
Tempered two-Higgs-doublet model

B. Grzadkowski*

Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Hoża 69, PL-00-681 Warsaw, Poland
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We discuss the phenomenological consequences of requiring the cancellation of quadratic divergences

up to the leading two-loop order within the two-Higgs-doublet model. Taking into account existing

experimental constraints, allowed regions in the parameter space, permitting the cancellation, are

determined. A degeneracy between masses of scalar bosons is observed for tan� * 40. The possibility

for CP violation in the scalar potential is discussed and regions of tan�–MH� with a substantial amount

of CP violation are determined. In order to provide a source for dark matter in a minimal manner,

a scalar gauge singlet is introduced and discussed. The model allows to ameliorate the little hierarchy

problem by lifting the minimal scalar Higgs-boson mass and by suppressing the quadratic corrections

to scalar masses. The cutoff originating from the naturality arguments is therefore lifted from �0:6 TeV

in the standard model to * 2:5 TeV in two-Higgs-doublet model depending on the mass of the

lightest scalar.
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I. INTRODUCTION

The goal of this work is to extend the standard model
(SM) such that there would be no quadratic divergences to
scalar masses up to the leading order at the two-loop level
of the perturbation expansion. The quadratic divergences
were first studied within the SM by Veltman [1], who
showed that applying dimensional reduction [2] one gets
the following quadratically divergent one-loop correction
to the Higgs-boson (h) mass:

�ðSMÞm2
h ¼

�2

�2v2

�
3

2
m2

t � 1

8
ð6m2

W þ 3m2
ZÞ �

3

8
m2

h

�
; (1)

where � is a UV cutoff and v ’ 246 GeV denotes the
vacuum expectation value of the scalar doublet. The issue
of quadratic divergences was then investigated further
adopting other regularization schemes (e.g. point splitting
[3]) and also in [4] without reference to any regularization
scheme.

Since precision measurements require a light Higgs
boson, the correction (1) exceeds the mass itself even
for small values of �, e.g. for mh ¼ 130 GeV we obtain

�ðSMÞm2
h ’ m2

h already for � ’ 580 GeV. On the other

hand, if we assume that the scale of new physics is widely
separated from the electroweak scale, then constraints that
emerge from analysis of operators of dimension 6 require
� * a few TeV. The lesson from this observation is that
whatever is beyond the SM physics, some amount of fine
tuning is necessary; either we tune to lift the cutoff above
� ’ 580 GeV, or we tune when precision observables

measured at LEP are fitted.1 Tuning both in corrections
to the Higgs mass and in LEP physics is, of course, also a
viable alternative which we are going to explore below.
So, we will look for new physics in the TeV range which
will allow to lift the cutoff implied by quadratic corrections
to m2

h to the multi-TeV range and which will be consistent

with all the experimental constraints—both require
some amount of tuning. Within the SM the requirement

�ðSMÞm2
h ¼ 0 implies mh ’ 310 GeV. However, as is very

well know, the present data favor a light SM Higgs
boson—according to the PDG [5], after including all the
available experimental data and taking into account theo-
retical uncertainties, the 99% C.L. upper limit for the
Higgs mass reads: mh � 194 GeV. Therefore, within the

SM the one-loop condition �ðSMÞm2
h ¼ 0 requires an unre-

alistic value of the Higgs-boson mass.
Examining closer the experimental constraints one finds

also the following tension which emerges in the process
of fitting all the available data to the SM (see [6] for
a recent review). Hadronic asymmetry measurements
ðAc

FB; A
b
FB; QFBÞ favor a heavy Higgs boson, with mh �

500 GeV, while leptonic asymmetries ðALR; A
l
FBÞ together

with nonasymmetry precision measurements ðmW;�Z; . . .Þ
favor a Higgs mass smaller by one order of magnitude.
If ðAc

FB; A
b
FB; QFBÞ are omitted from the fit one obtains

mh � 50 GeV with an upper limit mh < 105 GeV at the
95% C.L. [6]. Moreover there is the LEP lower limit on the
Higgs mass, mh > 114:4 GeV [7]. The fit which combines
all the data is therefore of low quality. That observation
suggests a modification of the SM which would allow for a
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1In terms of the effective Lagrangian approach that implies
coefficients of dimension-6 operators ci � 1.
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heavy Higgs boson with a mass at least above the LEP
limit. For that the SM prediction for the oblique parameters
S and T must be modified by the extension of the SM that
we are seeking.

Here we are going to construct a model which would
both soften the little hierarchy problem by suppressing

�ðSMÞm2
h and which would allow to lift the central value

for the Higgs mass up to a value which is well above
the LEP limit (presumably it would imply a better fit of
the precision observables). We would like to point out also
that increasing the Higgs-boson mass would ameliorate

the little hierarchy problem even if �ðSMÞm2
h was not sup-

pressed (since then larger cutoff would lead to the correc-
tion of the order of the mass itself).

There are only two ways to suppress �ðSMÞm2
h=m

2
h:

one can either modify the SM such that (i) larger SM-
like Higgs-boson mass is allowed; or (ii) extra radiative

corrections to �ðSMÞm2
h emerge that partially cancel (1).

The best-studied example of the second approach is pro-
vided by supersymmetric theories for which �m2

h � m2
h up

to the grand unified theory scale, however the suppression

of �ðSMÞm2
h could also be achieved through very modest

means, e.g. by introducing just extra real scalar singlets to
the SM [8] (although more tuning than in the supersym-
metric case is necessary). The first strategy was followed in
[9] within the so-called inert doublet model2 (IDM). There,
a second Higgs doublet was introduced and an exact Z2

symmetry was imposed to provide a dark-matter candidate.
As shown in [9] a large (400–600 GeV) SM-like Higgs-
boson mass was allowed by the addition of an extra Higgs
doublet (the inert doublet). It was demonstrated that the
extra contributions to the oblique parameters originating
from the inert doublet (with physical fields H�, A and S)
can cancel large effects of a heavy SM Higgs, such that
mh � 400–600 GeV is allowed. Here we propose a model

which does both, i.e. suppression of �ðSMÞm2
h by contribu-

tions from some extra states (which implies reduced

�ðSMÞm2
h=m

2
h) and which modifies the results of the global

fit such that much heavier SM Higgs boson is allowed

(that also helps to decrease �ðSMÞm2
h=m

2
h and in addition

it could eliminate the tension caused by the high LEP lower
bound in the presence of a low central value from precision
tests). A different approach to this problem has been
proposed in [11].

Another well-known problem of the SM is the strength
of CP violation which is too weak to make the electroweak
baryogenesis viable [12]. It is also worth noting a too slow
phase transition (within the SM) which is another difficulty
for realistic baryogenesis [12].

In light of the above remarks it seems very natural to
consider simple extensions of the SM scalar sector, as for

instance the two-Higgs-doublet model (2HDM). Our
intention is to bring the reader’s attention to a region of
parameter space that not only is consistent with standard
theoretical requirements (positivity and unitarity) and sat-
isfies all the relevant experimental constraints, but also
offers a simple pragmatic option to reduce the size of the
quadratic corrections to scalar two-point Green’s functions
(so in other words to scalar masses). It has been noticed a
long time ago [13] that within the 2HDM one can cancel
quadratically divergent corrections to two-point Green’s
functions for scalar particles. Some phenomenological
consequences of the cancellation were discussed already
in [14]. It is well known [15] that within 2HDM extensions
the oblique parameters S, T and U can be modified such
that SM contributions growing with mh (/ lnmh) could be
canceled by other terms (originating from extra scalars
present in the 2HDM), so that the lightest Higgs boson
could be relatively heavy, see [9]. Within the 2HDM the
electroweak phase transition could also be made fast
enough [16] to make electroweak baryogenesis viable.
The 2HDM provides also new sources of CP violation in
interactions of neutral scalars. Therefore, here we will
discuss 2HDMs which do not suffer from quadratic diver-
gences in scalar two-point Green’s functions, the tempered
two-Higgs-doublet model, seeking a model which also
allows for CP violation in the scalar potential. Since we
have argued above that the heavy SM-like Higgs boson
would be more consistent with experimental data, we will
investigate how much CP violation in 2HDMs is allowed
after lifting the Higgs mass well above the LEP lower limit
and by imposing the conditions needed to cancel quadratic
divergences (so as to ameliorate the little hierarchy prob-
lem). We will not address here the issue of the electroweak
phase transition.
In a recent publication [17], motivated by similar

arguments, we have considered a version of the IDM
with CP violation introduced by replacing the SM-like
Higgs doublet by a pair of doublets. There, a candidate
for dark matter (DM) was provided by the lightest neutral
component of the inert doublet (as in the original IDM).
In the model considered here, CP violation again origi-
nates from the 2HDM, however in order to accommodate a
DM candidate in a minimal manner (instead of intro-
ducing the inert doublet as in [17]) we extend the model
by a real singlet.3 In fact, it is intriguing to note that
the singlet is even more inert than the original inert
doublet since it interacts only with the Higgs doublets
and with right-handed neutrinos, having no gauge
interactions.
The paper is organized as follows. In Sec. II we inves-

tigate theoretical and phenomenological consequences of
the cancellation conditions within the general 2HDM. In

2The model was introduced in [10] in the context of dark
matter.

3Although our basic motivations is different, this possibility is
similar to the idea proposed in [18] for DM.
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order to accommodate a DM candidate we introduce an
extra real scalar gauge singlet, that is discussed in Sec. III.
Section IV contains our summary.

II. NONINERT TWO-HIGGS-DOUBLET MODEL

A very appealing possibility would be to combine the
IDM with the idea of canceling the one-loop quadratic
divergences. However, as we have shown in [19], that is
impossible because ot the vacuum stability conditions in
the IDM are inconsistent with the requirement of cancel-
lation of quadratic divergences. Since our intention is to
build a 2HDM, which has no quadratic divergences at least
at the one-loop level therefore, in the following we will
consider a general (noninert) 2HDM hoping for both a
successful implementation of the cancellation condition
and for a new source of CP violation. The price to pay
will be the loss of a DM candidate. We return to that issue
in Sec. III.

In order to accommodate CP violation we consider here
a noninert 2HDM with softly broken Z2 symmetry which
acts as �1 ! ��1 and uR ! �uR (all other fields are
neutral). The scalar potential then reads

Vð�1; �2Þ ¼ �1
2fm2

11�
y
1�1 þm2

22�
y
2�2

þ ½m2
12�

y
1�2 þH:c:�g þ 1

2�1ð�y
1�1Þ2

þ 1
2�2ð�y

2�2Þ2 þ �3ð�y
1�1Þð�y

2�2Þ
þ �4ð�y

1�2Þð�y
2�1Þ þ 1

2½�5ð�y
1�2Þ2 þH:c:�:

(2)

The minimization conditions at h�0
1i ¼ v1=

ffiffiffi
2

p
and h�0

2i ¼
v2=

ffiffiffi
2

p
can be formulated as follows:

m2
11 ¼ v2

1�1 þ v2
2ð�345 � 2�Þ;

m2
22 ¼ v2

2�2 þ v2
1ð�345 � 2�Þ; (3)

where �345 � �3 þ �4 þ Re�5 and � � Rem2
12=ð2v1v2Þ.

We assume that �1 and �2 couple to down- and up-type
quarks, respectively, (the so-called 2HDM II).

A. One-loop quadratic divergences

The cancellation of one-loop quadratic divergences for
the scalar two-point Green’s functions at zero external
momenta (Gi, i ¼ 1, 2) implies [13] in the case of
2HDM type II:

G1 � 3

2
m2

W þ 3

4
m2

Z þ
v2

2

�
3

2
�1 þ �3 þ 1

2
�4

�

� 3
m2

b

c2�
¼ 0; (4)

G2 � 3

2
m2

W þ 3

4
m2

Z þ
v2

2

�
3

2
�2 þ �3 þ 1

2
�4

�

� 3
m2

t

s2�
¼ 0; (5)

where v2 � v2
1 þ v2

2, tan� � v2=v1 and we adopt the
notation: s� � sin� and c� � cos�. We note that when

tan� is large, the two quark contributions can be compa-
rable. In the type II model the mixed, �1 ��2, Green’s
function is not quadratically divergent.
In the general CP-violating case, the quartic couplings

�i can be expressed in terms of the mass parameters and
elements of the rotation matrix needed for diagonalization
of the scalar masses (see, for example, Eqs. (3.1)–(3.5)
of [20]):

�1 ¼ 1

c2�v
2
½c21c22M2

1 þ ðc1s2s3 þ s1c3Þ2M2
2

þ ðc1s2c3 � s1s3Þ2M2
3 � s2��

2�; (6)

�2 ¼ 1

s2�v
2
½s21c22M2

1 þ ðc1c3 � s1s2s3Þ2M2
2

þ ðc1s3 þ s1s2c3Þ2M2
3 � c2��

2�; (7)

�3 ¼ 1

c�s�v
2
fc1s1½c22M2

1 þ ðs22s23 � c23ÞM2
2

þ ðs22c23 � s23ÞM2
3� þ s2c3s3ðc21 � s21ÞðM2

3 �M2
2Þg

þ 1

v2
½2M2

H� ��2�; (8)

�4 ¼ 1

v2
½s22M2

1 þ c22s
2
3M

2
2 þ c22c

2
3M

2
3 þ�2 � 2M2

H��;
(9)

Re�5 ¼ 1

v2
½�s22M

2
1 � c22s

2
3M

2
2 � c22c

2
3M

2
3 þ�2�; (10)

Im�5 ¼ �1

c�s�v
2
fc�½c1c2s2M2

1 � c2s3ðc1s2s3 þ s1c3ÞM2
2

þ c2c3ðs1s3 � c1s2c3ÞM2
3�

þ s�½s1c2s2M2
1 þ c2s3ðc1c3 � s1s2s3ÞM2

2

� c2c3ðc1s3 þ s1s2c3ÞM2
3�g; (11)

where � � v2� while ci ¼ cos�i and si ¼ sin�i refer to
the neutral-Higgs-sector rotation matrix R, the latter pa-
rametrized in terms of the angles �1, �2 and �3 according
to the convention of [21].
It will be useful to adopt the following relation (emerg-

ing from the diagonalization of the neutral Higgs mass
matrix [22]) between M2

1, M
2
2 and M2

3:
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M2
3¼

M2
1R13ð�R11þR12 tan�ÞþM2

2R23ð�R21þR22 tan�Þ
R33ðR31�R32 tan�Þ :

(12)

Substitution of (12) into (6)–(11) allows to express the
quartic couplings through the mixing angles together
with M2

1, M
2
2, M

2
H� and �2 (eliminating M2

3). Then, insert-

ing the appropriate quartic couplings into the conditions
for cancellation of the quadratic divergences (4) and (5) we
obtain two linear equations for M2

1 and M2
2 with coeffi-

cients depending on the mixing angles �i (as well as on
M2

H� and �2). Therefore, for a given choice of �i’s, the

squared neutral-Higgs masses M2
1, M2

2 and M2
3 can be

determined from the cancellation conditions (4) and (5)
in terms of tan�, �2 and M2

H� .

Scalar masses resulting from a scan over �i, MH�

and tan� are shown in Fig. 1 for � ¼ 200 GeV and

� ¼ 500 GeV. The charged Higgs-boson mass was varied
between 300 GeVand 700 GeV. Since only large tan� will
turn out to be allowed we have chosen to display plots with
40 � tan� � 50 in order to illustrate a specific property
of the scalar spectrum that is visible at large tan�. Under
the scan, the M2

i were calculated along the lines described
above. The only extra constraints (the cancellation of
quadratic divergences was, of course, guaranteed implic-
itly by the construction) imposed were M2

i > 0 and M1 �
M2 � M3. A striking degeneracy of the neutral-Higgs
masses is observed for the case of large tan�. This degen-
eracy can be understood by expanding M2

i for large tan�.
The cancellation conditions, Eqs. (4) and (5) can then be
expressed as follows:

Y11M
2
1 þ Y12M

2
2 � Y13ð4m2

b þ�2Þ ¼ O
�

1

tan�

�
; (13)
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FIG. 1 (color online). Distributions of allowed masses M2 vs M1 (left panels) and M3 vs M2 (right), resulting from a scan over the
full range of �i, tan� 2 ð40; 50Þ andMH� 2 ð300; 700Þ GeV, for� ¼ 500 GeV (top) and� ¼ 200 GeV (bottom). No constraints are
imposed other than the cancellation of quadratic divergences (4) and (5), M2

i > 0 and M1 <M2 <M3. The color (grey-scale) coding
indicates increasing density (while scanning over the parameter space) of allowed points as one moves inward from the boundary.
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2R12R22 tan�ðM2
1 �M2

2Þ � R33½�4 �m2 � 2M2
H�

þ 12m2
t þ�2� ¼ O

�
1

tan�

�
; (14)

where4

Y11 � �R12R13R
2
31 þ R2

11R32R33;

Y12 � �R22R23R
2
31 þ R2

21R32R33;

Y13 � R32R33;

�m2 � 3

2
m2

W þ 3

4
m2

Z:

(15)

First, it is useful to notice that (14) implies

M2
1 �M2

2 �
1

tan�

R33

R12R22

� ½�4 �m2 � 2M2
H� þ 12m2

t þ�2�: (16)

Therefore, for tan� 	 1, we expect to have M2
1 ’ M2

2

unless jR12R22j � 1 or �2M2
H� þ�2 is very large.5

Second, solving (13) and (14) one finds that to leading
order (for large tan�) M2

1 ¼ M2
2 ¼ �2 þ 4m2

b.

On the other hand, expanding (12) for tan� 	 1 one
obtains

M2
3 ¼ �M2

1R12R13 þM2
2R22R23

R32R33

þO
�

1

tan�

�
: (17)

Therefore (invoking unitarity of R) it is seen that the
degeneracy M1 ¼ M2 implies that also M1 ¼ M2 ¼ M3.
Finally we can conclude that for large tan� one obtains
M1 ’ M2 ’ M3 ’ �2 þ 4m2

b, this explains the approxi-

mate degeneracy observed in Fig. 1.6

B. Two-loop leading quadratic divergences

The generic form of the quadratically divergent contri-
butions to scalar two-point Green’s functions at zero
external momenta reads [4]

�Gi ¼ �2
X
n¼0

fðiÞn ð�Þ
�
ln

�
�

��

��
n þ 
 
 
 ; (18)

where n corresponds to (nþ 1)-loop contribution, � stands
for relevant coupling constants, �� is the renormalization

scale and fðiÞn ð�Þ is a calculable (order by order) function
(polynomial) of the couplings. It should be noticed that at

the (nþ 1)-loop level there exist also subleading contri-
butions that contain terms / �2ðln�Þm with m< n, so for
instance at the two-loop level the leading contribution is
/ �2 ln� while there are also subleading terms / �2. The

coefficients of the leading terms, fðiÞn ð�Þ, can be determined
recursively adopting a nice algorithm noticed by Einhorn
and Jones [4]:

ðnþ 1ÞfðiÞnþ1 ¼ ��
@

@ ��
fðiÞn ¼ X

I

��I

@

@�I

fðiÞn ; (19)

where the sum runs over coupling constants that contribute

to the coefficient fðiÞn . Hereafter we will limit ourselves to
the leading two-loop contributions. Therefore, to calculate

fðiÞ1 , only the one-loop coefficient fðiÞ0 and one-loop beta

functions are needed. As beta functions for the 2HDM are
known [23] the cancellation condition for quadratic diver-
gences up to the leading two-loop order can easily be
determined:

G1 þ �G1 ¼ 0 and G2 þ �G2 ¼ 0 (20)

with

�G1 ¼ v2

8
½9g2�g2 þ 3g1�g1 þ 6��1

þ 4��3
þ 2��4

�

� ln

�
�

��

�

�G2 ¼ v2

8
½9g2�g2 þ 3g1�g1 þ 6��2

þ 4��3

þ 2��4
� 24gt�gt� ln

�
�

��

�
: (21)

In what follows, adopting (6)–(11) we will be solving the
conditions (20) for the scalar masses M2

i for a given set of
�i’s, tan�, �

2 and M2
H� . For the renormalization scale we

will adopt v, so �� ¼ v.7 Then those masses together with
the corresponding coupling constants, will be adopted to
find predictions of the model for various observables which
can be confronted with experiments.

C. Positivity and unitarity constraints

The requirements of positivity for the 2HDM model
potential are well known [10]:

�1;2 > 0; (23)

�3 >� ffiffiffiffiffiffiffiffiffiffiffi
�1�2

p
; �L � �3 þ �4 � j�5j>� ffiffiffiffiffiffiffiffiffiffiffi

�1�2

p
:

(24)

One could also require the above conditions to be satisfied
up the unification scale �� 1015 GeV. That approach,

4Note that Y11 þ Y12 ¼ Y13.
5Note that cancellations between the M2

H� and �2 terms are
possible. This is why the degeneracy survives even for� as large
as � ¼ 500 GeV, see Fig. 1.

6The reader should be warned that the above expansions are
justified if the coefficients of subleading terms / 1= tan� are not
enhanced by special values of the mixing angles (that would
correspond to CP conservation in the scalar sector). Since here
we are interested in the case of CP violation, we will not
elaborate on those CP conserving limits.

7Since we are using tree-level relations between quartic cou-
plings and scalar masses, the renormalization scale should be of
the order of the masses themselves, that is why we adopt here
�� ¼ v. For a more exhaustive discussion of the renormalization-
scale dependence, see the first paper of [24].
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resulting in much stronger constraints in terms of allowed
scalar masses and tan� was followed in Ref. [25]. Here, as
we consider UV completion appearing at the scale of a few
TeV we do not follow that line of reasoning.

D. Experimental constraints

We impose the following experimental constraints:
(i) The oblique parameters T and S
(ii) B0 � �B0 mixing
(iii) B ! Xs	
(iv) B ! 
 ��
X
(v) B ! D
 ��


(vi) LEP2 Higgs-boson nondiscovery
(vii) Rb

(viii) The muon anomalous magnetic moment
(ix) Electron electric dipole moment

For more details concerning the implementation of the
experimental constraints, see Refs. [17,20,26]. Subject to
all these constraints, we find allowed solutions of (20). The
recent paper [27] also contains an exhaustive analysis of
experimental constraints on the 2HDM type II. The lower
limit on the charged Higgs-boson mass adopted here,
M� � 300 GeV (basically determined by the b ! s	

constraint) agrees roughly with the 95% C.L. lower limit,
316 GeV, obtained in [27] irrespective of tan�.

E. Allowed regions

Imposing the above conditions we find allowed regions
in the tan�–MH� plane as illustrated by the red domains in
the tan�–MH� plane, see Figs. 2 and 3 for fixed values of
�. The allowed regions were obtained scanning over the
mixing angles �i and solving the two-loop cancellation
conditions (20). Imposing also unitarity in the Higgs-
Higgs-scattering sector [28–30] (yellow regions), the
allowed regions are only slightly reduced. Requiring that
also experimental constraints listed in Sec. II D are satis-
fied one obtains the green regions shown in the figure.
For parameters that are consistent with unitarity, posi-

tivity, experimental constraints and the two-loop cancella-
tion conditions (20), we show in Figs. 4 and 5 scalar masses
resulting from a scan over �i, MH� and tan�. Those plots
could be compared with Fig. 1. One should however
remember that in the two-loop case also unitarity, positiv-
ity and experimental constraints are taken into account.
Note that in Figs. 2 and 3, consistent solutions are obtained
only for tan� * 15 while at the one-loop level, also a
small low- tan� region was allowed after imposing all
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FIG. 2 (color online). Two-loop allowed regions in the tan�–MH� plane, for � ¼ 2:5 TeV, for � ¼ 300, 400, 500 GeV (as
indicated). Red (outer grey): positivity is satisfied; yellow (light grey): positivity and unitarity both satisfied; green (inner grey): also
experimental constraints satisfied at the 95% C.L., as specified in the text.
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FIG. 3 (color online). Similar to Fig. 2 for � ¼ 6:5 TeV.
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the constraints. That small low- tan� region is disallowed
after the two-loop corrections are imposed, see [19] for the
one-loop result. As we have noticed for the one-loop
spectrum, large tan� implies similar scalar masses. This
is indeed what is being observed in Figs. 4 and 5 also
for the two-loop case. The allowed solutions ‘‘peak’’
around MH� �� with 20 & tan� & 50. For � ¼ 200

and 600 GeV there are hardly any solutions for � ¼
2:5 TeV and no solutions were found for � ¼ 6:5 TeV.

F. CP violation

Here we are going to discuss the possibility of having
CP violation in the scalar potential (2), subject to the two-
loop cancellation of quadratic divergences (20). In order to
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FIG. 4 (color online). Two-loop distributions of allowed masses M2 vs M1 (left panels) and M3 vs M2 (right) for � ¼ 2:5 TeV,
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parametrize the magnitude of CP violation we adopt the
rephasing invariants introduced by Lavoura and Silva [31]
(see also [32]). We shall here use the basis-invariant for-
mulation of these invariants J1, J2 and J3 as proposed by
Gunion and Haber [33]. As is proven there (theorem #4)
the Higgs sector is CP conserving if and only if all Ji are
real. In the basis adopted here the invariants read [17]:

Im J1 ¼ �v2
1v

2
2

v4
ð�1 � �2ÞIm�5; (25)

ImJ2 ¼ �v2
1v

2
2

v8
½ðð�1 � �3 � �4Þ2 � j�5j2Þv4

1

þ 2ð�1 � �2ÞRe�5v
2
1v

2
2 � ðð�2 � �3 � �4Þ2

� j�5j2Þv4
2�Im�5; (26)

Im J3 ¼ v2
1v

2
2

v4
ð�1 � �2Þð�1 þ �2 þ 2�4ÞIm�5: (27)
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It is seen that there is no CP violation when Im�5 ¼ 0, see
[17] for more details.

As we have noted earlier, tan� above �40 implies
approximate degeneracy of scalar masses. That could be
catastrophic forCP violation since it is well known that the
exact degeneracy M1 ¼ M2 ¼ M3 results in vanishing
invariants ImJi and no CP violation (exact degeneracy
implies Im�5 ¼ 0). Using the one-loop conditions (4) and
(5) one immediately finds that �1 � �2 ¼ 4ðm2

b=c
2
� �

m2
t =s

2
�Þ=v2, which implies

ImJ1 ¼ 4 Im�5

c2�m
2
t � s2�m

2
b

v2

¼ �4 Im�5

�
mb

v

�
2 þO

�
Im�5

tan�2

�
: (28)

In fact the above result shows even more than we have
anticipated. If tan� is large then ImJ1 is suppressed not
only by Im�5 ’ 0 (as caused by M1 ’ M2 ’ M3) but also
by the factor (m2

b=v
2), as implied by the cancellation

conditions (4) and (5). The same suppression factor ap-
pears for ImJ3. The case of ImJ2 is more involved, however
when m2

b=v
2 is neglected all the invariants (25)–(27) have

the same simple asymptotic behavior

Im Ji � Im�5

tan2�
(29)

for large tan�. It is also worth noticing that tan� ¼
mt=mbð’ 38Þ implies �1 ¼ �2, which in turn leads to
exact vanishing of ImJ1 and ImJ3. Qualitatively those
conclusions survive at the two-loop level. For a quantita-
tive illustration we plot in Figs. 6 and 7 maximal values of
the invariants in the tan�–MH� plane with all the necessary
constraints imposed, seeking regions which still allow
for substantial CP violation. At high values of tan�
these invariants are of the order of 10�3, in qualitative
agreement with the discussion above. Note that the
SM corresponding invariant ImQ ¼ ðVudVcbV

?
ubV

?
cdÞ ’

2� 10�5 sin�KM [12], for Vij and �KM being elements of

the CKM matrix and CP-violating phase, respectively.
Therefore the model considered here offers at least 2 orders
of magnitude enhancement comparing to the SM.

G. Stability and the determination of the cutoff

It should be emphasized here that the conditions (20)
eliminate the quadratic divergences only up to the
leading two-loop corrections. Even though the subleading
two-loop and higher effects are suppressed by powers of
coupling constants and powers of 1=ð16�2Þ, nevertheless
since the ln� term is growing, there exists always � large
enough, that the hierarchy problem reappears: loop correc-
tions to masses are again of the order of the masses
themselves. In fact that observation allows to determine
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FIG. 6 (color online). Imaginary parts of the rephasing invariants jImJij at the two-loop level for � ¼ 2:5 TeV, for � ¼ 500 GeV
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TEMPERED TWO-HIGGS-DOUBLET MODEL PHYSICAL REVIEW D 82, 125026 (2010)

125026-9



the value of the cutoff up to which higher order corrections
do not reintroduce the hierarchy problem (see [24] for the
analogous strategy within the SM). In general, quadratic
corrections to scalar masses have the form of [(18)]

�M2
i ¼ �2

X
n¼0

fðiÞn ð�Þ
�
ln

�
�

v

��
n þ 
 
 
 ; (30)

where v is chosen as a renormalization scale. The follow-

ing naı̈ve estimation of fðiÞn is sufficient:

fðiÞn �
�
4�

16�2

�
nþ1 ¼

�
1

4�

�
nþ1

; (31)

where the relevant coupling constants were conservatively
assumed to be of the order of 4�.8 Here we choose as
the cutoff the maximal value of � such that the higher
order corrections do not exceed the mass of the lightest
scalar, M1:

� & 4�M1: (32)

Then, e.g. for M1 ¼ 200 (500) GeV the cutoff is at least
at �� 2:5 (6.3) TeV. Of course, larger M1 would imply
higher �.

Having the cutoff determined, we should address the
issue of higher-loop corrections to Eqs. (20) that ensure

vanishing of the quadratic corrections up to leading
two-loop effects. As is seen from (30), the generic form
of the condition for vanishing quadratic divergence is the
following:

�

ð4�Þ2 þ �2

ð4�Þ4 ln
�
�

v

�
þ �2

ð4�Þ4 þ
�3

ð4�Þ6 ln
2

�
�

v

�
þ

 
 ¼ 0;

(33)

where � stands for a typical coupling constant. The last
two terms shown above (subleading two- and leading
three-loop effects) have been neglected in the present
analysis. It is then easy to see that even for the cutoff as
large as � ¼ 6:5 TeV using a very conservative (large)
value for the typical coupling, � ¼ 4�, the precision of the
adopted approximation is of the order of 12%. Note that
whenever � < 4� or �< 6:5 TeV, the adopted approxi-
mations work better.

III. 2 DOUBLETþ 1 SINGLET HIGGS MODEL:
THE CASE FOR DARK MATTER

In this scenario we combine CP violation present in the
noninert 2HDM (allowing for softly broken Z2 symmetry)
with a real scalar ’ which is a gauge singlet. The singlet
provides a natural DM candidate (see [8,34,35]). In this
case the scalar potential is the following:
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FIG. 7 (color online). Similar to Fig. 6 for � ¼ 6:5 TeV.

8This estimate agrees qualitatively with the two-loop result
obtained for f1 in the SM, see Eq. (21) in [24].
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Vð�1;�2;’Þ¼�1
2fm2

11�
y
1�1þm2

22�
y
2�2

þ½m2
12�

y
1�2þH:c:�gþ1

2�1ð�y
1�1Þ2

þ1
2�2ð�y

2�2Þ2þ�3ð�y
1�1Þð�y

2�2Þ
þ�4ð�y

1�2Þð�y
2�1Þþ1

2½�5ð�y
1�2Þ2þH:c:�

þ�2
’’

2þ 1
24�’’

4

þ’2ð�1�
y
1�1þ�2�

y
2�2Þ: (34)

Note that the term / ’2�y
1�2 is forbidden as it breaks

the Z2 symmetry in a hard way. Since ’ is supposed to be
the DM candidate, in order to ensure its stability we have
imposed an extra discrete symmetry Z0

2 such that ’ ! �’
while other fields are neutral. The symmetry excludes
terms odd in ’. The potential should be arranged such
that the symmetry remains unbroken, so that h’i ¼ 0. For
that it is sufficient to require

�2
’ > 0 & �’; �1; �2 > 0: (35)

Then it is easy to see that if the standard 2HDM stability
conditions (23) and (24) are fulfilled then the potential (34)
is also positive definite. For the mass of the singlet we
obtain: m2

’ ¼ 2�2
’ þ �1v

2
1 þ �2v

2
2.

Since ’ is a gauge singlet, therefore in the presence of
right-handed neutrinos which are also gauge singlets the
following Yukawa interaction is allowed [8]:

L Y ¼ �’ð�RÞcY’�R þ H:c: (36)

Note that for a number of right-handed neutrino flavours
greater than 1, the Yukawa matrix Y’ is in general (depend-

ing on the quantum numbers of �R under Z0
2, see [8])

nonvanishing.
In this model the conditions for cancellation of quadratic

divergences are slightly modified:

3

2
m2

W þ 3

4
m2

Z þ
v2

2

�
1

2
�1 þ 3

2
�1 þ�3 þ 1

2
�4

�
� 3

m2
b

c2�
¼ 0;

3

2
m2

W þ 3

4
m2

Z þ
v2

2

�
1

2
�2 þ 3

2
�2 þ�3 þ 1

2
�4

�
� 3

m2
t

s2�
¼ 0;

�’

2
þ 4ð�1 þ�2Þ� 8TrfY’Y

y
’g ¼ 0: (37)

The last condition above guarantees vanishing quadratic
divergence in corrections to the ’ mass. Since for the
positivity we assumed �’, �1, �2 > 0, it is clear from

the above equation that the presence of the Yukawa
coupling Y’ is mandatory to extend the condition for

cancellation of quadratic divergences to the singlet field
as well. It should also be mentioned that the presence of the
singlet does influence the two-loop corrections to the

quadratic divergences, those effects are neglected as being
small (/ �i).
As we have already mentioned the extra singlet ’

provides a candidate for the DM. To estimate its present
abundance we consider the dominant annihilation channels
for ’. The Lagrangian describing relevant cubic and
quartic scalar interactions reads

L ¼ �’2ð�ivHi þ �ijHiHj þ ��HþH�Þ; (38)

where

�i ¼ �1Ri1c� þ �2Ri2s�; (39)

�ij ¼ 1

2
½�1ðRi1Rj1þ s2�Ri3Rj3Þþ�2ðRi2Rj2þ c2�Ri3Rj3Þ�;

(40)

�� ¼ �1s
2
� þ �2c

2
�: (41)

A detailed study of the DM within this model [with
extended conditions for the cancellation of quadratic
divergences (37)] will be presented elsewhere [36].
However here we would like to show that it is indeed
natural to expect the right DM abundance in the presence
of the singlet. For an illustration we will assume that the
DM annihilation cross section is of the order of the con-
tributions from the lightest neutral Higgs boson H1 of
mass M1.
For an estimate of the DM abundance, we will consider

two ’’ annihilation mechanisms. First we assume that
’’ annihilate to 		, q �q, lþl�, WþW� and ZZ through
s-channelH1 exchange. Then, following [37] we obtain

9 in
the nonrelativistic approximation the following result for
the thermally averaged annihilation cross section

hvi1 ¼ 4�2
1v

2

ð4m2
’ �M2

1Þ2 þM2
1�

2
H1

�
�H1

ð2m’Þ
2m’

�
; (42)

where �H1
ð2m’Þ stands for the decay width of H1 calcu-

lated at M1 ¼ 2m’ (in the following numerical calcula-

tions we will use the SM width for the estimate). Now we
have to add the contribution from the H1H1 final state.
There are two contributions: due to s-channel Higgs ex-
change, and due to the four-point coupling. We find in the
nonrelativistic approximation

hvi2 ¼ 1

32�

1

m2
’

�
1�M2

1

m2
’

�
1=2

�ðm’ �M1Þ

�
���������11 þ �1

~�111v
2

4m2
’ �M2

1 þ iM1�H1

��������
2

; (43)

9This cross section is also to be found in the literature [35],
however our result is smaller by a factor of 2. We have included
both the combinatoric factor 1=2 in ’’H1 vertices and statistical
factors (both in the initial and in the final states) in hvi.
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where the quartic ’2H1H1 coupling �11 is defined by
Eq. (40) and the trilinear H1H1H1 coupling normalized

to v is denoted by ~�111 [38]. For an order-of-magnitude

estimate of the DM abundance, we will use here ~�111 ¼
3M2

1=v
2 (this choice, together with (44), reproduces results

which would be obtained for the SM Higgs doublet �SM

coupled to the singlet through the term �’2j�SMj2) and
parameterize �1 and �11 through one variable � as follows:

2�11 ¼ �1 � �: (44)

Then, following [37] for cold relics one has to solve the
following equation to determine the freeze-out temperature
from xf ¼ m’=Tf:

xf ¼ ln

�
0:038

mPlm’

ðg?xfÞ1=2
hvi

�
; (45)

where hvi � hvi1 þ hvi2 and g? counts relativistic
degrees of freedom at annihilation and mPl denotes the
Planck mass. It turns out that in the range of parameters
we are interested in, xf �Oð25Þ, so that this is indeed the

case of cold dark matter, it also implies that g? ’ 10–100.
Then the present density of ’’s is given by

�’h
2 ¼ 1:07� 109

xf

g1=2? mPlhvi
: (46)

In Fig. 8 we show the 3- allowed band in logð�Þ vsm’, as

constrained by the observed DM abundance �DMh
2 ¼

0:106� 0:008 [39]. For mh ¼ 100 and 200 GeV we

observe consequences of resonant behavior at m’ ¼
mh=2. The thresholds seen at m’ ’ 25 and 80 GeV are

caused by the rapid change in g? as a function of tempera-
ture and by the opening of the WþW� channel for the
decay of a Higgs boson of mass mh ¼ 2mW , respectively.
One can conclude that the singlet could indeed provide a

realistic candidate for DM: for any m’ between �1 GeV

and �500 GeV there exists an allowed value � for which
�’h

2 agrees with the experimental data. Note that if we

had found only solutions with � * 1 and light ’ (m’ & v)
then this scenario would be jeopardized since the minimi-
zation condition requiresm2

’ > �1v
2
1 þ �2v

2
2 (as�

2
’ > 0).

As seen from Fig. 8, this is not the case. Most of the
allowed region corresponds indeed to � & 10�1 if the
singlet mass is not too low.

IV. SUMMARY

The goal of this work was to build a minimal realistic
model which would allow for softening the little hier-
archy problem through suppression of the quadratic
divergences in scalar boson mass corrections and through
lifting the mass of the lightest Higgs boson. That could
be accomplished within two-Higgs-doublet models.
Phenomenological consequences of requiring no quadratic
divergences in corrections to scalar masses within the
2HDM were discussed. The 2HDM type II was analyzed
taking into account existing experimental constraints.
Allowed regions in the parameter space were determined.
An interesting scalar mass degeneracy was observed for
tan� * 40. The issue of possible CP violation in the scalar
potential was addressed and regions of tan�–MH� with
substantial strength of CP violation were identified. In
order to accommodate a possibility for dark matter a scalar
gauge singlet was added to the model. Requirements
necessary for correct present abundance of dark matter
were estimated.
The model we considered here allows to soften the little

hierarchy problem by lifting the minimal scalar Higgs-
boson mass and by suppressing the one-loop quadratic
corrections to scalar masses. The cutoff implied by the
naturality arguments is lifted from �600 GeV in the SM
up to at least * 2:5 TeV, depending on the mass of the
lightest scalar.
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