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Superspace evaluation of the two-loop effective potential for the O’Raifeartaigh model
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All-order spurion-corrected superpropagators and superfield Feynman rules are employed to system-
atically compute a two-loop corrected effective potential for the O’Raifeartaigh model, that realizes
spontaneous supersymmetry breaking. Though the shifted superpropagators are rather nontrivial, super-
space techniques may be suitably extended and confirm their efficacy in computing radiative corrections

even when supersymmetry breakdown occurs.
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The effective potential plays a very important role in
determining the nature of the vacuum in quantum field
theories. It allows the calculation of the vacuum expecta-
tion values in the true vacuum state of a theory with
spontaneous symmetry breaking.

In the case of supersymmetric theories, the effective
potential can be directly calculated in superspace, by using
supergraphs. In general, the supereffective action is de-
scribed by two functions of the chiral and the antichiral
superfields; one is required to be a holomorphic function
and the other one, called Kéhler potential, less constrained,
is required to be just a real function. The holomorphic part
of the superpotential is very constrained, which is reflected
in various nonrenormalization theorems, leading to results
to all orders in perturbation theory [1], and even nonper-
turbative results in some cases [2]. For models with spon-
taneous supersymmetry (SUSY) breaking, the effective
potential can be calculated by using superspace techniques
even if soft explicit breaking terms are introduced in
the superspace action; this yields spurion insertions.
These terms have been carefully classified and studied by
Girardello and Grisaru [3]. This approach to study SUSY
breaking is very powerful because it leaves most of the
supersymmetric structure intact. In fact, as the full
supersymmetric and the supersymmetry breaking terms
are represented as interactions in superspace, the renor-
malization can be performed systematically directly in
superspace.

In general, the background field method is adopted to
calculate the effective potential. In this method, the scalar
fields of the theory are each separated into a constant
classical background plus quantum fluctuations. Using
this approach, the effective potential is equal to the tree-
level potential in the classical background, plus the sum of
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one-particle-irreducible connected vacuum graphs with
field-dependent masses and couplings. In superspace the
vacuum supergraphs are identically zero, owing to the
Berezin integrals. However, when soft breaking terms are
present, the propagators have a nontrivial §-dependent part
and the vacuum supergraphs do contribute [4].

Using superspace spurion techniques, the superpotential
for the simplest O’Raifeartaigh model for spontaneous
breaking of supersymmetry was calculated in [4] at the
one-loop level. Although the O’Raifeartaigh model for
SUSY breaking has been fairly well studied, this kind of
model has recently received renewed attention in view of
the R symmetry, which plays an important role in SUSY
breaking [5]. Though the simplest original O’Raifeartaigh
model [6] does not spontaneously break R symmetry,
generalized O’Raifeartaigh models, which spontaneously
violate R symmetry, have been built up [7-9]. In these
generalized O’Raifeartaigh models, R symmetry is
spontaneously broken by the pseudomoduli, which are
charged (under R symmetry) and acquire a nonzero vac-
uum expectation value via radiative corrections incorpo-
rated into the effective potential [10,11] at one loop. So, it
is very important to develop methods that account for
higher-loop corrections to the effective potential of
O’Raifeartaigh-type models. In [12], a component-field
approach was used to study R-symmetry breaking at
two loops.

The main goal of this paper is to show that the super-
space approach, with spurion insertions, can be a powerful
tool to derive higher-loop corrections to the effective po-
tential of O’Raifeartaigh-type models. To this end, we used
the spurion techniques developed in [4,13] to calculate the
effective potential for the simplest O’Raifeartaigh model at
two loops directly in superspace. As we are going to use a
superspace field method, we have just one kind of two-loop
vacuum diagram to calculate. Though this approach dras-
tically reduces the number of individual diagrams with
respect to a component-field calculation, a drawback is
that the propagators have a nontrivial dependence on the
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spurion insertions and so the vacuum diagram involves an
infinite sum of the spurion terms. The spurion insertions
can however be summed up to all orders. The basic tech-
niques for dealing with such a problem were developed
in [13], when spurion operators were introduced, which
satisfy a Clifford algebra and simplify the computations.
Here, we further extend these techniques to calculate
two-loop vacuum supergraphs. At this point, we would
like to recall that the application of superfield methods
to derive vacuum diagrams in superspace to one- and
two-loop approximations in connection with the renormal-
ization of the Kéhler potential has already been considered
in the literature [14].

The paper is organized according to the following out-
line: in Sec. I, we present the model, derive the Feynman
rules, and calculate the one-loop effective potential; in
Sec. II, we calculate the two-loop vacuum diagrams and
show that, after integrating over the superspace coordi-
nates, the remaining expressions are written in terms of
usual space-time integrals; in Sec. III, we solve the space-
time integrals and obtain the final expression for the
renormalized two-loop effective potential. Concluding
remarks are finally cast in Sec. IV. There follow two
Appendices. In Appendix A, we present useful algebraic
relations in superspace and explicitly calculate two of
the superspace integrals presented in Sec. II. We collect
in the Appendix B some of the intermediate steps of our
supergraph calculations, which may be helpful to get the
final expressions reported in Sec. III.

I. THE ONE-LOOP EFFECTIVE POTENTIAL

The Lagrangian for the O’Raifeartaigh model [6] is as
follows:

L= fd“ﬁ&),-(l),- - I:fdze(gcbo + md, d,

+ g®y®?) + He. ] i=012 (1)

The chiral superfields, ®;, are given by
®D,(x, 6, 0) = exp(i0at09,)(z; + 04, + 6%h;),  (2)

where z is the scalar, ¢ is the spin-1/2, and £ is the scalar
auxiliary component fields.

In order to show the SUSY breaking in the model, and
for later convenience, it is necessary to study the potential
of the model described by (1). The scalar potential is given
in terms of the auxiliary fields, &;, by

Vs = hihi = |+ g22? + |mzy + 2gz07, > + Imz, |
3)

Writing the vacuum expectation values (vev) of the scalar
fields as (z;), the minimum of (3) in the tree approximation
is [4]
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where y is completely undetermined (flat direction) and x
is real and obeys the equation x(m? + 2g& + 2g%x%) = 0.
At this minimum,

Vit = (& + gx*)* + (mx)* = V(x). (&)

Solving the equations of motion for the auxiliary fields,
we obtain

<h0> = A’ <hl> = O’ <h2> = mx, (6)
where A = & + gx?. The relations above show that the
O’Raifeartaigh model, described by (1), in fact breaks
SUSY, since we have nonvanishing vev’s for some of the
auxiliary fields.

The values of x and y, and consequently of the vev’s
(z;), {h;, are related to symmetric or nonsymmetric phases
of the system. We do not intend to discuss these features in
the present work, and for this we refer the reader to the
references [4,15]. For our purposes, it is sufficient to know
that y = 0 due to one-loop corrections.

Since in the following we shall work around the ground
state, we take (hy) = A, (z;) = x, and (h,) = mx, and
shift the superfields as a sum of a quantum superfield
(¢o, &1, and ¢,) plus the related classical value:

(I)O - ¢0 + 62A,
CDZ = (]Sz + 92mx.

(I)l == ¢1 + X,
(7

Inserting the shifted fields into (1) and expanding the
action around the superspace classical configuration up to
third order in the quantum fields, we obtain

- f 0P — [ [ LOEy + m, by + 255,

+ gAO*PpT + gho?) + Hec. :I (8)

The appearance of terms proportional to # and 6 in (8)
signals the explicit breaking of SUSY and naturally arise
when spontaneous SUSY breaking is studied in super-
space. These are the spurion interactions classified in [3].

The propagators can be derived if we invert the wave
operator in the quadratic part of the Lagrangian. By using
the techniques developed in [4], we find that they are given
as follows:
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(Podo) = (K + m*)A(k) &1, + (2gx)*(2gA)*B(k) 616751

(Do) = (2025 0)C(H) 1 DIDGR S
($161)= ER)%, + Q58P BK) 1 DITDT 5%
(Do) = ~ (2P (2gA)CW) DI 5%
(Gob1) = Qe0AR) DS,

1,
~ (2gx)(2gA7B(K) 76T D7 81;

1
(b1¢p1)= (28A)F(k)19%D%5?2, )
where
AR = :

(2 + m? + 4g2x2)
1

B(k) = ,

(k) (k% + m? + 4g>x*)[(k* + m? + 4g°x*)* — 4g>A?]

1

Clk) = R

() K[(k* + m?* + 4g°x?)? — 4g%A?]

1

Ek)=——-——>—,

() K2+ m? +4g2x2

1

F(k) =

(kZ + m2 —+ 4g2x2)2 _482A2’

and 8}, = 8*(6, — 0,) = 85,. We do not consider the
propagators involving the ¢, superfield, since they do
not appear in the vacuum diagrams.

We can also write the Feynman rule for the interaction

term ¢od?:
o3 vertex: — 2gfd40. (10)

The quantum contributions to the effective potential can
now be evaluated in superspace by calculating the one-
particle-irreducible connected vacuum supergraphs using
the Feynman rules defined in (9) and (10). Note that the
propagators have a nontrivial dependence on the spurion
interactions.

After expanding the supergenerating functional, the ef-
fective potential can be expressed as follows:

1 1

(1) (2)
(4m)? Vg + 4Veff+ coe, (1D

V=V +
eff eff ( 4 77_)

where Vg@ represents the n-loop correction. The one-loop
vacuum diagram shown in Fig. 1 comes from the quadratic
part of the action expansion, while the two-loop vacuum
diagrams come from the three-quantum field terms of the
action expansion.

By calculating the Gaussian integral in superspace and
using the definition of the super effective action, the one-
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FIG. 1. One-loop vacuum diagram.

loop vacuum diagram is written as a supertrace and one can
adopt the same techniques developed in [13] to deal with
the spurion insertions,

1
V= -5 fd4012531 Trin[PTK]8%,  (12)

where d*6,, = d*0,d*6, and the notation Tr refers to the
trace over the chiral multiplets in the real basis defined by
the vector (®7, ®)T. P is the matrix defined by the chiral

projectors P, = D2 and P_ = D°D° a5
0 P_
P= <P+ 0 ) (13)
and
(AP_ + B# 77—)% 13x3
K B b
Lixs (AP+ + B, 7—”)%
(14)
with
0 2gx O 0O 0 0
A= 2gx 0 m |, B=10 2gA 0l
0 m 0 0 0 0
n_ =0OY2p_g2pP_, 7, =0OY2p, 8P, (15)

is the quadratic operator of the free part of the Lagrangian.
The basic techniques for the calculation of (12) for

general supersymmetric models have been developed

in [13], and have been applied to the O’Raifeartaigh model

in the context of the linear delta expansion in [16]. So, we

refer the reader to these references for extensive details.
The one-loop diagram is given by [16]

VO - % ([ Lo(A + B) + Lo(A — B) — 2Ly(A)]

48%(h)? ]
(m* +4g%(z,)*)?
m? +4g%(z;)* + 2g(hy)
m? +4g%(z,)* — 2g(ho)

T g2 (h Inf(m? + 4%z, )? — 4g2<h0>2]}, (16)

+4g(ho)(m? +4g%(z;))In
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where A = AA, B = (BB)'/2, and

Lol o

II. THE TWO-LOOP EFFECTIVE POTENTIAL

In this section, we are going to calculate the contribution
of the two-loop vacuum diagrams in superspace. As
pointed out in the previous section, the propagators have
a nontrivial dependence on the spurion insertions.
However, using the spurion algebraic relations described
in the Appendix, we can solve the - and #-dependent
integrals and the remaining ones are usual momentum-
space loop integrals. We choose to carry out our calcula-
tions with renormalized parameters and we are going to
adopt a usual renormalization procedure in the next
section.

The two-loop diagrams we have to calculate are shown
in Fig. 2.

Note that there is only one kind of topology, since in
superspace there is only one kind of interaction. Denoting
a =2gx and b = 2gA for simplicity, the contribution of
the first diagram is given by

4 ahy 4
= (20)(=2) [ FLEECIRT 2Dk )0 |

Lo(X) =

Q)
[ D2<k><¢1¢1>][ DAg)D3(- q)<¢1¢1>]
_ & [ d4kC(p)F(k)F(q)Jl(e d), (18)

(16)° 2m)®

where ¢ = k — p and

1,(6,6) — [ d*0,,[ D) DY (p)6} 5% 13KV BID3(K) 5%,

X [D3}(q)D3(—q)01D3(q)51,]
= 4(16)3 p*. (19)

Here, we have used the algebra of covariant derivatives and
the spurion algebraic relations described in the Appendix.
The same sort of algebraic manipulations is going to be
carried out in the sequel to perform the superspace inte-

¢0 (bl ¢() ¢1 QEO le él le
+ e s + wes ()
o 01 o1 Po o1 O b1 1

FIG. 2. Two-loop vacuum diagrams.
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grals. In the Appendix, we explicitly calculate two super-
space integrals as examples of these manipulations.
Plugging this result into (18), we obtain

d* pd*k
@Qm)®

= —4g%a*p’ C(p)F(k)F(g)p>.  (20)

The contribution of the second diagram is given by

d4pd4kd40]2

L =2-29)(-2g) [ [ 202081

Qm )8
x [——D%<k)<¢o¢o][ib%(qm%(—qx«z),¢1>]
B 2g2 d*pd*k -
- s [ A FQ 10,0
— 2B2A()BUOF(q) 1+(6, 6)
B B()BUOF(q) 16, 0)), 1)

where

1,(0.9) = j 440, (D3 (p)D3(p) 3%, L DA(K)DA(K) 6% ]

X [D1(q)D3(—4q)8;Di(q)},]
—0, (22)

1,(0.9) = [ d*0,,[D3(p) DY p) 8%, D3 (K 03B3D3(K) 5%,

X [Di(q)D3(= )87 Di(q)8%,]
= 4(16)*p?, (23)

1,(0,6) = f &0, [ DHp)62T D p) %]
X [DA(K) 22 D3(K) 5]
X [D3(q)D3(—q)02D3(q)8%,]
= —4(16)>. 24)

With (22)—(24) into (21), we get the contribution:

d*pd*k

I, = —16g2a2b3[ 2 A(p)B(k)F(q)p?
d*pd*k
880 [ S BRIBRF(@). (25)
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Th tributi f the third di is oi b _ _

€ contribution o (&} 1Tr 1agram 1S glVen y 17(0’ 0) — fd4012[D%(P)5?2][1)%(/‘)5?2]
d*pd*kd*6 1 _ —
dpd’kd’0, [ ] X [D2(q)D2(~ )28 6%, ]

L = 4-20)-29) [ SLESEE ] i) b1 o)

= 2
x [~ Pi0din || fgDiapi-axandy 16y, G
- (1g62)3 @’ d:zl;d;k C(p)C(q){E(k)Js(e, 9)
! ) 14(0.6) = fd4912[D%(P)5‘1‘2]
+ Esz(k)Jﬁ(a, 0)}, (26) s
X [D3(k)D}(k)6363D3(k) 51, ]
e X [D3q)D3(—q)0025%,]

— 3
I5(6,0) = f d*0,,[ D3 (p) B DN p) DY (p) 54,11 D3 (k) 5%, ] (16)" (32)

X [D3(q)D3(—q)D3(q)D}(¢)678%,]

= (16)*p*q?, (27) _ _ o
P To(6,8) = j 401, D(p) DX (p) 2B D2 () 5% ]

X [D3(k)D3(k)63602D3(k) 6%, ]

14(6.0)= [ &6ulBYPFDHPDI P} et
1\q)P3(—q)0107107,

X [D3(k)D3 (k) 6263 D3(k)5%,]

_ ’ = (16)*, (33)
X [D?(q)D3(—q)D3(q)D3(q)6361,]
= (16)°p?q>. (28)

By inserting (27) and (28) into (26), we obtain 1,00, ) = jd4912[D_%(P)5?2][D%(k)5?2]

4 14 _
I = 16g2a%b? [ dp dgk C(p)E(K)C(q) P> X [Di(q@)D5(—q)51,]

(@m) —0, (34)

d*pd*k

+ 16g%a’b*

G C(p)B()C(9)p*q>.  (29)

The contribution of the fourth diagram is given by

1.,(0,0) = [ d*0,,[D(p)5%,]

d* pd*kd*o 1. i
Iy = 2(—28)(—2g)'[W[_ZD%(P)@MO] X [D3(k) D2 (k) B202D3(k) 6%, ]
_ _ _ 2 2(__ 4
<[ 30306161 || 3¢ B@DA- )Xo X DH@D3(=g)%]
82 Fod' = —(16)°F, (35)
= et [ B@{EE0 0.
1 _ 1 _
v L2 E(p)BUOI4(6, 8) + —— b*B(p)B() I,(6, 6) ) ) o
O ey 0.0} 10:0.0) = [ @6, IDY DN PEEDp)5]
+ 8¢ dpd kA(q)(qz—i—mz) < TD2( D2 (202 D2 (k) 54
(16)2 (277.)8 [D2(k)D2(k)0202D2(k)512]
2o 5 X [D(q)D3(—q)81,]
< EWE®WT0(6.0) + L E)BIT,(0.0
! = —(16)*¢% (36)
+ gt BIBOI 0, o} (30)
By taking (31)-(36) into (30), the final contribution
where reads as follows:
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I = 82" "(‘;pj)‘;" E(p)E®)B(g)
+ 16g%a2b* ”Z”;Zk E(p)B(k)B(q)
+ 8275 "(“2”;‘;"3@)19(1«)3@)
1602 [ ”1(42”7:’;" E(p)BIRAGK
— 8g2b* d(zpj;kB(p)B(k)A(q)q4
= 16gim?p? "(4;’:;"E<p)3(k)A(q>k2

d*od*k
— 8g2m2b* [ o BpBWAQE. 37

Once the superspace sector of I, I, I3, and I has been
worked out, we are ready to compute the momentum-space
two-loop integrals to get the two-loop corrected effective
potential we are looking for.

III. THE TWO-LOOP CONTRIBUTION TO THE
EFFECTIVE POTENTIAL

In this section, we give the expressions for the two-loop
vacuum diagrams in terms of integrals in momentum
space. The explicit derivation of these expressions is re-
ported in Appendix B.

In Sec. II, we have used the spurion algebraic relations to
reduce the superspace integrals to usual integrals over the
momenta of the loops. It can be readily checked, by power
counting, that some of the integrals are finite while some of
them are log divergent. To handle these integrals, we have
adopted the following strategy: for each of them, we split
the integrand with the help of the method of partial fraction
decomposition and write each integral as the sum of
other integrals with just three terms in the denominator.
The remaining integrals are all well known in the literature,
and we use the results of the references [17-19] to compute
them.

From now on, we define 7> =m?>+a> n~ =
m? + a®> = b and adopt the same notation of references
[17,19] for the integrals I(x, y, z), J(x, y), and J(x):

kJ(x) = — g + x(Inx — 1), (38)

11 - _
K2J(x,y) = )cyI:—2 + —(2 — Inx — Iny)
e €

+ (1 — Inx — Iny + InxIny) ] (39)
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c 1/3¢ 1
KZI(X,y, Z) = _? - ;(7 - Ll) - E{Lz — 6L,
+ (y + z — x)lnylnz + (z + x — y)Inzlnx
+ (y + x — 2)lnylnx + &(x, y, 2)

+ c[7+ 221 (40)
where

Kk = (4)%, c=x+y+z
_ X
InX = ln(—z) + v — Ind,

M

L,, = xIn”x + yIn"y + zln"z,

z+x—y—S1Pz+y—x—S
2z ) 2z
z+x—y—S)
27
. z+y—x—S) 77'2]
— 2L ———— )+ = |
12( 2z 3

S =q/x* +y*+ 72 — 2xy — 2yz — 2zx,

Ex,y,2) = S[Zln

S M P 2L12(
Z Z

In(1 — ¢
Liy(z) = — ﬁ) Zydt(dilogarithm function).

Below, we cast the final expressions for the two-loop
diagrams.
For the first two-loop diagram, Eq. (20), we have

g2a?
I, = 7[1(77*, nt.n™) =310, n",n7)

+3In" ) —I(n~, ", )] (41)
For the second two-loop diagram, Eq. (25):

L = g*a’[—41(n*, 0>, n*) + 41(n%, n* ")
+I(n*, )+ 1(nT, ", n7)
—In"n ", n7)—1(n", ", n7)] (42)

For the third two-loop diagram, Eq. (29):

I =2g*a’[I(n*, n*,n") —I(n*, 0", ")
Ity ,n )+ 1(n",n ", n7)] (43)

For the fourth two-loop diagram, Eq. (37):

125029-6
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b b +
Iy = 8g2a2|:—1(772, % n?) + ?I(nz, nhnt) - ?I(n? 7% n’)] + 8g2m2|:—21(n2, 7% 0) + %1(»,,2, 7", 0)

n _ ~ - L
+F1(772,77 ,0)]+g202[1(n+, ) +3I(nt, T, 7)) +3(nt T 7)) HI(n T, n T, )]

+ 28 [—4J(p% ) + 42 ) +4I(p* ) —J(nT,nt) = 20(nt, ) = J(n~, )] (44)

Now, the renormalized two-loop effective potential is finally given by the finite part of (B18) derived in Appendix B,

and can be written as

2
@r _ 8 4 -
Ve =L {m[(m2 T @PQm + @) + b(m? + & — b)(m? — 2a)](m? + )
24424 _
Lt b [4m*b — (m* + a®)(2m?* + 11a® + 2b)]In>(m* + a* + b) + [b(3a> — 2b)

(m* + a?)

— (m?® + a®)(2m? + 3a® — 4b)In?(m? + a® — b) + 8(m* + a* + b)(2a* — b)In(m? + a®)In(m? + a* + b)

8a’b(m* + a® — b)
(m? + a?)

8m2b

In(m? + a®)In(m? + a® — b) — 2(m* + a* + b)(2m?* + 3a*> — 2b)

X In(m? + a% + b)In(m* + a*> — b) + ——[2b In(m? + a®) — (m* + a*> + b)In(m? + a*> + b)
m

+ a?

+ (m* + a> — b) In(m? + a*> — b)]lnb — 16(m*> + a*)(2m> + 3a®)In(m> + a?)
+ 8(m? + a® + b)(2m? + 3a® + 2b)In(m? + a* + b) + 8(m? + a®> — b)(2m? + 34> — 2b)
X In(m? + a*> — b) + a*[4E(m?* + a® m® + a®, m* + a?) — 3é(m®> + a> + bym* + a*> + b,m*> + a®> + b)

— &m? +a* +b,m?* + a* — b,m* + a*> — b)] +

4(m* + a®> — b)

[£(m? + a® m? + a®, m* + a*> + b)

m? + a?
8m?b o m?ta?
—&m? + a®, m* + a*, m* +a® — b)] + m[(mz +a’+ b)L12<mz T2t b)
 (m*+a*—b 8
+ (m*> + a*> — b)le(w):l — 40b° — gmzbﬂz}, (45)

where, as before, a = 2gx and b = 2gA.

Our two-loop expression of Eq. (45) for the effective
potential as given in component fields is attained by pro-
jecting the result of our superspace computation in terms
of superfield Feynman rules. A direct component-field
two-loop calculation of the effective potential for the
O’Raifeartaigh model is not available in the literature.
However, in close connection with our result, we quote
the work by Miller [20], where the component-field two-
loop corrected effective potential of the Wess-Zumino
model is derived.

To conclude this section, we would like to comment on
the fact that our two-loop result could also be calculated
from the wave function renormalizations accounted for
in the two-loop corrected Kéhler potential appropriate to
describe the O’Raifeartaigh model. The work by Nibbelink
and Nyawelo cited in Ref. [14], where two-loop effective
Kéhler potentials are calculated for supersymmetric mod-
els, once applied to the minimal O’Raifeartaigh model and

suitably projected into component fields, can also be used
to compute the effective potential we have presented in
this work.

IV. CONCLUDING REMARKS

Explicit and spontaneous SUSY breakdown are topics
of relevance in connection with phenomenological and
fundamental aspects of particle field theories for the
physics of the standard model and the so-called beyond
standard model physics. It was our actual goal in this paper
to ascertain that, despite SUSY breaking, superspace and
superfield techniques are worthy to be kept whenever
one wishes to compute higher-order corrections to the
effective action and the effective potential.

Summing up all orders in the breaking parameters
yield rather nontrivial expressions for the shifted super-
propagators. This might, in principle, appear to be a dis-
advantage to keep on adopting superfield Feynman rules
to perform higher-order computations if SUSY is broken.
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However, the work of Ref. [4] shows an effort to
systematize and adapt supergraph techniques even if
SUSY is not exact. A number of explicit #-dependent
expressions are written down and the whole procedure
of (exact SUSY) supergraph methods is thoroughly
extended to account for SUSY explicit and spontaneous
breaking.

We have here devoted our efforts to show the efficacy of
the broken-case supergraph procedure in the concrete
problem of computing a two-loop corrected effective
potential in a way that can be extended to the whole
class of O’Raifeartaigh-type and also Fayet-Iliopoulos
[21] (D-term SUSY breaking) models. We succeed in
finding shortcuts—and we explicitly show them—which
confirm the benefits and efficacy of superspace methods
to carry out loop calculations whenever SUSY is no
longer exact. In our present case, the supergraph procedure
drastically reduces (from hundreds) the number of
diagrams to be computed. Superpropagators become
however much more cumbersome. Nevertheless, to deal
with them is not complicated as it might appear at a first
glance, in view of the anticommuting character of the 6
variable and the tricks and special simplifying recursive
relations we develop to treat the long 6 expressions that
appear throughout the (broken-case) superspace loop
evaluations. The option of drawing and calculating very
few supergraphs, even if super-Feynman rules get more
involved, is favored and we confirm this claim in our
explicit two-loop evaluation of the effective potential
reported here.

As we have pointed out in the Introduction, the works
of Refs. [7,8] tackle the interesting question of
R-symmetry spontaneous breakdown and the existence of
metastable SUSY breaking vacua. In the context of the
Intriligator-Seiberg-Shih mechanism, a natural follow-up
of the present work would consist in a more detailed
study and discussion of our loop-corrected effective
potential to analyze issues like its effects on the lifetime
of these unstable vacua for the minimal and nonminimal
O’Raifeartaigh-type models. Along this line—in view of
the breaking of R symmetry—we are also pursuing a
more phenomenological investigation, by applying the
results reported here to analyze the decay modes of the
so-called lightest supersymmetric particle into standard
model particles. We shall be reporting on these questions
elsewhere [22].
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APPENDIX A: SUPERSPACE RELATIONS AND
INTEGRALS

In this Appendix, we present some useful relations in-
volving the covariant derivatives in superspace, and use
them to explicitly calculate, for the sake of illustration,
two of the superspace integrals appearing in Sec. II.
Because of the dependence of the propagators on the
spurion interactions, some trivial relations appearing in
exact SUSY supergraph calculations have to be modified
by 6 and 6 insertions in the case of broken SUSY.
We follow the same notation as in [23].

The covariant derivatives are given by

Da(P) =0dq — Ugdédpﬂ’ (A1)
D,(p)=—d,+ 0“ThaD (A2)
and obey the algebra
{Do(p), Do(k)} = 0liy(p + ) e (A3)
From (Al) and (A2), we can also write
D?*(p) = —9%9, + 29_d6'#d“pﬂaa + 62p?, (A4)
D*(p) = —040% +20%0h;p, 0% + 62 p>. (A5)

Besides (A3), we have the following (anti)commutation
relations:

{Da’ 0B} = T€up (A6)
{Da’ éﬁ} = Or (A7)

[D,, 6*] =26, (A8)
[D?, 0,1=2D,, (A9)
[D? 0] = —4 + 46°D,, (A10)

and analogous relations for D.

When calculating supergraphs in the broken case, some
relations involving the covariant derivatives and the fermi-
onic coordinates proved to be very useful. We list below
some of them:

54,D2D26028%, — 16625%, (A1)
54 D2PERDISY, — 16020254, (A12)
54, DD DD25%, — (16)22 7" Iinu gt (Al13)

To show how the relations above apply, we explicitly
calculate, in the sequel, the integrals J 6(6, ), Eq. (28), and
I4(6, 6), Eq. (33).
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1. Explicit calculation of I4(6, 0)

The integral J4(6, 6) is given by
14(6.0)= [ & 6ulBYPFDYMDI )]
X [D3(k)D3(k)0365D3(k)61,]
X [D}(q)D3(—q)D3}(q)D3(¢)6151,] (A14)

Using the transfer properties

D64, — DA—K)6%, 6264, — 0284, (AlS)
in the second and third brackets, and the relation
D3%(q)D}(9)D3(q) = —164>D3(q) (A16)

in the third one, we get

14(6,6) = — 1642 [ d0,[D3(p) DI (p)DA(p)t,]
X [D}(—k)6167D}(—k) D} (—k)b1,]
X [D}(q)07D3(q)51,] (A17)

Transferring 2 from the second bracket into the first, %
from the third bracket into the second, and using relation
(A10) (and its complex conjugate), we obtain

I4(6.0) = —(167¢2 [ d0,[32D2(p)DA(p)5%,]

X [03D}(—k)D3(— k)83, 1D} (q)D3(q) 81,1
(A18)

Transferring 67 from the second bracket into the first and
integrating by parts with respect to D? of the third bracket,

14(6,8) = —(16)2¢? [ &0, (D)2 T DN p) D (p) 5]
X [D}(—k)D}(— k)61, 1[D3(q) 8%, ] (A19)

Integrating by parts the D? in the third bracket, and using
the relations

54,02D26%, — 1654, (A20)

84D, D2D284, — 0, 64,D2D2D2sY, — 0, (A21)

we obtain
14(6.6)= ~(16¢" [ a*6,.[DXpDH3}
X D%(P)D_%(P) 51112]541‘2' (A22)
Using (A13),

I146,0)=—(16)°¢2 f d*0e207" 0, (A23)

Recalling that

PHYSICAL REVIEW D 82, 125029 (2010)
[d40629”“‘§ﬁu = [d“ﬂ(l +200*0p, — 6%6%p?)
= -p% (A24)
we finally obtain

T4(6,6) = (16)° p*q>. (A25)

2. Explicit calculation of I4(6, 0)
The integral Jo(6, ) is given by
1,6.0)= [ d6ulBYpDHEFD} P}
X [D3(k)D3(k)8565D5(k) 81,
X [D3(q)D3(—)636351,] (A26)

Using the transfer properties (A15) in the second and third
brackets,

1o(0,0) = [ d*0,,[D3 () DY ()62 D3 (p) 5%, ]
X [D%(—k)@%é%D%(—k)D%(—k)é‘l‘z]
X [D3(q)0101D3(q)51,]. (A27)

Transferring 67 from the second bracket into the first and
using the complex conjugate of (A10), yields

To(0.0) = —4 j &0, (2D (p)62D2(p)5%,]
X [D}(=k)01D}(—k)DI(— k)51, ]
X [D3(q)0701D3(q)51,]. (A28)

Transferring 67 from the first bracket into the third, and
using the complex conjugate of (A10) again, we are lead to

T5(6.6) =16 f d*9,,[D}(p)67D}(p)81,]
X [DY (=)D}~ k)DY(—k)51,]
X [0761D(9)51,] (A29)

Transferring 67 from the third bracket into the second and
using (A10),

14(6,6) = —4(16) [ d0,,[D3(p) 02D (p) 5%, ]

X [0} D}(— D}~ k) 51,1161 D3 (9)81,)
(A30)

Once more, we transfer 87 from the second bracket into the
first and use (A10):

14(6,6) = (16)° f d*0,,[02D3(p)5%,]

X [D}(—k)D}(—k)81,][6D3(9)81,] (A31)
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Transferring 67 from the first bracket into the third, inte-
grating by parts the D? in the first bracket and using (A20),
we obtain

I4(6,0) = (16)° ] d*0,,61,[D7(q)0707D7(q) 81,

PHYSICAL REVIEW D 82, 125029 (2010)

T4(6,0) = (16)*. (A35)

We hope these manipulations make clearer the sort of
algebra procedure we have adopted to carry out the
f-superspace integrals.

(A32)
, APPENDIX B: THE MOMENTUM-SPACE
Now, using (A12), TWO-LOOP INTEGRALS
T4(6,0) = (16)* [d4gg29‘2_ (A33) Recalling (20), we have
. d*pd*k
Recalling that I, = —4g%*a*p’ (2p i C(p)F(k)F(q)p*
a
f d'00?6” = 1, (A34) = —4g’a®b*1(p, k), (B1)
we finally obtain with
1o k) = d*pd*k 1
e @mE (P> + ") P>+ 0 )EK + ")k + n7) g+ ) +m7)
(2b)3[ (", ") +3In", 0", ") =310, n", ") +1(n",n",n7)] (B2)

To get (B2), we have split the integrand using the strategy described above. Although each partial integral is divergent,
using (40), the final result for /; is finite. This is either the case for /; and /5. Plugging (B2) into (B1) yields (41).

For the second two-loop diagram, Eq. (25),

d*pd*k d*pd*k
L= 1680 [ ST ABMF(@)p? = 8¢ah | “7 S Bp)BUF(g)
= —16g%a’b’ L, (p, k) — 8g%a*b’I;(p, k), (B3)
with
_ [d*pd*k 1
Lt = [ P T T T )
(2b)3[ (%, % ") —4l(n* m* n7) — 21(n*, 0", n™) + 21(n%, n~, n7)], (B4)
d*pd*k 1
Lip k= [ ZL

(2b)

(277)8 (p* + ) (p* + ) (p? + )k + (K> + T )K* + 7 )G + ) g* + )

——=[—16I(n% % n*) + 161(n*, n*, n7) + 161(n%, 0", n*) — 161(n*, n~, n7) —4l(n*, n*, n")

—4l(n*,nt )+ 4T, ", ) +4(n", ", 7)) (BS)

Inserting (B4) and (B5) into (B3) leads to (42).
For the third two-loop diagram, Eq. (29),

d* pd*k

I; = 16g%a*b? 2P

= 16g%a*b*1,(p, k) + 16g%a*b*I5(p, k),

C(p)E(k)C(q)p*q* + 16g%a*b*

d*pd*k

G C(p)B(k)C(q)p*q*

(B6)
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with

_ [d*pd*k 1
MRM_[(%¥(ﬁ+nWﬁ+n)W+nW¥+nW¥+n)
(2b)2[1(77 ) = 20(mAnt, nT) + (A n7, 7)), (B7)
d*pd*k 1

Is(p, k) =

Qm? (P + ") (Pp* + 7 )K + 9K+ ) K+ 07 )@ + )G+ 1)

1
= (27)4[—41(772, )+ 81t ) —4l(ni n -, m7) +20(nt, nT nt) = 21(nt, 0t )
=2I(n*,m~, ) +2I(n",n ", n7)] (B8)

By taking the results (B7) and (B8) into (B6), we get (43).
For the fourth two-loop diagram, Eq. (37),

d*pd*k d*pd*k d*pd*k
I, = 8g2a2h? ng@wwmw+mffw[ ELEZE(p)B(K)B(g) + 820 | LS B(p)B(K)B(g)
(2m) (2m) (2m)
d*pd*k d*pd*k
—Mfw[ ng@w&M@Wf—8£Hf P4 B (p)B(K)A(g)q*
2m) (2m)
d*pd*k d*pd*k
16 [ PSS EIBUOAQK — sgmbt [P BB
(2m) (2m)
= 8g%a’b*Is(p, k) + 16g%ab*I;(p, k) + 8g2a*bCIg(p, k) — 16g>b*1o(p, k) — 8g>b*110(p, k)
— 16g>m*b?1,,(p, k) — 8g*>m*b*I,(p, k), (B9)
with
_ [d*pdk |
Is(p, k) = 2B (Dt OV + N + N+ n NG+
2m)° (p* + n°)( ) g+ n°)g” +n")qg +n)
(2b)2[ 4I(n?, % m?) + 21(n% m%, m™) + 20(n%, %, 1 7)), (B10)
» k)_j‘d4pd4k 1
TP @m® (p* + (K> + ) (k> + ) K2+ n7)(g* + 92)(g* + P )(g* + )
(2b)4[161(n % m?) — 161(n%, n% n*) — 161(n% 0% m7) + 41(n*, n*, ™)
+8I(m% nt,n ) +4I(n’ n -, m7)] (B11)
d*pd*k 1
Is(p k)= [ =L

@mE (P> + (P> + ) (P2 + )k + (K + nT)E + 7))@ + )+ )@+ )
(219)6[ 641(n*, m*, m*) + 961(n*, n°, m*) + 961(n?, 1, m~) — 481(n*, n*, n™) = 96I(n*, n*, n~)

—481(m* m~,m ) +8I(nT, ', n*) +24I(nt, nt,n7) +24I(n*, ", ) +81(n",n ", )]
(B12)
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d*pd*k K2
Io(p, k) = 3 2 N2 N2 (2 (2 2
Q2m)® (p* + p2)(k* + n*)(k* + n")(k* + n7)(g* + n*)
d*pd*k 1 ,
= — — n*ls(p, k)
e PP+ PR+ )+ )@ + ) T
1
= (Zb)2[4n21(n2, % n?) =20 1% n% ") — 207 I, v m 7)), (B13)
Lo, k) = d*pd*k q°
1057 QmF PP+ P2+ )P+ )+ )+ ) + 7 )+ 1)
_ [d*pd*k 1 PP
e P+ P+ )P+ )R+ I+ )@+ ) TP
1
= ——[16J(n% n?) — 16J(n*, n*) — 16J(n% n7) + 4J(n*, n*) + 8J(n*. n7) +4J(n~, ")
(2b)
= 16m%1(n?, n% 7% + 1697 1(n% n2, n*) + 1697 1(n* 72 0~ ) — 4n*1(n% n*, ")
=80 (0% n*,m7) —4n*(n% n ™, n7)] (B14)
d*pd*k K2
1y(p. k) = 8 (.2 N2 N2 (2 202 2
2m)°® (p* + n°)k* + n*)(k* + n")(k* + n7)g*(¢° + n*)
_ [d'pdk 1
@m)® (p* + (K> + Nk + n7)g* (¢ + 7?)
L, [dipdk 1
Qm? (p* + (K> + ) k> + nH)K* + n7)g (¢ + 1)
1
= @y (=402 1(n* n*, %) + 20" 1(n?, m2 n*) + 297 I(n% m%, ™) + 40 1(n?, 72, 0)
=29 I(n* n*,0) =207 1(n% n~,0)] (B15)
d*pd*k 1
In(p. k)= [EL = Ii(p,k).  (BI6)

@m® (p* + (P> + nN)P* + ) + )k + ") K+ n7)(g* + n?)

Plugging (B10)-(B16) into (B9) gives (44).

Note that, unlike the previous integrals appearing in I, I, and I, Is(p, k) and Iy(p, k) are log divergent, and even if we
use (40), the final result for /, is not finite.

In order to renormalize the divergent part of effective potential at two loops, we adopt the same strategy used in [17-19].
As we are working with renormalized parameters, we just minimally subtract the subdivergence terms of the two-loop
integrals, diagram by diagram, rather than compute separately a set of one-loop diagrams with counterterm insertions.
Using this procedure, we do not need to calculate the renormalization constants necessary to cancel the (1/€?) and (1/¢)
poles, and so the renormalized two-loop effective potential is written down by replacing the integrals calculated above by
the e-independent part of the functions I(x, y, z) and J(x, y):

T 3) = T 3) + - (I0) + I, ey 2) = 03,2 = 0+ J0) + ) (B17)

With these equations, and recalling (41)—(44), the two-loop effective potential is given by
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V& = +He)+ (L +He)+L+1,

PHYSICAL REVIEW D 82, 125029 (2010)

. o N o 8g2a2n_ N N _
=2g*a*[—4I(n* n%, n*) + 31(n*, 0t ") +I(n*, m ™, )]+T[—I(n2, %, n") + (0% % )]

+ -
+ ngmz[—Zf(nz, 7%,0) + %f(n2, n*,0) + %i(nZ, n, 0)] +2g° [~ 4T (n*, ) + 4 (0% )

+4J(ntn7) —J(nt, ) —2J(nT, n7) —J(n, n7)]

(B18)

This is the expression for the two-loop effective potential in terms of the integrals [ and J, given in (B17), and the finite
part of this gives the renormalized two-loop effective potential (45).
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