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High precision spectroscopy can provide a sensitive tool to test Coulomb’s law on atomic length scales.

This can then be used to constrain particles such as extra ‘‘hidden’’ photons or minicharged particles that

are predicted in many extensions of the standard model, and which cause small deviations from

Coulomb’s law. In this paper we use a variety of transitions in atomic hydrogen, hydrogenic ions, and

exotic atoms to probe Coulomb’s law. This extends the region of pure Coulomb’s law tests to larger

masses. For hidden photons and minicharged particles this region is already tested by other astrophysical

and laboratory probes. However, future tests of true muonium and muonic atoms are likely to probe new

parameter space and therefore have good discovery potential for new physics. Finally, we investigate

whether the discrepancy between the theoretical calculation of the 2sF¼1
1=2 � 2pF¼2

3=2 transition in muonic

hydrogen and its recent experimental measurement at PSI can be explained by the existence of a hidden

photon. This explanation is ruled out by measurements of the Lamb shift in ordinary hydrogen.

DOI: 10.1103/PhysRevD.82.125020 PACS numbers: 12.20.Fv, 12.60.�i

I. INTRODUCTION

Precision spectroscopy has a long-standing record of
providing insights into fundamental physics. In particular,
the discrete nature of spectral lines has led to the discovery
of quantum mechanics and the discovery of the Lamb shift
was one of the first confirmations of quantum electrody-
namics. With its ever increasing precision, spectroscopy
can continue to provide a powerful probe of new physics.

Concretely, in this paper we want to use spectroscopy to
test Coulomb’s law with high precision on atomic length
scales [1–3]. This in turn allows us to obtain constraints on
new particles such as hidden photons [1,4,5] or mini-
charged particles [6,7] which arise naturally in a variety
of extensions of the standard model [4,8–13] (see also [14]
for a review).1

At this point let us note that tests of Coulomb’s law are
an especially clean and model independent probe of such
new particles as the sensitivity does not depend on the
stability of the particles or the presence/absence of certain
decay channels. To illustrate this point, let us take fixed
target experiments (see, e.g. [16]) as an example. These
experiments typically rely on a displaced vertex and there-
fore on a relatively long decay length of a hidden photon
produced in electron-nucleus collision. Now, let us assume
that there is also matter charged under the hidden U(1)
[i.e., it couples directly to the B� field in Eq. (2.1)]. If
this additional ‘‘hidden matter’’ is lighter than m�0=2, the

hidden photon decays quickly into a pair of these particles,
dramatically shortening the decay length and possibly in-
validating the bound. Tests of Coulomb’s law therefore
provide interesting complementary information.

In the following our prime example will be hidden
photons which (as we will briefly recall below) cause a
deviation of Coulomb’s law of the form

VðrÞ ¼ �Z�

r
ð1þ e�m�0 r�2Þ; (1.1)

where m�0 is the mass of the hidden photon and � is a

so-called kinetic mixing [8]. Independent of this particle
interpretation, our bounds can also be taken as a para-
metrization of a deviation from Coulomb’s law by a
Yukawa-type potential with a characteristic length scale
�1=m�0 . The length scales of ordinary atoms are typically

of the order of the Bohr radius and correspond to masses of
the order of keV. Exotic atoms, such as muonic hydrogen
where the electron is replaced by a muon are even smaller,
being most sensitive to masses of order MeVor above. To
complement existing spectroscopic tests [1–3] we will pay
particular attention to the latter regime.
The paper is set up as follows. In the next section we

will briefly recall how new particles can modify Coulomb’s
law focusing on our main example, the hidden photon.
Minicharged particles are discussed in Appendix A. In
Sec. III we give a detailed explanation of the method we
use to constrain hidden photons, including a discussion of
how to obtain the proper behavior for small (and large)
hidden photon masses (Sec. III A 2). In Sec. IV we apply
this method to construct bounds from a variety of atomic
spectra. Sections IVA and IVB deal with ordinary hydro-
genic atoms, whereas Secs. IVC, IVD, and IVE deal with
exotic atoms. Particularly interesting speculative bounds
are calculated for true muonium and muonic hydrogen. In
Secs. IVD2 and IVD we show that future measurements
of true muonium and muonic atoms promise significant
discovery potential for new physics. Finally, in Sec. V we
discuss whether the hidden photon can be used to explain

1Spectroscopy can even be useful for constraining unparticles
(see e.g. [15]).
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an anomaly recently observed in muonic hydrogen. We
conclude in Sec. VI.

II. HIDDEN PHOTONS AND DEVIATIONS
FROM COULOMB’S LAW

Hidden photons can interact with the photon via a
so-called kinetic mixing [4,8],

L ¼ � 1

4
F��F

�� � 1

4
B��B

�� þ �

2
B��F

�� þ 1

2
m2

�0B�B
�;

(2.1)

where F�� and B�� are the photon (A
�) and hidden photon

(B�) field strengths. Both F�� and B�� are individually

gauge invariant, so the third mixing term is allowed. Since
the mixing term has a mass dimension of 4, the kinetic
mixing parameter � has a mass dimension of zero and
therefore is a renormalizable coupling. This means that it is
not suppressed by any higher mass scales and should be
observable (even if small) at lower energies. We also note
the fourth term which indicates that the hidden photon has
a nonzero mass. From the point of view of low energy
effective theory, � and m�0 are simply free parameters

which are not constrained by any particular physical
mechanism. However, extensions of the standard model
based on, for example, string theory predict values in the
range [9,12,13]

10�12 & � & 10�3: (2.2)

A summary of the current bounds on the parameter � can
be found in Fig. 1.

The kinetic mixing term in Eq. (2.1) causes a tree level
insertion to the photon propagator as shown in Fig. 2. An
important physical implication of this is the addition of a
new Yukawa-type term to the Coulomb potential,

VðrÞ ¼ �Z�

r
ð1þ e�m�0 r�2Þ � VCoulombðrÞ þ �VðrÞ;

(2.3)

where Z is the charge of the massive central particle which
causes the potential and � is the fine structure constant.
Note the following limits:
(i) m�0 ! 0: Here the exponential term tends to unity

and we recover the original Coulomb potential up to
a factor (1þ �2). This can be absorbed in the defi-
nition of �, making it unobservable. Physically this
is sensible, since in the zero mass limit our hidden
photon becomes indistinguishable from the standard
model photon, at least as far as the electromagnetic
force is concerned. Therefore no physical effects,
such as a deviation from Coulomb’s law, should be
observable.

(ii) m�0 ! 1: Here the second exponential term dies off

and leaves us with the original Coulomb potential.
Again this makes sense, since in the large mass limit
the hidden photon becomes impossible to excite as a
virtual particle and therefore should not contribute
to the electromagnetic force.

(iii) Intermediate m�0 : We expect nonzero deviations

from Coulomb’s law in this region. In particular,
we will find that the most significant deviation

FIG. 1 (color online). Summary of the current bounds on hidden photons (compilation from [14,17] updated with [2,3]). We note that
in addition to the bound labeled ‘‘Coulomb,’’ the bounds labeled ‘‘Earth,’’ ‘‘Jupiter,’’ and ‘‘Rydberg’’ also originate from tests of
Coulomb’s law. The best bounds that we derive from atomic spectra are represented by the black lines. The dashed black line is from
the Lamb shift in atomic hydrogen. The dotted black line is a combined bound from the 1s1=2 � 2s1=2 and 2s1=2 � 8s1=2 transitions in

atomic hydrogen. The solid black line is the bound obtained from the Lamb shift in hydrogenlike helium ions. The light orange areas
correspond to regions suggested by astrophysical and cosmological puzzles [18–22]. The brown region is derived from measurements
of the Rydberg constant, and represents bounds already obtained from atomic spectra [1–3].
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occurs for m�0 � 1
l0
, where l0 is the length scale of

the relevant physical process.
Therefore any constraints on hidden photons based on

deviations from Coulomb’s law will be strongest around
m�0 � 1

l0
and drop off on either side in the low and high

mass limits. Here, l0 will be given by the length scale of the
atom in question. There exists a range of different atomic
systems, including ordinary hydrogen, muonic atoms, and
more exotic atoms. Therefore we can test a wide range of
masses, from keV to larger than MeV.

III. OBTAINING CONSTRAINTS
USING ATOMIC SPECTRA

To obtain our constraints we adapt the method presented
in Ref. [6], where the measurement of the Lamb shift is
used to derive a bound on minicharged particles.

At first order in perturbation theory the energy shift of a
state jc ni is given by

�Eð1Þ
n ¼ hc njH0jc ni ¼ hc nj�Vjc ni; (3.1)

where the jc ni are taken to be the 0th order wave func-
tions. For this to be a good approximation the energy shift
should be small. This is consistent with what we expect,
since so far no large deviations from the standard QED
predictions have been observed. If the standard prediction
and the experimentally measured values agree, then we can

impose that �Eð1Þ
n must be smaller than the uncertainty in

the transition. This will result in a bound on �V.
Let us briefly comment on some points relating to these

uncertainties that will be relevant for our discussion.

(i) ‘‘Same n’’ and ‘‘different n’’ transitions: We can
write the theoretical energy of an arbitrary state as

En;l;j ¼ ED;R
n;j þ Ln;l;j; (3.2)

where the first term is the sum of energies from the
Dirac equation plus recoil corrections (effectively
the 0th order energy). The second term is the Lamb
shift (defined as any contribution which separates
states of the same n, j).
The first term is proportional to the Rydberg constant
R1 and therefore will have an uncertainty of ap-
proximately 10�10 eV [23]. This means that any
transitions between states of different n in atomic
hydrogen will have a theoretical error contribution of
around 10�10 eV from R1.
The situation is worse in exotic atoms, as the effec-
tive Rydberg constant is modified by a factor pro-
portional to the reduced masses�H,�exotic of atomic
hydrogen and the exotic atom, respectively,

Reff ¼ �exotic

�H

R1; (3.3)

so that in, for example, muonic hydrogen, there
would be a fractional uncertainty of around 10�7

due to the mass of the muon, which would cause
an overall uncertainty of at least 10�4 eV.
Note that transitions between same n states do not
have a 0th order energy and are limited only by
uncertainties in the Lamb shifts of the states.

(ii) Definition of ‘‘uncertainty’’: When forming bounds,
we estimate the total uncertainty of a transition by
adding together the absolute values of the 1� theo-
retical and experimental errors, i.e. for a given
measurement M we use

�M ¼ j�MðthÞj þ j�MðexpÞj: (3.4)

Note that the quantity �M is constructed by adding
absolute uncertainties, and therefore constitutes a
conservative estimate of the error.
The theoretical contribution to �M will come
mainly from uncertainties in the finite nuclear size,
with an additional contribution from the Rydberg
constant in the case of different n transitions. For
most of the atoms we consider, data for the finite
nuclear size are coherent. For example the hydro-
genlike helium ion has three different electron scat-
tering determinations, and also a muonic helium ion
determination of the alpha particle charge radius.
These values all agree within 1� [24], meaning that
to a good approximation we can calculate the theo-
retical value for a transition by assuming one par-
ticular value of the nuclear radius. We can estimate
the uncertainty from finite nuclear size effects sim-
ply by considering the uncertainty in this one value
of the nuclear radius. This is indeed what is done in
theoretical calculations to which we refer, and the
corresponding error is included in j�Mthj.

FIG. 2. Feynman diagrams for the potential between two
charged particles, Eq. (2.3). In particular the second diagram
gives the hidden photon contribution to the interaction between
two charged particles, leading to a modification of Coulomb’s
law.
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However when we consider atoms with a proton
nucleus things become more complicated. The
recent muonic hydrogen determination of rp ¼
0:841 84ð67Þ fm [25] gives us the most precise mea-
surement from atomic spectra. This disagrees with
our best previous atomic spectra determination of
rp ¼ 0:8768ð69Þ fm from [23] by around 5�. The

muonic hydrogen extraction also deviates by around
2:5� from the best electron scattering determination
of rp ¼ 0:897ð18Þ fm [26]. To be conservative we

therefore modify our error analysis to take into
account the large variation in rp. We do this by

adding an additional term j�MðrpÞj, accounting

for the discrepancies in the rp measurements,

�M� ¼ j�MðthÞjþj�MðexpÞjþj�MðrpÞj: (3.5)

As with �M, �M� is to be interpreted as a con-
servative estimate of the error.
To leading order the proton radius contribution to a
given state is

ENSðrpÞ ¼
2m3

o�
4r2p

3n3
�l0; (3.6)

where mo is the mass of the orbiting particle. In
atomic hydrogenmo ¼ me, and in muonic hydrogen
mo ¼ m�. We make a rough estimate for j�MðrpÞj
by considering two widely separated values of the
proton radius. Denoting rp;� ¼ 0:841 84ð67Þ fm as

the muonic hydrogen determination, and rp;e ¼
0:897ð18Þ fm as the electron scattering determina-
tion, we set

j�MðrpÞj ¼ jENSðrp;eÞ � ENSðrp;�Þj: (3.7)

To form bounds we use �M� for atoms with a
proton nucleus, which in our paper are atomic
hydrogen and muonic hydrogen. We use �M for
all other atoms.
Note that errors quoted in the text will always be at
the 1�M (or�M�) level. However, unless otherwise
stated we will consider 2�M (or 2�M�) for the
bounds produced in the figures.

(iii) Radius of the proton and other nuclei: As already
discussed the (charge) radii of the nuclei are a
major source of uncertainty. In addition, we have
to take care that our determination of the radii
is from an independent source. For example we
cannot take a measurement of the Lamb shift in
ordinary hydrogen to measure both the radius of
the proton and put a bound on deviations from
Coulomb’s law. Two independent measurements
are needed. Moreover to avoid even partial de-
generacies (which tend to weaken the bound, in
particular, at short length scales), it is best if the
determination of the radius is obtained at relatively
high momentum transfer, corresponding to a short

length scale. For this reason we will mainly use the
values obtained from electron scattering data.

A. Searching for deviations from Coulomb’s law

1. Naive bounds

Let us briefly demonstrate how this method works by
using the Lamb shift, i.e. the 2s1=2 � 2p1=2 transition in

atomic hydrogen to constrain the hidden photon. We use
�V given by Eq. (2.3).
For this case Eq. (3.1) evaluates

�E ¼
Z 1

0
drr2�VðrÞ½R2

20ðrÞ � R2
21ðrÞ�

¼ ��2
�am2

�0

2ð1þ am�0 Þ4 ; (3.8)

where we have used the normalized radial hydrogen wave
functions Rn‘ given by

R20ðrÞ ¼ 1ffiffiffi
2

p 1

a3=2

�
1� �

2

�
expð��=2Þ;

R21ðrÞ ¼ 1

2
ffiffiffi
6

p 1

a3=2
� expð��=2Þ;

(3.9)

and where � ¼ r=a and a�1 ¼ �me.
We use an experimental uncertainty of 3 kHz [27] and

theoretical uncertainty of 6 kHz [28], as well as a contri-
bution of 17 kHz from j�MðrpÞj (3.7). We use (3.5) to get

�M� ¼ 10�10 eV. Note that the (blue, top at low masses)
curve for the 2s1=2 � 2p1=2 transition (Fig. 3) is at the

2�M� level.
This has the correct shape; the bound dies off in the

limits m�0 ! 0 and m�0 ! 1, and is strongest at m�0 � 1
a ,

where the Bohr radius a is the typical length scale
involved.
We can do the same for the 1s1=2 � 2s1=2 transition in

atomic hydrogen. The experimental value has a relative
uncertainty 2:8� 10�14 and represents the most precise
measurement of atomic hydrogen [29]. However, the
bounds are limited by a much larger theoretical uncer-
tainty. As already discussed above there are uncertainties
of around 10�10 eV from the Rydberg constant as well as a
similar contribution from the Lamb shifts of the states [30].
We also need to add the j�MðrpÞj contribution of �7�
10�10 eV to get �M� ¼ 1� 10�9 eV.
For the first order energy shift we have

�E

¼
Z 1

0
drr2�VðrÞ½R2

20ðrÞ�R2
10ðrÞ�

¼�2�

�
12þam�0 ð60þam�0 ð87þ14am�0 ð4þam�0 ÞÞÞ

4að1þam�0 Þ4ð2þam�0 Þ2
�
;

(3.10)

where

JOERG JAECKEL AND SABYASACHI ROY PHYSICAL REVIEW D 82, 125020 (2010)

125020-4



R10ðrÞ ¼ 2

a3=2
expð��Þ: (3.11)

The result is shown in Fig. 3 as the red (bottom at low
masses) curve. This bound does not have the correct drop-
off for small masses. We can understand why by looking at
�VðrÞ in Eq. (2.3), which dies off at large masses but grows
at small masses. Therefore we get a bound which saturates
at small masses, which is not physically correct. This is
simply an artifact of the splitting of the potential that we
have chosen to set up our perturbation theory. At small
masses our perturbation reduces to a term that has the form
of a Coulomb potential, but with an extra factor (1þ �2).
This effectively increases the strength of the electromag-
netic coupling and therefore the energy difference between
the two states. In other words we have forgotten to properly
(re-)normalize the coupling �, i.e. we have not absorbed
the factor (1þ �2) into our definition of �. In the follow-
ing we will show explicitly how this can be remedied.

One might wonder why this problem does not affect the
Lamb shift bound. The reason is simply that for a perfect
Coulomb’s law the energies of 2s1=2 and the 2p1=2 are

degenerate. Therefore, adding a term of the Coulomb’s
law form does not produce an energy shift between the
two states at lowest order. This is true for all same n
transitions.

2. Bounds including a proper renormalization of �

As we have seen above, the problem is that for both
m�0 ! 1 and m�0 ! 0 the potential Eq. (2.3) has exactly

the 1=r behavior of a Coulomb potential. However the
coupling constant differs by a factor (1þ �2). � becomes
a function of � and m�0 , i.e. the hidden photon alters

the coupling constant itself. In that sense � becomes an
unknown quantity that needs to be fixed by experiment.
Since we now have two unknowns, � and �, we need two
measurements to solve for them (of course the same strat-
egy also works if we allow other/additional parameters to
vary). We will briefly sketch how we do this.
Let us assume we have two observables M1 and M2.

Theoretically these are functions of �, �2, and m�0 . To

keep the notation transparent we will suppress the depen-
dence on m�0 in the following. Therefore, we have

M1ð�;�2Þ and M2ð�;�2Þ.
Now we have two measurements and results are often

quoted in the form

M1jexp �M1jth ¼ �M1 � �M1; (3.12)

M2jexp �M2jth ¼ �M2 � �M2; (3.13)

without considering a hidden photon. Therefore, in our
setup this means

M1jexp �M1ð�0; 0Þ ¼ �M1 ��M1; (3.14)

M2jexp �M2ð�0; 0Þ ¼ �M2 ��M2; (3.15)

with some value �0 such that both �M1 and �M2 are small.
If �0 can be chosen that �M1 and �M2 are compatible with
0 within the errors, then the measurements are consistent
with the standard model and no hidden photon is required.
Now, what happens if we include a hidden photon? As

we are interested in small corrections, we can expand about
ð�;�Þ ¼ ð�0; 0Þ. Hence we obtain

@M1

@�

���������¼�0;�
2¼0

��þ @M1

@�2

���������¼�0;�
2¼0

�2

¼ �M1 � �M1; (3.16)

@M2

@�

���������¼�0;�
2¼0

��þ @M2

@�2

���������¼�0;�
2¼0

�2

¼ �M2 � �M2: (3.17)

In matrix notation this linear system of equations reads

@M1

@�

���������¼�0;�
2¼0

@M1

@�2

���������¼�0;�
2¼0

@M2

@�

���������¼�0;�
2¼0

@M2

@�2

���������¼�0;�
2¼0

0
BBB@

1
CCCA ��

�2

� �

¼ �M1 ��M1

�M2 ��M2

� �
; (3.18)

FIG. 3 (color online). The blue (top at low masses) curve
denotes the bound on hidden photons obtained from the 2s1=2 �
2p1=2 transition in atomic hydrogen. We use a conservative error

of 2�M� ¼ 2� 10�10 eV, where �M� is defined in (3.5). Note
that for same n transitions � dies off correctly for both small and
large m�0 . The red (bottom at low masses) curve shows the naive

bound from the 1s1=2 � 2s1=2 transition in atomic hydrogen. It

has an incorrect behavior at small m�0 . The green (middle at low

masses) curve gives the correct bound obtained by combining the
1s1=2 � 2s1=2 with the 2s1=2 � 8s1=2 transition, according to the

procedure described in Sec. III A 2. The green and blue bounds
will turn out to be the best ones that we can derive from atomic
spectra, and are combined together in Fig. 1. For comparison we
depict earlier bounds on hidden photons as the color filled
regions. Those corresponding to pure tests of Coulomb’s law
(also obtained from atomic spectra) are highlighted in brown
(upper left corner) [1–3]. The remaining white region corre-
sponds to unexplored parameter space.
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which can be easily solved

��

�2

 !
¼

@M1

@� j�¼�0;�
2¼0

@M1

@�2 j�¼�0;�
2¼0

@M2

@� j�¼�0;�
2¼0

@M2

@�2 j�¼�0;�
2¼0

0
@

1
A�1

� �M1 ��M1

�M2 ��M2

 !
: (3.19)

From this we can directly read off the allowed values of �2.
For the cases of interest to us it is typically sufficient to

determine the derivatives @Mi=@�, @Mi=@�
2 to lowest

order in � and �2. For example, in the previous section
we have used first order perturbation theory, and deter-
mined the shift in energy to be �E ¼ �2fðm�0 Þ, accord-
ingly @E=@�2 ¼ fðm�0 Þ.

Let us confirm that this procedure corrects the behavior
of bounds for small m2

�0 . We consider a simple example

where, in absence of hidden photons, both observables
behave as simple power laws,��n1 and��n2 , respectively,

Mi ¼ Mij�2¼0 þ ��2Mi

¼ ci�
ni þ ci�

ni�2fiðm�0 Þ þOð�4Þ: (3.20)

The term in ��2Mi is the hidden photon contribution calcu-

lated in first order perturbation theory (3.1) using the po-
tential (2.3). Note that for convenience we have written the
correction with ci and �2 factored out, with the remaining
factor represented by a function fiðm�0 Þ.

From Eq. (2.3) we can see that the �VðrÞ term dies off at
large m�0 . Hence the function fiðm�0 Þ ! 0 as m�0 ! 1.

However, the perturbation actually grows toward smaller
masses, and fiðm�0 Þ tends to a constant limit. Before

addition of the hidden photon we can write the Coulomb
potential as

V0ðrÞ ¼ �Z�

r
(3.21)

and after the hidden photon is added we can write

VðrÞ ¼ �Z�

r
ð1þ �2Þ; (3.22)

where we have taken the limit m�0 ! 0. Hence the fine

structure constant has essentially been redefined

� ! �ð1þ �2Þ: (3.23)

Therefore, for m�0 ! 0, we have an alternative way to

obtain the perturbation: we can simply insert the redefined
� into the unperturbed expression. This yields

Mi ¼ ci�
ni þ nici�

ni�2 þOð�4Þ: (3.24)

Comparing (3.20) with (3.24) we can see that fiðm�0 Þ ! ni
as m�0 ! 0.

Inserting (3.20) into our general expression (3.19) we
find

�2 ¼
n1�M2

M2ð�0;0Þ �
n2�M1

M1ð�0;0Þ
ðn1f2ðm�0 Þ � n2f1ðm�0 ÞÞ : (3.25)

If both �Mi are consistent with 0 we can obtain a bound
on �2. To be conservative we simply add the moduli of the
two individual errors,

�2 �
n1j�M2j

M2
þ n2j�M1j

M1

jðn1f2ðm�0 Þ � n2f1ðm�0 ÞÞj ; (3.26)

where j�Mj is defined in (3.4). For transitions in atomic
hydrogen and muonic hydrogen we use j�M�j defined
in (3.5).
There are two interesting limits2:
(i) m�0 ! 1: Here f1ðm�0 Þ, f2ðm�0 Þ ! 0 so the upper

bound on �2 increases and the bound dies off. Indeed

one finds that the functions fðm�0 Þ decay as m�ð2þ2lÞ
�0

at high masses where l is the lowest angular momen-
tum value involved in the transition. A 2s� 2p
transition would have l ¼ 0 and a 3p� 3d transition
would have l ¼ 1 etc. Our bounds effectively die
off as

��mð1þlÞ
�0 : (3.27)

Therefore, if we use transitions with higher values of
l the bounds die off more quickly.

(ii) m�0 ! 0: Here f1ðm�0 Þ ! n1, f2ðm�0 Þ ! n2 so the

denominator tends to zero. Again the upper limit on
�2 increases and the bound dies off.

Overall, we obtain the expected behavior in the small
and large mass limits.
In Fig. 3 we show the correctly renormalized 1s1=2 �

2s1=2 (green, middle curve) versus the naive bound (red,

bottom curve). Here, and unless otherwise stated we will
takeM1 to be the 2s1=2 � 8s1=2 transition in atomic hydro-

gen, simply because it is experimentally measured to a
high precision of 3� 10�11 eV [31]. This is similar to the
theoretical error of 4:5� 10�11 eV from R1 and 5�
10�11 eV from the Lamb shift of the 2s1=2 state. Added

together with the �MðrpÞ contribution we get an overall

uncertainty of �M� ¼ 2� 10�10 eV.
The measurements themselves do not need to be from

atomic spectra. The same technique works for any process
which is affected by the hidden photon.
Also note that this renormalization procedure works

trivially for same n transitions. If we consider just one
measurement M, and note that the 0th order energy M0

vanishes,

M ¼ c�2�2f2ðm�0 Þ þOð�4Þ; (3.28)

2We note that in the regions where the bounds become very
weak and � ¼ Oð0:1� 1Þ, perturbation theory breaks down. But
these regions are typically excluded anyway.
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M / �2, so that �� corrections obtained from a second
measurement would produce negligible terms of Oð�4Þ.
Therefore, information from the second measurement is
suppressed. This means that we can form properly renor-
malized bounds for same n transitions using only one
measurement M and with only one error �M.

IV. NEW BOUNDS

A. Ordinary atomic hydrogen

The bounds from 2s1=2 � 2p1=2 (blue, top curve) and the

properly renormalized 1s1=2 � 2s1=2 bound (green, middle

curve) are shown in Fig. 3. We can see that neither of these
penetrate new parameter space for hidden photons.
However, they constitute the best pure tests of Coulomb’s
law in this region of parameter space.

So far, all of our transitions have involved the 1s1=2 or

2s1=2 states. These have Lamb shifts with high theoretical

uncertainty due to finite nuclear size effects. This is be-
cause the 0th order wave functions for s states are nonzero
at the origin and therefore penetrate the nucleus deeply,
leading to large uncertainties from finite nuclear size ef-
fects. This will also be true for s states with n > 2. States
with l > 0 have 0th order wave functions which are zero at
the origin and therefore have a small overlap with the
nucleus. This means that the Lamb shift uncertainties are
small. Therefore transitions between same n states with
l > 0 (for example 3p1=2 � 3d1=2) will have extremely

small theoretical uncertainties. Unfortunately, these kinds
of excited states are unstable and the experimental mea-
surements have large uncertainties. We also note that the
bounds in these transitions decay more quickly with energy
(3.27), causing them to die off well before they reach
unknown parameter space. Therefore, barring significant
technological advances, transitions between states with
l > 0 are not very useful for constraining �.

B. Ions with Z > 1

The Lamb shift bound for atomic hydrogen almost
penetrates the unknown region, so we can look at hydro-
genic ions with Z > 1. The advantage here is that the
characteristic energy of transitions scales as Z, so higher
values of Z will move our bounds toward the right and
toward the white region. The disadvantage is the higher
theoretical uncertainties involved. This is due to an in-
crease in the size of the nucleus, as well as a decrease in
the Bohr radius (which scales as 1

Z and gives the character-

istic length scale of the electron orbit). Unfortunately, this
also causes the electron to penetrate the nucleus more
deeply, which leads to greater theoretical uncertainties
from finite nuclear size effects. Our bounds then move
upward and away from the white region. We can produce
bounds for different values of Z to see which of these
effects wins out.

Reference [24] gives experimental and theoretical errors
for the helium ion 2s1=2 � 2p1=2 transition of 0.16 and

0.2 MHz, respectively, giving �M ¼ 1:5� 10�9 eV.
[Remember that for atoms without a proton nucleus, we
do not have to consider large variations in nuclear size, and
therefore use (3.4).] For Z ¼ 15 the experimental [32] and
theoretical errors [33] combine to give a value of �M ¼
3� 10�4 eV. Finally we can go to the largest value of Z
for which data are available. Reference [33] gives a theo-
retical uncertainty for the Z ¼ 110 transition of�4 eV. As
no experimental data exist we can only derive a speculative
bound. Also, if we were to take into account hypothetical
experimental data, then the errors would increase and the
bound would weaken. The estimated sensitivity shown in
yellow (top dotted curve) in Fig. 4 is therefore an optimis-
tic one, but it is still adequate to demonstrate the trend
which we are trying to identify.
We can see that as we go to higher values of Z, the

increase in uncertainties causes our bounds to move up and
away from the untested region, with our bounds actually
becoming less and less stringent. We should expect this
trend to be similar for other possible transitions, for
example 1s1=2 � 2s1=2.
Note that due to the increase in the uncertainty of the

Lamb shift in atomic hydrogen caused by the inconsistent
values of the proton radius, the bound from hydrogenlike
helium is actually slightly better. As soon as this incon-
sistency is clarified the trend identified above will probably
hold again.

C. Exotic atoms

Exotic atoms have certain advantages over atomic
hydrogen:
(i) Pure QED systems like muonium and positronium

may have smaller fractional theoretical uncertain-
ties, as all experimental data are consistent with

FIG. 4 (color online). � bounds for the 2s1=2 � 2p1=2 transi-
tion in hydrogenic ions with Z ¼ 2 (black, bottom curve), Z ¼
15 (green, middle curve), and Z ¼ 110 (yellow dashed curve,
speculative). At the 2�M level the uncertainties are 3�
10�9 eV [24], 6� 10�4 eV [32,33], and 8 eV [33], respectively.
We can see that as Z increases our bounds move away from the
white region and therefore become less useful.
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pointlike leptons [34]. This enables us to assume a
pointlike effective nucleus, which eliminates the
major source of theoretical uncertainty.

(ii) Most exotic atoms have larger reduced masses than
atomic hydrogen, shifting our bounds to higher
energies and toward the untested region.

Disadvantages:
(i) Higher mass systems often have greater theoretical

uncertainty (leptonic systems excluded). This is
because the larger reduced mass leads to a smaller
Bohr radius of the system. Bound state orbits then
penetrate the nucleus more deeply, which then
leads to greater corrections due to finite nuclear
size effects.

(ii) Similarly, hadronic atoms and atoms with Z > 1
have larger nuclei than atomic hydrogen, again
causing larger finite nuclear size effects.

(iii) Hadronic orbiting particles also interact with the
nucleus via the strong interaction, which causes
huge theoretical and experimental uncertainties.
They do not produce strong bounds, but for com-
pleteness we briefly review them in Appendix C.

D. Leptonic atoms

1. Positronium

We briefly note that positronium is not useful as the
reduced mass is actually smaller than that of atomic hydro-
gen, and the uncertainties are much higher. For example
the 1s� 2s and 2s� 2p transitions are limited by large
experimental uncertainties, which are caused by compli-
cations such as annihilation [35–37]. The uncertainties are
around 2 orders larger, which gives a bound on � around
1 order of magnitude weaker.

2. Muonium

Ordinary muonium ð�þe�Þ and true muonium ð�þ��Þ
are more interesting.

Experimental results have already been produced for the
1s1=2 � 2s1=2 and 2s1=2 � 2p1=2 transitions in ordinary

muonium, but the resulting bounds do not improve on
atomic hydrogen. We note that the reduced mass of ordi-
nary muonium is almost the same (in fact slightly smaller)
than atomic hydrogen, so we could only get better bounds
if uncertainties were reduced.

In fact the 1s1=2 � 2s1=2 transition suffers from large

theoretical errors associated with the effective Rydberg
constant (3.3). This produces a fractional error larger than
that of atomic hydrogen and consequently a weaker bound.

The 2s1=2 � 2p1=2 transition suffers from no such 0th

order uncertainties, and indeed we expect the theoretical
uncertainty to be smaller than atomic hydrogen since there
are no finite nuclear size effects. However the experimental
situation is not yet very good. Only 1s1=2 states can be

produced in large quantities, whereas the production of

metastable 2s1=2 states is much lower [38]. This means that

the 2s1=2 � 2p1=2 transition has only been experimentally

measured to a fractional precision of 1:5� 10�2 at the 1�
level, leading to weak bounds.
A recent article [39] suggests that true muonium can be

produced and studied in the near future. This atomic sys-
tem would be extremely useful, as it has a reduced mass of
around 2 orders of magnitude greater than atomic hydro-
gen, and we expect the theoretical errors to be low due to
the absence of finite nuclear size effects. Since no experi-
mental data have been produced yet, there has been no
motivation for precise theoretical calculations. However,
we can put together a rough theoretical estimate (see
Appendix B for details) to form a speculative bound.
This is shown as the black line in Fig. 5. This is encourag-
ing as it penetrates new parameter space. However, one still
needs to obtain a coherent experimental result, and hope
that the experimental error is not so large that it causes the
bound to significantly deteriorate.

E. Muonic atoms

The reduced mass of these systems is around 200 times
larger than atomic hydrogen, shifting our bounds toward
larger masses.

FIG. 5 (color online). The black dashed curve (bottom dashed
curve) shows a speculative bound on � for the 2s1=2 � 2p1=2

transition in true muonium. This is formed using only an
estimate of the theoretical uncertainty of �0:1 GHz (see
Appendix B). If the experimental result is measured to a similar
precision and agrees with theory, we will be able to form a bound
similar to this and penetrate new parameter space. The green
solid (top at low masses) curve shows an actual bound formed
from the 2sF¼1

1=2 � 2pF¼2
3=2 transition in muonic hydrogen. There is

a large theoretical error 2�M� ¼ 1:2� 10�3 eV. This is caused
by the wide range of possible values of rp. The red dashed curve

(top dashed curve) uses the muonic hydrogen transition to form a
speculative bound. The error here is taken to be just the 2�
experimental uncertainty of 6� 10�6 eV [25]. Finally, the blue
(solid, bottom at low masses) curve shows a bound obtained by
combining the measurement of the Lamb shift in ordinary
hydrogen and the 2sF¼1

1=2 � 2pF¼2
3=2 transition in muonic hydrogen.

Using these two measurements we do not need an additional
determination of the proton radius.
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The 2sF¼1
1=2 � 2pF¼2

3=2 difference in muonic hydrogen is

calculated to be [25,40–45]3

E ¼ �
�
209:9779ð49Þ � 5:2262

�
rp
fm

�
2

þ 0:0347

�
rp
fm

�
3
�
meV: (4.1)

If we substitute in the most precise current value of rp ¼
0:8768ð69Þ fm which is obtained from atomic spectra [23],
we obtain a theoretical value of E ¼ �205:984ð062Þ meV.
The theoretical uncertainty alone is quite high. Moreover,
the theoretical value also deviates from the recently mea-
sured experimental value of�206:295 000ð3Þ meV [25] by
around 5�. This large discrepancy is bad for producing
bounds, but it could be taken as a potential signal for new
physics. We will consider this in the final Sec. V. However,
we can still form a bound if we use the (inflated) error
given in (3.5). The rp variation increases the uncertainty to

give �M� ¼ 6� 10�4 eV. The solid green curve shows
the corresponding bound at the 2�M� level. In the large
mass region this bound is of comparable strength to the one
from the Lamb shift in ordinary hydrogen.

However if we just use the experimental uncertainty we
can form a speculative bound, Fig. 5. This bound covers a
similar region to the speculative bound obtained from true
muonium (black curve) and penetrates the unknown region.

If an independent and sufficiently precise value of rp
could be determined—consistent with the muonic hydro-
gen extraction—the speculative bound could be turned into
a real one. This provides us with motivation for seeking
more precise, independent determinations of the proton
radius. However, as we have discussed in Sec. III, in order
to avoid degeneracies this measurement should preferably
originate from measurements at relatively high momentum
transfer. At the moment the only obvious candidate process
is electron scattering, although an increase in the precision
by an order of magnitude may be challenging.

V. MUONIC HYDROGEN ANOMALY

As already mentioned above a recent measurement [25]
of the Lamb shift in muonic hydrogen,4 or more precisely
the 2sF¼1

1=2 � 2pF¼2
3=2 transition, deviates by more than 5�

from theoretical calculations combined with atomic spec-
tra measurements of the proton radius. It is tempting to
speculate that this deviation is due to a hidden photon [46].

In this section we will briefly investigate if such an inter-
pretation is possible.
The first observation is that the addition of the hidden

photon increases the binding energy of the s state com-
pared to the p state. This makes the Lamb shift in muonic
hydrogen more negative, in line with the observed effect.
Encouraged by this we would like to do a fit using

the Lamb shift in ordinary and muonic hydrogen to fit the
proton radius and the kinetic mixing parameter �2 of the
hidden photon. We can use the same strategy as outlined in
Sec. III, just including the proton radius as an additional
parameter.5 The hidden photon contribution to the Lamb
shift is already given in Eq. (3.8). For muonic hydrogen we
just have to replace the electron mass with the muon mass.
The lowest order dependence of the Lamb shift on the
proton radius is given in Eq. (3.6).
Unfortunately, the required values for �2 are smaller

than zero and since � is a real parameter this rules out a
hidden photon explanation. Why is this the case? From
Eqs. (3.6) and (3.8) we see that from the perspective of the
(n ¼ 2) Lamb shifts a shift in the proton radius by �r2p is

equivalent to a nonvanishing �2 for

�r2p ¼ �6�2
a4om

2
�0

ð1þ aom�0 Þ4 ; (5.1)

where ao ¼ 1=ð�moÞ is the Bohr radius of the orbiting
particle.
This means that if we have nonvanishing �2 > 0 we

effectively measure a smaller proton radius in the Lamb
shift measurement. Obviously both the ordinary and the
muonic hydrogen measurements are affected in the same
direction. Now, one can easily check that the effect is
actually always bigger for larger ao. In other words if there
is a nonvanishing �2 > 0 then the observed proton radius
in the Lamb shift of ordinary hydrogen should be even
smaller than the one observed in muonic hydrogen. This is
exactly the opposite of what is observed in Ref. [25].
Finally, we can use the same two measurements to form

a bound, independent of electron scattering determinations
of the proton radius. However, in light of the fact that the
two measurements are not consistent with each other we
need to inflate our uncertainty similar to Eq. (3.5). Taking
M1 as the Lamb shift in atomic hydrogen and using
Refs. [27,28] we have6 �M1 ¼ 3� 10�11 eV and
�M�

1 ¼ 10�10 eV.7 Taking M2 as the muonic hydrogen

3The 2sF¼1
1=2 � 2pF¼2

3=2 transition has contributions from radia-
tive, recoil, and proton structure corrections, as well as fine and
hyperfine splittings. These are calculated in Refs. [40–45] and
combined together in [25] for the overall formula.

4We are deeply indebted to B. Batell and M. Pospelov for
noting a sign error in a previous version of this paper which led
to different results. In the following discussion of the effects of
hidden photons on measurements of the proton radius we will
use an argument similar to theirs.

5As we are dealing with Lamb shifts (i.e. transitions between
states of the same n), changes in � are a subdominant effect (see
Sec. III A 1).

6The �Mi are calculated using the CODATA [23] mean value
for the proton radius of rp ¼ 0:8768 fm.

7Note that since in this section we explicitly consider varia-
tions in rp in the bound, we could in principle ignore any
contributions from variations in rp when calculating the theo-
retical uncertainty. However, as mentioned before, we will inflate
our error to account for the inconsistency of the two
measurements.
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case, and using the experimental and theoretical values
from Sec. IVE we get �M2 ¼ �3:11� 10�4 eV and
�M�

2 ¼ 6� 10�4 eV. The corresponding bound is shown
as the solid blue (bottom) line in Fig. 5.

VI. CONCLUSIONS

Atomic spectra can provide a powerful and clean probe
of Coulomb’s law at atomic length scales. In this paper we
have considered a variety of transitions in atomic hydro-
gen, hydrogenlike ions, and exotic atoms, probing a wide
range of different length scales. Currently, the best bounds
are obtained from the measurements of the Lamb shift in
ordinary hydrogen, a combination of the 1s1=2 � 2s1=2 and
the 2s1=2 � 8s1=2 transitions in atomic hydrogen, as well as

the Lamb shift in hydrogenlike helium ions. These bounds
are shown in Fig. 1 and can be taken more generally as a
constraint on deviations from Coulomb’s law of the form
Eq. (2.3). This significantly increases the range of pure
Coulomb’s law tests.

Future measurements of true muonium (�þ��) could
significantly increase the tested area toward shorter length
scales and smaller deviations. Similarly, a bound from the
2sF¼1

1=2 � 2pF¼2
3=2 transition in muonic hydrogen could pene-

trate new parameter space, provided that a suitable inde-
pendent value of the proton radius is determined. This
gives additional motivation to seek further high precision
determinations of the proton radius.

The deviation from Coulomb’s law, Eq. (2.3), and the
bounds we obtain can also be interpreted as a probe
of massive hidden photons kinetically mixing with the
ordinary photon. With currently available data we find no
improvement over existing bounds. We note, however,
that these bounds are especially clean and model indepen-
dent as they do not depend on the stability of the hidden
photon or the presence/absence of certain decay channels.
Moreover, above mentioned future measurements also
have good potential to probe new parameter space for
hidden photons, giving them significant discovery potential
for new physics.

Finally, we have briefly investigated a recent measure-
ment of the 2sF¼1

1=2 � 2pF¼2
3=2 transition in muonic hydrogen

which found a value inconsistent with theoretical calcula-
tions and previous measurements of the proton radius. We
have considered the hidden photon as a mechanism to
explain this discrepancy and found that the measurements
of the Lamb shift in ordinary hydrogen are in conflict with
this hypothesis.
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APPENDIX A: BOUNDS ON MINICHARGED
PARTICLES FROM ATOMIC SPECTRA

Here we briefly examine bounds on minicharged
particles (MCPs) produced by using atomic spectra. The
existing bounds for MCPs are presented in Fig. 6.
As noted in [7] the vacuum polarization caused by mini-

charged particles (shown in Fig. 7) causes a modification to
the Coulomb potential

VðrÞ ¼ VCoulombðrÞ þ �VðrÞMCP; (A1)

where the additional term is the Uehling potential,

FIG. 6 (color online). Existing bounds for MCPs (see, e.g.
[14]). Note that the Lamb shift bound is produced using the
method from [6]. We modify this method to consider other
atomic spectra.

FIG. 7. Vacuum polarization diagram leading to a deviation
from Coulomb’s law in the presence of minicharged particles.
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�VðrÞMCP¼Z�

r

�
2�	2

3


Z 1

2m	

dq
expð�qrÞ

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4m2

	

q2

s �
1þ2m2

	

q2

��
: (A2)

Here m	 is the mass of the minicharged particle, and 	 the charge in units of e. In the limits of high and low mass �VðrÞ
reduces as follows:

�VðrÞMCP 	 Z�

r

�
�	2

4
ffiffiffiffi



p expð�2m	rÞ
ðm	rÞ3=2

�
; for m	r 
 1;

	 Z�

r

�
� 2�	2

3

logð2m	rÞ � a

�
; a 	 2�	2

3

�; for m	r � 1; (A3)

and where � is Euler’s constant.
The potential decays exponentially in the high mass

limit, as in the hidden photon case. However �VðrÞMCP

does not die off in the low mass limit. This makes sense
physically, as a massless MCP will still be distinguishable
from the photon and therefore will constitute a nontrivial
modification to the photon propagator, which will result in
observable effects. In fact we find that the strongest effects
are observed in the low mass limit. This can be seen from
saturation of the bounds in Fig. 6. Hence we obtain strong
bounds for

m	 � 1

l0
; (A4)

where l0 is the length scale of the experiment.
From Eq. (A3) we can see that the potential actually

diverges logarithmically.We apply the same renormalization

procedure as we did with the hidden photon in Sec. IIIA 2
to get

	 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1j�M2j
M2

þ n2j�M1j
M1

n1f2ðm	Þ � n2f1ðm	Þ

vuut
: (A5)

Note the following limits:
(i) m	 ! 1: Here f1ðm	Þ, f2ðm	Þ ! , so 	 increases

and the bound dies off.
(ii) m	 ! 0: Here f1ðm	Þ and f2ðm	Þ both diverge log-

arithmically, but the divergences cancel and the
denominator approaches a finite value as m	 ! 0,
giving us a saturated bound. This shows that, as
expected, effects of the MCP are maximized in the
low mass limit.

We now apply this method to different atomic transi-
tions. The analysis here is much briefer than in the hidden
photon case, as we only consider transitions in atomic
hydrogen. (The bounds from systems with higher Z and
exotic atoms are considerably weaker.) As noted before,
higher excited states (i.e. states which do not involve 1s1=2
or 2s1=2) are difficult to measure and have high experimen-

tal uncertainties. Therefore we only consider transitions
involving the 1s1=2 and 2s1=2 states. In Fig. 8 we plot the

Lamb shift 2s1=2 � 2p1=2,
8 and also a renormalized bound

using the 1s1=2 � 2s1=2 and 2s1=2 � 8s1=2 transitions. The

errors are the same as quoted in Sec. III A. We see that no
improvement is found over existing bounds.

APPENDIX B: ESTIMATE FOR THE
THEORETICAL UNCERTAINTY IN THE

2s1=2 � 2p1=2 TRANSITION IN TRUE MUONIUM

The leading order contribution to the Lamb shift is pro-
portional to the mass of the orbiting particle mo. Therefore
to get an approximate value of this transition we scale the

atomic hydrogen value by a factor� m�

me
to get�1 GHz.

We note that the major part of the uncertainty in the
atomic hydrogen case comes from finite nuclear size
effects, and that these are absent in true muonium. We
can therefore get a naive estimate of the uncertainty in true
muonium by subtracting the finite nuclear size contribution

FIG. 8 (color online). The 1s1=2 � 2s1=2 (black, top curve at
high masses) and 2s1=2 � 2p1=2 [6] (green, bottom curve at high

masses) bounds, both at the 2�M� level. The 1s1=2 � 2s1=2
transition is renormalized using 2s1=2 � 8s1=2 as in the hidden

photon case. For comparison we show previous bounds from
purely laboratory experiments in orange (gray). Our bounds do
not penetrate new parameter space. 8Note that this has already been considered in Ref. [6].

SPECTROSCOPY AS A TEST OF COULOMB’s LAW: A . . . PHYSICAL REVIEW D 82, 125020 (2010)

125020-11



from the atomic hydrogen value9 and scaling it up by
m�

me
to

get �200 kHz.
However this naive estimate is inadequate. The reduced

mass of the system is now larger, so that hadronic and
muonic vacuum polarization contributions are now much
more important. These effects must receive more careful
treatment. To leading order [47]

EVP /
�
mo

me

�
2
mo; (B1)

so that we need to scale up vacuum polarization contribu-

tions in atomic hydrogen by a factor ðm�

me
Þ3 which gives us a

much larger contribution of �0:1 GHz. We therefore take
this as our theoretical uncertainty, and set �M� 0:1 GHz.

APPENDIX C: BOUNDS FROM
HADRONIC ATOMS

We review this option briefly, and argue that hadronic
atoms currently do not produce strong bounds.

The existing candidates involve the 
�, K�, pþ, and
K� particles orbiting a proton nucleus. In each case we find
significant experimental uncertainties which immediately
destroy bounds. For example, with pionic hydrogen the
experimental strong interaction shift of the 1s1=2 ground

state [48],

	1s ¼ ð7:120� 0:008� 0:007Þ eV; (C1)

where the errors are systematic and statistical, respectively.
This essentially means that, for example, the 3p1=2 � 1s1=2
transition would have an error of at least 10�2 eV, which
does not produce a useful bound.
All transitions in kaonic and sigmaonic hydrogen have

large uncertainties due to the determination of the particle
masses alone [49].
Transitions in antiprotonic hydrogen have large

uncertainties due to both strong interaction shifts and
annihilation [50].
This is before we take into account theoretical uncer-

tainties, for example, finite size effects from both nucleus
and orbiting particles, which we also expect to be large.
Overall we conclude that any benefits from the larger

reduced masses of hadronic atoms are washed out by
experimental uncertainties and QCD effects.
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