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In this paper I determine the general form of the physical and mathematical restrictions that arise on the

interactions of gravity and scalar fields in the 2T field theory setting, in dþ 2 dimensions, as well as in the

emerging shadows in d dimensions. These constraints on scalar fields follow from an underlying Spð2; RÞ
gauge symmetry in phase space. Determining these general constraints provides a basis for the

construction of 2T supergravity, as well as physical applications in 1T-field theory, that are discussed

briefly here and more detail elsewhere. In particular, no scale models that lead to a vanishing cosmological

constant at the classical level emerge naturally in this setting.
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I. PROLOGUE: THE ROLE OF THE Spð2; RÞ
GAUGE SYMMETRY

The progress of two-time physics (2T physics), from
classical mechanics to the standard model, supersymmetric
2T field theory, 2T general relativity, and cosmology, is
summarized in [1]. More recently, 2T field theory compu-
tational techniques for 2T physics that are directly in 4þ 2
dimensions have emerged [2,3] and mathematical fields
that adopted the notions of 2T physics have advanced [4].

2T physics is the fundamental solution to the question
of how to make a theory with two timelike dimensions
causal, ghost-free, and unitary directly in d space and 2-
time dimensions. Field theories based on the principles of
2T physics in dþ 2 dimensions, including the standard
model and general relativity, automatically have the right
mix of gauge symmetries and constraints to make them
compatible with their conventional formulation in field
theory in 1T physics in 3þ 1 dimensions. Conventional
classical or quantum mechanics as well as 1T field theory
emerge as ‘‘shadows’’ [1] of 2T-physics systems in one
less time and one less space dimensions. Beyond this
compatibility with 1T physics, 2T physics predicts sys-
tematically additional physical information, in the form of
hidden symmetries and dualities among the shadows, that
is systematically missed information in the conventional
1T formulation. One of these shadows, called the ‘‘con-
formal shadow,’’ is the one most familiar to particle
physicists. In this shadow conformal symmetry SO(4,2)
is a 4-dimensional nonlinear realization of the linear
Lorentz symmetry in 4þ 2 dimensions. The new aspects
of 2T physics follow from demanding a fundamental
Spð2; RÞ gauge symmetry in phase space, which in turn
requires a primary ambient spacetime, with no more and
no less than two timelike dimensions, in which conven-
tional spacetime is embedded.

The role of the fundamental Spð2; RÞ gauge symmetry in
2T physics is similar to the world sheet gauge symmetry in
string theory. In the case of Spð2; RÞ there are three gauge

generators, QijðX; PÞ, i, j ¼ 1, 2 arranged into a 2� 2

symmetric matrix, Q11, Q22, Q12 ¼ Q21, constructed
from phase space degrees of freedom on the worldline
XMð�Þ, PMð�Þ with a target spacetime in dþ 2 dimensions
labeled byM. Comparing to string theory, theQijðX; PÞ are
analogous to the Virasoro operators constructed from
string coordinates x�ð�;�Þ and its derivatives (or canonical
oscillators, i.e. phase space). In both cases the particle or
string may interact with an infinite set of background fields
(electromagnetism, gravity, etc.) that appear in the expres-
sions of the Spð2; RÞ or Virasoro generators. All such
QijðX; PÞ in 2T physics have been classified up to canoni-

cal transformations1 [5].
Demanding Spð2; RÞ gauge symmetry on the worldline

is similar to demanding local conformal symmetry on the
world sheet. To preserve the Spð2; RÞ symmetry, the back-
ground fields that appear in QijðX; PÞ must satisfy certain

equations that follow from requiring closure of the
QijðX; PÞ as the Spð2; RÞ Lie algebra under Poisson brack-

ets. The resulting field equations are analogous to the
equations for background fields in string theory that follow
from demanding exact world sheet conformal symmetry.

1The simplest example of the Qij is Q11 ¼ X � X, Q12 ¼ X � P
Q22 ¼ P � P where the dot product involves the flat background
metric �MN in dþ 2 dimensions. If �MN had been a Euclidean
metric or a 1T Minkowski metric, the three equations Qij ¼ 0
yield only trivial solutions. Nontrivial as well as ghost-free
physics occurs only when two timelike dimensions are admitted.
The solutions are called shadows when a gauge is chosen to
embed 3þ 1 phase space in 4þ 2 phase space (see Fig. 2 in [1]).
Because many different embeddings exist such that ‘‘time’’ and
‘‘Hamiltonian’’ are identified differently as part of 4þ 2 phase
space, the 1T physics is different in different 3þ 1 shadows, as
seen by observers restricted to those shadows. Nevertheless
many relations do exist among the shadows. This is the new
information predicted by 2T physics that is systematically
missed in 1T physics. For each choice of QijðX; PÞ including
background fields [5], there is a corresponding set of shadows
analogous to Fig. 1 in [1]. Hence the systematically missed
hidden information in 1T physics is vast.
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However, in the case of Spð2; RÞ these are ’’kinematic
equations,’’ that guarantee the absence of ghosts without
determining the dynamics of the background fields. To
determine the dynamics, consistently with the kinematics
imposed by Spð2; RÞ, a unique action principle that has its
own gauge symmetries is constructed, as illustrated in
[6,7]. In this paper I will discuss the extent to which this
approach permits generalizations while still imposing
constraints on the interactions of scalar fields in 2T field
theory.

Since the QijðX;PÞ, like the Virasoro operators, are

gauge generators, the gauge invariant space (at the particle
level) is defined as the subspace of phase space that sat-
isfies QijðX;PÞ ¼ 0. As can be verified through the ex-

ample in footnote 1, there is nontrivial physics content in
the equations QijðX;PÞ ¼ 0 provided there are two time-

like dimensions in target space XM [1]. Furthermore, the
available gauge symmetry is just right to eliminate the
ghosts of two timelike dimensions. Therefore, unitarity at
the quantum mechanics level (wave functions $ fields) is
achieved only for a spacetime with 2 times, no less and
no more.

Unitarity is also insured for spinning particles on a dþ 2
dimensional target space (analogs of Neveu-Schwarz
degrees of freedom in string theory) or supersymmetric
systems (analogs of Green-Schwarz degrees of freedom in
string theory) by enlarging the gauge symmetry to
OSpðnj2Þ [8,9] or with appropriate supercoset symmetries
[10–15], respectively. The latter leads to novel twistor and
supertwistor representations of various systems [13], in-
cluding the 2T-physics version of the twistor superstring in
4þ 2 dimensions.

2T field theory is constructed with similar techniques to
string field theory. The basic equations for free scalar fields
are the physical state conditions that correspond to gauge
invariance under Spð2; RÞ QijðX; @Þ�ðXÞ ¼ 0 (with an ap-

propriate ordering of X and P ¼ �i@=@X). This is analo-
gous to the Virasoro constraints applied on string fields.2

A systematic approach to include interactions in 2T field
theory is to construct the Bechhi-Rouet-Stora-Tyutin
(BRST) operator for Spð2; RÞ, use it as the kinetic operator
in a BRST field theory, and then include interactions [16].
The inclusion of interactions modifies the BRST operator
[16], just as it does in string field theory.
A complementary approach to 2T field theory is a

procedure analogous to the construction of the string
effective action as a field theory. It consists of a field
theory action in dþ 2 dimensions that reproduces the
same equations for the background fields that were ob-
tained by demanding the Spð2; RÞ gauge symmetry on the
worldline in the presence of backgrounds [6,7]. In this
paper I will discuss, in this approach, the generalizations
of the gravity action in [6,7] when many scalar fields are
present.
One can verify that the two approaches, BRST or

effective action, lead to the same ‘‘kinematical’’ and
‘‘dynamical’’ equations after redundant fields are inte-
grated out in the BRST field theory [16].3 In contrast
to the kinematical equations that are algebraic or at
most first order in derivatives [see, e.g., Q11, Q12 in
footnote 2, or see Eqs. (2.3)], the dynamical equations
are those that include Klein-Gordon or Dirac-like differ-
ential operators (such as Q22� ¼ @ � @�þ � � � � 0)
whose details include also interactions. Kinematical and
dynamical equations for all spinning fields follow from
either one of the two complementary approaches as shown
in [5,9].
These were the 2T-physics principles that led to 2T

field theory for all spinning fields. They were used to
construct the standard model [18], supersymmetric
generalizations [19,20], and general relativity [6,7] as
unitary field theories in 4þ 2 dimensions. The
action principle provides all the necessary ingredients
to perform computations directly in dþ 2 dimensions.
Recent examples of the computation of n-point

Green’s functions in 4þ 2 dimensions that obey all the
‘‘kinematic equations’’ of 2T physics was given by

2For example, for a scalar field in a flat background in dþ 2
dimensions (see footnote 1), these equations areQ11� ¼ X2� ¼
0,Q12� ¼ ðX � @þ @ � XÞ� ¼ 0, andQ22� ¼ @ � @� ¼ 0. The
first two equations are called ’’kinematic’’ and the last ‘‘dy-
namic.’’ The solution of the first equation is �ðXÞ ¼ �ðX2Þ�ðXÞ
indicating that �ðXÞ ! �ðXÞ þ X2�ðXÞ is a gauge symmetry.
This also illustrates the origin of the delta function �ðWÞ that
occurs in the actions (2.6) and (2.12), since in flat space W ¼ X2

as seen in Eq. (2.2). Inserting this solution in the second
equation, and using the homogeneity of the delta function, one
obtains �ðX2Þð2X � @þ d� 2Þ�ðXÞ ¼ 0 indicating that �ðXÞ
must be homogeneous of degree ð2� dÞ=2. Combining these
properties one learns that �ðXÞ depends really on d coordinates
rather than dþ 2 coordinates. The various shadows of the
surviving degrees of freedom in � correspond to how the phase
space in d dimensions is embedded in the phase space in dþ 2
dimensions. The final (shadow) form of the last dynamical
equation depends on this embedding. The conformal shadow is
one of those examples.

3Our BRST approach of [16] is directly applicable with
all background fields in the QijðX; PÞ as in [5]. This
was adopted recently by mathematicians in [4] (with a
limited subset of background fields) to develop a mathe-
matical topic called ‘‘tractors.’’ Although not discussed in [4],
I suggest that this mathematical topic can be further
generalized by using the BRST operators for OSpðnj2Þ that
includes spin degrees of freedom, as in [9] or supersymmetric
degrees of freedom as in [10–15]. Deeper physical and
mathematical results would be obtained by deriving the kine-
matic constraints from an improved action principle (as
in [17]) or with a delta function [as in Eq. (2.6) and [6] ] as
opposed to applying them as external constraints as done
in [4].
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Weinberg [3].4 Independent computations in [2] provide
some examples of shadows in the context of Green func-
tions, which are consistent with the shadows discussed
before in classical or quantum mechanics (see, e.g., [1])
as well as directly in field theory [21,22]. I expect that such
notions and techniques that are inherently in dþ 2 dimen-
sions are bound to open new avenues of computation as
well as provide a deeper view of space and time.

II. 2T-GRAVITYACTION AND
PHYSICAL CONSIDERATIONS

The 2T-physics description of a particle moving in a
gravitational background at the classical mechanics level is
given by the worldline action [1]

S ¼
Z

d�

�
_XMPM � 1

2
AijQijðX; PÞ

�
; (2.1)

with the following realization of the Spð2; RÞ generators
[5,6]:

Q11¼WðXÞ; Q12¼VMðXÞPM; Q22¼GMNðXÞPMPN:

(2.2)

For comparison see the flat space version in footnote 1

and the more general cases in [5]. Closure of the
Spð2; RÞ algebra under Poisson brackets is obtained, e.g.,
fQ11; Q12g ¼ 2Q11 etc., when the background fieldsWðXÞ,
VMðXÞ, GMNðXÞ satisfy the following kinematical

equations, which amount to homothety conditions on the
geometry described by the metric GMN: [5,6]

VM¼ 1
2G

MN@NW; VM@MW¼2W; LVG
MN¼�2GMN:

(2.3)

Here LVG
MN is the Lie derivative of the metric,

LVG
MN � �rMVN �rNVM

¼ VK@KG
MN � @KV

MGKN � @KV
NGMK: (2.4)

These coupled nonlinear geometrical equations imply
uniquely that GMN can be written as [6]

GMN ¼ rMVN ¼ 1
2ð@M@NW þ �P

MN@PWÞ: (2.5)

The kinematic equations (2.3), (2.4), and (2.5) that follow
from Spð2; RÞ are the crucial constraints that remove ghosts
from the metric degrees of freedom GMNðXÞ in a 2T space-
time. They can be solved exactly [6,7], showing that what
remains undetermined in GMNðXÞ in dþ 2 dimensions are
only the degrees of freedom and gauge symmetries of a
conventional shadow metric g��ðxÞ in d dimensions, plus

gauge degrees of freedom and prolongations of the shadow
that are immaterial to the 1T physical phenomena in the
shadow [6,7]. The dynamics of the surviving shadow
g��ðxÞ in d dimensions (plus matter degrees of freedom)

is determined by the dynamical equations in dþ 2 dimen-
sions that follow from a 2T field theory action principle as
discussed below.
As outlined in the previous section, the homothety con-

ditions (2.3), (2.4), and (2.5) on the background fields are
analogous to those obtained in string theory by demanding
conformal symmetry on the world sheet. So, with a similar
approach to string theory, one can construct an effective
action principle that yields the same set of equations (2.3),
(2.4), and (2.5) by using the variational principle. I pro-
posed such an action in [6] by including one additional
field �ðXÞ that I called the dilaton,5

S ¼ �
Z

ddþ2X
ffiffiffiffi
G

p ½�ðWÞfad�2RðGÞ þ 1
2@� � @�

� Vð�Þg þ �0ðWÞfad�2ð4�r2WÞ þ ad@W � @�2g�:
(2.6)

Here the constant ad ¼ ðd�2Þ
8ðd�1Þ for dþ 2 dimensions, as well

as the form of the action, are uniquely determined by the
requirement that the variation of this action reproduces the
kinematic equations (2.3), (2.4), and (2.5) [6]. The potential
energy is also fixed up to the overall 	 which is a dimen-

sionless coupling constant Vð�Þ ¼ 	 d�2
2d �2d=ðd�2Þ.

4In the initial version of Ref. [3] Weinberg was not aware that
the constraints he used to derive his 6-dimensional Green’s
functions were identical to the ‘‘kinematic equations’’ of 2T-
physics field theory in 4þ 2 dimensions. The constraints for
tensors or spinors were previously derived from an underlying
principle based on Spð2; RÞ gauge symmetry [5], and related
extended gauge symmetries with spin [8,9], and these appeared
in realistic 2T-physics models in flat spacetime, including the
standard model in 4þ 2 dimensions [18]. Furthermore, the
reduction to 3þ 1 dimensions of the Green’s functions discussed
in [3] parallels the corresponding reduction of the fields dis-
cussed in [21,22] just for the conformal shadow. This link to
conformal symmetry, that led to the 6-dimensional equations
with some educated guesswork, goes back to Dirac [23–31].
However, until the emergence of 2T physics it was not realized
that (i) there is a fundamental Spð2; RÞ phase space gauge
principle behind these equations, or their generalizations to all
tensors or spinors, which is universal for all physics (as reviewed
in [1]), and (ii) that these 6-dimensional equations can system-
atically be connected to many 1T-physics shadows in 4 dimen-
sions, not only the conformal shadow. In fact, historically both of
these points developed without any knowledge of Dirac’s work. I
suggest that Weinberg’s 6-dimensional Green’s functions go well
beyond conformal Green’s functions in 4 dimensions. They can
also be reduced to other shadows just like in [2,21,22]. This
technique should produce Green’s functions for more compli-
cated field theories that correspond to the shadows described
earlier in 2T physics [1]. This is an extension to Green’s
functions of a similar remark often mentioned in my 2T-physics
papers as being a computational technique that may produce
nonperturbative information in 1T field theory.

5The field � here is rescaled compared to Ref. [6], namely,
�old ¼

ffiffiffi
a

p
�.
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Note the unusual but crucial delta function �ðWðXÞÞ and
its derivative. In this actionWðXÞ is treated as a field that is
varied just as the other fields �ðXÞ, GMNðXÞ are varied.
The variation of the action with respect to each field takes
the following form:

�S ¼
Z

ddþ2X
ffiffiffiffi
G

p f�GMN½�ðWÞAG
MN þ �0ðWÞBG

MN

þ �00ðWÞCG
MN� þ ��½�ðWÞA� þ �0ðWÞB�

þ �00ðWÞC�� þ �W½�0ðWÞAW þ �00ðWÞBW

þ �000ðWÞCW�g; (2.7)

where the coefficients of the delta functions
ðAG

MN; B
G
MN; C

G
MNÞ, ðA�; B�; C�Þ, and ðAW; BW; CWÞ are

explicitly given in [6]. All of these coefficients must vanish
in order to minimize the action since �GMN , ��, �W are
arbitrary while the delta function and its derivatives
are linearly independent distributions. The equations de-
rived from the coefficients of �0ðWÞ, �00ðWÞ, �000ðWÞ, are
the ‘‘kinematic equations’’ while those derived from
the coefficients of �ðWÞ are the ‘‘dynamical equations’’
for each field. These kinematic equations do not contain
interactions [see however new generalization in Eq. (3.10)]
and are in precise agreement6 with Eqs. (2.3), (2.4), and
(2.5) derived from the Spð2; RÞ algebra of the QijðX; PÞ.

The action (2.6) has its own new gauge symmetries. It
was shown in [6,7] that by fixing some of these gauge
symmetries, and solving the kinematic (not the dynamic)
equations for all the fields, W, �, GMN the physics of the
2T action may be reduced to 1T physics in various shad-
ows. The conformal shadow, which is the most familiar to
particle physicists, is then described by an effective action
in d dimensions which takes the conventional form of a
conformally coupled scalar �ðxÞ [shadow of �ðXÞ]) inter-
acting with the gravitational field g��ðxÞ [shadow of

GMNðXÞ] as follows:

Sðg;�Þ ¼
Z

ddx
ffiffiffiffiffiffiffi�g

p �
1

2
g��@��@��þ adR�

2 � Vð�Þ
�
:

(2.8)

For the special value of ad given above, it is well known
that this action has a local scaling Weyl symmetry

Sð~g; ~�Þ ¼ Sðg;�Þ under the gauge transformation

~g��ðxÞ ¼ e2	ðxÞg��ðxÞ; ~�ðxÞ ¼ e�ððd�2Þ=2Þ	ðxÞ�ðxÞ:
(2.9)

Tracing back the origin of this symmetry, it was discovered
that it emerges as a remnant of the general coordinate
transformations in the extra dimensions, while not being
a Weyl symmetry of the original action [7]. Hence, this is

an accidental symmetry of the conformal shadow. With
this symmetry, the role of the shadow �ðxÞ is that
of a ‘‘compensator’’ as known in conventional 1T confor-
mal symmetry.7 It can be gauge fixed to a constant
�ðxÞ ! �0 if so desired, thus obtaining the 1T physics
of pure Einstein gravity with an undetermined cosmologi-
cal constant

Sðg;�0Þ ¼ 1

2
2
d

Z
ddx

ffiffiffiffiffiffiffi�g
p ½RðgÞ ��d�; (2.10)

where the Newton and cosmological constants in d dimen-
sions are determined by �0, 	

1

2
2
d

¼ad�
2
0;

�d

2
2
d

¼Vð�0Þ¼	
d�2

2d
�2d=ðd�2Þ

0 : (2.11)

Now we come to one of the main points of the
present paper concerning the interactions of matter with
the gravitational field in the 2T formulation. The
Spð2; RÞ-consistent rules for matter fields of Klein-
Gordon, Dirac, and Yang-Mills types in dþ 2 dimensions
were given in [6]. For scalar fields the consistent rules turn
out to be more general as compared to [6] as follows.
The Spð2; RÞ-consistent action is unique when there is

only one scalar field � as in (2.6). When there are more
scalar fields �mðXÞ, m ¼ 1; 2; 3 . . . , (all arranged into real
fields), I will show in the next section that the interactions
include a function Uð�Þ, a potential energy Vð�Þ, and a
sigma-model–type metric gmnð�Þ, with some constraints
on them, as follows:

S ¼ �
Z

ddþ2X
ffiffiffiffi
G

p f�ðWÞ½adUð�ÞRðGÞ
� 1

2gmnð�ÞGMN@M�
m@N�

n � Vð�Þ� þ �0ðWÞ
� ½adUð�Þð4�r2WÞ þ ad@W � @Uð�Þ�g;

(2.12)

where ad ¼ d�2
8ðd�1Þ . For a single field, U, V, g are unique

as given in Eq. (2.6), U ¼ �2, g�� ¼ �1, and V ¼
	 d�2

2d �2d=ðd�2Þ.
Some general physics requirement are as follows.

(i) First, the metric in field space, gmnð�Þ, must not have
any zero eigenvalues for generic values of the fields �m;
this insures that all scalar fields have a kinetic term.
(ii) Second, each positive eigenvalue of gmn corresponds
to a physical scalar field while each negative eigenvalue
corresponds to a negative norm ghost. At least one negative
eigenvalue occurs as seen in the example of the single field
U ¼ �2. For each additional negative eigenvalue the full
theory must have some extra gauge symmetries beyond the

6See Sec. IV-A in [7] for a more detailed discussion of the
relation of these equations to Spð2; RÞ.

7I emphasize that the shadow �ðxÞ may be fixed to a constant,
but the original field �ðXÞ is not a constant, it still depends on
the extra dimensions beyond x� in a specific way.
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accidental Weyl symmetry of Eq. (2.9) to remove negative
norm scalars. (iii) Third, Uð�Þ should satisfy certain pos-
itivity conditions that insure that gravity is an attractive
(not repulsive) force, at least in the patch of spacetime that
makes up our Universe, as will be discussed below.

To illustrate these points it is useful to review the
example of U, gmn that was given in [6]

Uð�Þ ¼ �2 �XN
i¼1

S2i ; (2.13)

gmnð�Þ ¼ � 1

2

@2U

@�m@�n ¼ diagð�1;þ1; . . . ; 1Þ; (2.14)

where �0 � �, �i � Si In this example the metric gmn

and the function Uð�Þ have SOðN; 1Þ symmetry. This
symmetry as well as the form of Uð�Þ emerges uniquely
in 2T supergravity if one requires that each scalar has the
standard canonical normalization of its kinetic term (i.e.
constant metric gmn). To understand the physical effects of
the negative eigenvalue consider the conformal shadow
analogous to Eq. (2.8) in which all shadow scalars are
conformally coupled to gravity with the special value of
ad and the quadratic Uð�Þ of Eq. (2.13). This special
coupling of scalars to R insures that in the conformal
shadow there is an overall local Weyl symmetry that re-
scales all shadow scalars equally [as in (2.9)]. This Weyl
symmetry is essential both to generate the Newton constant
and to remove one negative norm ghost as explained in
[6,7,32]. Indeed, the field � has an extra minus sign in the
kinetic term as compared to the fields Si. This sign of � is
the sign required in the conformal shadow of Eq. (2.8) in
order to obtain a positive Newton constant upon the gauge
fixing of the Weyl symmetry, as in Eq. (2.10). However,
this sign is the wrong sign for the kinetic energy, and it
makes the shadow� of� a negative norm ghost field. This
is no problem since theWeyl gauge symmetry removes this
ghost from the spectrum when the gauge is fixed to obtain
the Einstein action of Eq. (2.10). The additional scalars
SiðXÞ must have the positive eigenvalue of gmn in the
kinetic term so that their shadows siðxÞ are physical, posi-
tive norm, scalars. For this reason, in the expression of
Uð�Þ ¼ �2 �P

S2i there must be a relative minus sign
between � and the other scalars Si. Now, one notices
that the full Uð�Þ rather than only �2 plays the role of
an effective Newton constant 16�G ¼ ðadUð�ÞÞ�1 ¼
ðad�2 � ad

P
S2i Þ�1. Hence, one must consider some pos-

itivity requirements that limits the fields �mðXÞ to the
region Uð�Þ> 0 in field space in order to have a positive
G that results in an attractive force for gravity.

What could gowrong if the dynamics of the scalar fields,
including various choices for the potential energy8 Vð�Þ,

permit field configurations in which the effective Newton
constant 16�G ¼ ðadUð�ÞÞ�1 switches sign? A conserva-
tive approach to prevent physical disasters is to demand
positivity; in particular, in the quadratic example in
Eq. (2.13) one may require a field space that satisfies�2 >P

N
i¼1 S

2
i . However, this is an artificial condition that may be

violated by the dynamics of the coupled field equations. It
is more interesting to investigate the physics of what
happens if the dynamics lets Uð�Þ evolve to the configu-
rationUð�Þ ¼ 0 and even switch sign. In regions of space-
time where Uð�Þ is negative there would be effectively
antigravity (repulsive forces) rather than gravity (attractive
forces).
In the conformal shadow familiar to particle physicists

antigravity has not been observed, so what are the observ-
able effects if the positivity condition is not obeyed by the
dynamics? This question was investigated in a simplified
and exactly solvable cosmological model [32], where it
was shown that Uð�Þ ¼ 0 corresponds to the big bang,
while the region Uð�Þ< 0 is a pre–big-bang region that is
not accessible in our own Universe, thus avoiding phe-
nomenological problems. Interesting cosmological ques-
tions arise for realistic and complete models, such as
whether our spacetime region of the Universe is compat-
ible with the existence of various other antigravity regions
of spacetime in the early or later epochs during the evolu-
tion of the Universe? Answering such questions has a
bearing in a fundamental theory on which forms of Uð�Þ
are consistent with the physics we observe.
Having explained the nature of the physical issues

that arise through the quadratic example Uð�Þ ¼ ½�2 �P
S2i �, I will next prove that the form of the action in

Eq. (2.12) is required generally for consistency with the
Spð2; RÞ homothety constraints (2.3), (2.4), and (2.5) on the
geometry GMNðXÞ in dþ 2 dimensions. Afterwards I will
discuss more general forms of Uð�Þ and the additional
gauge symmetries required when the corresponding metric
gmnð�Þ in field space has more than one negative
eigenvalue.
At this point it is important to note that the emergent

shadow field theory that follows from (2.12) is a special
one among all the possible 1T field theories containing
scalar fields coupled to gravity. For example, when
Uð�Þ ¼ ½�2 �P

S2i �, the emergent shadow [6,7] similar

to (2.10) including the shadows of the �, Si, requires that
all scalar fields [such as Higgs, grand unified generaliza-
tions, scalar superpartners in supersymmetry (SUSY) theo-
ries, inflaton, etc.] must couple to R quadratically with the
same coefficient ad up to � signs (see, e.g., [6,7]). This is
allowed but not motivated by a principle in a generic 1T
field theory. In this paper we learned that there is some
freedom in the choice ofUð�Þ, gmnð�Þ, but this freedom is
further reduced when additional requirements, such as
symmetries in supergravity, are considered, as will be
explained in Sec. IV. After expressing the conformal

8The most general Vð�Þ compatible with (2.13) and (2.14) is
homogeneous and may be written as Vð�Þ ¼ �2d=ðd�2ÞvðSi�Þ,
where vðxiÞ is any function of its arguments [6,7].
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shadow (familiar to particle physicists) in the Einstein
frame9 the tight relations among interactions produced by
the functions Uð�Þ, gmnð�Þ could be physically distin-
guishable from a comparable generic 1T field theory that
may not motivate the same type of restrictions. At the
present time elementary scalar fields in particle physics
(such as the Higgs particle) have not been constrained
by experiment. So an immediate test of certain patterns
of scalar couplings in 1T field theory, as motivated by
2T field theory, is not available, but this could change in
the future.

III. 2T-GRAVITYACTION AND
CONSISTENCY WITH Spð2; RÞ

To justify that the proposed action (2.12) is the most
general form for a 2T field theory of interacting scalars and
gravity, I now compare the Spð2; RÞ equations in Eq. (2.3),
(2.4), and (2.5) to the kinematic equations that result from
the variation of the action. The variation �S has the form of
Eq. (2.7) except that instead of the single scalar field �
there are now many fields�m. The kinematic equations are
those proportional to �0ðWÞ, �00ðWÞ, �000ðWÞ, so I concen-
trate on those terms symbolized in Eq. (2.7) by the letters
(BG

MN , C
G
MN; B

�m , C�m ; AW , BW , CW), all of which must
vanish to extremize the action.

Using steps similar to Refs. [6,7] I derive these coeffi-
cients. First, note that the coefficients CG

MN , C
�m , CW all

have the same common factor ðGMN@MW@NW � 4WÞ.
The only way that all C coefficients vanish is for the field
WðXÞ to satisfy the equation

GMN@MW@NW ¼ 4W: (3.1)

This matches precisely the first two equations in Eq. (2.3)
that follow from the Spð2; RÞ worldline gauge symmetry,
once the vector VM is identified as

VM ¼ 1
2G

MN@NW: (3.2)

To arrive at this result it is important to emphasize that
the same Uð�Þ must appear in all three terms in the action
(2.12) where they are indicated. One could have started
with three different functions U1ð�Þ, U2ð�Þ, U3ð�Þ, in
those three terms and then find out that they must be the
same Uð�Þ because otherwise there would be additional
terms to cancel, proportional to @MW@NW or @MW@NUi in
BG
MN and CG

MN , that would be inconsistent with the Spð2; RÞ
constraints (2.3), (2.4), and (2.5). So, U1 ¼ U2 ¼ U3 ¼ U

is another consequence of demanding consistency with the
Spð2; RÞ constraints (2.3), (2.4), and (2.5).
Next examine the coefficients BG

MN , B
�m , BW , AW that

are given by [6]

0 ¼ BG
MN ¼ adUð�Þ½GMNð�6þr2W þ @W � @ lnUð�ÞÞ

� rM@NW�; (3.3)

0¼ B�m ¼ gmnð�Þ@W �@�nþ 2ad
@U

@�m ð6�r2WÞ; (3.4)

0 ¼ BW ¼ ad½Uð�Þð16� 2r2WÞ � 2@W � @Uð�Þ�; (3.5)

0 ¼ AW ¼ adUð�ÞRðGÞ � 2adr2Uð�Þ
� 1

2gmnð�Þ@�m � @�n � Vð�Þ; (3.6)

where the dot in (A � B) means contraction with GMN and
r2 is the Laplacian constructed with the metric GMN . By
contracting Eq. (3.3) withGMN and usingGMNGMN ¼ dþ
2, one can derive an equation for r2W

ðdþ 2Þð�6þ @W � @ lnUð�ÞÞ þ ðdþ 1Þr2W ¼ 0: (3.7)

Combining this equation with the BW ¼ 0 equation (3.5),
the two unknown quantities r2W and @W � @ lnUð�Þ are
uniquely determined as

r2W ¼ 2ðdþ 2Þ; @W � @ lnUð�Þ ¼ �2ðd� 2Þ: (3.8)

Plugging this result back into Eq. (3.3) one finds

GMN ¼ rMVN ¼ 1
2rM@NW ¼ 1

2ð@M@NW þ �P
MN@PWÞ:

(3.9)

This is precisely equivalent to the homothety condition on
the geometry required by the Spð2; RÞ constraints (2.3),
(2.4), and (2.5). There remains dealing with the kinematic
equations B�m ¼ AW ¼ 0 of Eqs. (3.4), (3.5), and (3.6).
With the results (3.1), (3.2), (3.3), (3.4), (3.5), (3.6), (3.7),

(3.8), and (3.9) that follow from the action, so far it is
evident that the 2T field theory action principle proposed in
Eq. (2.12) is the most general one compatible with the
underlying Spð2; RÞ constraints (2.3), (2.4), and (2.5) on
the geometry, as well as general coordinate invariance,
without higher order derivatives of the spacetime metric
GMN . This unique action has also led to the unique kine-
matic conditions on WðXÞ and Uð�Þ shown in Eq. (3.8).
The later condition onUð�Þmay bewritten as a homothety
condition VM@MUð�ðXÞÞ ¼ �ðd� 2ÞUð�ðXÞÞ, where the
left side is the Lie derivative for a scalar field using the
vector VM in Eq. (3.2).
Next, solve Eq. (3.4), B�m ¼ 0, after substituting

ð6�r2WÞ ¼ �2ðd� 1Þ as follows:

@W � @�n ¼ 1

2
ðd� 2Þgnmð�Þ @U

@�m : (3.10)

This kinematic constraint is also a generalized homothety
condition on the fields �n which follow from Spð2; RÞ in

9The Einstein frame is obtained by a Weyl transformation in
the conformal shadow (recall this is really a general coordinate
transformation in the extra dimensions [7]). See, e.g., [32] for the
quadratic example of Eq. (2.13), in which this Weyl gauge
amounts to eliminating the dilaton � in favor of the physical
fields si, such as� ¼ �½1=2
2

d þ
P

s2i �1=2, where ð2
2
dÞ�1 is the

Newton constant and �, si are the conformal shadows of the
original fields �, Si.
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the presence of interactions provided by gnm @U
@�m . In the

simple quadratic example of Eqs. (2.13) and (2.14), the
homothety condition (3.10) for the scalars �m becomes
simply, VM@M�

m ¼ � 1
2 ðd� 2Þ�m, which is the Spð2; RÞ

kinematic condition familiar from previous studies of 2T
physics either in the BRST approach [16] or the flat space-
time 2T field theory approach [18]. In flat spacetime,
with VM ¼ XM (see footnote 2) this equation simply means

that �ðXÞ is homogeneous �ðtXÞ ¼ t�ð1=2Þðd�2Þ�ðXÞ. So,
for more general Uð�Þ, gmnð�Þ, the kinematic equation
(3.10) should be understood as the generalized homothety
or ’’homogeneity’’ condition, including interactions.
Solving this equation in a convenient choice of spacetime
coordinates in curved space (see examples in [6,7]) reduces
the field dependence on spacetime XM by one coordinate.
Since Eq. (3.10) is a first order differential equation in a
single coordinate, it can always be solved exactly for any
interaction gnm @U

@�m .

Next, multiply both sides of Eq. (3.10) by @ lnU
@�n .

After summing over n, the left-hand side becomes
@W � @ lnUð�Þ; and using its derived value in Eq. (3.8),
the right-hand side of (3.10) yields

gnmð�Þ @U

@�m

@U

@�n ¼ �4Uð�Þ: (3.11)

It is interesting to note the similarity of this equation to
Eq. (3.1), although one is in field space�m while the other
is in position space XM. In a similar way one can also
obtain the following equation from (3.4) by multiplying
both sides of (3.10) with @W � @�m:

gmnð�Þ@W � @�m@W � @�n ¼ �ðd� 2Þ2Uð�Þ: (3.12)

It should be noted that Eqs. (3.11) and (3.12) are regarded
as conditions on the metric gmnð�Þ in field space, which
restrict the types of possible interactions of the scalars for a
given Uð�Þ.

An example of a metric gmnð�Þ and a Uð�Þ that satisfy
all of these constraints, Eqs. (3.10), (3.11), and (3.12), is the
quadratic example given in Eqs. (2.13) and (2.14). In this
example the metric is constant and both the kinetic term
and the Uð�ÞR terms in the action have SOðN; 1Þ symme-
try. Furthermore, the homothety condition (3.10) takes the
simple form @W � @�m ¼ �ðd� 2Þ�m, which is the
curved space generalization of the Spð2; RÞ constraint
given in footnote 2, and is easily solved [6,7].

Another example of gmnð�Þ and Uð�Þ that satisfy the
constraints in Eqs. (3.10), (3.11), and (3.12) is

Uð�Þ ¼ �2; gmn ¼
�1 � Sj

�

� Si

�

�
gij � SiSj

�2

�
0
@

1
A;

gmn ¼
�
�1þ SkgklS

l

�2

�
� gjkS

k

�

� gilS
l

� gij

0
B@

1
CA;

(3.13)

where the N � N submetric gijð�; SÞ is an arbitrary metric

in field space. In this second example Uð�Þ ¼ �2 is
positive definite, while the Spð2; RÞ homothety constraint
(3.10) takes the form @W � @�m ¼ �ðd� 2Þ�m for�m ¼
ð�; SiÞ, which is the same as the other example.
Finally, there is the equation AW ¼ 0 in (3.6). Actually,

this is not a kinematic equation, but rather it is a dynamical
equation since second order spacetime derivatives appear.
To analyze this equation we need to take into account the
dynamical equations AG

MN ¼ 0 and A�m ¼ 0 for all the
fields �m and GMN . It turns out that A

W ¼ 0 is automati-
cally satisfied provided the dynamical equations AG

MN ¼ 0
and A�m ¼ 0 are satisfied (see [6,7]), so this is not an
additional constraint to contend with.

IV. MORE SYMMETRYAND
CONSTRAINTS ON SCALARS

More constraints on the scalar couplings Uð�Þ, Vð�Þ,
gmnð�Þ can arise because of stronger symmetries. Specific
examples of this occur with 2T supersymmetry [19,20]
which restricts the form of Vð�Þ, and 2T supergravity
[33,34] which restricts the form of gmnð�Þ to be a function
constructed from Uð�Þ. Without going into the details of
the 2T supersymmetry, it is possible to understand the
effects of supersymmetry on the scalars in 2T supergravity
by considering the conformal shadows of the scalars that
are expected to appear in conventional 1T SUSY and 1T
supergravity theories.
For example, for conventional N ¼ 1 SUSY in

4-dimensions, the main effect on Vð�Þ is that it must be
constructed from complex fields (chiral multiplets) in the
form of D-terms and F-terms with a holomorphic super-
potential fð�Þ, in a well-known form that we do not need
to elaborate on here (for reviews see [35,36]).
More constraints are found in supergravity. For example,

for conventional N ¼ 1 supergravity in 4 dimensions,
there is a Kähler potential coupled to R that also deter-
mines the metric in field space that occurs in the kinetic
term of complex chiral multiplets (see, e.g., formulas
31.6.57 to 31.6.61 in [36]).
From such 1T shadows of 2T supergravity, with various

numbers of supercharges N , it is straightforward to de-
duce the corresponding constraints on gmnð�Þ, Uð�Þ in 2T
supersymmetric field theory beyond the constraints already
described in the previous section. We will not be specific
here for various N , but only indicate that one typical
constraint is that gmnð�Þ is constructed from Uð�Þ as a
second derivative in field space, such as

gmnð�Þ ¼ � 1

2

@2Uð�Þ
@�m@�n : (4.1)

Actually, the constraint in N ¼ 1 supergravity is even
stronger in terms of complex fields that yield a Kähler
metric in field space
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gm �nð�; ��Þ ¼ �@2Uð�; ��Þ
@�m@ ���n

: (4.2)

Rather than the specific form (complex or real), the deriva-
tive form is what we wish to pursue here to make the
following observations. For this reason we will stick to
real fields and the metric in (4.1) to maintain a consistent
notation with the previous sections (the result will be
similar for complex fields).

The derivative form of the metric permits a different
approach to solving the homothety constraint (3.4) on
the scalars. Inserting Eq. (4.1) into (3.4) and using
ð6�r2WÞ¼�2ðd�1Þ as before, B�m ¼ 0 takes the form

� 1

2

@2Uð�Þ
@�m@�n @W � @�n � 1

2
ðd� 2Þ @U

@�m ¼ 0: (4.3)

Rather than solving this in the form of (3.10), which still
holds, the chain rule leads to a simpler result, namely,

@W � @ @U

@�m þ ðd� 2Þ @U

@�m ¼ 0: (4.4)

This homothety constraint is a linear equation in @U
@�m

and, other than being in curved space, it looks the
same as the Spð2; RÞ kinematic constraint for the scalar
field in footnote 2). Combined with the result in (3.8),
@W � @ lnUð�Þ ¼ �2ðd� 2Þ, this implies that

@W � @�m ¼ �ðd� 2Þ�m; (4.5)

and thatUð�Þ and Vð�Þmust be homogeneous of degree 2
and 2d=ðd� 2Þ, respectively, in field space

Uðt�Þ ¼ t2Uð�Þ; Vðt�Þ ¼ t2d=ðd�2ÞVð�Þ: (4.6)

Hence, when the metric is constructed as a second deriva-
tive of Uð�Þ, as in 2T supergravity, an additional conse-
quence is that Uð�Þ and Vð�Þ are homogeneous as
indicated. Furthermore, Uð�Þ must also satisfy the non-
linear equation that follows from Eq. (3.11):

@U

@�m

�
@� � @�

@2U

�
mn @U

@�n ¼ 2Uð�Þ: (4.7)

These are a lot of constraints onUð�Þ, as well as gmnð�Þ,
that eliminate previously possible solutions. Nevertheless,
there still remains some freedom. Note that a homogeneous
Uð�Þ of degree 2 does not necessarily mean quadratic, since
ratios of fields may also occur in Uð�Þ. Some additional
symmetry conditions, such as global or local gauge symme-
tries that must be respected in the full theory can narrow
down the possibilities. For example, asking for a global
SOðN; 1Þ symmetry in the kinetic term completely nails
down both Uð�Þ and gmnð�Þ to have the quadratic form
in Eq. (2.13) and (2.14). Alternatively, asking for no par-
ticular symmetry of Uð�Þ but only asking for a canonical
normalization of the kinetic term with a constant metric gmn

also nails downUð�Þ to be the same quadratic of Eq. (2.13).
As an example, applying this quadratic case for complex

scalars �m, ��m, to construct a 2T N ¼ 1 supergravity

theory in 4þ 2 dimensions [37] yields the following

potential energy Vð�; ��Þ when U is given by Uð�; ��Þ ¼
ð�0 ��0 �P

�i ��iÞ:

Vð�; ��Þ ¼ @fð�Þ
@�m

@ �fð ��Þ
@ ��n

gmn; fðt�Þ ¼ t3fð�Þ: (4.8)

Here gmn is the constant SUðN; 1Þ metric10 in Eq. (2.14),
and fð�Þ is the analytic superpotential which must be
homogeneous of degree 3. Again this does not necessarily
mean that fð�Þ is cubic, since ratios of fields may also
occur (in nonrenormalizable effective theories). Although
this looks like a simple F-term in the potential, I emphasize
that this is the full form after all the supergravity machi-
nery, including the Kähler potential is taken into account as
explained in [37]. The simplicity occurs because of the

special form of the quadratic function Uð�; ��Þ. Note that
due to the indefinite metric gmn, this V is not a positive
definite potential energy. Having a negative contribution to
the potential energy, despite the exact local supersymme-
try, is typical in supergravity. An additional positive defi-
niteD-term is added to this potential energy in the standard
form when Yang-Mills gauge fields are coupled to super-
gravity (see, e.g., [35,36]).
I have shown that in 2T field theory there are a variety of

constraints on scalar fields. The first and foremost are the
Spð2; RÞ constraints on the overall theory which results in
kinematic equations on all the fields of all spins. These
kinematic equations are related to the gauge symmetries
that remove ghosts and make the theory unitary directly in
dþ 2 dimensions. Their effect on scalar fields is twofold.
First, the scalar field must obey a kinematic equation, whose
most general form, including interactions, is given in
Eq. (3.10). The solutions of the kinematic equations corre-
spond to the shadows in 1T field theory and help interpret
the predictions of 2T physics in the language of 1T physics.
Second, the possible interactions of scalars among them-
selves Vð�Þ and with gravity described by Uð�Þ, gmnð�Þ
must obey certain conditions, including especially (3.11)
and (3.12) which are regarded as restrictions on the metric
in field space. Supersymmetry puts further severe con-
straints on Vð�Þ, and gmn, Uð�Þ in the form (4.6) and
(4.7), while gauge symmetries and global symmetries of
the overall theory narrow down the possible interactions.
The patterns of scalar field interactions predicted by 2T

physics for the 1T conformal shadow (familiar setting in
particle physics) can also be introduced in 1T field theory
by hand, but are not necessarily motivated by a similar
principle.

10When both the kinetic terms and U are all rewritten in terms
of real fields, the symmetry of both U and the kinetic terms is
actually SOð2N; 2Þ, with two negative eigenvalues of the metric
when rewritten in a real basis. But, because of the complex
nature of the superpotential, what appears in V is the metric for
the subgroup SUðN; 1Þ.
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V. EPILOGUE: NO SCALE MODELS AND THE
COSMOLOGICAL CONSTANT

In a separate paper I will discuss 2T supergravity. The
present study of scalars was motivated by trying to solve
some puzzles for how to supersymmetrize 2T gravity. The
essential issue was that the accidental Weyl symmetry (2.9)
in the conformal shadow was crucial to remove the ghost
[the negative eigenvalue in the metric gmnð�Þ] associated
with the field �. Recall that the conformal shadow of �
played the role of a conformal compensator familiar in 1T
field theory. To supersymmetrize, this ghost compensator
could be made a member of a chiral multiplet, and hence
there would be an additional ghost due to the complex field
nature of the compensator chiral multiplet. Not only that,
there would also be fermionic partners of these ghosts. I
was puzzled for a long time how these additional bosonic
and fermionic ghosts could be removed consistently with
supersymmetry, and was wondering if supersymmetrizing
2T gravity would require a different approach than chiral
multiplets?11

Just one brief remark12 on SUð2; 2j1Þ was sufficient to
showme the way and solve all the puzzles as follows. In 2T
SUSY field theory with N supersymmetries in 4þ 2 di-
mensions there is a global SUð2; 2jN Þ symmetry [19,20].
The SU(2,2) part of it is the linearly realized SO(4,2) of
the 4þ 2 dimensions. To construct N ¼ 1 supergravity,
just as SO(4,2) is turned into a local symmetry, the full
SUð2; 2j1Þmust also become local. If such a 2T supergrav-
ity theory exists in 4þ 2 dimensions it must be that the
conformal shadow in 3þ 1 dimensions is also locally sym-
metric under SUð2; 2j1Þ. Indeed, Ferrara pointed out that
such a formulation of 1T Poincaré supergravity was con-
sidered some time ago in a conformal formalism [39,40].
TheSUð2; 2j1Þ has all the local symmetries to remove all the
ghosts associated with the compensator. Specifically, the
local superconformal S supersymmetry removes the fermi-
onic member of the compensator chiral multiplet, the
gauged U(1) R symmetry (with a nonpropagating auxiliary
vector field) removes the phase of the remaining complex
boson, and finally the local Weyl symmetry fixes the com-
pensator to the Newton constant as in Eq. (2.10). From
SUð2; 2j1Þ there remains only the local Lorentz and the
local Q supersymmetry, which are the evident local sym-
metries of Poincaré supergravity. Hence, the road to 2T
supergravity is clear.

The details of the 2T supergravity will be given else-
where [37], but here I outline the resulting conformal
shadow with particular emphasis on the scalars. The
shadow of the N ¼ 1 Poincaré supergravity in 3þ 1

dimensions contains the following supermultiplets: the
graviton supermultiplet ðea�; c �

�; b�; zÞ where b�, zð� sþ
ipÞ are auxiliary fields [39], plus the chiral supermultiplets
ð�m; c m; FmÞ labeled by m ¼ 0; 1; . . . ; N, where Fm are
auxiliary fields. The bosonic part of the Lagrangian that
can be compared to conventional supergravity is13

1

e
Lbose ¼

�
Uð�; ��Þ

�
1

6
RðgÞ � z�zþ g��b�b�

�

þ @2U

@�m@ ��n
ðg��@��

m@� ��n � Fm �FnÞ

þ
�
�ðzFm þ ib�@��

mÞ @U

@�m þ @f

@�m Fm

þ 3�zfð�Þ
�
þ c:c:

	
;

where fð�Þ is the superpotential. The multiplet labeled by
m ¼ 0 contains the field �0ðxÞ that plays the role of the
complex compensator so it describes a supermultiplet of
negative norm ghosts. There is just the required amount of
gauge symmetry to remove them from the physical spec-
trum, and generate from them the Newton constant, as
described above. In particular the U(1) gauge field that
removes the phase of �0ðxÞ is the auxiliary field b�.

To exhibit the U(1) gauge symmetry associated with b�
I define the following covariant derivative with a nonlinear
action of the U(1) transformation (it becomes linear only
for quadratic U):

D��
m ¼ @��

m þ ib�
@U

@ ��n

�
@ �� � @�

@2U

�
nm
; (5.1)

where the last factor is the inverse of the Kähler metric.
Then this Lagrangian takes the U(1) gauge invariant form

1

e
Lbose ¼

�
1

6
Uð�; ��ÞRðgÞ þ @2U

@�m@ ��n
g��D��

mD�
��n

þ
�
@ �� � @�

@2U

�
nm @ �f

@ ��n

@f

@�m þ @2U

@�m@ ��n

�
�
Fþ �z�þ

�
@� � @ ��

@2U

�
@ �f

@ ��

�
m

�
�
�Fþ z ��þ

�
@ �� � @�

@2U

�
@f

@�

�
n � �z

�
�m @f

@�m

� 3fð�Þ
�
� z

�
��m @ �f

@ ��m
� 3fð ��Þ

�	
:

11For example, the linear multiplet [38] does not require the
complexification, but after all it is equivalent to the chiral
multiplet.
12I thank S. Ferrara for clarifying some aspects of gauge
symmetries in supergravity [39–41].

13See, e.g., Eq. (31.6.57) in [36], where the Newton constant
terms are dropped, and the auxiliary fields b�, s, p are renor-
malized by a convenient numerical factor of 2=3. Note also that
the factor of 1=6 in front of R comes from 2ad ¼ 1

6 for d ¼ 4
(coming from dþ 2 ¼ 6). Here we have 2ad instead of ad
because of the complex basis for the fields. Similarly, the factor
of 3 in front of 3�zfð�Þ more generally is given as dþ2

2 .
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This shows that gauge invariance is possible only when
Uð�; ��Þ satisfies the nonlinear condition in Eq. (4.7).
The gauge invariance is required in order to remove the
negative norm ghost.

The last two lines in this form vanish after integrating
out the auxiliary fields Fm and z. In any case the last line
does not even appear because 2T supegravity already
requires in Eq. (4.8) that fð�Þ had to be homogeneous of
degree 3; hence the auxiliary field z dropped out automati-
cally anyway. Hence, the bosonic Lagrangian simplifies
greatly to the form14

1

e
Lbose ¼ 1

6
Uð�; ��ÞRðgÞ þ @2U

@�m@ ��n
g��D��

mD�
��n

þ
�
@ �� � @�

@2U

�
nm @ �f

@ ��n

@f

@�m : (5.2)

The potential energy is then

Vð�; ��Þ ¼ �
�
@ �� � @�

@2U

�
nm @ �f

@ ��n

@f

@�m ; (5.3)

as given in Eq. (4.8). Note that this is homogeneous of
degree 4, Vðt�; t ��Þ ¼ t4Uð�; ��Þ. Recall that here we also
require that Uð�; ��Þ is homogeneous of degree 2, and that
it must satisfy the complex version of the nonlinear
condition (4.7)

Uðt�; t ��Þ ¼ t2Uð�; ��Þ;
@U

@�m

�
@� � @ ��

@2U

�
mn @U

@ ��n
¼ Uð�; ��Þ:

(5.4)

Only the Uð�; ��Þ that can solve these equations

(with nonzero eigenvalues in the Kähler metric gmn ¼

� @2U
@�m@ ��n ) are admitted in the 3þ 1 dimensional confor-

mal shadow of 2T supergravity in 4þ 2 dimensions.
A Uð�; ��Þ that satisfies Eq. (5.4), together with

an analytic homogeneous superpotential that satisfies
fðt�Þ ¼ t3fð�Þ, determines fully the scalar field interac-
tions in 2T supergravity and its conformal shadow given in
Eq. (5.2). This is the restriction on scalars in 1T physics
that arises from 2T supergravity.
An example of aUð�; ��Þ that satisfies these equations is

the complex version of the quadratic case in Eq. (2.13) that
I discussed several times in this paper. In a complex basis it
has the form

example : Uð�; ��Þ ¼ �0 ��0 �XN
i¼1

�i ��i ¼ �gmn�
m ��n:

(5.5)

This constant metric gmn ¼ diagð�1;þ1; . . . ;þ1Þ leads to
canonically normalized complex scalars, with an auto-
matic linearly realized SUðN; 1Þ global symmetry in the
kinetic and R-terms of the action (5.2). This symmetry may
be broken by the choice of the superpotential fð�Þ. In this
example, the action (5.2) requires that all scalars must be
conformally coupled to gravity. Note that not only the
compensator, but all scalars are conformally coupled.
This is possible in 1T field theory, but it is not motivated
by a principle, like it is in 2T physics.
It is worth mentioning that the work on 2T supergravity

has led in a natural way to a class of no scale models of
1T supergravity that are a good starting point for under-
standing the basic problem of the smallness of the cos-
mological constant [42]. In particular, the quadratic U of
Eq. (5.5) immediately produces an attractive no scale
model with the potential energy V given above in
Eq. (4.8), as detailed in [37]. It is a coincidence that right
after resolving the 2T supergravity puzzles, and having
constructed the quadratic model, a brief discussion with
C. Kounnas whom I ran into unexpectedly has attracted
my attention to the no scale ideas [42–46] for which the
2T supergravity path is quite natural. Specifically, a no
scale model is obtained from the above 2T supergravity
approach simply by taking the following basis for the

fields �� ¼ ð�0 ��NÞ= ffiffiffi
2

p
, and then writing the poten-

tial (4.8) in the form:

Vð�; ��Þ ¼ � @f

@�0

@ �f

@ ��0
þ @f

@�N

@ �f

@ ��N
þ XN�1

i¼1

@f

@�i

@ �f

@ ��i
;

¼ � @f

@�þ
@ �f

@ ��� � @f

@��
@ �f

@ ��þ þ XN�1

i¼1

@f

@�i

@ �f

@ ��i
:

(5.6)

If one takes a superpotential fð�Þ that depends only

�þ and �i, i.e., @f
@�� ¼ 0, then in the remaining Vð�; ��Þ

14This form is invariant under the following infinitesimal Weyl
transformation that generalizes Eq. (2.9): �	g�� ¼ 2	ðxÞg��
and �	�

m ¼ � d�2
2 	ðxÞgmn @U

@ ��n , and �	b� ¼ 0, where gmn �
ð@��@ ��

@2U
Þmn. Note that the Weyl transformation of �m is derived

from the Spð2; RÞ condition on the parent field �m in dþ 2

dimensions in Eq. (3.10). As explained in [7], this implies that

the Weyl trasformation for all the fields in the shadow amounts to

a reparametrization of the coordinates in the extra dimensions.

There is no Weyl symmetry in the higher dimensional theory.

Note also that this Weyl symmetry holds even for the more

general case of gmnð�; ��Þ that satisfies the complex version of

Eq. (4.7), @U
@�m gmn @U

@ ��n ¼ �U, even when gmn is not constructed

from derivatives of U (i.e., not taking into account the local

supersymmetry conditions in supergravity). For any such

gmnð�; ��Þ, after integrating out the gauge field b�, the kinetic

term for the scalars takes the following form: gmnD�m �D ��n ¼
g��ðgmn@��

m@� ��n � J�J�Þ, where J� ¼ 1
2 ði@��m @ lnU

@�m �
i@� ��m @ lnU

@ ��m Þ.
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each term is strictly positive for all values of the fields.
For the scalars, the minimum of the potential Vð�; ��Þ
can only occur when each term vanishes at field values

that satisfy @f
@�i ¼ 0 for i ¼ 1; . . . ; N � 1, while @f

@�þ ¼
anything (since @f

@�� ¼ 0). Therefore the absolute mini-

mum of the potential is necessarily at zero Vmin ¼ 0,
yielding automatically a vanishing cosmological constant
even after a spontaneous breakdown of symmetries that
cause phase transitions in the history of the Universe
(such as electroweak, SUSY, grand unification, inflation,
etc.).15

The field �þ can be gauge fixed conveniently as in
footnote 15 by using the Weyl gauge symmetry in
Eq. (2.9), thus generating the Newton constant ð2
2Þ�1.
In this specific gauge the quadratic example can be com-
pared to the no scale model discussed in [43]. The homo-
geneous superpotential of Eq. (4.8) may be written as
fð�Þ ¼ ð�þÞ3ð�i=�þÞ, with an arbitrary ðziÞ. This
ðziÞmay be chosen to fit particle physics phenomenology,
including SUSY breaking, which may be clarified in ex-
periments at the LHC if the SUSY scale is within its
reach.16 The remaining field�� is unfixed at the minimum
of the potential at the classical level (a flat direction, hence
no scale). Quantum corrections can stabilize the remaining
�� field. There exist schemes [46] that may explain the
smallness of the observed cosmological constant after the
quantum corrections.

One lesson of theN ¼ 1 supergravity example above is
that gmnð�Þ can have more than one negative eigenvalues
(see footnote 10). To kill the corresponding additional
ghosts, there must be Yang-Mills type gauge symmetries,
such as the U(1) R symmetry in the SUð2; 2j1Þ, or its
generalizations for higher N . Furthermore higher N
supergravity admits gauge symmetries with nonpropagat-

ing auxiliary vector fields. Such gauge symmetries, com-
bined with the Weyl symmetry, are then used to remove all
the negative norm ghost scalar fields, leaving behind the
familiar scalar fields in 1T supergravity theories that are
described as moduli in coset spaces of certain noncompact
U-duality groups. The benefit of keeping the negative norm
scalars in the initial formulation of the 2T supergravity
theory is to make evident hidden symmetries and then
using the gauge symmetries in the most convenient way
(see, for example, [32]) to analyze the physics in the 1T
shadows.
The 2T approach has been indicating in many settings,

including gravity and supergravity in this paper, that there
is an ambient dþ 2 dimensional spacetime in which the
fundamental form of the theory resides. The shadows in d
dimensions distort the fundamental form of the equations,
just like an observer’s choice of coordinates in general
relativity inserts a distortion. Unlike general relativity, in
2T physics this distortion leads to different choices of
time in 1T physics, and hence to different 1T-physics
interpretations. The conventional formulation of 1T phys-
ics is just one of the shadows, namely, the conformal
shadow familiar in particle physics. This familiarity is
the reason to concentrate mainly on the conformal
shadow in many of the discussions because this helps to
digest the physical meaning of 2T physics at least in one
familiar setting. However, the benefits of the 2T formu-
lation will be mainly in exploring the other shadows and
in using the duality relationships among the shadows to
develop useful computational techniques as well as new
insights about the meaning of space and time, as dis-
cussed partially in [2,21,22]. In this regard, Weinberg’s
recent results for Green’s functions [3], which amount to
Green’s functions in flat 4þ 2 dimensional 2T field
theory including the standard model [18], is one of the
explicit examples that can be explored by using the
reduction techniques to various shadows as suggested in
footnote 4.
On the fundamental theory side, 2T physics for strings

and branes and 2T superfield theory in higher dimensions
is still underdeveloped (for their status see [1]). I note that
SUSY Yang-Mills theory has already been constructed in
10þ 2 dimensions as will be presented in the near future
[47]. Further exploration of the fundamentals in 2T physics
along these lines should lead next to supergravity in 10þ 2
and 11þ 2 dimensions, thus providing a 2T version of M
theory.
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constant �. This gives a nondiagonal but constant gmn

and a potential Vð�; ��Þ ¼ � @f
@�þ

@ �f
@ ��� � @f

@��
@ �f
@ ��þ � � @f

@��
@ �f
@ ��� þP

N�1
i¼1

@f
@�i

@ �f
@ ��i

. When @f
@�� ¼ 0 this still reduces to a no scale

model with the strictly positive V, but a different U for any �.

The parameter � can be used for phenomenological purposes as

discussed elsewhere.
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