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We improve and update the discussion, given some years ago by my collaborators and me, of infrared

divergences and bremsstrahlung in one-loop gluon scattering probabilities in lightcone gauge. In that

work, we showed that adding soft and collinear gluon radiation, satisfying simple Lorentz invariant

constraints, not only canceled all IR divergences, but resulted in compact expressions for the consequent

scattering probabilities. Here we impose less restrictive (albeit noncovariant) constraints on the unob-

served radiation, which increases the high energy (s) fixed momentum transfer (t) behavior of the total

probabilities from�ln2s to lns lnt, a behavior shared by the (IR divergent) elastic probabilities. Using this

new treatment we also make a much more detailed comparison of the lightcone results to covariant

calculations using dimensional regularization, finding complete agreement between the two styles of

calculation.
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I. INTRODUCTION

In this paper we seek to clarify some aspects of the one-
loop QCD corrections to the scattering of glue by glue in
lightcone gauge as calculated in [1,2]. Those calculations
employed an infrared regulator motivated by the lightcone

worldsheet lattice [3–5], which discretizes both pþ ¼
ðp0 þ p3Þ= ffiffiffi

2
p

and ixþ ¼ iðx0 þ x3Þ= ffiffiffi
2

p
. In the field the-

ory context, the discretization of xþ was immediately
removed after adoption of a worldsheet friendly ultraviolet
cutoff � on the transverse momenta. But the discretization
of pþ ¼ Mm, M ¼ 1; 2; . . . was retained as an infrared
cutoff.

We first address some issues stemming from the novel
manner in which soft and collinear gluon emission was
included to resolve the infrared divergences. Given the
lightcone gauge setup, it was natural to define a jet of
momentum Pi ¼ kþ pi, containing two gluons, by the
restriction on their momenta k, pi:

ðpþ
i k� kþpiÞ2
kþpþ

i

< �2; or

�
k� kþ

pþ
t

pi

�
2
<

kþ

pþ
i

�2:

(1)

In fact the left side of the first inequality is just �ðkþ
piÞ2 ¼ �P2

i , the invariant mass squared of the jet. The
restriction simply limits the ‘‘virtuality’’ of the jet com-
pared to an on mass shell gluon: this jet definition is
Lorentz invariant. The interpretation of gluons as jets is
of course part of what is needed to define an infrared-safe
scattering probability. But one needs to include soft gluon
bremsstrahlung as well. Usually this additional radiation is
defined by a condition such as jk0j< � on the energy of the
extra gluon. Of course at the same time one has to exclude

such soft gluons from the jet definition, to avoid double
counting. But in [2], we pursued a Lorentz covariant alter-
native to this, namely: include in the bremsstrahlung part of
the calculation any extra gluon with momentum k� satis-
fying the jet condition (1) for at least one of the external
legs of the core process. Indeed, we showed that adding
just this real radiation to the one-loop contributions to the
elastic scattering probabilities canceled all the infrared
divergences, in accord with the Lee-Nauenberg theorem
[6]. Moreover, this treatment produces nice compact
Lorentz invariant expressions for the total scattering prob-
abilities [see (36) and (37) in Sec. III].
The only problem is that these formulas have an awk-

ward high energy (Regge) limit s ! 1 with t fixed.
Inspection of the formulas shows that the dominant behav-
ior in this limit goes as �ln2s, with a negative coefficient.
This clashes with the absence of a ln2s behavior in the
known covariant dimensionally regulated elastic scattering
amplitude [7]: the double log terms in these elastic ampli-
tudes are of the form lns lnt. The absence of ln2s behavior
at one loop is compatible with the hypothesis that the
higher order corrections put the gluon on a Regge trajec-

tory of order g2: a behavior s1þg2fðtÞ ! sð1þ g2fðtÞ lnsÞ.
Indeed, recent interest in this possibility [8] in connection
with the AdS/CFT correspondence was one motivation for
the present update. Since the �ln2s behavior found in [2]
includes only part of the inelastic bremsstrahlung pro-
cesses, it is possible that including more bremsstrahlung
will cancel this negative term. Had the ln2s term been
positive, it would have been bad news for Regge behavior.
We resolve this puzzle of too little bremsstrahlung in

Sec. III by employing a more traditional, and less restric-
tive, definition of soft gluon radiation: simply limit the kþ
of the extra gluon kþ < �. [To ensure that all components
of k are soft, we also need to limit k� <Oð�Þ. But, as we
shall see, the form of the soft gluon emission amplitude*thorn@phys.ufl.edu
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suppresses jkj> kþ sufficiently to automatically satisfy
this second restriction.] The consequent probabilities will
not be Lorentz invariant, but we show that in the center of
mass frame the ln2s behavior cancels as s ! 1 with t
fixed. The calculations in this section differ from those in
[2] in that they are done in arbitrary transverse dimension.
But as long as d is set to 2 before integration over kþ, the
two calculations are completely equivalent.

The second issue that we address involves the compari-
son of the results of [2] to previously known covariant
calculations using dimensional regularization. In [2] we
noted that the ratio of amplitudes describing different
gluon polarizations, from which IR divergences cancel,
agreed with the known results [7]. However, the compari-
son of amplitudes with a given polarization was obscured
by the vagaries of IR divergences. We must compare the
results for total probabilities, since it is not meaningful to
compare the (gauge dependent) elastic amplitudes. So in
Sec. IV we redo the bremsstrahlung calculations of Sec. III
using dimensional regularization throughout: all momen-
tum integrals are done before taking d ! 2. We then
combine these with the previously known elastic scattering
probabilities, obtained covariantly using dimensional regu-
larization, to obtain expressions for the total probabilities.
These agree in every detail with the results of Sec. III. In
this way we provide a definitive confirmation that the
discrete pþ regularization, motivated by the lightcone
worldsheet lattice, provides a reliable treatment of infrared
divergences.

As in [1,2], we organize the Feynman diagrams of the
SUðNcÞ Yang-Mills theory according to ’t Hooft’s large Nc

expansion [9], and we calculate the one-loop planar dia-
grams surviving the Nc ! 1 limit. The ’t Hooft limit
suppresses diagrams with quark loops, so they are not
included here. We begin our discussion with a short
Sec. II, which summarizes the Feynman rules for planar
Yang-Mills theory and sets our notation and conventions.

II. LIGHTCONE FEYNMAN RULES
FOR Nc ! 1 GAUGE THEORY

Here, we use the notation and conventions in Ref. [10],
according to which the values of the nonvanishing three
transverse gluon vertices are

The quartic vertices in this helicity basis are given by

In these expressions, ^ and _ label the � helicity of the

gluon, and p^
k ¼ ðpx

k þ ipy
kÞ=

ffiffiffi
2

p
, p_

k ¼ ðpx
k � ipy

kÞ=
ffiffiffi
2

p
,

and pþ
k ¼ ðp0

k þ pz
kÞ=

ffiffiffi
2

p
are momenta entering the dia-

gram on leg k. The coupling g is proportional to the
conventional QCD coupling gs. Note that these are light-
cone gauge (A� ¼ 0) expressions and include the contri-
butions that arise when the longitudinal field Aþ is
eliminated from the formalism. These rules are given in
the context of ’t Hooft’s 1=Nc expansion at fixed Ncg

2
s .

Then the planar diagrams of the SUðNcÞ theory are cor-

rectly given if we take g � gs
ffiffiffiffiffiffiffiffiffiffiffi
Nc=2

p
. Nonplanar diagrams

with this definition of g must be accompanied by appro-
priate powers of 1=N2

c , depending on the number of
‘‘handles’’ in the diagram. Here we restrict attention to
planar diagrams, so our results should be compared to the
limit Nc ! 1, fixed g2sNc of those in the literature. In
making such comparisons, note that our definition of g
multiplies conventionally defined n-gluon tree amplitudes

by a factor Nn=2�1
c ! Nc for n ¼ 4, so for each gluon

scattering process we remove this factor before comparing
to the literature.

III. RESOLUTION OF IR DIVERGENCES USING
A DISCRETE pþ REGULATOR

It is well understood that a consistent resolution of
infrared divergences in loop corrections to scattering am-
plitudes involves a cancellation in the rates against corre-
sponding infrared divergences in the rates for the emission
(or absorption) of an extra gluon, whose momentum is
either collinear with one of the gluons in the core process
or ‘‘soft.’’
In the context of the large Nc limit one needs to combine

coherently only bremsstrahlung diagrams with the same
cyclic ordering. For example, in the diagrams shown in
Fig. 1 at Nc ¼ 1 it is only necessary to square the sum of
the two diagrams on each line and combine the results on
different lines incoherently. Because Nc ¼ 1 suppresses
nonplanar diagrams, it is convenient to take an extra gluon
line attached between two outgoing gluons (as with the
diagrams on the first line of Fig. 1) to be outgoing.
Similarly a gluon line attached between two incoming
gluons is taken to be incoming. On the other hand, both
outgoing and incoming extra gluons must be considered
when attached between an incoming and an outgoing gluon
(as with the diagrams on the second line of Fig. 1).
Infrared and collinear divergences occur only when the

bremsstrahlung gluon attaches to external legs. For example
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if the extra gluon is collinear with p4, there is a collinear
divergence in the phase-space integral of the square of the
diagrams where the gluon is emitted from or absorbed by
leg 4. Calling the extra gluon’s four-momentum k, for fixed
kþ the collinear point is k ¼ kþp4=p

þ
4 , and it is convenient

to write

k ¼ kþ
p4

pþ
4

þ k̂ (6)

and examine the phase-space integral for jk̂j in a neighbor-
hood of zero. Here we assume kþ ¼ Oð1Þ, so the extra
gluon is not soft. This is the customary jet interpretation
of the scattered gluon [11].We define the jet resolution� by

the condition (1). This translates to k̂2 < jkþj�2=jpþ
4 j.

The amplitudes for the emission of a hard collinear
gluon from the right of leg 4 (as in the first diagram on
the first line of Fig. 1) are given, for the two polarizations,
by

A_
brem ¼ �2g

kþ þ pþ
4

kþpþ
4

K_
k;4ACoreðp1; p2; p3; kþ p4Þ

ðkþ p4Þ2
;

outgoing helicity; (7)

A^
brem ¼ �2g

pþ
4

kþðkþ þ pþ
4 Þ

K^
k;4ACoreðp1; p2; p3; kþ p4Þ

ðkþ p4Þ2
;

incoming helicity: (8)

When the extra gluon (with momentum k) is emitted from
the left of leg 4, the amplitudes are the same except that
K4;k appears instead of Kk;4. Thus the amplitudes for

emission from left and right have opposite signs. The
amplitudes do not cancel, however, because they have
different gauge group structure. At Nc ¼ 1 the two terms

enter the cross section incoherently. When the extra gluon
has the same helicity as leg 4 and is collinear with p4, it and
gluon 4 are distinguished only by their pþ values. Then we
arbitrarily call the one with smaller jpþj the extra gluon.
Now it is easy to see that

Kk;4 ¼ �pþ
4 k̂;

ðkþ p4Þ2 ¼ �pþ
4 k̂

2=kþ ¼ �2pþ
4 k̂

^k̂_=kþ:
(9)

Then we have, in d transverse dimensions,

dp4

2jpþ
4 j

dk

2jkþjð2�Þdþ1
ðjA_j2 þ jA^j2Þ

¼ dP

2jPþj
dk̂

jkþjð2�Þdþ1

�
Pþ � kþ

Pþ

�
d�1

� ðPþÞ2
ðPþ � kþÞ2

þ ðPþ � kþÞ2
ðPþÞ2

�
g2

k̂2
jACorej2; (10)

where P� ¼ k� þ p
�
4 . The collinear divergence is now

transparent in the integration over k̂ near zero. The coef-
ficient of the phase-space factor dP=2jPþj combines
nicely with the square of the tree amplitudes with self-
energy corrections on external lines. The collinear diver-
gence is present at finite kþ and is not regulated by our kþ
discretization. However, in lightcone gauge it cancels
when combined with the self-energy correction on the
corresponding external line. To properly arrange this can-
cellation on-shell we need an additional regulator. In [2]
we introduced a temporary gluon mass. Here we regulate
by sending d ! 2 from above only after the combination.
For d > 2, the required integral is simply

Z
0<k̂2jpþ

4
j<jkþj�2

dk̂

k̂2
¼ 1

ðd� 2Þ
2�d=2

�ðd=2Þ
�jkþj
jpþ

4 j
�2

�
d=2�1

:

(11)

Then the coefficient of the jet phase-space factor is

Z
�

dk

2jkþjð2�Þdþ1
ðjA_j2 þ jA^j2Þ

¼ g2jACorej2
jPþj4�2�ðd=2Þðd� 2Þ

�jkþjjPþ � kþj
jPþj2

�
d=2�2

�
�
�2

4�

�
d=2�1

�
1þ jPþ � kþj4

jPþj4
�
: (12)

The blowup as d ! 2 is the collinear divergence we are
seeking to resolve. According to the Lee-Nauenberg theo-
rem, to get an infrared-safe quantity we must sum over all
kþ in the range 0< jkþj< jPþj. And we must also include
collinear emission from the left of leg 4. The first term
represents the emission of a gluon with identical helicity to
leg 4, so when we sum that term over the whole range of kþ
we have included emission from both the left and the right
of leg 4. However, the second term represents the emission
of a gluon with opposite helicity, and when summed over

11

11

22

22

33

33

44

44

FIG. 1. The bremsstrahlung diagrams associated with glue-
glue scattering involving leg 4. At Nc ¼ 1 the sum of the
diagrams on each line may be independently squared to give
the leading contribution to the cross section. Similar pairs of
diagrams involving each of the other legs must also be included.
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the whole range gives only gluon emission from the right of
leg 4. The emission of an opposite helicity gluon (with
momentum k) from the left has the same squared ampli-
tude, but it is convenient to switch the roles of k and p4, so
k always refers to the right gluon. Then the total emission
rate is given by

X
0<jkþj<jPþj

Z
�

dk

2jkþjð2�Þdþ1
ðjA_j2 þ jAR̂j2 þ jAL̂j2Þ

¼ g2jACorej2
jPþj4�2�ðd=2Þðd� 2Þ

X
kþ

�jkþjjPþ � kþj
jPþj2

�
d=2�2

�
�
�2

4�

�
d=2�1

�
1þ jPþ � kþj4

jPþj4 þ jkþj4
jPþj4

�
: (13)

Calling x ¼ jkþj=jPþj, 1=xð1� xÞ times the quantity in
parentheses can be rearranged

1

xð1�xÞ þ
ð1�xÞ3

x
þ x3

1�x
¼2

�
xð1�xÞþ x

1�x
þ1�x

x

�
:

(14)

So with this notation the squared amplitude for jet produc-
tion along gluon 4 is

X
0<jkþj<jPþj

Z
�

dk

2jkþjð2�Þ3 ðjA
_j2 þ jAR̂j2 þ jAL̂j2Þ

¼ g2jACorej2
jPþj4�2�ðd=2Þðd� 2Þ

X
kþ

�
1

xð1� xÞ þ
x3

1� x

þ ð1� xÞ3
x

��
xð1� xÞ�2

4�

�
d=2�1

(15)

¼ g2jACorej2
jPþj2�2�ðd=2Þðd� 2Þ

X
kþ

�
xð1� xÞ þ x

1� x

þ 1� x

x

��
xð1� xÞ�2

4�

�
d=2�1

: (16)

In Ref. [2] we obtained an IR finite on-shell wave function
renormalization by introducing the same gluon mass used
in the collinear emission calculation. Instead, here we
simply redo the self-energy calculation with d > 2:

�^_ ¼ � g2

4�2

p2

jPþj
1

ð4�Þd=2�1

X
kþ

�
xð1� xÞ þ x

1� x

þ 1� x

x

�Z 1

0

dTe�xð1�xÞp2T

ðT þ �Þd=2 (17)

!� g2

4�2

p2

jPþj
1

ð4�Þd=2�1

X
kþ

�
xð1�xÞþ x

1�x
þ1�x

x

�

�
Z 1

0

dT

ðTþ�Þd=2 (18)

Z� 1 ! � g2

4�2

1

jPþj
X
kþ

�
xð1� xÞ þ x

1� x
þ 1� x

x

�

� ð4��Þ1�d=2

d=2� 1
: (19)

Combining this wave function renormalization with the
collinear emission rate in d > 2 transverse dimensions
gives

hjMj2ijet ¼ g2

4�2

jACorej2
jpþj

X
kþ

�
xð1� xÞ þ x

1� x
þ 1� x

x

�

� ðxð1� xÞ�2=4�Þd=2�1 � �ðd=2Þð4��Þ1�d=2

ðd=2� 1Þ�ðd=2Þ
! g2

4�2

jACorej2
jpþj

X
kþ

�
xð1� xÞ þ x

1� x
þ 1� x

x

�

� lnðxð1� xÞ�2�e�Þ (20)

for d ! 2, in complete agreement with the � � 0 regula-
tion method of [2].
The collinear radiation discussed so far does not neces-

sarily have low momentum: only when kþ or Pþ � kþ is
small will this radiation be soft. When it is soft, it is no
longer valid to neglect the interference between diagrams
where the soft gluon is emitted from different external
lines. In [2] my collaborators and I took this interference
into account for just that soft radiation that satisfied the
collinear constraints for at least one of the external lines.
This was sufficient to cancel all infrared divergences in the
rates calculated to one-loop order. Moreover, since all the
added radiation, both collinear and soft, was constrained
by Lorentz invariant constraints the final results were
Lorentz covariant.
Here instead we include all soft bremsstrahlung radia-

tion satisfying a single energy constraint in addition to the
collinear radiation. In the lightcone description it is natural
to specify the energy constraint in terms of the þ compo-
nent of the extra gluon momentum: kþ < �. We shall see
that the rate for this radiation is quite simple to calculate.
To avoid double counting we must at the same time ex-
clude these soft gluons from the collinear calculation:

soft radiation : kþ < �;

collinear radiation: � < kþ < Pþ � �:
(21)

These prescriptions guarantee that there is no double
counting. One must bear in mind though that these con-
straints break Lorentz invariance.
In calculating the soft part of bremsstrahlung, we must

be sure to combine coherently the two diagrams where the
soft gluon attaches to two neighboring lines in the same
cyclic ordering. For definiteness, take the coherent emis-
sion of a gluon between legs 3 and 4, both of which we
assume to have outgoing helicity. Then the emission
amplitudes are
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A_ ¼�2gACore

�
kþþpþ

4

kþpþ
4

K_
k;4

ðkþp4Þ2
þkþþpþ

3

kþpþ
3

K_
3;k

ðkþp3Þ2
�

(22)

�� 2gACore

kþ

�
K_

k;4

ðkþ p4Þ2
� K_

k;3

ðkþ p3Þ2
�
; (23)

A^ ¼ �2gACore

�
pþ
4

kþðkþ þ pþ
4 Þ

K^
k;4

ðkþ p4Þ2
þ pþ

3

kþðkþ þ pþ
3 Þ

� K^
3;k

ðkþ p3Þ2
�

(24)

�� 2gACore

kþ

�
K^

k;4

ðkþ p4Þ2
� K^

k;3

ðkþ p3Þ2
�
: (25)

In these formulas we have assumed that ACore is the same
in both terms, which is approximately true since all
components of k are small. The squared amplitudes for
small kþ are

jA_j2 � jA^j2 � 2g2jACorej2
kþ2

�
K2

k;4

ðkþ p4Þ4
þ K2

k;3

ðkþ p3Þ4

� 2Kk;3 �Kk;4

ðkþ p3Þ2ðkþ p4Þ2
�
: (26)

We next use

ðkþ p4Þ2 ¼ 2k � p4 � kþp2
4=p

þ
4 � pþ

4 p
2=kþ

¼ �K2
k;4=k

þpþ
4 ;

ðkþ p3Þ2 ¼ �K2
k;3=k

þpþ
3

to write

jA_j2 þ jA^j2

� 4g2jACorej2
�
pþ2
4 K2

k;3 þpþ2
3 K2

k;4 � 2pþ
3 p

þ
4 Kk;3 �Kk;4

K2
k;3K

2
k;4

�

� 4g2jACorej2 ðp
þ
4 Kk;3 �pþ

3 Kk;4Þ2
K2

k;3K
2
k;4

¼ 4g2jACorej2
kþ2K2

3;4

K2
k;3K

2
k;4

: (27)

The fact that this expression for soft gluon emission be-
haves as 1=k4 for large transverse momentum is the reason
that a soft constraint on kþ imposes a soft constraint on all
components of k�. Then the probability for emission of a
soft gluon between legs 3 and 4 is in d transverse dimen-
sions (note that the integral over k converges in both the IR
and UV for 2< d< 4),

jMSoft
34 j2 ¼ 4g2jACorej2

X
kþ<�

Z ddk

2kþð2�Þdþ1

kþ2K2
3;4

pþ2
3 pþ2

4 ðk� kþv3Þ2ðk� kþv4Þ2

¼ 4g2jACorej2
X
kþ<�

kþK2
3;4

4�pþ2
3 pþ2

4

Z ddk

ð2�Þd
Z 1

0
dt

1

½k2 þ kþ2tð1� tÞðv3 � v4Þ2�2

¼ 4g2jACorej2
X
kþ<�

kþd�3 v
2
34

4�

Z 1

0
dt½tð1� tÞv2

34�d=2�2
Z ddk

ð2�Þd
1

½k2 þ 1�2

¼ 4g2jACorej2 ½v
2
34�d=2�1

4�

X
kþ<�

kþd�3 �ðd=2� 1Þ2
�ðd� 2Þ

�ð2� d=2Þ
ð4�Þd=2

¼ cd
g2jACorej2

4�2
½v2

34�d=2�1
X
kþ<�

kþd�3 2

d=2� 1
;

cd � �ðd=2Þ2�ð2� d=2Þ
�ðd� 1Þð4�Þd=2�1

; (28)

where vk � pk=p
þ
k , vkl � vk � vl, and we have defined

cd, which goes to 1 for d ¼ 2, for simplicity of writing. In
this section keeping kþ discrete serves as our IR regulator.
It is convenient to include the part of this soft radiation that
also satisfies the collinear constraint for one of the external
legs in the collinear calculation, so that the cancellation of
the collinear divergence with the self-energy occurs for the
full range of kþ. The part of the leg 4 and leg 3 collinear
emission contributing to the 34 soft radiation is

g2jACorej2
2�2�ðd=2Þðd� 2Þ

X
kþ<�

1

kþ

��
kþ�2

4�jpþ
4 j
�
d=2�1

þ
�
kþ�2

4�jpþ
3 j
�
d=2�1

�
: (29)

We check that for d� 2
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1

cd�ðd=2Þð4�Þd=2�1

� 1þ ðd� 2Þ�0ð1Þ
ð1þ 3ðd=2� 1Þ�0ð1ÞÞð1� ðd=2� 1Þ�0ð1ÞÞ

¼ 1þOððd� 2Þ2Þ: (30)

Subtracting the soft collinear rate from the soft rate we
then find

jMSoft
34 j2 � jMSoft&Col

34 j2 � cd
g2jACorej2

4�2

X
kþ<�

1

kþ
1

d=2� 1

�
�
2½kþ2v2

34�d=2�1 �
�
kþ�2

jpþ
4 j

�
d=2�1 �

�
kþ�2

jpþ
3 j

�
d=2�1

�

! g2jACorej2
4�2

X
kþ<�

1

kþ
ln
kþ2v4

34p
þ
3 p

þ
4

�4
; d! 2: (31)

As already mentioned, the bremsstrahlung included
in the calculations of [2] satisfied different constraints.
These were simply the union of the four regions R1 [ R2 [
R3 [ R4:

Ri:
ðpþ

i k� kþpiÞ2
jkþPþ

i j
< �2: (32)

Avoiding double counting was a tedious headache, but
eventually the result for soft minus collinear radiation
assumed a reasonably compact form:

jMSoft;CQT
34 j2�jMSoft&Col;CQT

34 j2

¼þg2jACorej2
4�2

X
jkþj<�2=jPþ

4
jv2

34

1

jkþj ln
kþ2v4

34jpþ
3 p

þ
4 j

�4
(33)

� þg2jACorej2
4�2

� X
jkþj<A

1

jkþj ln
kþ2v4

34jPþ
3 P

þ
4 j

�4

� ln
�2

AjPþ
4 jv2

34

ln
�2

AjPþ
3 jv2

34

�
: (34)

Here A is chosen much larger than the kþ discretization
unit. This formula is of course insensitive to the choice of
A. But by choosing A ¼ � we find a very simple relation
between the bremsstrahlung radiation calculated in the
present article and that calculated in [2].

jMbrem
34 j2 ¼ jMbrem;CQT

34 j2 þ g2jACorej2
4�2

ln
�2

�jPþ
4 jv2

34

� ln
�2

�jPþ
3 jv2

34

: (35)

Thus we can immediately write down the new probabilities
for glue-glue scattering by making the appropriate adjust-
ment to the results of [2]:

PCQT
^^__ ¼ jA^^__j2

�
1þ g2

4�2

�
�2log2

�2

s
� 2log2

�2

jtj
� �2

3
þ 67

9
� 11

3

�
logð�2�e�Þ þ log

�2

jtj
�

þ log2
s

jtj
��

; (36)

PCQT
^_^_ ¼ jA^_^_j2

�
1þ g2

4�2

�
�2log2

�2

s

�2log2
�2

jtj �
�2

3
þ67

9
�11

3

�
logð�2�e�Þ

þ1

2
log

�4

sjtj
�
þðs2þ stþ t2Þ2

ðtþ sÞ4 log2
s

jtj
þ ð5st2�5s2tþ11t3�11s3Þ

6ðtþ sÞ3 � log sjtj�
ts

ðtþ sÞ2
��

:

(37)

We simply have to add the four terms

S � ln
�2

�jpþ
4 jv2

34

ln
�2

�jpþ
3 jv2

34

þ ln
�2

�jpþ
1 jv2

12

ln
�2

�jpþ
2 jv2

12

þ ln
�2

�jpþ
4 jv2

14

ln
�2

�jpþ
1 jv2

14

þ ln
�2

�jpþ
2 jv2

23

ln
�2

�jpþ
3 jv2

23

(38)

inside the square brackets. We use

v2
ij ¼

ðpi þ pjÞ2
pþ
i p

þ
j

¼ jðpi þ pjÞ2j
jpþ

i p
þ
j j

and jðp1 þ p2Þ2j ¼ jðp3 þ p4Þ2j ¼ jsj, jðp1 þ p4Þ2j ¼
jðp2 þ p3Þ2j ¼ jtj, to combine these terms with the first
two terms in square brackets

S� 2ln2
�2

s
� 2ln2

�2

jtj

¼ ln
jpþ

3 j
�

ln
jpþ

4 j
�

þ ln
jpþ

2 j
�

ln
jpþ

1 j
�

þ ln
�2

s
ln

Q
i
jpþ

i j
�4

þ ln
jpþ

3 j
�

ln
jpþ

2 j
�

þ ln
jpþ

4 j
�

ln
jpþ

1 j
�

þ ln
�2

jtj ln
Q
i
jpþ

i j
�4

¼ ln
jpþ

3 p
þ
1 j

�2
ln
jpþ

2 p
þ
4 j

�2
� ln

sjtj
�4

ln

Q
i
jpþ

i j
�4

: (39)

Then our new results are
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P^^__ ¼ jA^^__j2½1þ g2

4�2

�
ln
jpþ

3 p
þ
1 j

�2
ln
jpþ

2 p
þ
4 j

�2
� ln

sjtj
�4

ln
jpþ

1 p
þ
2 p

þ
3 p

þ
4 j

�4
� �2

3
þ 67

9
� 11

3

�
logð�2�e�Þ þ log

�2

jtj
�

þ log2
s

jtj
��

; (40)

P^_^_ ¼ jA^_^_j2
�
1þ g2

4�2

�
ln
jpþ

3 p
þ
1 j

�2
ln
jpþ

2 p
þ
4 j

�2
� ln

sjtj
�4

ln
jpþ

1 p
þ
2 p

þ
3 p

þ
4 j

�4
� �2

3
þ 67

9
� 11

3

�
logð�2�e�Þ þ 1

2
log

�4

sjtj
�

þ ðs2 þ stþ t2Þ2
ðtþ sÞ4 log2

s

jtj þ
ð5st2 � 5s2tþ 11t3 � 11s3Þ

6ðtþ sÞ3 � log sjtj �
ts

ðtþ sÞ2
��

: (41)

It is evident that this second definition of the bremsstrah-
lung to be included in describing gluon scattering depends
on the Lorentz frame. This is in contrast to the first Lorentz
invariant definition. However it is more physically mean-
ingful, because it includes all radiation satisfying a single
energy constraint kþ < �. This is particularly significant in
high energy scattering s ! 1 at fixed t, the Regge limit. In
the center of mass frame in the case that the scattering
plane is in the transverse direction, all the jpþ

i j ¼
ffiffiffiffiffiffiffiffi
s=8

p
.

Then it is simple to see that the terms quadratic in ln s
cancel. In contrast the first definition included so little
radiation at large s and fixed t that the coefficient of the
ln2s term was negative.

IV. COMPARISON TO COVARIANT
CALCULATIONS

In order to make a definitive comparison of the non-
covariant lightcone gauge calculations of [2] to covariant

calculations, it is necessary to compare physical quantities.
The elastic amplitudes contain infrared divergences and
calculations in different gauges depend on the infrared
cutoff: they need not agree, and indeed they do not.
We need to compare infrared-safe quantities, such as the

probabilities for jet scattering plus unobserved soft radia-
tion. The dimensionally regulated elastic one-loop ampli-
tudes have long been available, e.g. in [7]. For comparison
to our results we need to redo our bremsstrahlung calcu-
lations in dimensional regularization. We have presented
our intermediate results for general transverse dimension
d > 2. We simply need to take kþ continuous in the results
and explicitly evaluate the kþ integrals at fixed d > 2. The
collinear jet production probability on leg 4 becomes at
continuous � < kþ < jpþ

4 j � �

X
�<jkþj<jPþj��

Z
�

dk

2jkþjð2�Þ3 ðjA
_j2 þ jAR̂j2 þ jALj2Þ

! g2jACorej2
2�2�ðd=2Þðd� 2Þ

Z 1��=jpþ
4
j

�=jpþ
4
j

dx

�
xð1� xÞ þ x

1� x
þ 1� x

x

��
xð1� xÞ�2

4�

�
d=2�1

� cd
g2jACorej2

4�2

Z 1��=jpþ
4
j

�=jpþ
4
j

dx

�
xð1� xÞ � 2þ 2

x

��
1

d=2� 1
þ lnxð1� xÞ�2

�

� cd
g2jACorej2

4�2

��
1

d=2� 1
þ ln�2

��
2 ln

jpþ
4 j
�

� 11

6

�
� ln2

jpþ
4 j
�

� �2

3
þ 2

�
� 1

4
þ 1

9
þ 2

��

� cd
g2jACorej2

4�2

��
1

d=2� 1
þ ln�2

��
2 ln

jpþ
4 j
�

� 11

6

�
� ln2

jpþ
4 j
�

� �2

3
þ 67

18

�
þO

�
�

jpþ
4 j

; d� 2

�
: (42)

There are of course similar expressions for the collinear radiation from the other external legs.
Next we turn to the soft radiation between legs 3 and 4.

jMSoft
34 j2 ! cd

g2jACorej2
4�2

½v2
34�d=2�1 2

d=2� 1

Z �

0
dkþkþd�3 ¼ cd

g2jACorej2
4�2

½�2v2
34�d=2�1 1

ðd=2� 1Þ2 ;

MSoft
34 j2 � cd

g2jACorej2
4�2

�
1

ðd=2� 1Þ2 þ
1

ðd=2� 1Þ ln�
2v2

34 þ
1

2
ln2�2v2

34

�
;

jMSoft
34 j2 � cd

g2jACorej2
4�2

�
1

ðd=2� 1Þ2 þ
1

ðd=2� 1Þ ln
�2s

jpþ
3 p

þ
4 j

þ 1

2
ln2

�2s

jpþ
3 p

þ
4 j
�
: (43)
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And there are three more such contributions associated with radiation between legs 1, 2; 1, 4; and 2, 3.
Collecting all the contributions to bremsstrahlung radiation gives

jMbrem;totalj2 � cd
g2jACorej2

4�2

��
1

d=2� 1
þ ln�2

��
2
X
i

ln
jpþ

i j
�

� 44

6

�
�X

i

ln2
jpþ

i j
�

� 4
�2

3
þ 4

67

18
þ 4

ðd=2� 1Þ2

þ 1

ðd=2� 1Þ ln
�8s2jtj2

jpþ
1 p

þ
2 p

þ
3 p

þ
4 j2

þ 1

2
ln2

�2s

jpþ
1 p

þ
2 j

þ 1

2
ln2

�2s

jpþ
3 p

þ
4 j

þ 1

2
ln2

�2jtj
jpþ

1 p
þ
4 j

þ 1

2
ln2

�2jtj
jpþ

2 p
þ
3 j
�

(44)

� cd
g2jACorej2

4�2

�
4

ðd=2� 1Þ2 þ
1

d=2� 1

�
lns2jtj2 � 22

3

�
þ ðln�2Þ

�
2
X
i

ln
jpþ

i j
�

� 22

3

�
�X

i

ln2
jpþ

i j
�

� 4
�2

3

þ 4
67

18
þ 1

2
ln2

�2s

jpþ
1 p

þ
2 j

þ 1

2
ln2

�2s

jpþ
3 p

þ
4 j

þ 1

2
ln2

�2jtj
jpþ

1 p
þ
4 j

þ 1

2
ln2

�2jtj
jpþ

2 p
þ
3 j
�
: (45)

This must be added to the contribution of the one-loop corrections to the elastic scattering probability, which we take from
[7]. (We set their mass scale � ¼ 1.)

P
1Loop
^^__ ¼ cd

g2jACorej2
4�2

�
jtjd=2�1

�
� 4

ðd=2� 1Þ2 þ
1

d=2� 1

�
11

3
þ 2 ln

jtj
s

�
þ �2 � 67

9

�
þ 11

3

1
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�
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g2jACorej2

4�2
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� 4

ðd=2� 1Þ2 �
4

d=2� 1
lnjtj � 2ln2jtj þ 1

d=2� 1

�
11

3
þ 2 ln

jtj
s

�
þ lnjtj

�
11

3
þ 2 ln

jtj
s

�

þ �2 � 67

9
þ 11

3

1

d=2� 1

�

� cd
g2jACorej2

4�2
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� 4

ðd=2� 1Þ2 þ
1

d=2� 1

�
22

3
� 2 lnjtjs

�
þ lnjtj

�
11

3
� 2 lns

�
þ �2 � 67

9

�
: (46)

Combining elastic plus bremsstrahlung, the divergences as d ! 2 cancel:

P^^__ � cd
g2jACorej2

4�2
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11

3
� 2 lns
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3
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i
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þ 1
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þ
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þ
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þ 1
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þ
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(47)
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2
ln2

�2

jpþ
3 p

þ
4 j

þ 1

2
ln2
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jpþ
1 p

þ
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þ 1

2
ln2

�2
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2 p

þ
3 j

þ ln
sjtj
�4

ln
�4

jpþ
1 p

þ
2 p

þ
3 p

þ
4 j
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g2jACorej2

4�2

�
ln2

s

jtj �
�2

3
þ 67

9
� 11

3

�
ln�2 � ln

jtj
�2

�
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�2

jpþ
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þ
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ln
�2

jpþ
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þ
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þ ln
sjtj
�4
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�4

jpþ
1 p

þ
2 p

þ
3 p

þ
4 j
�
: (48)

This result agrees in all respects with that obtained
from the discrete kþ regularization (40), apart from the
dependence on the ultraviolet cutoff �, which had been
explicitly subtracted in the results presented in [7]. It was
already noted in [2] that the infrared insensitive ratio
P^^__=P^_^_ was in complete agreement with that pre-
sented in [7]. So we now have a definitive confirmation that
the IR regulation supplied by the worldsheet lattice is

completely equivalent to that provided by dimensional
regularization.

V. CONCLUSION

In this paper we have clarified two aspects of the glue-
glue scattering calculations of [2]. First, we have placed
less restrictive constraints on the soft bremsstrahlung ra-
diation which we combine with the one-loop probabilities
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to cancel infrared divergences. Since more soft radiation is
allowed by the new constraints, the scattering probabilities
are increased over those obtained in [2]. In particular, the
large s limit at fixed t now behaves as lns instead of�ln2s.
This behavior is compatible with Regge behavior.

Secondly, we extended our new calculations of brems-
strahlung to general continuous transverse dimensions.
When combined with previous dimensionally regulated
covariant calculations of one-loop corrections, we obtained
results in complete accord with those regulated using
the worldsheet lattice. This is a much more detailed

comparison than that made in [2], which was limited by
the lack of a common treatment of bremsstrahlung radia-
tion. Thus, apart from collinear divergences, which only
occur for self-energy insertions on on-shell external lines,
this discretization provides a viable infrared regulator for
lightcone calculations.
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