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One loop expressions for fermion self-energy, vacuum polarization, and vertex correction in light-front

time ordered perturbation theory can be obtained from respective covariant expressions by performing k�

integration. In an earlier work, we have shown that the third term in the doubly transverse gauge

propagator is necessary to generate the diagrams involving instantaneous photon exchange both in the

case of fermion self-energy as well as vertex correction. In this work, using the two-term photon

propagator, we show that the instantaneous photon exchange diagrams in fermion self-energy as well

as the IR singular terms in the propagating diagrams can be generated by taking the asymptotic limit of the

covariant expression. It is further shown that this method reproduces the IR singular terms in propagating

diagrams of vacuum polarization also.
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I. INTRODUCTION

The issue of equivalence of covariant perturbation
theory and light-front Hamiltonian perturbation theory
has attracted a lot of attention in recent years [1–4]. It is
important to establish equivalence between the two ap-
proaches as light-front field theory has spurious divergen-
ces not present in covariant perturbation theory and it is
necessary to understand how these divergences are gener-
ated in order to establish a correspondence between the
light-front expressions and the covariant expressions. One
of the approaches consists of establishing equivalence at
the Feynman diagram level wherein the covariant expres-
sion for a Feynman diagram is integrated over the light-
cone energy k� to generate all the diagrams of light-front
perturbation theory [1]. Bakker et al. [1] have given a
general algorithm for proving equivalence in theories
involving scalars as well spin- 12 particles. Equivalence

at Feynman diagram level in Yukawa theory has been
discussed in detail [2]. Correspondence between the
light-front Hamiltonian approach and the Lorentz-
covariant approach has been discussed for QED 1þ 1
and also for QCD by bosonization of the model [3].

As far as 3þ 1-dimensional theories are concerned,
equivalence of light-front QED (LFQED) and covariant
QED in Coulomb gauge has been proven within the
framework of Feynman-Dyson-Schwinger theory [5].
However, not much work has been done on proving
equivalence for QED at the Feynman diagram level.
In a previous work [6], we had addressed the issue of
equivalence of light-front QED [7] and covariant QED at
the Feynman diagram level. In Ref. [6], we have shown, at
the one-loop level, how one can obtain all the propagating
as well as instantaneous diagrams by performing the
k�-integration carefully. The feature that sets QED apart
from other cases considered in literature is the presence

of diagrams involving instantaneous photon exchange.
Our previous study was aimed at generating these expres-
sions in the diagram based approach. It was shown that
the equivalence cannot be established by performing
k� integration if one uses the commonly used two-term
photon propagator in light-cone gauge [7,8]:

d�� ¼ 1

k2 þ i�

�
�g�� þ

��þk� þ ��þk�
kþ

�
: (1)

However, if one uses the three-term photon propagator
[5,8–12] given by

d�� ¼ 1

k2 þ i�

�
�g�� þ

��þk� þ ��þk�
kþ

� k2��þ��þ
ðkþÞ2

�
;

(2)

then one can generate the diagrams involving instanta-
neous photon exchange also which completes the proof
of equivalence. In the present work, we give an alternative
method to generate the instantaneous photon exchange
diagrams using the two-term photon propagator only.
We show how one can use the asymptotic method pro-
posed by Bakker et al. [4] to generate the instantaneous
photon exchange diagrams for one-loop self-energy
correction. This method does not require the third term
in the photon propagator. There has been some debate in
literature over the relevance of the third term in the gauge
boson propagator. It is usually dropped on the grounds
that it does not propagate any information. In our previous
work, we emphasized the importance of this term in
proving equivalence at one-loop level. In the present
work, we use the asymptotic method to generate the
instantaneous photon exchange diagrams without the
need of the third term. However, it should not be consi-
dered as undermining the importance of this term. On the
contrary, the present method, being an alternative to the
three-term propagator method, may be able to throw some
light on the physical significance of this term.*misra@physics.mu.ac.in
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The plan of the paper is as follows: In Sec. II, we
summarize the one-loop renormalization of LFQED [7]
and briefly review the work of Ref. [6] for completeness.
Here, we present only those results of Refs. [6,7] which are
needed for our discussion. In Sec. III, we consider the self-
energy correction and use the asymptotic method to gen-
erate the graphs involving instantaneous photon exchange.
We show that in a certain asymptotic limit, the covariant
expression for fermion self-energy reduces to a sum of
expressions for the instantaneous photon exchange graphs
and the IR singular terms of the propagating graph. We
have further carried out a similar analysis for vacuum
polarization. Since vacuum polarization does not have
any contribution from instantaneous photon exchange ver-
tex at the one-loop level, in this case the above mentioned
limit reproduces only the IR singular terms in the prop-
agating part. In Sec. IV, we summarize and discuss our
results. Appendix A contains the notations and basics.
Appendix B contains some useful formulas.

II. PROOF OF EQUIVALENCE OF COVARIANT
AND LIGHT-FRONT QED USING THE THREE-

TERM PHOTON PROPAGATOR

In this section, we summarize the results of Ref. [7]
on one-loop renormalization of light-front QED in
Hamiltonian formalism and recall how these results were
obtained by performing k� integration in Ref. [6]. The
results presented here are needed for our discussion of
the asymptotic method in Sec. III.

A. Fermion self-energy correction

In light-cone time ordered perturbation theory, fermion
self-energy at Oðe2Þ has three contributions given by

�uðp; s0Þ�1ðpÞuðp; sÞ ¼
�
p; s0jV1

1

p� �H0

V1jp; s
�
; (3)

corresponding to the diagram in Fig. 1(a),

�uðp; s0Þ�2ðpÞuðp; sÞ ¼ hp; s0jV2jp; si; (4)

corresponding to diagram in Fig. 1(b), and

�uðp; s0Þ�3ðpÞuðp; sÞ ¼ hp; s0jV3jp; si; (5)

corresponding to the sum of diagrams in Figs. 1(c) and 1(d).
V1 is the standard three-point QED vertex and V2 and V3

are Oðe2Þ nonlocal four-point vertices corresponding to
an exchange of instantaneous fermion and photon, respec-
tively. Expressions for V1, V2, and V3 are given in
Appendix A.

The contribution of Fig. 1(a) to �m is given by Eq. (3)
and leads to the light-cone expression for the propagating
part given by

�ma�s� ¼ e2

m

Z d2k?
ð4�Þ3

Z pþ

0

dkþ

kþðpþ � kþÞ

� �uðp;�Þ��ðk0 þmÞ��uðp; sÞd��ðkÞ
p� � k� � k0�

; (6)

where all the momenta are on shell:

p ¼
�
pþ;

p2
? þm2

2pþ ; p?
�
; (7)

k ¼
�
kþ;

k2?
2kþ

; k?
�
; (8)

and

k0 ¼
�
pþ � kþ;

ðp? � k?Þ2 þm2

2ðpþ � kþÞ ; p? � k?
�
: (9)

FIG. 1. Diagrams for electron mass shift in LFQED.
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The contribution of Fig. 1(b) is

�mb�ss0 ¼ e2pþ�ss0

2m

Z d2k?
ð2�Þ3

Z þ1

0

dkþ

kþðpþ � kþÞ ; (10)

and the sum of contributions of Figs. 1(c) and 1(d) is

�mc�ss0 ¼ e2pþ�ss0

2m

Z d2k?
ð2�Þ3

�Z þ1

0

dkþ

ðpþ � kþÞ2

�
Z þ1

0

dkþ

ðpþ þ kþÞ2
�
: (11)

These integrals have potential singularities at kþ ¼ 0 and
kþ ¼ pþ. To regularize them one introduces small cutoffs
� and 	

� � kþ � pþ � 	; (12)

and handles the pole at kþ ¼ pþ in �mb and �mc by
principal value prescription as shown in Appendix A.
Using this procedure, one obtains [7]

�ma ¼ e2

2m

Z d2k?
ð2�Þ3

�Z pþ

0

dkþ

kþ
m2

p � k
� 2

�
pþ

�
� 1

�
� ln

�
pþ

	

��
; (13)

�mb ¼ e2

2m

Z d2k?
ð2�Þ3 ln

�
pþ

�

�
; (14)

and

�mc ¼ e2

m

Z d2k?
ð2�Þ3

�
pþ

�
� 1

�
: (15)

To establish equivalence, one starts with the covariant
expression for electron self-energy in the light-front gauge,

�ðpÞ ¼ ðieÞ2
2mi

Z d4k

ð2�Þ4

� ��ðp� kþmÞ��d0��ðkÞ
½ðp� kÞ2 �m2 þ i��½k2 ��2 þ i�� ; (16)

where
d0��

k2
is the photon propagator in the light-cone gauge

in covariant perturbation theory with d0��ðkÞ given by

Eq. (2). Substituting

p�kþm¼�þ
��ðp?�k?Þ2þm2

2ðpþ�kþÞ
��

þ��ðpþ�kþÞ��?ðp?�k?Þ

þ�þ
�
p��k��ðp?�k?Þ2þm2

2ðpþ�kþÞ
�
; (17)

and integrating over light-cone energy k�, one obtains [6]

�ðpÞ ¼ �ðaÞ
1 ðpÞ þ �ðbÞ

1 ðpÞ þ �2ðpÞ; (18)

where

�ðaÞ
1 ðpÞ ¼ e2

m

Z d2k?
ð4�Þ3

Z pþ

0

dkþ

kþðpþ � kþÞ
� ��ðk0 þmÞ��d��ðkÞ

p� � k� � k0�
(19)

is the propagating part leading to �ma. �2ðpÞ is given by

�2ðpÞ ¼ e2

2m

Z 1

0

dkþ

2kþ
Z d2k?

ð2�Þ3
���þ��d��ðkÞ
2ðpþ � kþÞ ; (20)

and leads to �mb, whereas�
ðbÞ
1 arises from the third term in

the photon propagator and yields �mc.

�ðaÞ
1 ðpÞ differs from the covariant expression in that the

fermion momentum in the loop is on shell in the light-front
expression, i.e.

k0 ¼
�
pþ � kþ;

ðp? � k?Þ2 þm2

2ðpþ � kþÞ ; �p? � �k?
�
; (21)

whereas in the covariant expression it is off shell.
One should recall that �mb arises when off-shell mo-

mentum in the covariant expression is replaced by on-shell
momentum. In fact, in light-front perturbation theory
all diagrams involving instantaneous fermion exchange
are obtained by the replacement

k� ! k�on þ ðk� � k�onÞ: (22)

The first term here generates the LF propagating diagram
and the second term generates the instantaneous fermion
exchange diagram. Note that the resulting expression for
�ma still has IR singular terms. We show in Sec. III that
these IR singular terms and �mc can be obtained by taking
the limit kþ ! pþ, k� ! 1 in the covariant expression.

B. Vacuum polarization

In exactly the same manner as for electron self-energy,
the covariant expression for photon self-energy can also
be shown to be equivalent to the sum of the propagating
and instantaneous diagrams of light-front field theory by
changing the off-shell momenta to on-shell momenta.
One defines a tensor ���ðpÞ through

��2�

0 ¼ �
�ðpÞ���ðpÞ�
0
� ðpÞ: (23)

The corresponding diagrams are displayed in Fig. 2. ��2
a is

given by

��2
a�

0 ¼

�
p; 
0jV1

1

p� �H0

V1jp; 

�
; (24)

whereas the seagulls are given by

��2
bþc ¼ hp; 
jV2jp; 
i: (25)

Inserting appropriate sets of intermediate states and fol-
lowing the standard procedure, one obtains
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��2
a ¼ 2e2

Z d2k?
ð4�Þ3

Z pþ�	

�

dkþ

kþðpþ � kþÞ

� tr½�
ðpÞðkþmÞ�
0 ðpÞðk0 �mÞ�
p� � k� � k0�

; (26)

where

k ¼
�
kþ;

k2? þm2

2kþ
; k?

�
; (27)

and

k0 ¼
�
pþ � kþ;

ðp? � k?Þ2 þm2

2ðpþ � kþÞ ; p? � k?
�
: (28)

It has been shown [7] that ��2 is the sum of ��2
a and

��2
bþc where

��2
a ¼ e2

Z d2k?
ð2�Þ3

�
ln

�
�	

ðpþ2Þ
�
þ 2k2?

k2? þm2

�
(29)

corresponds to the propagating diagram and

��2
bþc ¼ e2

Z d2k?
ð2�Þ3

Z 1

0
dkþ

�
1

pþ � kþ
� 1

pþ þ kþ

�

(30)

corresponds to the instantaneous fermion exchange.
One can obtain this result from the covariant expression

also by performing the k� integration in a manner similar
to the one sketched above for the fermion self-energy
diagram [6].

III. ASYMPTOTIC METHOD AND
LIGHT-FRONT QED

In this section, we show that the diagrams involving
instantaneous photon exchange in fermion self-energy
can be generated by the asymptotic method discussed by
Bakker et al. in the context of 1þ 1-dimensional theories
[4]. We use the method discussed in this reference to
isolate the divergent graphs and evaluate the integral by
using the u-integration method of Ligterink et al. [1]. In
QED, we find that the asymptotic method also generates
the instantaneous photon exchange diagrams if we do not
include the third term in the doubly transverse photon
propagator. In fact, the asymptotic limit of the third term
is ��mc which actually cancels the contribution of the
third term and therefore, including the third term in the
asymptotic method does not make any difference.
In general, the number of light-cone energy denomina-

tors is one less than the number of denominators in the
covariant expression. This may give the impression that
one can obtain the light-cone expression from the covariant
expression by integrating over light-cone energy k� using
the method of residues. However, this apparently straight-
forward manner of proving equivalence does not reproduce
all the instantaneous diagrams unless one takes into
account the contribution of arc at infinity and end point
contributions [4,6]. The diagrams involving instantaneous
fermion exchange arise in a straightforward manner when
the fermion momenta in covariant expression are replaced
by on-shell momenta, as discussed in the previous section.
We will not discuss this contribution here. In Ref. [6], we
have shown that the diagrams involving instantaneous
photon exchange arise from the third term in the photon
propagator of Eq. (2). We now show that these instanta-
neous diagrams can also be generated by taking the asym-
ptotic limit of the leading k� term in the one-loop covariant
expression with the conventional two-term photon pro
pagator of Eq. (1). In addition, the IR divergent term in
propagating part can also be generated by this method.
The asymptotic method was introduced by Bakker et al.

in Ref. [4] in the context of ð1þ 1Þ-dimensional theories.
The proof of equivalence of light-front (LF) theory and
covariant perturbation theory involves integration over
LF energy using the method of residues. It was pointed
out by Bakker et al. that if one performs the k� integration
naively by simply picking up the residues and ignoring

FIG. 2. Diagrams for vacuum polarization in LFQED.
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the contribution along the arc used to close the contour at
infinity, spurious divergences appear. The reason for this is
that in light-front formulation there are cases in which the
integrand does not vanish sufficiently fast as k� goes to
infinity. Moreover, there are point singularities at kþ ¼ 0
and kþ ¼ pþ. The asymptotic method of Bakker et al.
consists of isolating the divergent parts by identifying the
behavior of the integrand at asymptotic values of k� and
then regularizing these divergent parts in an appropriate
manner. The rationale behind the method is that since the
spurious divergences in integrals appear due to arc contri-
butions at infinity and the end point contributions, one can
isolate these by evaluating that part of the integrand which
is dominant in the limits k� ! 1, kþ ! 0 or k� ! 1,
kþ ! pþ or both depending on the diagram. In Ref. [4],
Bakker et al. regularize the divergent part by shifting the
integration variables to light-front cylindrical coordinates
kþ ¼ R cos� and k� ¼ R sin�. The regularized integrals
are then evaluated over a finite region first (keeping R
finite) and finally the limit R ! 1 is taken.

In this section, we use the asymptotic method to isolate
the divergent parts of one-loop expressions for self-energy
and vacuum polarization in QED. We then use the
u-coordinate regularization [1] to evaluate these integrals.
We show that this method reproduces the instantaneous
photon exchange diagram as well as the divergent part of
the propagating diagram even if one uses the two-term
photon propagator. We consider the covariant expression
in the limit when k� ! 1 and the light-cone momentum
of internal fermion line approaches zero since we are
interested in generating diagrams involving instantaneous
photon exchange i.e. Figs. 1(c) and 1(d).

A. Fermion self-energy correction
using asymptotic method

The covariant expression for electron self-energy in the
light-front gauge with the two- term photon propagator
is given by

�ðpÞ ¼ ðieÞ2
2mi

Z d4k

ð2�Þ4
N

D1D2

; (31)

where

N ¼ ��ðp� kþmÞ��d��ðkÞ; (32)

D1 ¼ k2 ��2 þ i�; (33)

D2 ¼ ðp� kÞ2 �m2 þ i�; (34)

and
d��ðkÞ
k2

is the photon propagator in the light-cone gauge

commonly used in light-front QED [7] given by

d�� ¼ �g��ðkÞ þ
��þk� þ ��þk�

kþ
: (35)

Using Eqs. (A8)–(A12), the numerator reduces to

N ¼ ðpþ � kþÞ
�
2�� þ 4�þk�

kþ
� 2�? � k?

kþ

�

þ ðp� � k�Þ2�þ � 2�þ

kþ
kiðpi � kiÞ � 2m: (36)

The numerator in �u�ðpÞu is obtained from this by using
Eqs. (A14) and (A15). In the limit k� ! 1, the numerator
in �u�ðpÞu is reduced to

N0 ¼ 8pþ

kþ
ðpþ � kþÞk� � 4pþk� þ 4pþ

kþ
k2?: (37)

In the limit k� ! 1, kþ ! pþ D1 reduces to 2kþk� [4]
and �m reduces to

�masy ¼ �m1 þ �m2 þ �m3; (38)

where

�m1 ¼ ie2pþ

m

Z d2k?
ð2�Þ4

Z dkþ

kþ2

�
Z dk�

p� � k� � ðp?�k?Þ2�m2�i�
2ðpþ�kþÞ

; (39)

�m2 ¼ � ie2pþ

m

Z d2k?
ð2�Þ4

Z dkþ

2kþðpþ � kþÞ
�

Z dk�

p� � k� � ðp?�k?Þ2�m2�i�
2ðpþ�kþÞ

; (40)

�m3 ¼ ie2pþ

2m

Z d2k?
ð2�Þ4 k

2
?
Z dkþ

kþ2ðpþ � kþÞ
�

Z dk�

k�½p� � k� � ðp?�k?Þ2þm2�i�
2ðpþ�kþÞ �

: (41)

Using Eqs. (B5)–(B9), �m1 reduces to

�m1 ¼ � e2pþ

2m

Z d2k?
ð2�Þ3

�
Z dkþ

kþ2
½�ðkþ � pþÞ � �ðpþ � kþÞ�; (42)

which is the same as �mc,

�m2 ¼ e2pþ

2m

Z d2k?
ð2�Þ3

�Z 1

pþ

dkþ

2kþðpþ � kþÞ

�
Z pþ

�1
dkþ

2kþðpþ � kþÞ
�
; (43)

and

�m3 ¼ e2pþ

2m

Z d2k?
ð2�Þ3

�Z 1

pþ

dkþ

kþ2
�

Z pþ

�1
dkþ

kþ2

�
: (44)
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The sum of �m2 and �m3, on performing kþ integration,
reduces to

�m2 þ �m3 ¼ � e2

2m

Z d2k?
ð2�Þ3

�
2

�
pþ

�
� 1

�
þ ln

�
pþ

	

��
;

(45)

which is the same as the IR divergent part of �ma. Thus,
the covariant expression, in the limit k� ! 1, kþ ! pþ
reproduces the sum of the instantaneous photon exchange
graph and the IR singular terms in the propagating graph.

B. Vacuum polarization using asymptotic method

Photon self-energy is given by

��2�

0 ¼ �
�ðpÞ���ðpÞ�
0
� ðpÞ; (46)

where

i��� ¼ �e2
Z d2k?

ð2�Þ
Z

dkþ

�
Z

dk�
Tr½��ðkþmÞ��ðp� k�mÞ�

D1D2

: (47)

One can rewrite Eq. (47) as

i���ðpÞ ¼ �e2
Z d3k

ð2�Þ3
Z dk�

2�

Tr½��ðkþmÞ��ðp� k�mÞ�
2kþ2ðpþ � kþÞ½k� � k2?þm2�i�

2kþ �½p� � k� ðp?�k?Þ2þm2�i�
2ðpþ�kþÞ �

: (48)

Taking k� ! 1 limit in the numerator, we obtain

��2
asy ¼ ie2

Z d2k?
ð2�Þ4

�
Z

dkþdk�
½�4kþk� þ 4ðpþ � kþÞk� þ 4k2?�

D1D2

:

(49)

In the limit kþ ! 0 and k� ! 1 this reduces to

��2
asy1¼ie2

Z d2k?
ð2�Þ4

�
Z
dkþdk�

½�4kþk�þ4ðpþ�kþÞk�þ4k2?�
2kþðk��k2?þm2�i�

2kþ Þð�2Þðpþ�kþÞk�
;

(50)

which, on using the Eqs. (B5)–(B9), reduces to

��2
asy1¼

e2

2

Z d2k?
ð2�Þ3

�Z 1

0

dkþ

ðpþ�kþÞ�
Z 0

�1
dkþ

ðpþ�kþÞ
�

�e2

2

Z d2k?
ð2�Þ3

�Z 1

0

dkþ

kþ
�
Z 0

�1
dkþ

kþ

�

�e2
Z d2k?
ð2�Þ3

�Z 1

0

dkþ

pþ�kþ
�
Z 0

�1
dkþ

pþ�kþ

�
:

(51)

Similarly, in the limit kþ ! pþ, k� ! 1, one obtains

��2
asy2 ¼ ie2

Z d2k?
ð2�Þ4

Z
dkþdk�

½�4kþk� þ 4ðpþ � kþÞk� þ 4k2?�
2kþk�2ðpþ � kþÞ½p� � k� � ðp?�k?Þ2þm2þi�

2ðpþ�kþÞ �
: (52)

Thus ��2
asy2 becomes

��2
asy2 ¼

e2

2

Z d2k?
ð2�Þ3

�Z 1

pþ

dkþ

pþ � kþ
�

Z pþ

�1
dkþ

pþ � kþ

�

� e2

2

Z d2k?
ð2�Þ3

�Z 1

pþ

dkþ

kþ
�

Z pþ

�1
dkþ

kþ

�

þ e2
Z d2k?

ð2�Þ3
�Z 1

pþ

dkþ

kþ
�

Z pþ

�1
dkþ

kþ

�
: (53)

Adding ��2
asy1 and ��2

asy2, we finally obtain

��2
asy ¼ e2

Z d2k?
ð2�Þ3

�
ln

�
�	

ðpþÞ2Þ
��

; (54)

which is the IR singular part of the propagating diagram of
one-loop vacuum polarization in Eq. (29).

IV. SUMMARYAND CONCLUSION

We have shown that the instantaneous photon
exchange diagrams, present in the one-loop fermion
self-energy calculation within light-front time ordered
perturbation theory, can be generated by taking the
asymptotic limit kþ ! pþ, k� ! 1 of the covariant
expression. In our earlier work [6], we had shown that
the third term in the doubly transverse photon propagator
is necessary to generate these diagrams. Here, in this
alternative method of generating these diagrams, we
have used the two-term photon propagator only. Thus
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the asymptotic method provides an alternative way to
generate photon exchange diagrams. In addition, this
limit also reproduces the IR divergent terms in propagat-
ing diagrams. This method does not generate instanta-
neous fermion exchange diagrams. It is well established
that these diagrams arise when one takes the limit
k� ! k�on of covariant expression to obtain the propagat-
ing diagram of the light-front perturbation theory.
Thus, subtracting the two limits k� ! ðk� � k�onÞ and
k� ! 1, kþ ! pþ will render the covariant expression
completely free of IR singularities.

In case of vacuum polarization, there are no instan-
taneous photon exchange diagrams, but the propagating
diagram does have an IR divergent contribution. In this
case, both the internal lines are fermions and, therefore,
we consider both the limits k� ! 1, kþ ! 0 as well as
k� ! 1, kþ ! pþ to obtain the IR divergent contribu-
tion. We verify that the IR singular part of the prop-
agating term can indeed be generated by this method.
Similar to the self-energy case, one can use this method
to subtract the IR singular part from the propagating
diagrams. It is worth mentioning that the IR divergences
we have discussed here are not the ‘‘true’’ IR divergen-
ces of light front field theories [13,14] but are the
‘‘spurious’’ IR divergences arising due to the form of
LF energy momentum relation. True IR divergences
shall remain after the above procedure has been applied
and have to be dealt with separately.

The question about the relevance of the third term in the
doubly transverse propagator has been raised by several
authors. Suzuki and Sales have shown at the classical level
that to get the three-term propagator, one needs to incor-
porate not only the usual Aþ ¼ 0 condition in the gauge
fixing part, but also couple it to the Lorentz condition
@ � A ¼ 0 [10]. Mustaki et al. [7] have used both of these
conditions to eliminate the dependent degrees of freedom,
leading to an instantaneous photon exchange vertex in the
Hamiltonian. This was the reason why in our earlier work,
we were able to establish equivalence between the cova-
riant perturbation theory and the light-front perturbation
theory only after including the third term in the propagator.
In the present work, we do not use the third term in the
propagator, but still generate the instantaneous photon
exchange diagram using the asymptotic method. This in-
dicates a connection between the Lorentz condition and
the end point singularities in the light-front formulation.
We are presently looking at this issue and will address it
in a future work.

The procedure sketched here can also be applied to
vertex correction graphs. We shall address this issue in a
future communication.
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APPENDIX: A

1. Basics

We define the light-front coordinates by

xþ ¼ x0 þ x3ffiffiffi
2

p ; (A1)

x� ¼ x0 � x3ffiffiffi
2

p ; (A2)

x? ¼ ðx1; x2Þ: (A3)

The metric tensor is given by

g�� ¼
0 1 0 0
1 0 0 0
0 0 �1 0
0 0 0 �1

0
BBB@

1
CCCA:

Dirac matrices satisfy the following properties:

ð�þÞ2 ¼ ð��Þ2 ¼ 0; (A4)

f��; ��g ¼ 2g��; (A5)

ð�0Þþ ¼ �0; (A6)

ð�kÞy ¼ ��kðk ¼ 1; 2; 3Þ; (A7)

�þ���þ ¼ 2�þ; (A8)

���þ�� ¼ 2��; (A9)

d��ðpÞ ¼ �g�� þ
��þp� þ ��þp�

pþ ; (A10)

also

���	d�	ðpÞ ¼ �2; (A11)

�����	d�	ðpÞ ¼ 2

pþ ð�þ�� þ gþ�pÞ; (A12)

�������	d�	ðpÞ
¼ �4g�� þ 2

p�

pþ ðg�����þ � g�����þ

þ g�þ���� � gþ����� þ gþ�����Þ: (A13)
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Dirac spinors satisfy

�uðp; sÞuðp; s0Þ ¼ � �vðp; sÞvðp; sÞ ¼ 2m�s;s0 ; (A14)

�uðp; sÞ��uðp; s0Þ ¼ �vðp; sÞ��vðp; sÞ ¼ 2p��s;s0 :

(A15)

2. Light-front Hamiltonian

P�, the Light-front Hamiltonian, is the operator conju-
gate to the ‘‘time’’ evolution variable xþ and is given by

P� ¼ H0 þ V1 þ V2 þ V3; (A16)

where H0 is the free Hamiltonian, and V1 is the standard,
order-e three-point interaction,

V1 ¼ e
Z

d2x?dx� ���a�: (A17)

V2 is an order-e2 nonlocal effective four-point vertex cor-
responding to an instantaneous fermion exchange,

V2 ¼ � i

4
e2

Z
d2x?dx�dy��ðx� � y�Þ

� ð �ak�kÞðxÞ�þðaj�jÞðyÞ; (A18)

and V3 is an order-e2 nonlocal effective four-point vertex
corresponding to an instantaneous photon exchange,

V3 ¼�e2

4

Z
d2x?dx�dy�ð ��þÞðxÞjx� � y�jð ��þÞðyÞ:

(A19)

3. Instantaneous diagrams in self-energy correction

Here, we briefly review the calculation of �mb and �mc

in Eqs. (14) and (15). The details can be found in
Appendix B of Ref. [7]. To prove the expression for �mb

in Eq. (14) starting from Eq. (10), one writes

Z 1

0
dkþ

pþ

kþðpþ � kþÞ
¼

Z 1

0
dkþ

�
1

kþ
þ 1

pþ � kþ

�

¼
Z 1

�

dkþ

kþ
þ

Z 1

pþþ�

dkþ

pþ � kþ
þ

Z pþ��

0

dkþ

pþ � kþ

¼ ln

�
pþ

�

�
; (A20)

where we have identified � with �.

To prove Eq. (15), we start with Eq. (11) and write

Z 1

0

dkþ

ðpþ � kþÞ2 �
Z 1

0

dkþ

ðpþ þ kþÞ2

¼
Z pþ��

0

dkþ

ðpþ � kþÞ2 þ
Z 1

pþþ�

dkþ

ðpþ � kþÞ2 �
Z 1

pþ

dkþ

ðkþÞ2

¼
�Z 1

�
þ
Z pþ

�
�
Z 1

pþ

�
dkþ

ðkþÞ2

¼ 2
Z pþ

�

dkþ

ðkþÞ2 ¼
2

pþ

�
pþ

�
� 1

�
; (A21)

where again we have identified � with �.

APPENDIX: B

In this appendix, we will give expressions for the inte-
grals used in Sec. III. Consider the integral

I1 ¼
Z 1

�1
dk�

k� � k2?þ�2�i�

2kþ

: (B1)

The integrand in Eq. (B1) has a pole at k� ¼ k2?þ�2�i�

2kþ that

tends to infinity in the limit kþ ! 0. To evaluate the
integral, we change the variable to u ¼ 1

k� and obtain

I1 ¼
Z 1

�1
du

u½1� k2?þ�2�i�

2kþ u�
: (B2)

Regularizing the integral by the replacement

1

u
¼ 1

2

�
1

uþ i�
þ 1

u� i�

�
; (B3)

we obtain

I1 ¼ 1

2

Z du

ðuþ i�Þ½1� k2?þ�2�i�

2kþ u�
þ 1

2

Z du

ðu� i�Þ½1� k2?þ�2�i�

2kþ u�
: (B4)

Closing the contour in the lower half plane for the first
integral and in the upper half plane for the second integral,
we finally obtain

I1 ¼ ��i½�ðkþÞ � �ð�kþÞ�: (B5)

Similarly the integral

I2 ¼
Z dk�

p� � k� � ðp?�k?Þ2þm2�i�
2ðpþ�kþÞ

(B6)

has a pole at k� ¼ p� � ðp?�k?Þ2þm2�i�
2ðpþ�kþÞ which tends to in-

finity as kþ ! pþ. Again changing the variable to u ¼ 1
k�

and using the same procedure as above we finally obtain
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Z dk�

p� � k� � ðp?�k?Þ2þm2�i�
2ðpþ�kþÞ

¼ �i½�ðkþ � pþÞ � �ðpþ � kþÞ�: (B7)

Also the integral

Z dk�

k�½k��k2?þ�2�i�

2kþ �
¼��i

2kþ½�ðkþÞ��ð�kþÞ�
k2?þ�2�i�

; (B8)

and

Z dk�

k�½p� � k� � ðp?�k?Þ2þm2�i�
2ðpþ�kþÞ �

¼�i
2ðpþ � kþÞ½�ðkþ �pþÞ��ðpþ � kþÞ�
2ðpþ � kþÞp� � ðp?� k?Þ2 �m2 þ i�

: (B9)
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