations in the two cases is similar, but
not identical. Calculations for three- and four-component
packets, although possible, are much more complicated
and do not introduce anything new at the physical level.
High magnetic fields for relativistic electrons in a vac-

uum are often characterized by the so-called Schwinger
critical field Bcr for which ℏeB=m ¼ mc2 or, equivalently,

L ¼ ðℏ=eBÞ1=2 ¼ ℏ=mc ¼ �c. This corresponds to the
gigantic field Bcr ¼ 4:4� 109 T existing only in the vicin-
ity of neutron stars. However, in simulating the analogous
situations in semiconductors [26] or by trapped ions [6],
the corresponding critical fields are not high and they
depend on parameters of the system in question. We em-
phasize that our results are not limited by any particular
value of B, and they describe both weak and high-field
limits.
As mentioned in Sec. I, the initial Dirac equation (1) and

our resulting calculations, as well as the simulations based
on trapped ions, represent the ‘‘empty’’ Dirac Hamiltonian
which does not take into account the ‘‘Fermi sea’’ of
electrons in a vacuum having negative energies. This
one-electron model follows Schrödinger’s original consid-
erations. The phenomenon of electron ZB in a vacuum is
commonly interpreted as resulting from an interference of

FIG. 8. Collapse-and-revival cycles of packet motion for simu-
lations using 3þ 1 DE (a) and 2þ 1 DE (b). Packet parameters
are dx ¼ dy ¼ dz ¼ L, k0x ¼ ��1. Trap parameters are as in

Fig. 5, simulated gap frequency is � ¼ 2�� 12 000 Hz. Note
transient character of motion for the 3þ 1 DE and persistent
oscillations for the 2þ 1 DE. In both cases, the collapse-and-
revival cycles appear.
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electron states corresponding to positive and negative elec-
tron energies. The characteristic interband frequency of ZB
is a direct consequence of this feature. The initial electron
wave packet must contain these positive and negative
energy components. It may be difficult to prepare such a
packet if all negative energies are occupied. Moreover, the
fully occupied negative energies may prevent the interfer-
ence (and hence ZB) to occur; see Refs. [5,27]. What
happens when an electron-positron hole pair is created by
a gamma quantum has been a matter of controversy [28].
On the other hand, a system with negative electron energies
can be relatively easily created in semiconductors; see
Ref. [26]. It should be mentioned that an external magnetic
field does not create by itself the electron-positron pairs.
We emphasize again that our present calculations and the
experimental simulation of Ref. [6] are realized for the
one-electron Dirac equation for which ZB certainly exists.

Bermudez et al. [9] treated the problem of time-
dependent relativistic Landau states by mapping the rela-
tivistic model of electrons in a magnetic field onto a
combination of the Jaynes-Cummings and anti-Jaynes-
Cummings interactions known from quantum optics. For
simplicity, the pz ¼ 0 restriction was assumed. Three
regimes of high (macroscopic), small (microscopic), and
intermediate (mesoscopic) Landau quantum numbers n
were considered. In all the cases, one interband frequency
contributed to the Zitterbewegung because the authors did
not use a Gaussian wave packet to calculate average values.

Our exact calculations of Zitterbewegung of relativistic
electrons in a vacuum in the presence of a magnetic field
and its simulation by trapped ions are in close relation with
the proof-of-principle experiment of Gerritsma et al. [6],
which simulated the 1þ 1Dirac equation and the resulting
electron ZB in absence of magnetic field. Our results show
that, paradoxically, the simulation of the DE with a mag-
netic field is simpler than that without the field. However,
there is a price to pay: one needs at least the 2þ 1 DE to
describe the magnetic motion, since B parallel z couples
the electron motion in x and y directions.

VII. SUMMARY

In summary, we treated the problem of electron
Zitterbewegung in the presence of a magnetic field in three
ways. First, we carried calculations at the operator level,
deriving from the one-electron Dirac equation the exact
and analytical time-dependent equations of motion for
appropriate operators and, finally, for the electron trajec-
tory. It turned out that, in the presence of a magnetic field,
the electron motion contains both intraband and interband
frequency components, which we identified as the cyclo-
tron motion and the trembling motion (ZB), respectively.
Next, we described the same problem using averages of the
Heisenberg time-dependent operators over Gaussian wave
packets in order to obtain physical quantities directly com-
parable to possible experimental verifications. We found

that, in addition to the usual problems with the very
high frequency and very small amplitude of electron
Zitterbewegung in a vacuum, the effects of a magnetic
field achievable in terrestrial conditions on ZB are very
small. In view of this, we simulated the Dirac equation with
the use of trapped atomic ions and laser excitations in order
to achieve more favorable ratios of ðℏeB=mÞ=ð2mc2Þ than
those achievable in a vacuum, in the spirit of recently
realized experimental simulations of the 1þ 1 Dirac equa-
tion and the resulting electron Zitterbewegung. Various
characteristics of the relativistic electron motion were
investigated, and we found that the influence of a simulated
magnetic field on ZB is considerable and certainly observ-
able. It was shown that the 3þ 1 Dirac equation describes
decaying ZB oscillations, while the 2þ 1 Dirac equation
describes stationary ZB oscillations. We hope that our
theoretical predictions will prompt experimental simula-
tions of electron Zitterbewegung in the presence of a
magnetic field.

APPENDIX A

In this Appendix, we briefly summarize the similarities

and differences between operators Ŷ and X̂, as defined in
Eqs. (9) and (10), and the position operators ŷ and x̂. The

operators Ŷ ¼ ðL= ffiffiffi
2

p Þðâþ âþÞdiagð1; 1; 1; 1Þ and X̂ ¼
ðL=i ffiffiffi

2
p Þðâ� âþÞdiagð1; 1; 1; 1Þ are 4� 4 noncommuting

matrices: ½X̂; Ŷ� ¼ 1, while the position operators ŷ, x̂

obviously commute. However, the matrix elements of Ŷ
and X̂ between states jni and jn0i, given in Eq. (42), are
equal (up to a constant y0 ¼ kxL

2), to the matrix elements
of ŷ, x̂ between the same states.
As an example of this property, we calculate the matrix

elements of Ŷ, X̂, ŷ, x̂ at t ¼ 0 between two states jni ¼
jn; kx; kz; �;�1i and jn0i ¼ jn0; k0x; k0z; �0;�1i given in
Eq. (42). We have

hnjŶjn0i ¼ Lffiffiffi
2

p fhnjâþ âþjn0ið	n	n0 þNnNn0c
2p2

zÞ

þ hn� 1jâþ âþjn0 � 1iNnNn0ℏ2!n!n0 g; (A1)

where jni is defined in Eq. (44), and we omitted indices kx
and kz. For the matrix element hnjŷjn0i we obtain the same

expression as in Eq. (A1), but with ðL= ffiffiffi
2

p Þðâþ âþÞ re-
placed by ŷ. Because ðL= ffiffiffi

2
p Þðâþ âþÞ ¼ ŷ� kxL

2, we
obtain from Eq. (A1)

hnjŶjn0i ¼ hnjŷjn0i � hnjkxL2jn0ið	n	n0 þ NnNn0c
2p2

zÞ
� hn� 1jkxL2jn0 � 1iNnNn0ℏ2!n!n0

¼ hnjŷjn0i � kxL
2: (A2)

In order to calculate the matrix elements of x̂, we ob-
serve that the Hamilton equations give _̂x ¼ c�̂x, _̂y ¼ c�̂y,
_̂px ¼ 0, and _̂py ¼ c�̂xeB. From the above relations, one
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obtains _̂py ¼ eB _̂x ¼ ðℏ=L2Þ _̂x, which gives after the inte-

gration over time

x̂ðtÞ ¼ ðL2=ℏÞp̂yðtÞ þD: (A3)

The constant of integration D can be set equal to zero
by an appropriate choice of x̂ð0Þ. Since p̂y ¼ ðℏ=iÞ@=@y
with @=@y ¼ ð1=LÞ@=@� and @=@� ¼ ðâ� âþÞ= ffiffiffi

2
p

[see

Eq. (4)], there is p̂yðtÞ ¼ ðℏ=iL ffiffiffi
2

p ÞðÂðtÞ � ÂyðtÞÞ [see
Eqs. (7) and (8)]. Thus, we have

hnjx̂ðtÞjn0i ¼ hnj L

i
ffiffiffi
2

p ðÂðtÞ � ÂyðtÞÞjn0i ¼ hnjX̂ðtÞjn0i:
(A4)

Since Â and Ây
are four-component lowering and rais-

ing operators, the selection rules for x̂ and for X̂ are n0 ¼
n� 1, kx ¼ k0x, and kz ¼ k0z. There are no selection rules
for �; �0 or for s; s0. Equations. (A2) and (A4) are the

required relations between the matrix elements of Ŷ, X̂
and ŷ, x̂ operators, respectively.

For the states jni and jn0i with s ¼ þ1, there are also

hnjŶjn0i ¼ hnjŷjn0i � kxL
2 and hnjX̂jn0i ¼ hnjx̂jn0i. For

the states jni and jn0i with different spin indexes s and s0,
the constant term y0 ¼ kxL

2 does not appear.

Finally, we calculate the average values of ŷ, x̂, Ŷ, and

X̂ operators using a Gaussian wave packet jfi from
Eq. (86). At t ¼ 0 there are hfjŷjfi ¼ 0 and hfjx̂jfi ¼ 0.
Next,

hfjX̂jfi ¼ Lhfj @
@�

jfi ¼ L
@y

@�
hfj @

@y
jfi ¼ 0; (A5)

and

hfjŶjfi ¼ hfjŷjfi � hfjkxL2jfi ¼ �k0xL
2: (A6)

All figures above refer to the averages hŶðtÞi and hX̂ðtÞi,
i.e., equivalently, to hŷðtÞi � y0, hx̂ðtÞi, respectively.

APPENDIX B

Wewant to prove equivalence of the general Heisenberg

form of operators ÂðtÞ ¼ ei�̂tÂð0Þe�i�̂t and their

explicit time-dependent form given in Eqs. (35) and (36).

We do this by showing that the matrix elements of ÂðtÞ
obtained by the Heisenberg formula and by using Eqs. (35)
and (36) are the same. To calculate the matrix elements,

we take two eigenstates of the operator �̂: jni ¼
jn; kx; kz; �; si and jn0i ¼ jn0; k0x; k0z; �0; s0i with n0 ¼
nþ 1. We use Eq. (54) for the matrix element of Â1ðtÞ
and Eq. (55) for the matrix element of Â2ðtÞ. On the other
hand, we calculate the matrix elements of ei�̂tÂð0Þe�i�̂t.
We compare the matrix elements calculated by the two
methods for all combinations of the band indexes �; �0.
Writing !n ¼ En;kz=ℏ, !n0 ¼ En0;kz=ℏ, and �n;kz ¼ !n0 ,

we obtain the results summarized in Table I. It is seen

that the matrix elements of ÂðtÞ ¼ ei�̂tÂð0Þe�i�̂t are

equal to the matrix elements of ÂðtÞ ¼ Â1ðtÞ þ Â2ðtÞ.
Since the states jni form a complete set, the equality holds

for every matrix element of ÂðtÞ. This way, we proved the
equivalence of the two forms of ÂðtÞ. It is to be noted that
selecting � ¼ �1 instead of � ¼ þ1 in the definition of

the square root of operator M̂2
[see Eqs. (49)] leads to the

same results.

APPENDIX C

Here, we consider some properties of the coefficients
Um;n, as defined in Eq. (72). First, we prove the sum

rule
P

nUn;n ¼ 1. Let jn; kxi be an eigenstate of the

Hamiltonian Ĥ ¼ ðℏ2=2mÞðp̂� eAÞ2. In the standard

notation there is hrjn; kxi ¼ eikxxHnð�Þe��2=2=
ffiffiffiffi
L

p
Cn. For

any normalized state jfi we have

1 ¼ hfjfi ¼ X1
n¼0

Z 1

�1
dkxhfjn; kxihn; kxjfi: (C1)

Since FnðkxÞ ¼ hn; kxjfi [see Eq. (67)], we obtain

1 ¼ X1
n¼0

Z 1

�1
F

nðkxÞFnðkxÞdkx ¼

X1
n¼0

Un;n: (C2)

This proves the normalization of Un;n. Since the integral in

Eq. (C2) can be expressed as
R1
�1 jFnðkxÞj2dkx, it is seen

TABLE I. Three upper rows: matrix elements of the Heisenberg operator ÂðtÞ ¼
ei�̂tÂð0Þe�i�̂t and matrix elements of the explicit form of ÂðtÞ ¼ Â1ðtÞ þ Â2ðtÞ, as given
in Eqs. (35) and (36), calculated for four combinations of ð�; �0Þ. Three lower rows: the same for

the operator ÂþðtÞ ¼ ei�̂tÂð0Þe�i�̂t and the explicit form ÂþðtÞ ¼ Âþ
1 ðtÞ þ Âþ

2 ðtÞ.
Operator ðþ1;þ1Þ ðþ1;�1Þ ð�1;þ1Þ ð�1;�1Þ
½ei�̂tÂe�i�̂t�n;n0 eið!n�!n0 ÞtÂn;n0 eið!nþ!n0 ÞtÂn;n0 eið�!n�!n0 ÞtÂn;n0 eið�!nþ!n0 ÞtÂn;n0

Â1ðtÞn;n0 eið!n�!n0 ÞtÂn;n0 0 eið�!n�!n0 ÞtÂn;n0 0

Â2ðtÞn;n0 0 eið!nþ!n0 ÞtÂn;n0 0 eið�!nþ!n0 ÞtÂn;n0

½ei�̂tÂþe�i�̂t�n0;n eið!n0�!nÞtÂþ
n0;n eið!n0þ!nÞtÂþ

n0;n eið�!n0�!nÞtÂþ
n0;n eið�!n0þ!nÞtÂþ

n0;n
Âþ

1 ðtÞn0;n eið!n0�!nÞtÂþ
n0;n 0 eið!n0þ!nÞtÂþ

n0 ;n 0

Âþ
2 ðtÞn0;n 0 eið�!n0�!nÞtÂþ

n0;n 0 eið�!n0þ!nÞtÂþ
n0;n
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that Un;n are non-negative. The above sum rule was used

to i) verify the accuracy of numerical computations ofUm;n

and ii) estimate the truncation of infinite series appearing in

the calculation of ŶðtÞ and X̂ðtÞ.
Now, we calculate another sum rule. Consider an aver-

age value J of the operator âþ over a two-dimensional
wave packet J ¼ hfxyjâþjfxyi. Inserting the unity operator
1 ¼ P

n

R
dkxjn; kxihn; kxj, we have

J ¼ hfxyjâþjfxyi ¼
X1
n¼0

Z 1

�1
dkxhfxyâþjn; kxihn; kxjfxyi:

(C3)

Using the definitions of FnðkxÞ and Um;n [see Eqs. (67) and

(72)], we obtain

J ¼ X1
n¼0

Z 1

�1
hfxyjnþ 1; kxihn; kxjfxyi

ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
dkx

¼ X1
n¼0

Z 1

�1

ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
F

nþ1ðkxÞFnðkxÞdkx

¼ X1
n¼0

ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
Unþ1;n: (C4)

To calculate J independently, we take the wave packet

fxyðx; yÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�dxdy

p exp

�
� x2

2d2x
� y2

2d2y
þ ik0xx

�
(C5)

and calculate J, inserting the unity operator 1 ¼R
dkxjkxihkxj. This gives

J ¼
Z 1

�1
hfxyjkxiâþhkxjfxyidkxdy

¼
Z 1

�1
g
xyðkx; yÞ 1ffiffiffi

2
p

�
�� @

@�

�
gxyðkx; yÞdkxdy: (C6)

Since � ¼ y=L� kxL, and @=@� ¼ L@=@y, the integra-
tions over dy and kx are elementary and we find

J ¼ X1
n¼0

ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
Unþ1;n ¼ � k0xLffiffiffi

2
p : (C7)

The above sum rule was used for an additional verification
ofUnþ1;n terms and for the analytical calculation of motion

of a nonrelativistic electron [see Eqs. (95) and (96)].

APPENDIX D

Here, we calculate the average electron velocity, limit-
ing our discussion to a packet with the second nonzero
component. The x and y components of the velocity are the

time derivatives of hX̂ðtÞi2;2 and hŶðtÞi2;2. Since hX̂ðtÞi2;2
and hŶðtÞi2;2 are combinations of hÂðtÞi2;2 and hÂþðtÞi2;2
[see Eqs. (39) and (40)], we calculate the time derivatives

of hÂðtÞi and hÂþðtÞi, as given in Eqs. (74) and (75),
respectively. The average velocities are

hvyðtÞi2;2 ¼ L

2
ffiffiffi
2

p X
n

ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p ðUn;nþ1 þUnþ1;nÞ

�
�
@Iþc
@t

þ @I�c
@t

�
; (D1)

hvxðtÞi2;2 ¼ L

2
ffiffiffi
2

p X
n

ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p ðUn;nþ1 þUnþ1;nÞ

�
�
@Iþs
@t

þ @I�s
@t

�
; (D2)

where

L
@I�c
@t

¼ � ffiffiffi
2

p
c
Z 1

�1
ℏ!

Enþ1;kz

jgzðkzÞj2

� sin½ðEnþ1;kz 	 En;kzÞt=ℏ�dkz; (D3)

L
@I�s
@t

¼ 	 ffiffiffi
2

p
c
Z 1

�1
mc2ℏ!

En;kzEnþ1;kz

jgzðkzÞj2

� cos½ðEnþ1;kz 	 En;kzÞt=ℏ�dkz: (D4)

In the above equations, we used E2
nþ1;kz

� E2
n;kz

¼ ℏ2!2.

It is seen from Eqs. (D3) and (D4) that the integrals
ðL@I�c =@tÞ, describing the cyclotron motion, and the inte-
grals ðL@Iþc =@tÞ, corresponding to the ZB motion, have the
same factor ðℏ!=En;kzÞjgzðkzÞj2. Integrals ðL@I�s =@tÞ and
ðL@Iþs =@tÞ have the same property. Therefore, the ampli-
tudes of the cyclotron velocity and the ZB velocity are
of the same order of magnitude. On the other hand,
the amplitudes of positions differ by several orders of
magnitude.
Alternatively, we calculate the average velocities for

the canonical velocity operators. The velocity operator is

obtained from the equation of motion v̂ ¼ ði=ℏÞ½Ĥ ; r̂�,
which gives v̂x ¼ c�̂x and v̂y ¼ c�̂y. Now, we show that

the average velocities obtained in Eqs. (D1) and (D2) are
equal to the averages of v̂yðtÞ and v̂xðtÞ. We limit our

calculations to a wave packet with the second nonzero
component.

The average of v̂xðtÞ ¼ eiĤ t=ℏðc�̂xÞe�iĤ t=ℏ is

hv̂xðtÞi2;2 ¼ c
X
n;n0

hfjnið�̂xÞn;n0 hn0jfieiðEn�En0 Þt=ℏ: (D5)

From Eq. (66), we have hnjfi ¼ 	n�kzgzðkzÞs2FnðkxÞ, and
the matrix element ð�̂xÞn;n0 is straightforward. The summa-

tion in hv̂xðtÞi2;2 over s1 and s2 gives two nonvanishing
terms. We have

hv̂xðtÞi2;2 ¼ �c
X

n;n0;�;�0

Z 1

�1
dkxdkz	

2
n�kz

Nn0�0kz	n0�0kz

� ℏ!n0e
ið�En;kz��0En0 ;kz Þt=ℏ

� ð�n0;nþ1 þ �n0;n�1ÞjgzðkzÞj2: (D6)
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There is 	2
n�kz

¼ ð1þ �mc2Þ=ð2En;kzÞ and Nn�kz	n�kz ¼
�=ð2En;kzÞ. Performing the summation over n0, integration
over kx and replacing in the second term n ! nþ 1 we
obtain

hv̂xðtÞi2;2¼�c

4

X
n;�;�0

ffiffiffiffiffiffiffiffiffiffiffi
nþ1

p
Un;nþ1

Z 1

�1
dkzjgzðkzÞj2

�
�
1þ�mc2

En;kz

�
�0ℏ!
Enþ1;kz

eið�En;kz��0Enþ1;kz Þt=ℏ

�c

4

X
n;�;�0

ffiffiffiffiffiffiffiffiffiffiffi
nþ1

p
Unþ1;n

Z 1

�1
dkzjgzðkzÞj2

�
�
1þ�0mc2

En;kz

�
�ℏ!
Enþ1;kz

eið�Enþ1;kz��0En;kz Þt=ℏ: (D7)

There is

1

4

X
�;�0

��0eið�En��Enþ1Þt=ℏ

¼ cos

�ðEnþ1 � EnÞt
ℏ

�
� cos

�ðEnþ1 þ EnÞt
ℏ

�
; (D8)

and the summations over the two terms with single � and �0
cancel out. Rearranging terms in Eq. (D7), we obtain the
same result for hv̂xðtÞi2;2 as in Eq. (D2). Calculations for
hv̂yðtÞi2;2 are similar to those given above. Since �̂y has

both positive and negative antidiagonal elements, the
expression for hv̂yðtÞi2;2 in Eq. (D7) has two terms with

opposite signs. Therefore, the summation over �; �0 cancels
out the terms containing cosine functions, which appear in
Eq. (D8), and only terms with sine function survive. After
rearranging these terms, we also recover Eq. (D1). This
way, we show that the average velocity obtained from
the differentiation of hŷðtÞi2;2 and hx̂ðtÞi2;2 are equal to the
average values of operators hc�̂yðtÞi2;2 and hc�̂xðtÞi2;2.

APPENDIX E

Below, we analyze the structure of electron motion.

Time evolution of the average values of ÂðtÞ and ÂþðtÞ
is equivalent to the evolution of four subpackets: hÂ1ðtÞi,
hÂ2ðtÞi, hÂþ

1 ðtÞi, hÂþ
2 ðtÞi [see Eqs. (74) and (75)]. We

take the packet hrjfi ¼ ð0; fðrÞ; 0; 0ÞT and follow the
method similar to that presented in the calculation of

hÂ1i in Eq. (73). For simplicity, we consider the 2þ 1
Dirac equation setting jgzðkzÞj2 ! �ðkzÞ, which gives

hÂ1ðtÞi2;2 ¼
X
n

ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
Un;nþ1

X
�;�0

eið�En;0�Enþ1;0Þt=ℏ

� 1þ �0

4

�
1þ ��0

En;0

Enþ1;0

þmc2
�

�

En;0

þ �0

Enþ1;0

��
: (E1)

Performing the summation over �; �0, and writing En ¼
En;0, !

c
n ¼ ðEnþ1 � EnÞ=ℏ, !Z

n ¼ ðEnþ1 þ EnÞ=ℏ, Un ¼ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
Un;nþ1, and Uy

n ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
Unþ1;n, we obtain

hÂ1ðtÞi2;2 ¼ 1

4

X
n

UnfTþþþþ cosð!c
ntÞ þ Tþ�þ� cosð!Z

ntÞ

� iTþþþþ sinð!c
ntÞ þ iT�þ�þ sinð!Z

ntÞg; (E2)

hÂ2ðtÞi2;2 ¼ 1

4

X
n

UnfTþ��þ cosð!c
ntÞ þ Tþþ�� cosð!Z

ntÞ

þ iTþ��þ sinð!c
ntÞ þ iTþþ�� sinð!Z

ntÞg; (E3)

hÂþ
1 ðtÞi2;2 ¼ 1

4

X
n

Uy
n fTþþþþ cosð!c

ntÞ þ Tþ�þ� cosð!Z
ntÞ

þ iTþþþþ sinð!c
ntÞ þ iTþ�þ� sinð!Z

ntÞg; (E4)

hÂþ
2 ðtÞi2;2 ¼ 1

4

X
n

Uy
n fTþ�þ� cosð!c

ntÞ þ Tþþ�� cosð!Z
ntÞ

þ iT�þþ� sinð!c
ntÞ þ iT��þþ sinð!Z

ntÞg; (E5)

where we use the notation

Ts1s2
s3s4 ¼ s1 þ s2

mc2

En

þ s3
mc2

Enþ1

þ s4
En

Enþ1

; (E6)

with s1; s2; s3; s4 ¼ �1. Each of the terms in Eqs. (E2)–
(E5) contains sine and cosine functions with the cyclotron
and ZB frequencies. The structure of these terms is
significantly different. To see this, we consider the non-
relativistic limit: Enþ1 ’ En ’ mc2. Then, the motion

of subpackets hÂ1ðtÞi2;2 and hÂþ
1 ðtÞi2;2 reduces to the

cyclotron motion, while the averages hÂ2ðtÞi2;2 and

hÂþ
2 ðtÞi2;2 vanish. The above subpackets describe natural

components of the electron motion in a magnetic field. The

direct averaging of hÂðtÞi or hÂþðtÞi, as presented in the
previous sections, allows us to calculate the evolution of
the physical quantities but it does not exhibit the structure
of the motion. The exact operator results, as given in
Eqs. (35)–(38), provide a deeper understanding of this
structure.
In Fig. 9, we plot time evolutions of the four subpackets

hÂ1ðtÞi2;2, hÂ2ðtÞi2;2, hÂþ
1 ðtÞi2;2 and hÂþ

2 ðtÞi2;2, calcu-
lated with the use of Eqs. (E2)–(E5) for simulated gap
frequency � ¼ 2�� 4000 Hz. At low magnetic fields,

the components hÂ2ðtÞi2;2 and hÂþ
2 ðtÞi2;2 are much

smaller than hÂ1ðtÞi2;2 and hÂþ
2 ðtÞi2;2. Note that

hÂ1ðtÞi2;2 spins in the opposite direction to hÂþ
1 ðtÞi2;2,

and similarly for hÂ2ðtÞi2;2 and hÂþ
2 ðtÞi2;2. The four

components of motion are persistent for the 2þ 1 Dirac
equation.
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APPENDIX F

In this appendix, we discuss the relation of our work to
that of Barut and Thacker (BT, Ref. [7]), which concerns
the same subject. Barut and Thacker calculated the ZB of

relativistic electrons in the presence of a magnetic field at
the operator level. Their work was the first treatment of this
subject but, in our opinion, it suffered from a few
deficiencies.
Barut and Thacker considered the time dependence of

electron motion, introducing from the beginning its x̂ and ŷ
components [in our notation, cf. Equations (9) and (10)

and Appendix A] rather than Â and Âþ
operators. This

choice was unfortunate since Â and Âþ
satisfy sepa-

rately important operator Eqs. (25) and (26), in which B̂ ¼
expð�i�̂tÞÂ and B̂þ ¼ Âþ expðþi�̂tÞ operators stand
at the RHS and the LHS, respectively. The operators x̂ and
ŷ do not satisfy such equations, and ‘‘forcing’’ x̂ and ŷ to
satisfy the corresponding relations, BT introduced the

frequency !2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðmc2Þ2 � ðℏ!Þ2p

(in our notation).

The problem here is that for ℏ!>
ffiffiffi
2

p
mc2, this frequency

becomes imaginary, leading to solutions growing exponen-
tially in time. In our treatment, no such problem occurs,
since all the frequencies are of the form !n ¼ ðEnþ1;kz �
En;kzÞ=ℏ, i.e., they are real for all magnetic fields.

The calculation of BT gave only two interband ZB
frequencies and two intraband (cyclotron resonance) fre-
quencies contributing to the electron motion. On the other
hand, we obtain two series of intraband and interband
frequencies because the Gaussian wave packet, which
we use for the averaging procedure, includes numerous
Landau eigenstates in a magnetic field. On the other hand,
BT did not introduce a wave packet, projecting their
operator results on the ground electron state. In contrast
to our approach, the procedure of Barut and Thacker uses
the proper time formalism.

[1] E. Schrödinger, Sitzungsber. Preuss. Akad. Wiss. Phys.

Math. Kl. 24, 418 (1930); Schrödinger’s derivation is

reproduced in A. O. Barut and A. J. Bracken, Phys. Rev.
D 23, 2454 (1981).

[2] J. D. Bjorken and S.D. Drell, Relativistic Quantum
Mechanics (McGraw-Hill, New York, 1964).

[3] B. Thaller, The Dirac Equation (Springer-Verlag, Berlin,
1992).

[4] K. Huang, Am. J. Phys. 20, 479 (1952).
[5] P. Krekora, Q. Su, and R. Grobe, Phys. Rev. Lett. 93,

043004 (2004).
[6] R. Gerritsma, G. Kirchmair, F. Zahringer, E. Solano,

R. Blatt, and C. F. Roos, Nature (London) 463, 68 (2010).
[7] A. O. Barut and W.D. Thacker, Phys. Rev. D 31, 2076

(1985).
[8] M. Villavicencio and J. A. E. Roa-Neri, Eur. J. Phys. 21,

119 (2000).
[9] A. Bermudez, M.A. Martin-Delgado, and E. Solano, Phys.

Rev. Lett. 99, 123602 (2007).

[10] T.M. Rusin and W. Zawadzki, arXiv:1003.5504.
[11] M.H. Johnson and B.A. Lippmann, Phys. Rev. 76, 828

(1949).
[12] R. Feynmann, Statistical Mechanics: A Set of Lectures

(W.A. Benjamin, Massachusetts, 1972).
[13] J. A. Lock, Am. J. Phys. 47, 797 (1979).
[14] T.M. Rusin and W. Zawadzki, Phys. Rev. B 78, 125419

(2008).
[15] A. P. Prudnikov, J. A. Brychkov, and O. I. Marichev,

Integrals and Series (Fizmatlit, Moscow, 2003).
[16] T.M. Rusin and W. Zawadzki, Phys. Rev. B 76, 195439

(2007).
[17] R. E. Moss and A. Okninski, Phys. Rev. D 14, 3358 (1976).
[18] L. Lamata, J. Leon, T. Schatz, and E. Solano, Phys. Rev.

Lett. 98, 253005 (2007).
[19] M. Johanning, A. F. Varron, and C. Wunderlich, J. Phys. B

42, 154009 (2009).
[20] D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, Rev.

Mod. Phys. 75, 281 (2003).

FIG. 9. Calculated time evolution of dynamic averages:
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