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The baby Skyrme model is studied with a novel choice of potential, V ¼ 1
2�

2
3. This ‘‘easy plane’’

potential vanishes at the equator of the target two-sphere. Hence, in contrast to previously studied cases,

the boundary value of the field breaks the residual SOð2Þ internal symmetry of the model. Consequently,

even the unit charge Skyrmion has only discrete symmetry and consists of a bound state of two half lumps.

A model of long-range inter-Skyrmion forces is developed wherein a unit Skyrmion is pictured as a single

scalar dipole inducing a massless scalar field tangential to the vacuum manifold. This model has the

interesting feature that the two-Skyrmion interaction energy depends only on the average orientation of

the dipoles relative to the line joining them. Its qualitative predictions are confirmed by numerical

simulations. Global energy minimizers of charges B ¼ 1; . . . ; 14; 18; 32 are found numerically. Up to

charge B ¼ 6, the minimizers have 2B half lumps positioned at the vertices of a regular 2B-gon. For

charges B � 7, rectangular or distorted rectangular arrays of 2B half lumps are preferred, as close to

square as possible.
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I. INTRODUCTION

The Skyrme model, and its smaller relative, the baby
Skyrme model, have received much attention during the
last few decades. The models are very interesting from the
mathematical physics point of view: they contain topologi-
cally nontrivial field configurations called topological
solitons and the Skyrme model arises as a large-N limit
of QCD [1,2]. The baby Skyrme model is the two-
dimensional analog of the full model and its main interests
lie in its easier tractability, the possibility of using the baby
Skyrme model results as guidelines in investigating the full
Skyrme model and some condensed matter contexts, where
the baby Skyrme model itself is of physical relevance [3].
The baby Skyrme model was investigated intensively
during the 1990s but interest in the model has recently
received a new boost [4–11], apparently due to the preva-
lence of baby Skyrmions in various condensed matter
systems [12], such as Fe1�xCoxSi [13], MnSi [14,15],
and quantum Hall systems (for a review, see [16] and
references therein), despite the fact that these are not
modeled by the baby Skyrme model. It is against this
background that we investigate the baby Skyrme model.

The behavior of the solitons of the baby Skyrme model
depends crucially on the choice of potential. For some
potentials, there will be no smooth solutions at all; for
some, like that studied in [17], there will be exact solutions
for the equations of motion and for the rest, such as here,
numerical methods must be used. So far, only cases where
the potential and boundary condition preserve the SOð2Þ
symmetry of the Lagrangian have been studied in detail.
Here we study the easy plane potential, which breaks Oð3Þ

symmetry to SOð2Þ, and the boundary condition further
breaks the symmetry to Z2. This endows the model with
one massive and one massless mode and one expects
significantly different behavior from SOð2Þ symmetric
cases.
We use numerical methods to demonstrate that the

model has a rich static energy structure, including local
minima and that multi-Skyrmions are stable in this model.
We also develop an approximate way to estimate the long-
range interaction of two unit baby Skyrmions and verify
this numerically. We identify some open questions and
present a conjecture about the energy of the global mini-
mum, when the charge approaches infinity.

II. THE MODEL

The Lagrangian density of the model, defined on R1;2, is

L ¼ 1
2c2@��

a@��a � 1
4c4F��F

�� � c0
1
2Uð�Þ2; (1)

F�� ¼ �abc�
a@��

b@��
c; (2)

where the first terms are called the Dirichlet, the Skyrme
and the potential terms, respectively, and ci are free pa-
rameters (coupling constants) of the model. The subscripts
are chosen to match the number of derivatives in the term
and will prove useful later.
Choosing the usual metric ðþ;�;�Þ yields the static

energy density

E ¼ 1
2c2kr�k2 þ 1

2c4ðF12Þ2 þ 1
2c0U

2: (3)

If one requires the solitons to have finite energy, it is
necessary to impose the boundary condition

lim
r!1�ðrÞ ¼: �1 ¼ constant; (4)*juhaj@iki.fi
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and choose �1 from the vacuum manifold of the model,
i.e. such that

Uð�1Þ ¼ 0: (5)

As usual, Eq. (4) allows us to consider the field as map
�: S2 ! S2, which gives the system its interesting topo-
logical properties, namely, its fields are classified topologi-
cally by the homotopy group �2ðS2Þ. The homotopy
invariant of the field is called the (topological) degree
and is given by the expression

B ¼ 1

4�

Z
R2

� � ð@1�� @2�Þd2x: (6)

Furthermore, one can expect the system to support to-
pological solitons based on two factors. First, Derrick’s
theorem of nonexistence does not apply since the terms
zeroth and fourth order in derivatives behave in opposite
ways upon uniform scaling (the second order term is scale
invariant), thus allowing solutions with a preferred size.
The second reason is the existence of a Bogomol’nyi
bound for the (static) energy which depends on the degree
of the field, given by [11]

E � 4�ðc2 þ ffiffiffiffiffiffiffiffiffi
c0c4

p hUiÞjBj; (7)

where hUi is the average value of U: S2 ! R. Unlike in
some models, the bound cannot generically be saturated in
this model.

In this work, we take Uð�Þ ¼ �3 and �1 ¼ ð1; 0; 0Þ.
This potential has the exceptional effect of allowing the
breaking of the symmetry of the energy almost completely.
While the energy density exhibits SOð2Þ symmetry (from
the potential), the choice of boundary condition breaks
this down to Z2. Hence, even the Skyrmion with unit
topological charge will have only discrete symmetry.

We seek static solutions in various homotopy classes and
investigate the forces between some of these. In order to
find a static solution, we numerically minimize the static
energy of an initial field configuration. Some initial con-
figurations will be constructed from existing minima, but
those that are obtained from an exact expression are taken
to be

w ¼ �ðxþ iyÞB; (8)

� ¼ 1

jwj2 þ 1

jwj2 � 1
2ReðwÞ
�2 ImðwÞ

0
B@

1
CA; (9)

which for B ¼ 1 gives

� ¼ 1

�2ðx2 þ y2Þ þ 1

�2ðx2 þ y2Þ � 1
2�x
�2�y

0
B@

1
CA; (10)

where � is simply a scale factor to adjust the size of the
initial configuration. We also added random ripples to
destroy any discrete symmetries left over from the initial

configuration. It was observed that this is usually unnec-
essary, but some minimizers take different orientations (but
keep their shape) when the random ripples are omitted.
In all that follows, we set c0 ¼ c2 ¼ c4 ¼ 1:0.

III. THE UNIT SKYRMION

The lattice approximation of derivatives is achieved by
using a simple forward differencing scheme. The discrete
energy functional is then minimized using gradient based
methods.
The gradients are computed from the discrete total en-

ergy in a straightforward manner. The energy minimization
is then achieved with the TAO [18] and PETSc [19–21]
parallel numerical libraries. The libraries provide several
different minimization schemes, of which we have chosen
the (in this case) fastest algorithm, the limited memory
quasi-Newton algorithm (also called a variable metric al-
gorithm) with BFGS [22–25] formula for Hessian approxi-
mations. We consider the minimization to have converged,
when the sup-norm of the gradient is less than 10�7. This
may sound like a very strong requirement, but it turns out
to be necessary. Our initial choice of 10�4 works for most
cases, but when the results were checked with a the
stronger requirement, they experienced significant changes
and decreases in energy after attaining the looser condition.
Using a still stronger criterion did not change the energies
or shapes of the minimizers any further.
The accuracy of the numerical scheme was tested

against the known exact solution of w ¼ ðxþ iyÞ [26]
for the potential U ¼ ð1��3Þ2. We find that the accuracy
of the numerical scheme is heavily dependent on the size of
the lattice, due to the energy density of the Dirichlet term
being slowly decaying. When in a large enough lattice, the
difference in energies between our minimizer and the exact
solution is less than 1%, so we expect similar accuracy
in the present model as well, since it has similar decay
properties.
We always use a square lattice and will refer to the

number of lattice points along its side by a number N.
Starting with (10) on a N ¼ 801 lattice with lattice con-
stant h ¼ 0:1, the corresponding minimum energy density
is depicted in Fig. 1(a). The broken rotational symmetry

FIG. 1 (color online). The minimizer for degree B ¼ 1.
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is immediately evident in the form of the two red peaks.
A view of how the field �3 itself behaves is shown in 1(b)
and an immediate observation is that the half-plane y > 0
gets mapped to the upper hemisphere of the target S 2 and
the half-plane y < 0 gets mapped to the lower hemisphere.
This, combined with the fact that each individual peak
in energy density strongly resembles a CP1 model lump,
leads us to call the solution on a half-plane a half lump.

Note that the energy density image is zoomed in on the
central area of the numerical lattice, where almost all the
energy density is concentrated. Obviously, the whole com-
putation could have been done in a much smaller lattice,
but we opted not to find the optimal lattice sizes for each
and every configuration due to the fact that the amount
of computer resources saved would have been small. We
also confirmed that the resulting field configuration is not
dependent on either the value of the lattice constant
or ‘‘physical’’ size of the computational box by first
repeating the computation with lattice constant h ¼ 0:1
and N ¼ 1599 and then repeating again with h ¼ 0:05
and N ¼ 1599.

It is instructive to look at the fields themselves, in par-
ticular, their asymptotics at large r. Since � ! ð1; 0; 0Þ as
r ! 1, we must have

� ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

2 ��3
3

q
; �2; �3Þ

¼ ð1; 0; 0Þ þ ð0; �2; �3Þ þ � � � (11)

at large r, where �2, �3 are small. Substituting this into
L and keeping only leading order terms yields the
Lagrangian density of an uncoupled pair of real scalar
fields,

L ¼ c2

�
1

2
@��2@

��2 þ 1

2
@��3@

��3 � 1

2

c0
c2

�2
3

�
; (12)

one massless (�2) and the other of mass
ffiffiffiffiffiffiffiffiffiffiffiffi
c0=c2

p ð�3Þ. One
expects the large r field of a B ¼ 1 soliton to be well
approximated by a static solution of this linear model.
Since B ¼ 1, �2 þ i�3 should wind once around 0 as one
traverses a circle at large r. This leads one to predict that

�2ðr; �Þ � q2
r

cos�; �3ðr; �Þ � q3K1ð
ffiffiffiffiffiffiffiffiffiffiffiffi
c0=c2

q
rÞ sin�

(13)

at large r, where q2, q3 are unknown constants.
Numerical evidence in favor of the conjectured asymp-

totics for � is presented in Fig. 2, which shows plots of
(a) r�2ðr; �Þ and (b) �3ðr; �Þ=K1ðrÞ against � for an in-
creasing sequence of values of r. By fitting sinusoidal
curves, we find that q2 � 3:1 and q3 � 9:9. Note that, at
large r, K1ðrÞ decays like e�r=

ffiffiffi
r

p
, so the massive field �3

decays much more quickly than the massless field�2. This
has important consequences for the long-range forces
between Skyrmions, as we shall see in the next section.

Having found the B ¼ 1 solution, it is natural to ask
whether there are multisolitons, that is localized solutions
with B> 1. Given the linear dependence of the energy
bound on B, Eq. (6), it is conceivable that all these would
consist of B copies of the B ¼ 1 solution at infinite sepa-
ration. Indeed, this is what happens for the potential
U ¼ ð1��3Þ2, where the localized B> 1 solutions are
unstable against decay to B infinitely separated solutions
with B ¼ 1 [17].
In that model (the so-called ‘‘holomorphic’’ model), the

force between a pair of unit charge Skyrmions turns out to
be repulsive, whatever their separation and relative orien-
tation. By contrast, we will see that in the current model
(as for several other choices of potential) there is a choice
of relative orientation for which solitons attract one another
at long range (the so-called attractive channel), making
it plausible that spatially localized solutions of every
charge exist.

IV. INTERSKYRMION FORCES

Intersoliton forces in the baby Skyrme model with an
easy-axis potential 1

2Uð�Þ2 ¼ 1��3 were analyzed in

detail by Schroers et al. in [27], and their methods readily
adapt to the current setting. We shall assume that the
dominant interaction at long range is mediated by the
massless field �2 and ignore the contribution of the faster
decaying field �3. The key observation is that the asymp-
totic field

�2ðr; �Þ ¼ q2
r

cos� (14)

coincides with the static solution of the linearized model

L ¼ 1
2@��2@

��2 þ ��2 (15)

in the presence of an appropriate point source � at the
origin, in this case

�ðxÞ ¼ � q2
2�

@x	ðxÞ; (16)

FIG. 2 (color online). Plots of �2 and �3 for r 2 f2; 3; 4;
5; 7:5; 10g (the dashed lines, colored blue, green, red, cyan,
magenta, and yellow, respectively) and the corresponding best
fits (solid, black).
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where 	 denotes the two-dimensional Dirac delta distribu-
tion. To see this, note that the elementary kernel [28] for
Laplace’s equation on R2 is GðxÞ ¼ ð2�Þ�1 logjxj, that is,

Gxx þGyy ¼ 	ðxÞ: (17)

Source (16) induces the field in standard orientation and
position. The field rotated (spatially) through angle 
 and
translated to position y 2 R2 is induced by the source

�ðxÞ ¼ d � r	ðx� yÞ; (18)

where d ¼ �q2ðcos
; sin
Þ. Physically, one interprets this
as the massless scalar field induced by a dipole source of
moment d at position y. It is important to realize that the
dipole moment which replicates the soliton’s asymptotic
field points orthogonally to the line connecting its con-
stituent half lumps. One should not, therefore, think of the
half lumps as being scalar monopoles of opposite charge,
generating a dipole moment (recall that the half lumps are
structures in the �3 field, while the long-range field is
dominated by �2).

Now consider the situation where two B ¼ 1 solitons
with orientations 
1, 
2 are placed at positions y, z with
R ¼ jy� zj large. The interaction energy that they expe-
rience should, on physical grounds, coincide asymptoti-
cally with the interaction energy of the corresponding
scalar dipoles in the linear theory, that is,

Eint ¼ �
Z
R2

�ð1ÞðxÞ�ð2Þ
2 ðxÞd2x; (19)

where �ð1ÞðxÞ ¼ d1 � r	ðx� yÞ and �ð2Þ is the field in-
duced by dipole d2 at z, that is

�ð2Þ
2 ðxÞ ¼ � 1

2�
d2 � rðlogjx� yjÞ: (20)

Hence,

Eint ¼ 1

2�

Z
R2

d1 � r½	ðx� yÞ�d2 � rðlogjx� zjÞd2x

¼ 1

2�
d1 � ryd2 � rz

Z
R2

	ðx� yÞ logjx� zjd2x

¼ � 1

2�R2
fd1 � d2 � 2ðn � d1Þðn � d2Þg; (21)

where n ¼ ðy� zÞ=jy� zj, the unit vector directed from
dipole 2 to dipole 1. It is interesting to note that this is
precisely minus the interaction energy of a pair of electric
dipoles in two-dimensional electromagnetism, which can
be understood by noting that, in scalar field theory, like
monopole charges attract, while opposite charges repel.
In the case where the solitons are placed symmetrically
about the origin on the x1 axis, that is, y ¼ ðR=2; 0Þ,
z ¼ ð�R=2; 0Þ, one sees that

Eint ¼ q22
2�R2

cosð
1 þ 
2Þ: (22)

This formula is rather remarkable. It has the interesting
property that it depends only on the average orientation


1 þ 
2 of the dipoles, and is independent of their phase
difference 
1 � 
2. This is precisely the opposite of
the situation found by Schroers et al. in the easy-axis
model [27],

Eeasy-axis ¼ q22
2�

K1ðRÞ cosð
1 � 
2Þ; (23)

which highlights a fundamental difference between the two
models. The unit soliton in the easy-axis model is axially
symmetric, and spatially rotating the soliton is identical to
internally rotating it (about the axis�1). Consequently, the
interaction energy in the easy-axis case must be invariant
under ð
1; 
2Þ � ð
1 þ �; 
2 þ�Þ, and hence can de-
pend only on 
1 � 
2. In the easy plane model, however,
the unit soliton has no rotational symmetry. One cannot
rotate it internally about �1 (the fields so obtained do not
solve the field equation), and spatially rotating the soliton
produces a genuinely physically distinct solution (e.g. its
energy density changes). So there is no reason to expect
Eint to be independent of 
1 þ 
2. That it depends only on

1 þ 
2 is more surprising, and is a basic fact about dipole
interactions in two dimensions. In practice, it seems likely
that higher-order corrections will break the independence
of Eint on 
1 � 
2.
The most important consequence of formula (22) is that

it predicts long-range attraction between unit solitons if
they are appropriately oriented relative to one another,
leading one to expect there to exist stable, static, spatially
localized solutions in all homotopy classes. In particular,
soliton pairs initially oriented as in Fig. 3(a) or 3(b) are
predicted to attract one another, while those oriented as in
Fig. 3(c) or 3(d) are predicted to repel. These predictions
were vindicated by the numerical simulations described in
the next section.

V. MULTISKYRMIONS

In this section, we report the numerical results on
multi-Skyrmions, confirming the validity of the dipole
approximation, and give examples of the very complicated
landscape of local minima of higher multi-Skyrmions.

(b)

(c) (d)

(a)

attract

repel

attract

repel

FIG. 3 (color online). Predicted behavior of two-Skyrmion
superpositions. The disks represent half lumps with �3 > 0
(red) and �3 < 0 (blue), while the black arrows represent the
scalar dipole moment associated with each Skyrmion.
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We split this section in two according to two different
‘‘branches’’ in the shapes of the minima. Before going
further, it is worth noting several general observations.

First, the dipole approximation was confirmed for pairs
of B ¼ 1 solitons. To confirm this, we used three methods:
the usual BFGS method, simple gradient flow, and also
a Newton flow second order dynamics, where we set
c :¼ @0� and @0c ¼ �@�E, @0� ¼ c . They all agree

that two unit Skyrmions starting in the attractive channel
coalesce into a B ¼ 2 multisoliton with an energy lower
than twice that of the unit Skyrmion. The resulting two-
Skyrmion is depicted in Fig. 4(a). However, confirming the
existence of the repulsive channel is slightly more chal-
lenging. First, the computational box needs to be large
enough, otherwise the boundaries will exert pressure on
the solitons and they react by rotating into the attractive
channel and coalescing. Second, the solitons need to be
placed exactly symmetrically on the lattice, lest they again
rotate into the attractive channel and coalesce. When set
up correctly, however, placing two B ¼ 1 Skyrmions in
the repulsive channel results in them receding. Thus we
can confirm the qualitative correctness of the dipole
approximation.

Second, all the results presented below are done in a
standard lattice with h ¼ 0:1 and N ¼ 801, except the case
B ¼ 32, which does not fit into the smaller lattice at all. For
those values of B, where multiple minima were found, two
additional methods were used for their initial configura-
tions. The first method is a simple cut and paste of other
solitons, for example, two 2-solitons were put side by side
to produce a 4-soliton. The other method was to start with
N ¼ 801, h ¼ 0:05 which resulted in a different minimum
than N ¼ 801, h ¼ 0:1. This is due to boundary pressure:
if N was doubled, the other result reemerged. When this
happened, the h ¼ 0:05 solution was made sparser by a
factor of 4 to put it into the standard lattice, where it was
then minimized again to get a result which can be com-
pared with the others. Where several initial states produced
the same minimizer, we only mention one of the initial
states.

A. Charges B 2 ½2; 6�
Minimal energy Skyrmions of charges B in the interval

½2; 6� found using our numerical scheme form regular
polygons, where there are half lumps at the 2B vertices.
The energies of these minimizers are always lower than
BE1, where E1 is the energy of the unit Skyrmion, so there
is good reason to believe they are stable in accordance with
the above dipole picture. It should be noted, however, that
the symmetry of these minimizers is the same as that of the
initial data w ¼ �ðxþ iyÞB. Therefore, one is led to sus-
pect that the random ripples added to wmay not be enough
to break the symmetry. It is therefore necessary to intro-
duce a stronger symmetry break. For B ¼ 2, the computa-
tions done to confirm the dipole approximation provide this

break, and still relax to the same square final configuration.
The obvious way to test the higher charges was therefore to
place two lower charge solitons side by side and minimize
their energy.
Indeed, for charges 5 and 6, there are minima, which

were only found using this spliced initial configuration.
However, they have higher energy than the respective
polygons, and therefore represent a local minimum only.
For the charges 3 and 4, various different initial configu-
rations were tried, but they always relaxed to the respective
polygon.We present the minimizer of B ¼ 6 as an example
of the polygon shaped minimizers in Fig. 4(b).

FIG. 4 (color online). Sample minimizers for higher degrees.
All plots are contour plots of �3.
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B. Charges B > 6

The 2B-gon form of the global minimizers only persists
up to B ¼ 6 after which, the shape of the minimizer is
completely different and there is no obvious rule for the
shape. We will briefly discuss these minimizers below, but
first it should be noted that the symmetric (plus random
ripples) initial state still produces a polygon shape local
minimizer for all charges except 13 and 14, but this is no
longer a global minimum. The polygon exists for charges
13 and 14, also, but was only obtained by starting the
minimization process with N ¼ 399, h ¼ 0:1 and embed-
ding the result in the standard lattice. The polygons are,
however, quite stable and the energy differences between
them and the global minima are very small. For example,
we squeezed some of the polygons to half the size in the y
direction and they relaxed back to the polygon shape
instead of the global minimum.

The solutions obtained from lower charge solitons set
side by side and starting the minimization in a N ¼ 801,
h ¼ 0:05 lattice, produce a veritable zoo of different min-
imizers, of which all but one have lower energies than the
2B-gons, the exception being charge 14. Because of the
amount of work involved in patching the solitons together
and the total number of computations already performed,
we did not attempt an exhaustive search with side-by-side-
type initial configurations of all charges.

The first nonpolygon minimizer occurs at B ¼ 7 and
looks like a slightly distorted rectangle of 2� 7 half
lumps. It is depicted in Fig. 4(c) and was obtained by
putting a B ¼ 3 soliton next to a B ¼ 4 one. A similar
minimizer is also found for B ¼ 9 using a B ¼ 4 soliton
beside a B ¼ 5 soliton as the initial configuration. These
are global minima, within the limits of our numerics.

At B ¼ 8 the half lumps of the minimum energy con-
figuration arrange themselves into a square lattice of 4� 4
half lumps, as seen in Fig. 4(d). The initial configuration
consisted of four B ¼ 2 solitons at the vertices of a square.
Similar square lattice configurations are also found for B ¼
18 and B ¼ 32, shown in Figs. 4(e) and 4(f). The initial
configurations were as follows. For B ¼ 18, two B ¼ 4
and two B ¼ 5 solitons were put at the opposite vertices of
a square and for B ¼ 32, four B ¼ 8 solitons were placed
at the vertices of a square. It is interesting to note that the
B ¼ 2 solution can also be thought of as 2� 2 square
lattice of half lumps, providing us with a tantalizing op-
portunity to conjecture that all 2B ¼ ð2qÞ2, q 2 Z will fall
into similar square lattices. While these are all possible
square lattices for B � 32, this raises the question of
whether there are other symmetric minimizers and what
are their symmetries, if any.

It seems that using various spliced initial configurations,
the square symmetry can be relaxed to produce other
rectangular shapes. We have already seen two of these
at B ¼ 5 and B ¼ 6, which are not global minima and at
B ¼ 7 and B ¼ 9, which are the global minima for these

charges. For all four cases, the short edge was the shortest
possible, but for B ¼ 10, 12, and, 14 a more squarelike
rectangular lattice of 4� 5, 4� 6, and 4� 7 half lumps,
respectively, exists. These are all global minima; they were
all obtained using spliced initial configurations.
The global minima for B ¼ 11 and B ¼ 13 have the

shape of a distorted rectangle, where the distortion consists
of an extra two half lumps in one corner. These were both
achieved by using N ¼ 801, h ¼ 0:05 initial states (as
always, these were later coarsened and embedded into
the standard lattice). Of these, we show the minimizer
B ¼ 13 in Fig. 4(g) as an example.
As the charge increases, finding the global minimum—

or what can reasonably be believed to be one—becomes
increasingly difficult. It is likely that the (possibly dis-
torted) rectangular shapes prevail as global minima for
charges above B ¼ 14, but we have not been able to
ascertain this. As an example of how difficult it is to find
the global minimum, consider charge B ¼ 9. There is a
local minimum of the distorted rectangle type with two
extra half lumps in one corner. To converge into this
configuration, an initial configuration of charges B ¼ 1
and B ¼ 8 is needed, but it is not enough to just put these
side by side. They must be placed at very precise locations
in the lattice. Although this arrangement is natural, place
the B ¼ 1 solution outside the B ¼ 8 solution along one of
its diagonals, it is very difficult to guess the correct ar-
rangement for higher charges. Moreover, at higher charges,
there is an ever increasing number of different combi-
nations to choose from.
In addition to the global and polygon-shaped minima,

we found some other local minima. Most of these have
energies between the global minimum and the polygon and
have various (or no obvious) symmetries, like the distorted
rectangle of B ¼ 9 mentioned above. The one notable
exception is the lucky cloverleaf at B ¼ 14, whose energy
exceeds that of polygon and has an obvious symmetry. It is
depicted in Fig. 4(h).
We now briefly return to the case B ¼ 6. Since it is the

last onewhere the polygon seems to be the globalminimum,
it deserves special attention: how can we be certain some
other configuration does not give a lower energy? Since it
seems conceivable that a rectangular lattice of 3� 4 half
lumps could exist, we tried several methods of producing it:
we split the rectangular B ¼ 12 minimizer in two, keeping
just one half; spliced together all possible combinations of
two lower charge solutions side by side, and even spliced
together two B ¼ 1 and two B ¼ 2 solitons in a crosslike
configuration. They all relax either to the polygon or the
2� 6 rectangle. Of course, it is possible, that the rectangles
reported above for the higher charge solitons might not be
the true global minima, but we believe they are: any other
rectangle would necessarily have a bigger difference be-
tween its long and short sides. Therefore, we did not attempt
to find any other rectangles.
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Finally, we summarize the charges, normalized energies
per B, and shapes of our global minimizers in Table I. We
also conjecture an exponential decay law for EðBÞ=ð4�BÞ
of the global minimizer which is approaching the value
1.52 when B increases without limit. This behavior, along
with a least squares fit of the form aþ becB, is displayed in
Fig. 5.

VI. CONCLUDING REMARKS

We have used numerical minimization to show that
multi-Skyrmions in the easy plane baby Skyrme model
exist and are stable. For each charge above 4, we have
found at least two minima, sometimes three or even four.
Of these, we have most likely identified the global one for
most charges in the range ½1; 14�, 18, and 32. These minima
exhibit various different types of symmetries and it is
conceivable that a method exists for determining the shape
of the minima without finding the minima themselves.
However, this remains an open question. The prevalence

of rectangles or slightly distorted rectangles in this work
might provide a way to answer the question. We also
present a conjecture that limB!1EðBÞ=ð4�BÞ � 1:52.
Like baby Skyrme models with some other potentials,

we have identified an attractive and repulsive channel
for two well-separated unit Skyrmions using a dipole ap-
proximation and confirmed its validity by numerical
simulations.
The rectangular lattices formed by the half lumps are

reminiscent of condensed matter systems, where (baby)
Skyrmions have been experimentally observed (see, for
example, [13,14]). These are not, however, modeled by
the baby Skyrme model, so it would be interesting to
investigate whether the easy plane baby Skyrme model
could be used as an effective model for some condensed
matter systems.
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[12] U. K. Rößler, A. N. Bogdanov, and C. Pfleiderer, Nature

(London) 442, 797 (2006).
[13] X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han,

Y. Matsui, N. Nagaosa, and Y. Tokura, Nature (London)

465, 901 (2010).
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