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The linear sigma model with quarks at very low temperatures provides an effective framework for the

thermodynamics of the strong interaction in cold and dense matter. It is especially useful in the description

of the chiral transition at densities that are still not probed in accelerators but expected to be found in

compact stars and protoneutron star matter. Using the MS one-loop effective potential, we compute

quantities that are relevant in the process of nucleation of droplets of quark matter in this scenario.

In particular, we show that the model predicts a surface tension of �� 5–15 MeV=fm2. Including

temperature effects and vacuum logarithmic corrections, we find a clear competition between these

features in characterizing the dynamics of the chiral phase conversion, so that if the temperature is low

enough the consistent inclusion of vacuum corrections could help preventing the nucleation of quark

matter at high densities. We also discuss the first interaction corrections that come about at two-loop order.

Low values of the surface tension, as the ones we find in this simplified chiral description, could render

nucleation of quark matter possible during the early postbounce stage of core-collapse supernovae.
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I. INTRODUCTION

The thermodynamics of strong interactions for cold
matter under extremely high densities is of utmost impor-
tance for the understanding of the structure of compact
stars [1]. Since quantum chromodynamics (QCD) is
asymptotically free, it is believed that for high enough
densities quarks will be in a deconfined state, the quark-
gluon plasma [2]. Moreover, due to the approximately
chiral nature of the QCD action, one also expects quarks
to be essentially massless above a sufficiently high value of
the chemical potential.1 Depending on the location of the
critical density, one might find several sorts of condensates
and even deconfined quark matter in the core of neutron
stars [5]. Furthermore, the order and strength of the chiral
transition are crucial features in establishing the existence
of a new class of compact stars [6,7].

Recently, it was shown that deconfinement can happen
early, during the early postbounce accretion stage of a
core-collapse supernova event, which could result not
only in a delayed explosion but also in a neutrino burst
that could provide a signal of the presence of quark matter
in compact stars [8]. However, as was discussed in detail in
Ref. [9] (see also Ref. [10]) those possibilities depend on
the actual dynamics of phase conversion, more specifically
on the time scales that emerge. In a first-order phase
transition, as is expected to be the case in QCD at very
low temperatures, the process is guided by bubble nuclea-
tion (usually slow) or spinodal decomposition (‘‘explo-
sive’’ due to the vanishing barrier), depending on how

fast the system reaches the spinodal instability as com-
pared to the nucleation rate. Nucleation in relatively high-
density, cold strongly interacting matter, with chemical
potential of the order of the temperature, can also play an
important role in the scenario proposed in Ref. [11], where
a second (little) inflation at the time of the primordial
quark-hadron transition could account for the dilution of
an initially high ratio of baryon to photon numbers. A key
ingredient in both scenarios is, of course, the surface
tension, since it represents the price in energy one has to
pay for the mere existence of a given bubble (or droplet).
However, the surface tension and the whole process of

phase conversion via nucleation in a cold and dense envi-
ronment are not known for strong interactions. In fact, the
mapping of this sector of the (equilibrium) phase diagram
is still in its infancy [12], let alone dynamical processes of
phase conversion. This region of the phase diagram is not
very amenable to first-principle approaches. On one hand,
the so-called sign problem at finite chemical potential
brings about major technical difficulties for performing
Monte Carlo lattice simulations, so that one still does not
have the high-quality guidance from lattice QCD that is
currently available at finite temperature and zero density
[13]. On the other hand, although the perturbative series for
QCD at zero temperature and finite density seems to be
much better behaved than its counterpart at finite tempera-
ture [6,14–16], the values of chemical potential that are
phenomenologically interesting in the interior of compact
stars are already too low, of the order of 400–500 MeV [1].
At this scale, one is certainly pushing perturbative QCD
much beyond its limits of applicability. Besides, this ap-
proach is incapable of incorporating the chiral and the
deconfinement transitions, as well as vacuum properties,
unless it is merged with a complementary low-density
treatment. Therefore, an estimate of the surface tension
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1Nevertheless, these features and other thermodynamic prop-

erties of dense media were also shown to be significantly
affected by nonzero quark masses [3,4].
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and the description of the nucleation process within an
effective model for strong interactions in a cold and dense
environment seems welcome.

In this paper we consider the linear sigma model coupled
with constituent quarks (LSMq) at zero or low temperature
and finite quark chemical potential as a model for the
thermodynamics of strong interactions in cold and dense
matter. We compute the effective action for the sigma
condensate integrating over the quark fields and keeping
quadratic fluctuations of the sigma field around the con-
densate. Our final thermodynamic potential incorporates
all corrections from the medium and vacuum fluctuations

in the MS scheme, including logarithmic and scale-
dependent contributions from quark and sigma bubble
diagrams. Renormalization is implemented in the standard

fashion in the MS scheme.
Having calculated the full thermodynamic potential, we

study the behavior of the chiral condensate with chemical
potential, the location and nature of the chiral transition,
and the process of homogeneous nucleation. We compute
all relevant quantities for the process of phase conversion
via nucleation in the chiral transition (critical radius, cor-
relation length, surface tension, and decay rate) and study
their behavior with the quark chemical potential in the
two metastable regions, providing a full perspective of
the chiral phase conversion in this scenario.

Our framework is admittedly still crude to provide a
description of nucleation within protoneutron star matter.
Besides failing to describe nuclear matter, it does not take
into account charge and beta equilibrium [1], as well as
effects from color superconductivity [17] and, most impor-
tantly, trapped neutrinos [1]. Nevertheless, since we have a
clean calculation of the physical quantities that are relevant
for homogeneous nucleation in the process of the chiral
phase conversion, we do not refrain from presenting results
for the nucleation time during the early postbounce stage of
core-collapse supernovae. Those illustrate the nontrivial
competing effects from vacuum and thermal corrections
that can be relevant in the physics of compact stars.

The paper is organized as follows. Section II presents the
LSMq and some of its features, and the analytic computa-
tion of the one-loop effective potential at finite chemical
potential, including quantum logarithmic corrections in the
vaccum and thermal effects. In Sec. III we show our results
for the surface tension and other relevant quantities for the
nucleation process, analyzing the competition between
vacuum and thermal modifications and discussing the
consequences for the supernovae explosion scenario.
Section IV contains our conclusions and outlook.

II. EFFECTIVE THEORY

A. General framework

The LSMq, also known as the quark-meson model, is
very suitable for the study of the chiral transition [18]. As

argued in Ref. [19], QCD with two flavors of massless
quarks belongs to the same universality class as the Oð4Þ
LSM, exhibiting the same qualitative behavior at critical-
ity. Besides, the LSM is renormalizable [20] and reprodu-
ces correctly the phenomenology of QCD at low energies,
such as the spontaneous (and small explicit) breaking of
chiral symmetry, meson masses, etc. In spite of the fact
that an effective theory does not require renormalizability
to be well posed, this attribute is highly desirable if one is
interested in investigating the behavior of physical quanti-
ties as the energy scale is modified, which can be accom-
plished via renormalization group methods.
Since its proposal [21], the LSM has been investigated in

different contexts, from the low-energy nuclear theory of
nucleon-meson interactions to ultrarelativistic high-energy
heavy-ion collisions, and also in different varieties, e.g.,
including explicitly constituent-quark degrees of freedom
or not. The thermodynamical aspects of the model were
first considered in the very early days of finite-temperature
field theory [22], and systematic approximations for the
study of the chiral transition started to be implemented
soon afterwards [23], producing an extensive literature.
When used to mimic and study the chiral transition of

QCD, the emphasis was generally on thermal effects
[23–30] rather than considering a cold and dense scenario,
although chiral symmetry restoration at high densities was
predicted quite early [31]. This choice was, of course, well
justified by the stimulating experimental results coming
from high-energy heavy-ion collisions [32], and by the
possibility to compare to numerical output from lattice
QCD [13]. Usually the gas of quarks is treated as a thermal
bath in which the long-wavelength modes of the chiral field
evolve, the latter playing the role of an order parameter in a
Landau-Ginzburg approach. The standard procedure is
then integrating over the fermionic degrees of freedom,
using a classical approximation for the chiral field, to
obtain a formal expression for the thermodynamic poten-
tial from which one can compute all the physical quantities
of interest. In this case, the sigma field is approximated by
the condensate, and the functional integral over sigma
fluctuations is not performed. The fermionic determinant
is usually calculated to one-loop order assuming a homo-
geneous and static background field [33].
In a theory with spontaneous symmetry breaking, the

presence of a condensate will modify the masses. In par-
ticular, in the case of the LSMq the masses of quarks and
mesons will incorporate corrections that are functions of
the chiral condensate, which is a medium-dependent quan-
tity. Therefore, contributions from vacuum diagrams can-
not be subtracted away as trivial zero-point energies since
they contain medium-dependent pieces via effective
masses. So, although the presence of the medium brings
no new ultraviolet divergence, in principle one has to
incorporate carefully finite vacuum contributions that sur-
vive the renormalization procedure. These contributions
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have been very often discarded in studies of the LSMq, but
were shown to play an important role by the authors of
Ref. [34] who incorporate scale effects phenomenologi-
cally. Vacuum contributions were considered at finite
density in the perturbative massive Yukawa model with
analytic exact results up to two loops in Refs. [35,36] and,
more specifically, in optimized perturbation theory at finite
temperature and chemical potential in Ref. [37], also com-
paring to mean-field theory. More recently, this issue was
discussed in a comparison with the Nambu–Jona-Lasinio
model [38], in the Polyakov-LSMq model in the presence
of an external magnetic field [39], and in the quark-meson
model, with special attention to the chiral limit [40].

To describe the chiral phase structure of strong interac-
tions at finite density and vanishing temperature we adopt
the LSMq, defined by the following Lagrangian:

L ¼ �c f½i��@� �mf � gð�þ i�5 ~� � ~�Þ�c f

þ 1

2
ð@��@��þ @� ~� � @� ~�Þ �Uð�; ~�Þ; (1)

where

Uð�; ~�Þ ¼ �

4
ð�2 þ ~�2 � v2Þ2 � h� (2)

is the self-interaction potential for the mesons, exhibiting
both spontaneous and explicit breaking of chiral symmetry.
The Nf ¼ 2 massive fermion fields c f represent the up

and down constituent-quark fields c f ¼ ðu; dÞ. For sim-

plicity, we attribute the same mass, mf ¼ mq, to both

quarks. The scalar field � plays the role of an approximate
order parameter for the chiral transition, being an exact
order parameter for massless quarks and pions. The latter
are represented by the pseudoscalar field ~� ¼ ð�1; �2; �3Þ.
It is customary to group together these meson fields into a
Oð4Þ chiral field� ¼ ð�; ~�Þ. For simplicity, we discard the
pion dynamics from the outset, knowing that they do not
affect appreciably the phase conversion process [28], and
focus our discussion in the quark-sigma sector of the
theory. Nevertheless, pion vacuum properties will be
needed to fix the parameters of the Lagrangian later. As
will be discussed below, the parameters of the Lagrangian
are chosen such that the effective model reproduces cor-
rectly the phenomenology of QCD at low energies and in
the vacuum, such as the spontaneous (and small explicit)
breaking of chiral symmetry and experimentally measured
meson masses.

Since chiral symmetry is spontaneously broken in the
vacuum, it is convenient to expand the � field around
the condensate, writing �ð ~x; �Þ ¼ h�i þ �ð ~x; �Þ, where �
is the imaginary time in the Matsubara finite-temperature
formalism. Although we assume the system to be at tem-
perature T ¼ 0, it is convenient to compute the loop
expansion at finite temperature, taking the limit T ! 0 at
the end. For a dense system, the chiral condensate, h�i, will
be a function of the quark chemical potential, �. Given the

shift above, the fluctuation field � is such that h�i ¼ 0 and
�ð ~p ¼ 0; ! ¼ 0Þ ¼ 0. From the phenomenology, one
expects that h�ið� ! 1Þ � 0 (being equal in the case of
massless quarks).
Keeping terms up to Oð�2Þ, one obtains the following

effective Lagrangian:

L ¼ �c f½i��@� �Mq � g��c f þ 1

2
@��@

��

� 1

2
M2

��
2 �Uðh�iÞ; (3)

where we have defined the �-dependent effective masses

Mq � mq þ gh�i; M2
� � 3h�i2 � �v2: (4)

Linear terms in � can be dropped in the action because of
the condition �ð ~p ¼ 0; ! ¼ 0Þ ¼ 0.
In the effective Lagrangian, the medium-dependent

masses will entangle vacuum and medium contributions
in the loop expansion, rendering the renormalization pro-
cess more subtle. This is a consequence of the presence of
a nonzero �-dependent condensate in the broken phase.
Of course, the ultraviolet divergences are the ones of the
theory in the vacuum, and renormalization is implemented
in the standard fashion by adding medium-independent
counterterms to the original Lagrangian (1). In our case,
though, it is more convenient to introduce counterterms
in the effective theory, so that there are contributions
from pure-vacuum, pure-medium, and vacuum-medium
pieces in the cancellation of ultraviolet divergences.
Renormalization is then implemented by using standard
methods of finite-temperature field theory [33].

B. Cold and dense 1-loop effective
potential and vacuum corrections

The effective potential can be computed exactly and
in closed form following the steps detailed in Ref. [35],
a procedure that can be even generalized to optimized
perturbation theory [37]. Keeping only contributions to
one-loop order, the effective potential is given by

Veffð ��Þ ¼ Uð ��Þ þ�ren
� ð ��Þ; (5)

where �ren
� ð ��Þ is the fully renormalized thermodynamic

potential for the fluctuation effective theory. The latter
corresponds to a Yukawa theory for massive fermions
and a massive scalar, with masses given by (4) as functions
of ��. The thermodynamics of this theory was fully solved
analytically to two loops in the cold and dense regime in

Ref. [35], where all details can be found. In the MS
scheme, �ren

� ð ��Þ can be written as a sum of a medium

contribution
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�ð1Þ
med ¼ �NfNc

1

24�2

�
2�p3

f

� 3M2
q

�
�pf �M2

q log

�
�þ pf

Mq

���
(6)

and a vacuum contribution

�ð1Þ
vac ¼ � M4

�

64�2

�
3

2
þ log

�
�2

M2
�

��

þ NfNc

M4
q

64�2

�
3

2
þ log

�
�2

M2
q

��
; (7)

where u ¼ �pf �M2
q logð�þpf

Mq
Þ, pf is the Fermi momen-

tum, and � is the MS scale. The latter can also be fixed by
vacuum properties, as will be discussed in Sec. II D.

C. Thermal effects

We can also incorporate thermal effects in the calcula-
tion of the effective potential within the LSMq. The in-
clusion of the temperature dependence allows for testing
the validity of the cold (T ¼ 0) approximation at low
temperatures and to investigate if the thermal corrections
to nucleation parameters can play an important role in the
phase conversion process.

At one loop, the well-known temperature- and density-
dependent correction to the thermodynamic potential is
that of an ideal gas of massive sigma particles and con-
stituent quarks (!2

� � k2 þM2
� and E2

q � p2 þM2
q):

�ð1Þ
med; Th ¼ T

Z d3k

ð2�Þ3 log½1� e�!�=T�

� 2TNfNc

Z d3p

ð2�Þ3 flog½1þ e�ðEq��Þ=T�

þ log½1þ e�ðEqþ�Þ=T�g: (8)

D. Parameter fixing

As stated above, the LSMq is adopted as an effective
model for QCD at low energies, so that the parameters g, �,
mq, v, h, and � are fixed in order to reproduce QCD

properties either measured in the vacuum or calculated
numerically via lattice QCD. Therefore, the conditions
for fixing the parameters are imposed on the vacuum
effective potential. Since we aim at comparing results
from cases with different vacuum effective potentials

(namely, U and Uþ�ð1Þ
vac), and even with different pa-

rameter sets,2 it is useful to make explicit the parameter
fixing procedure, consistently.

The conditions for fixing the model parameters are the
following:

(i) The chiral condensate in the vacuum is the pion
decay constant, f� ¼ 93 MeV, or, in terms of the
minimum of the vacuum effective potential,

@Vvac
eff

@h�i
��������h�i¼f�

¼ 0: (9)

(ii) The partial conservation of the axial current yields

h ¼ f�m
2
� ¼ ð93 MeVÞð138 MeVÞ2; (10)

where m� is the pion mass.
(iii) The current quark masses calculated in lattice QCD

(cf., e.g., Ref. [41]) provide

mq ¼ 4:1 MeV; (11)

which we neglect,3 setting mq ¼ 0, for the sake of

comparison with previous model calculations.
(iv) Using the constituent-quark mass in the vacuum as

1=3 of the nucleon mass (mN ¼ 938 MeV), we can
fix the Yukawa coupling, g:

Mqðh�iðpf ¼ 0ÞÞ ¼ Mvac
q ) g ¼ 1

f�

�
1

3
mN �mq

�

¼ 3:32: (12)

(v) The value of the dressed mass of the � field is given
by the experimental value of the mass of the �
meson:

@2Vvac
eff

@h�i2
��������h�i¼f�

¼ ðMvac
� Þ2 � ð600 MeVÞ2: (13)

(vi) The quark condensate is fixed by the lattice result
[including only quarks up and down, we have [41]
h �c fc fivac ¼ �2ð225 MeVÞ3], so that

@Vvac
eff

@mq

��������vac;h�i¼f�

¼ h �c fc fivac: (14)

The conditions (10)–(12) above fix directly the parame-
ters h, mq, and g, independently of the inclusion of quan-

tum corrections to the vacuum thermodynamic potential.
On the other hand, the Eqs. (9), (13), and (14) are coupled
equations to determine the parameters v and � (and �, if
quantum corrections to the vacuum are considered) and
depend on the explicit form of the vacuum effective
potential. In the case without quantum corrections, i.e.,
with the vacuum effective potential being purely the
classical potential (Vvac

eff ¼ U), we find �2 � 20 and

v2 � 7696:8 MeV2. With the addition of the 1-loop

2The case with vacuum logarithmic terms has an extra pa-
rameter: the MS scale �.

3The current quark mass also does not bring any extra quali-
tative feature to the model nor changes significantly the quanti-
tative results concerning the chiral phase transition [36].
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vacuum term �ð1Þ
vac to the vacuum effective potential, the

solution of Eqs. (9), (13), and (14) yields �2 � 16:65, v2 �
3296:89 MeV2, and � � 16:48 MeV.

E. Influence of interactions: Higher-loop corrections

So far, we have only included the effects of interactions
indirectly in the construction of the effective model itself,
through dressed masses and the presence of a nonzero
quark condensate. However, the interaction of the sigma
meson with the medium constituent quarks could in prin-
ciple alter the predicted dynamics for the chiral transition.
The incorporation of such corrections in the calculation of
the effective potential can be implemented via the pertur-
bative technique order by order.

The first interaction correction in the present case
appears at the two-loop order. The contribution to the
effective potential corresponds then to that of the thermo-
dynamic potential of an interacting Yukawa theory with
massive scalars and massive fermions, which was obtained
and analyzed in detail in Ref. [37], including the vacuum
contribution and nonperturbative effects within the opti-
mized perturbation theory framework. Therefore, one has
in principle all the machinery to investigate the influence of
interactions on the phase diagram of the LSMq and the
associated process of homogeneous nucleation. It should
be noted that the full case, including quantum corrections
in the vacuum effective potential, requires the (nontrivial)
solution of the coupled equations (9), (13), and (14) with
the 2-loop result plugged in. Being a more technical analy-
sis, it is out of the scope of this work, concentrated on
quantifying approximately the nucleation predicted within
an effective model for strong interactions at low energies.
We postpone it for a future publication.

III. SURFACE TENSION AND NUCLEATION

Let us now consider the formation of droplets of quark
matter at high density that happens via homogeneous
nucleation [42]. Dynamically this process will occur either
via thermal activation of droplets (thermal nucleation) or
quantum nucleation. The physical setting we have in mind
is the one that gives the best chances for thermal nucleation
of quark droplets in cold hadronic matter found in ‘‘hot’’
protoneutron stars. As discussed in Ref. [9], and previously
in Refs. [43,44], that corresponds to temperatures of the
order of 10–20 MeV [45]. At these temperatures, and in the
presence of a barrier in the effective potential, thermal
nucleation dominates over quantum nucleation. As soon
as the barrier disappears, the spinodal instability is reached
and the mechanism that takes over is the explosive spinodal
decomposition. The range of temperatures under consid-
eration is, then, high enough to allow for thermal nuclea-
tion (quantum nucleation being comparatively negligible
[9,10,46]) and low enough to justify the use of the zero-
temperature effective potential computed previously.

Temperatures of a couple of tens of MeV will not modify
appreciably the equation of state, bringing corrections
OðT2=�2Þ � 1% for the typical values of chemical poten-
tial for the system under consideration. Nevertheless, as
will be shown later, thermal corrections can be important
for the process of nucleation.

A. Method for extracting nucleation parameters from
the effective potential

Since our framework is an effective model, we can only
aim for reasonable estimates and functional behavior, not
numerical precision. Therefore, it is convenient to work
with approximate analytic relations by fitting the relevant
region of the effective potential by a quartic polynomial
and working in the thin-wall limit approximation for
bubble nucleation. Following Refs. [28,47], we can express
the effective potential over the range between the critical
chemical potential,�c, and the spinodal,�sp, in the famil-

iar Landau-Ginzburg form

Veff �
X4
n¼0

an�
n: (15)

Although this approximation is obviously incapable of
reproducing all three minima of Veff , this polynomial
form is found to provide a good quantitative description
of this function in the region of interest for nucleation, i.e.,
where the minima for the symmetric and broken phases, as
well as the barrier between them, are located.
A quartic potential such as Eq. (15) can always be

rewritten in the form

V ð’Þ ¼ 	ð’2 � a2Þ2 þ j’; (16)

with the coefficients above defined as follows:

	 ¼ a4; (17)

a2 ¼ 1

2

�
� a2

a4
þ 3

8

�
a3
a4

�
2
�
; (18)

j ¼ a4

�
a1
a4

� 1

2

a2
a4

a3
a4

þ 1

8

�
a3
a4

�
3
�
; (19)

’ ¼ �þ 1

4

a3
a4

: (20)

The new potentialV ð’Þ reproduces the original Veffð�Þ up
to a shift in the zero of energy. We are interested in the
effective potential only between �c and �sp. At �c, we

will have two distinct minima of equal depth. This clearly
corresponds to the choice j ¼ 0 in Eq. (16) so that V has
minima at ’ ¼ �a and a maximum at ’ ¼ 0. The mini-
mum at ’ ¼ �a and the maximum move closer together
as the chemical potential is shifted and merge at�sp. Thus,
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the spinodal requires j=	a3 ¼ �8=3
ffiffiffi
3

p
in Eq. (16). The

parameter j=	a3 falls roughly linearly from 0, at � ¼ �c,

to �8=3
ffiffiffi
3

p
at the spinodal.

The explicit form of the critical bubble in the thin-wall
limit is then given by [48]

’bðr;�; RcÞ ¼ ’f þ 1

�
ffiffiffiffiffiffi
2	

p
�
1� tanh

�
r� Rc

�

��
; (21)

where ’f is the new false vacuum, Rc is the radius of the

critical bubble, and � ¼ 2=m, with m2 � V 00ð’fÞ, is a

measure of the wall thickness. The thin-wall limit corre-
sponds to �=Rc � 1 [48], which can be rewritten as
ð3jjj=8	a3Þ � 1. Nevertheless, it was shown in [28,49]
for the case of zero density and finite temperature that the
thin-wall limit becomes very imprecise as one approaches
the spinodal (this is actually a very general feature of this
description [42]). In this vein, also as remarked above, the
analysis presented below is to be regarded as semiquanti-
tative, and we aim for estimates.

In terms of the parameters 	, a, and j defined above, we
find [28,47]

’t;f � �a� j

8	a2
; (22)

� ¼
�

1

	ð3’2
f � a2Þ

�
1=2

(23)

in the thin-wall limit. The surface tension, �, is given by

� �
Z 1

0
dr

�
d’b

dr

�
2 � 2

3	�3
; (24)

and the critical radius is obtained from Rc ¼ ð2�=�VÞ,
where �V � Vð�fÞ � Vð�tÞ � 2ajjj. Finally, the free

energy of a critical bubble is given by Fb ¼ ð4��=3ÞR2
c,

and from knowledge of Fb one can evaluate the nucleation

rate �� e�Fb=T . In calculating thin-wall properties, we
shall use the approximate forms for �t, �f, �, and �V

for all values of the potential parameters.

B. Results for nucleation in the cold and dense LSM

In what follows, we consider the LSM with quarks in the
absence of vacuum corrections. The effective potential up

to 1-loop order is then given by Eq. (5) with�ren
� ¼ �ð1Þ

med.

This corresponds to the standard case, adopted frequently
in the literature (cf., e.g., Ref. [27]).

Using the method described in the previous section, we
characterize quantitatively the nucleation process pre-
dicted within this case, calculating different nucleation
parameters. In this section, we present results for both
metastable regions, above and below the critical chemical
potential �crit ¼ 305:03 MeV, which correspond, respec-
tively, to the nucleation of quark droplets in a hadronic

environment and the formation of hadronic bubbles in a
partonic medium.
In Fig. 1, the critical radius, namely, the radius of the

critical bubble, is displayed. Any bubble created in the
system via external influences or thermal fluctuations
will either grow or shrink unless its radius equals the
critical value, which corresponds to the threshold between
suppressed and favored bubbles. For radii bigger than the
critical radius, the minimization of energy implies that the
droplet will grow and eventually complete the phase con-
version. The critical radius goes to zero at the spinodal
curves, where the metastable false vacuum becomes un-
stable (the barrier disappears) and the phase conversion
occurs explosively via the spinodal decomposition pro-
cess.4 On the critical line the vacua become degenerate
so that both of them are stable yielding no nucleation, or
equivalently, a divergent critical radius. In the case of the
chiral transition in the LSM with quarks, we obtain that
the critical radius is Rc < 10 fm over about �90% of the
metastable regions.
The correlation length � which provides a measure

of the size of the bubble wall is plotted in Fig. 2, in units
of the critical radius. As discussed in the previous section,
the thin-wall approximation relies on the assumption that
the ratio between the surface correlation length � and the
radius of the critical bubble is small. Figure 2 shows clearly
that this is a reasonable condition in the vicinity of the
critical line, away from the spinodals.
The surface tension is a key parameter in quantifying the

nucleation process in a given medium since it measures
the amount of energy per unit of area that is spent in the
construction of a surface between the phases. In Fig. 3 we
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FIG. 1 (color online). Critical radius as a function of the quark
chemical potential in the two metastable regions (between the
spinodals). The arrows indicate the critical chemical potential.

4In the thin-wall approximation, which is a poor description of
the regions close to the spinodals, the critical radius does not
vanish, only becomes very small. The same is true for other
quantities, such as the surface tension.
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show our result for the surface tension, �, for the
chiral transition in the cold and dense LSM with quarks.
The surface tension assumes values between �4 and
�13 MeV=fm2, being, throughout the whole metastable
region, of the order of magnitude that renders the forma-
tion of quark matter viable during a supernova explosion,
according to Ref. [8]. The biggest values occur near criti-
cality, since this domain is characterized by large barriers
and a small free energy difference between the true and
false vacua. It should be noted that those values are well
bellow previous estimates of this quantity, as will be dis-
cussed in the conclusion.

We have also estimated the nucleation rate for homoge-

neous nucleation [50,51] as �� T4
fe

�Fb=Tf , where Fb is the

free energy of the critical-bubble configuration and
Tf ¼ 30 MeV is an ad hoc temperature. Applying the

expression above for the nucleation rate in this case means
that we are neglecting the temperature dependence of the
critical-bubble free energy in the exponent. The results are
shown in Fig. 4 for both metastable regions. The nucleation

rate falls abruptly as the chemical potential approaches its
critical value.
It is interesting to point out that the difference in the

size of the metastable regions above and below criticality
might play an important role in determining whether nu-
cleation is a viable process of phase conversion for a given
system, as compared to spinodal decomposition scenarios
or even if the lifetime of the system represents enough
time for nucleation to take place. It is clear in Fig. 4, for
instance, that the domain in chemical potential for which
the nucleation rate assumes sizable values is larger at the
metastable region corresponding to bubble formation of
hadronic matter in a partonic medium.

C. Effects from vacuum terms versus
thermal corrections

Having presented in the subsection above the important
parameters for nucleation and discussed their results for
the zero-temperature chiral transition in the LSMq, let us
now analyze the influence of quantum logarithmic terms
in the vacuum effective potential as well as thermal
corrections.
In this section we focus on the metastable region above

the critical chemical potential, aiming for thermal nuclea-
tion of quark-matter droplets in compact objects and espe-
cially supernovae explosions. In this vein, we also keep
relatively low temperatures when including thermal cor-
rections, up to T ¼ 30 MeV. The systematic inclusion of
thermal corrections provides a measure of the validity of
the zero-temperature approximation for the thermodynam-
ics and phase structure in low-temperature scenarios such
as those found in compact objects. We find that results for
the nucleation parameters up to T ¼ 10 MeV present
variations within �10% of the zero-temperature values,
displayed in the previous section.
In Figs. 6–9, the role played by temperature corrections

and quantum vacuum effects is presented. More specifi-
cally, we compare results for the three following situations:
(a) classical vacuum effective potential with thermal
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FIG. 2 (color online). Ratio between the correlation length �
and the critical radius Rc as a function of the quark chemical
potential in the two metastable regions.
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FIG. 3 (color online). Surface tension as a function of the
quark chemical potential in the two metastable regions.
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FIG. 4 (color online). Nucleation rate as a function of the
quark chemical potential in the two metastable regions.
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corrections for T ¼ 30 MeV, (b) quantum vacuum effec-
tive potential at zero temperature, (c) classical vacuum
effective potential at zero temperature (i.e., the results
shown in the last subsection). Each case is associated
with a different critical chemical potential [indicated
by arrows in the plots; the normalization �crit;0 ¼
305:03 MeV corresponds to the critical chemical potential
of the case (c), of the last subsection] and also a different
spinodal chemical potential (denoted by the vertical,
dashed lines).

Concerning the modification of the metastable regions,
we show that the quantum vacuum corrections increase
significantly the domain in chemical potential in which
metastability persists; the metastable region in the presence
of quantum vacuum terms is �40% bigger than the one
associated with the classical vacuum effective potential.
This feature indicates that such corrections might generate
large differences in the dynamic evolution of the system,
even though the absolute value of the critical chemical
potential itself shifts only �2%.

During the dynamical process of phase conversion, the
density is increased (e.g., via gravitational pressure in the
supernova explosion scenario) and therefore the free
energy required for including a new quark in the system
also augments. The mapping between density and quark
chemical potential within the cases we consider is plotted
in Fig. 5. The discontinuities signal the first-order phase
transition that restores chiral symmetry at high energies.
As the evolving system reaches a high enough density, it
penetrates the metastable region above the critical chemi-
cal potential, where higher densities are associated with
higher supercompression.

It is clear that the values of density predicted below the
transition are unrealistically low. This is a consequence of
the fact that the LSMq fails to describe nuclear matter.
Being an effective theory constructed with the purpose of

describing the chiral symmetry features of strongly inter-
acting matter, the LSMq does not predict the low-energy
nuclear matter properties or the gas-liquid transition that
forms it. However, since our ultimate interest is investigat-
ing the formation of quark matter in astrophysical pro-
cesses involving ultracompact objects, the framework
most suited is exactly one that describes the high-energy
transitions of strong interactions, namely, chiral restoration
and/or deconfinement. We choose therefore the LSMq and
analyze the nucleation of chirally symmetric droplets in a
strongly interacting medium.
In order to interpret the results for the nucleation

parameters, one should keep in mind the variation of the
metastable regions and its implication on the value of
chemical potential that needs to be reached above the
respective criticality, i.e., the amount of supercompression.
Figure 6 shows the variation of the radius of the critical

bubble, while Fig. 7 displays the correlation length (or
equivalently the approximate width of the bubble wall)
for the three cases. A direct consequence of the shifting
of the metastable domain is the fact that, for fixed chemical
potential, the critical radius decreases significantly both
when one includes quantum vacuum corrections [curve
(b)] or in the presence of thermal effects [curve (a)].
However, the amount of supercompression needed for
reaching a certain viable value of critical radius clearly
increases when one includes quantum corrections and
decreases in the case with thermal corrections. Therefore,
there is a nontrivial competition between those effects:
while quark-matter nucleation is disfavored by the inclu-
sion of quantum vacuum corrections, it is favored by
thermal corrections to the nucleation parameters.
The competition between vacuum and thermal correc-

tions is more explicitly shown by our findings for the
surface tension, displayed in Fig. 8. As compared to
the zero-temperature, classical computation [curve (c)],
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FIG. 5 (color online). Density in units of the nuclear saturation
density n0 ¼ 0:16 fm�3 as a function of the quark chemical
potential in the cold and dense LSM [curve (c)], including
vacuum terms [curve (b)] and thermal corrections [curve (a)].
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FIG. 6 (color online). Critical radius in the nucleation region
of quark droplets as a function of the quark chemical potential in
the cold and dense LSM [curve (c)], including vacuum terms
[curve (b)] and thermal corrections [curve (a)].
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the establishment of an interface between quark-matter
droplets and the hadronic medium costs more with the
incorporation of quantum corrections in the effective
potential. On the other hand, finite-temperature terms
tend to push the surface tension down, reaching a minimum
of only �3 MeV=fm2, facilitating the surface formation.
Therefore, if the environment in the core of a compact
object is cold enough and if the effective theory including
quantum corrections in the vacuum is the most suited for
describing the chiral transition, then the surface tension can
be as high as �17:5 MeV=fm2 near criticality rendering
quark-matter nucleation much slower and even an improb-
able phenomenon.

Analogous results for the nucleation rate � can be seen
in Fig. 9. Once again, the amount of supercompression
associated with a given chemical potential should be kept

in mind. The nucleation rate falls abruptly for chemical
potentials approaching the respective critical values. In the
vicinity of the spinodals, the nucleation rate is dominated
by the preexponential factor and reaches sizable values,
around �0:1 MeV=fm3.

D. Consequences for quark-matter-induced
supernova explosion scenario

To contribute to the investigation of the possibility of
nucleating quark-matter droplets during the early post-
bounce stage of core-collapse supernovae, we follow
Ref. [9] and define the nucleation time as being the time
it takes for the nucleation of a single critical bubble inside a
volume of 1 km3, which is typical of the core of a proto-
neutron star, i.e.,

�nucl �
�

1

1 km3

�
1

�
: (25)

Figure 10 shows this quantity as a function of the
normalized chemical potential for the three scenarios con-
sidered in this analysis. The relevant time scale to compare
is the time interval the system takes from the critical
chemical potential to the spinodal during the supernova
event, if it ever reaches such high densities in practice.
Implicit in the definition above is the approximation of
constant density and temperature over the core, which is
fine for an estimate, since density profiles are quite flat in
this region of the star. The typical time scale for the early
postbounce phase is of the order of a fraction of a second,
so that the time within the metastable region is smaller, in
the ballpark of milliseconds.
Keeping these simplifications in mind, together with the

caveat that the LSMq does not describe nuclear matter
besides the chiral properties of strong interactions, we
show in Fig. 9 that vacuum corrections tend to increase
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FIG. 9 (color online). Nucleation rate in the nucleation region
of quark droplets as a function of the quark chemical potential in
the cold and dense LSM [curve (c)], including vacuum terms
[curve (b)] and thermal corrections [curve (a)].
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FIG. 8 (color online). Surface tension in the nucleation region
of quark droplets as a function of the quark chemical potential in
the cold and dense LSM [curve (c)], including vacuum terms
[curve (b)] and thermal corrections [curve (a)].

FIG. 7 (color online). Ratio between the correlation length �
and the critical radius Rc as a function of the quark chemical
potential in the cold and dense LSM [curve (c)], including
vacuum terms [curve (b)] and thermal corrections [curve (a)].
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the density depth required for efficient nucleation whereas
thermal corrections push in the opposite direction, consis-
tently with the results discussed in the previous subsection.
Our results for the nucleation time, together with those for
the surface tension, tend to favor the best scenario for
nucleation of quark matter in the supernova explosion
scenario considered in Ref. [9], especially when thermal
corrections with physical temperatures are included. To a
great measure, this happens because the nucleation time,
and the whole process of phase conversion, depends very
strongly on the surface tension, since it enters cubed in the
Boltzmann exponential of the rate �.

IV. CONCLUSIONS AND OUTLOOK

In this paper we have computed the effective potential

for the linear sigma model with quarks in theMS scheme at
zero or low temperature and finite quark chemical poten-
tial, including vacuum and medium fluctuations. We have
discussed the issues related to the vacuum contributions
and the parameter fixing in the presence of these correc-
tions. Having the full effective potential, we studied ho-
mogeneous nucleation in a framework that allowed for
analytic calculations, given by a potential fit by a quartic
polynomial and the thin-wall approximation. All the rele-
vant quantities were computed as functions of the chemical
potential (or the baryonic density), the key function being
the surface tension.

The value of the surface tension for the QCD phase
transitions could actually play important roles in different
physical phenomena. As discussed above, if this value is
small enough, quark-matter formation could occur during
core-collapse supernovae explosions, providing an alter-
native dynamics and even an observable signal of the
QCD phase transition within compact objects. Moreover,
a reasonably small surface tension between partonic and

hadronic phases could also contribute to allow for different
compact star structures including mixed phases, as argued
in Ref. [52].
Estimates for the surface tension between a quark phase

and hadron matter were considered previously in different
contexts. In a study of the minimal interface between a
color-flavor locked phase and nuclear matter in a first-order
transition, the authors of Ref. [53] use dimensional analysis
and obtain�� 300 MeV=fm2 assuming that the transition
occurs within a Fermi in thickness. Taking into account the
effects from charge screening and structured mixed phases,
the authors of Ref. [54] provide estimates in the range of
50–150 MeV=fm2 but do not exclude smaller or larger
values.
In this paper we computed the surface tension as a

function of quark chemical potential (or as a function of
baryon density) within the linear sigma model, isolating
the role played by quantum vacuum terms and thermal
corrections. In particular, we show that the model predicts
a surface tension of �� 5–15 MeV=fm2, rendering nu-
cleation of quark matter possible during the early post-
bounce stage of core-collapse supernovae. Including
temperature effects and vacuum logarithmic corrections,
we find a clear competition between these features in
characterizing the dynamics of the chiral phase conversion,
so that if the temperature is low enough the consistent
inclusion of vacuum corrections could help preventing
the nucleation of quark matter. As discussed in Sec. II E,
effects from interactions between the sigma field and the
quarks that come about at two-loop order could in principle
contribute to this competition as a third sizable modifica-
tion and should be investigated as well.
The linear sigma model, as stated previously, does not

contain essential ingredients to describe nuclear matter;
e.g., it does not reproduce features such as the saturation
density and the binding energy. Therefore, the results
obtained in this paper should be considered with caution
when applied to compact stars or the early Universe. It is an
effective theory for a first-order chiral phase transition in
cold and dense strongly interacting matter, and allows for a
clean calculation of the physical quantities that are relevant
for homogeneous nucleation in the process of phase con-
version. In the spirit of an effective model description, our
results should be viewed as estimates that indicate that the
surface tension is reasonably low and falls with baryon
density, as one increases the supercompression. First-
principle calculations in QCD in this domain are probably
out of reach in the near future. Therefore, estimates within
other effective models would be very welcome.
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