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Large-N QCD with heavy adjoint fermions emulates pure Yang-Mills theory at long distances.

We study this theory on a four- and three-torus, and analytically argue the existence of a large-small

volume equivalence. For any finite mass, the center-symmetry unbroken phase exists at sufficiently

small volume and this phase can be used to study the large volume limit through the Eguchi-Kawai

equivalence. A finite-temperature version of volume independence implies that thermodynamics on

R3 � S1 can be studied via a unitary matrix quantum mechanics on S1, by varying the temperature. To

confirm this nonperturbatively, we numerically study both zero- and one-dimensional theories

by using Monte Carlo simulation. The order of finite-N corrections turns out to be 1=N. We introduce

various twisted versions of the reduced QCD which systematically suppress finite-N corrections.

Using a twisted model, we observe the confinement/deconfinement transition on a 13 � 2 lattice.

The result agrees with large volume simulations of Yang-Mills theory. We also comment that

the twisted model can serve as a nonperturbative formulation of the noncommutative Yang-Mills

theory.
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I. INTRODUCTION

Recently Yang-Mills (YM) theory with adjoint fermi-
ons, QCD(Adj), has attracted much interest. The main
impetus behind this is a network of exact large-N equiv-
alences. The starting point is the large-N orientifold
equivalence, which states that the bosonic subsector of
this theory is equivalent to the charge-conjugation even
subsector of QCD with fermions in antisymmetric rep-
resentation [QCD(AS)] [1], provided symmetries defin-
ing the neutral subsectors are not spontaneously broken
[2]. QCD(AS) reduces to the ordinary QCD with funda-
mental quarks when N ¼ 3, and is a natural large-N
generalization thereof [3].1 The second important link
is an orbifold equivalence: when quarks are massless or
light with respect to strong scale �QCD, QCD(Adj) com-

pactified on a Euclidean four-torus exhibits volume in-
dependence, thanks to its unbroken prerequisite (center
and translational) symmetries at any radius [7]. Thus,
through the Eguchi-Kawai (EK) equivalence [8], one can
study large-N QCD on R4 by using a unitary matrix
model on a single-site lattice. QCD(Adj) also provides
new insights into gauge dynamics, especially on
small S1 � R3. This theory exhibits new nonperturbative
phenomena, most strikingly confinement due to magnetic
bions, a new class of non-self-dual topological

excitations [9,10], distinct from monopoles and
instantons.
The statement of the volume independence [7,8,11,12]

is as follows. Consider SUðNÞ gauge theories on R4, with
or without fermions, toroidally compactified on a four
manifold R4�d � Td. For simplicity, we assume the mat-
ter fields are in adjoint representation and, hence, the
theory has a global ðZNÞd center symmetry, described
most easily as gauge rotations aperiodic up to an element
of the center group. The order parameters of this symme-
try are Wilson lines wrapping distinct toroidal cycles. The
observables singlet under the center transformation con-
stitute the neutral sector. The volume independence states
that dynamics of the neutral sector observables is inde-
pendent of the size of the torus provided the center
symmetry and translational invariance are not spontane-
ously broken. Among such observables are nonperturba-
tive mass spectrum, free energy densities, and
deconfinement transition temperature, just to count a
few. This is clearly an extraordinarily well justified reason
to study aspects of the small volume, large-N gauge
theories.
In fact, center symmetry is spontaneously broken in

most examples. In the original Eguchi-Kawai model [8],
which is a one-point reduction of Wilson’s bosonic lattice
gauge theory, the breakdown can be shown by one-loop
calculation around a diagonal background [13]. The
quenched [13,14] and twisted [15] modifications of the
Eguchi-Kawai model were proposed to preserve the sym-
metry, but after two decades, it is now understood that both
modifications fail nontrivially due to nonperturbative
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1The phenomenology of QCD(AS) is examined in [4–6].
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effects [16–19].2 3 Similarly, in any gauge theory compac-
tified thermally on R3 � S1, or on a torus with at least one
thermal boundary condition, center symmetry breaks spon-
taneously in the high temperature deconfined phase, and
volume independence is only valid in the low temperature
confined phase, above a critical volume [12].

Kovtun, one of us (M. Ü.), and Yaffe, motivated by the
quantitative differences between thermal and circle (non-
thermal) compactifications, showed that if light or massless
adjoint fermions endowed with periodic boundary condi-
tions are added to Yang-Mills theory, then the center
symmetry is stabilized at small volume dynamically [7].
(Also see the discussion in Refs. [24–26].)

For heavy fermions, the infrared physics of QCD(Adj)
onR4 emulates the bosonic Yang-Mills theory. Since heavy
fermions are also capable of restoring center symmetry at
sufficiently small volume, this may provide an opportunity
for a working Eguchi-Kawai reduction for an ‘‘almost’’
Yang-Mills theory. However, this is not straightforward.
When one dimension is compactified, QCD(Adj) with
massive fermions on small S1 � R3 exhibits an intricate
phase structure. This can be deduced from a one-loop
effective action of the Wilson line [25,27], simulations on
an asymmetric torus mimicking S1 � R3 [28], and studies
on S1 � S3 [29] which also mimics S1 � R3 due to topo-
logical reasons, as explained in [30]. In all these cases, the
ZN symmetry along S1 is intact at large radius, and as one
decreases the radius, it breaks down completely at some
critical point and then gradually restores to various sub-
groups of the center symmetry. ZN symmetry is restored
fully only at mLN � few, where L is the compactification
radius and m is the fermion mass in continuum. This is
troubling because the volume independence (strong cou-
pling, non-Abelian confinement) domain is LN�YM � 1
[31], whereas, for heavy fermions, m * �YM, the first
condition implies LN�YM & few which is a volume de-
pendent, weak-coupling Abelian confinement domain [31].

One might expect a similar pattern for a single-site
lattice model based on this weak-coupling intuition.
However, recent important work of Bringoltz and Sharpe
shows that ðZNÞ4 remains intact in a rather generous
‘‘funnel,’’ in the fermion mass, lattice coupling plane,
covering the continuum limit of Yang-Mills theory [32]
(also, see [33]), corresponding to the limit where the bare
fermion mass is larger than cutoff scale. In particular, they
observe a ðZNÞ4 restoration at ma�OðN0Þ, where m is

bare lattice mass and a is lattice spacing. Why and how
the full center-symmetry restoration takes place at ma�
OðN0Þ is the main theoretical problem that we wish to
address in this work.

Results

To set the notation, we first express the action of con-
tinuum QCD(Adj) on a four manifold:

S¼ N

�4d

Z �

0
dt

Z
d3xTr

�
1

4
F2
�� þ

XND
f

f¼1

�c fð 6DþmÞc f

�
; (1)

where c f are Dirac fermions with massm. (Generalization

to different values of masses is straightforward.) In gen-
eral, we will consider this theory on four-torus T3 � S1,
with sizes L and �, respectively. If we impose the anti-
periodic boundary condition on fermions along the tempo-
ral direction, this action describes the finite-temperature
system and � corresponds to the inverse temperature. For
periodic boundary conditions on fermions in all directions,
we consider � ¼ L, a symmetric four-torus.
We show that, with periodic boundary conditions, ðZNÞ4

symmetry is not broken at sufficiently small-L, although it
can be broken at some intermediate volume. [More pre-
cisely, ðZNÞ4 symmetric and broken phases can coexist,
while quantum tunneling between them is suppressed in
the large-N limit.] The argument, which will be quantified
in Sec. III A, is very simple—although the one-loop effec-
tive action suggests the existence of the attraction between
Wilson line eigenvalues at small separation, the eigenval-
ues spread due to nonperturbative quantum fluctuations
[34], and the one-loop calculation can be trusted only at
large separations where it leads to repulsion. The estimates
of nonperturbative fluctuations are outside the reach of
one-loop perturbation theory and often overwhelm the
implications of one-loop analysis. Because of nonpertur-
bative effects, we find that the full center restoration
takes place at mL�OðN0Þ, which is compatible with
LN�YM � 1 for m * �YM.
Our main results are
(1) Small-large volume equivalence: The QCD(Adj)

with heavy fermions of mass m on R4, or T4 with
radii L * ��1, is equivalent to the theory on a small
T4, with radii mL<OðN0Þ, due to unbroken ðZNÞ4
center symmetry associated with the cycles on T4.
This is a small-large volume equivalence with an
intermediate center-symmetry broken phase, where
volume independence is not valid. This is depicted
in the following figure.

(2) Finite-temperature equivalence: The theory on
R3 � S1 at finite temperature is equivalent to the

2The failure of these modifications can be cured by introduc-
ing supersymmetry [19,20]. Reference [21] proposed a concrete
way to construct 4d N ¼ 4 super Yang-Mills theory by using
the Eguchi-Kawai equivalence, which preserves 16 supersym-
metries. Reference [22] studied the Eguchi-Kawai reduction in
the strong coupling domain of N ¼ 4 super Yang-Mills by
using AdS/CFT and D-branes.

3Recently, a new limiting procedure for the twisted Eguchi-
Kawai model, which aims to prevent center breaking, has been
proposed [23].
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one on T3 � S1 provided the ðZNÞ3 center symmetry
associated with the cycles on T3 is not spontane-
ously broken. The phase transition in the thermody-
namic R3 � S1 limit can be studied by using a
large-N reduced model on small T3 � S1 by dialing
�. This form of equivalence is also useful for
Hamiltonian formulation and extraction of the non-
perturbative spectrum of the theory.

(3) Twisted QCD: In compactified QCD(Adj), finite-N
corrections turn out to be order 1=N, as opposed to
the perturbative expectation on R4 [35], which is
order 1=N2. There are two plausibly related explan-
ations for this behavior, whose footprints can be
seen in finite-volume perturbation theory. In a
weak-coupling center-symmetric background, the
volume is only enhanced by a factor of N, and the
effective volume is Veff � NV. Finite-N corrections
should scale as finite-volume corrections. The other
is, in compact space, one cannot gauge away zero-
momentum modes. Typically, there are order N
bosonic and fermionic zero modes, which may
generate nonperturbative 1=N effects [36]. Both
problems can simultaneously be cured and 1=N
corrections can systematically be improved by using
twisted boundary conditions.4 We refer to the latter
as TQCD(Adj) as per [15].

Our results have interesting spin-offs for noncommuta-
tive theories, phase transition in pure Yang-Mills theory,
and orientifold equivalence. Adding massive or massless
adjoint fermions to the twisted Eguchi-Kawai (TEK)
model cures the global instability of the model [17–19].
Therefore, our formulation can be used to provide a non-
perturbative definition of noncommutative bosonic Yang-
Mills theory and noncommutative QCD(Adj). By using the
reduced matrix model for TQCD(Adj) with very heavy
adjoint fermions on 13 � 2 lattices, we observe the con-
finement/deconfinement transition at bare coupling bc ¼
0:32–0:33. Large volume simulations for pure Yang-Mills
theory give similar results, in accordance with the finite-
temperature version of equivalence. [For example, SUð8Þ
YM theory simulated on 103 � 5 lattices gives, in the
extrapolated infinite volume limit, bc � 0:34 [40] (see
also [41]). The small difference is due to 1=N effects, the
existence of heavy fermions in our reduced model, and the
difference of numbers of sites along the temporal direc-
tion.] We hope that the unitary matrix model can be used to
gain insight into the nature of the deconfinement transition
of the infinite volume theory.

Finally, combined with the large-N orientifold equiva-
lence between (T)QCD(Adj) and QCD(AS), thermal prop-
erties of the QCD(AS) can also be studied by using the
large-N reduced model for TQCD(Adj) at finite tempera-
ture [1,2,30].5 Our results for massive QCD(Adj) can be
regarded as a first step towards this direction of research.

II REVIEW OF ORIGINAL
EGUCHI-KAWAI PROPOSAL

In this section, we give a brief review of the Eguchi-
Kawai equivalence. Our aim is not to repeat the original
works on the subject; rather we wish to point out two
important ingredients which will be useful. These are
perturbative and nonperturbative quantum fluctuations in
the matrix model.
The EK model is the dimensional reduction of Wilson’s

lattice gauge theory action down to a 14 lattice, i.e., a one-
site matrix model. The action of the reduced model is

S0d ¼ �2bN ReTr

�X
�<�

V�V�V
y
�V

y
�

�
; (2)

where V�ð� ¼ 1; 2; 3; 4Þ are unitary matrices. b is the bare

inverse ’tHooft coupling constant. To probe continuum
physics, b should be chosen appropriately depending on
the lattice spacing a. This action has a ðZNÞ4 global center
symmetry

V� ! e2�in�=NV�; ðn� ¼ 0; 1; � � � ; N � 1Þ: (3)

The reduced model (2) is equivalent to the translationally
invariant subsector of the lattice theory with an arbitrary
number of sites, provided center and translational symme-
tries are not broken. These are the necessary and sufficient
symmetry realization conditions for the large-N volume
independence.

A. Perturbative fluctuations and one-loop potential

The realization of center symmetry can be determined
by integrating out weakly coupled perturbative modes in
the background of diagonal, commuting Wilson lines:

V� ¼ diagðei�1� ; � � � ; ei�N�Þ; ½V�; V�� ¼ 0: (4)

The resulting one-loop action reads (we parallel the dis-
cussion in the one-site matrix model and continuum theory
on small T4)

4The relation between ‘‘effective’’ volume and N is discussed
in many places (for a review, see [37]). The observations that
twisted boundary conditions can be used (i) to systematically
reduce finite-volume corrections is given in Ref. [38] and (ii) to
lift bosonic and fermionic zero modes is given in Ref. [39]. We
give analytic and numerical evidence suggesting that the two are
indeed related.

5Earlier work on deconfinement transition in large-N QCD
(Adj) and QCD(AS) in the weak-coupling limit of small S3 � S1

showed that the critical temperatures agree [30], up to 1=N
corrections.
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S1 loop ¼
8><
>:
2
P
a<b

log

�
4
a2

P
4
�¼1 sin

2

�
�ab�
2

��
on 14 � lattice

2
P
a<b

P
~k2Z4

log

�P
4
�¼1

ð2�k�þ�ab� Þ2
L2

�
onT4 � continuum,

(5)

where �ab� ¼ �b� � �b�. Note that the one-site matrix model and T4 have the same symmetry properties, both invariant
under �ab� ! �ab� þ 2�.6 It is also convenient to rewrite (5) by using the Wilson lines. This can be done by a Fourier
transformation for the former and by a Poisson resummation for the latter:

S1�loop½V1; . . . ; V4� ¼
8><
>:

P
~n2Z4nf0g

Pð ~nÞðjtrðVn1
1 � � �Vn4

4 Þj2 � NÞ on 14 � lattice

� 1
�2

P
~n2Z4nf0g

1
j ~nj4 ðjtrðVn1

1 � � �Vn4
4 Þj2 � NÞ onT4 � continuum,

(6)

where

Pð ~nÞ ¼ �
Z d�

�
e�8�In1ð2�Þ . . . In4ð2�Þ; (7)

and Inð2�Þ is the modified Bessel function of the second
kind; Inð2�Þ ¼ ð2�Þ�1

R
2�
0 d�e2� cosð�Þei�n. In the one-site

model, Fourier coefficients are slightly more complicated,
but the main result is the same as in continuum T4. The
basic point is the negative definiteness of the integral in (7).
Moreover, at a large-winding number, the integral can be
evaluated analytically by localization, and converges to the
continuum T4 result quickly:

Pð ~nÞ � 0; 8 ~n 2 Z4 n f0g;

Pð ~nÞ � � 1

�2

1

j ~nj4 ; for j ~nj � 1:
(8)

The one-loop action (5) has IR singularities whenever two
(or more) eigenvalues coincide. This is also manifest in (6);
both series are conditionally convergent at a large-winding
number, and exhibit logarithmic divergence for coinciding
eigenvalues. These issues are discussed thoroughly in the
Appendix. Physically, at these points, there are extra mass-
less degrees of freedom which should not have been inte-
grated out. In other words, the zeroth order assumption that
one can expand the fluctuations around commuting saddles
(4) is not always correct. As discussed in the Appendix, the
IR divergence can be regularized and meaningful results
can be extracted from (5). The result is, of course, well-
known; (5) generates an eigenvalue attraction, or in (6) the
‘‘masses’’ for Wilson lines are all negative and, conse-
quently, eigenvalues clump. However, neither implies
that all the eigenvalues are coincident. Because of non-
perturbative effects, the eigenvalues spread. In order to
estimate the size of the eigenvalue bunch, we may study
the theory around one of its global minima, V� � 1.

B. Nonperturbative fluctuations and
size of eigenvalue bunch

Parametrizing V� � eiaX� , we observe that around the

minimum of the one-loop potential, all the fluctuations are
quartic (as opposed to being quadratic). The action ex-
panded around one of the minima, the V� � 1 configura-

tion, gives

S0d ¼ N

�0d

Tr

�
� 1

4
½X�; X��2

�
; (9)

where

�0d ¼
8<
:

1
2ba4

on 14 � lattice

�4dð1LÞ
L4 � 1

logð 1
L�ÞL4 onT4 � continuum,

(10)

is the zero-dimensional ’t Hooft coupling. In the lattice, b
is, of course, a parameter that one can choose at will.
However, to probe continuum physics, it needs to scale
as b� logð1=a�Þ by asymptotic freedom.
Since the Hermitian matrix model is given in terms of

noncompact matrices, it is not a priori guaranteed that
the theory actually exists quantum mechanically.
Reference [42] shows that the partition function of the
theory defined through (9) does not exist for SUð2Þ, but
exists for SUðNÞ for N 	 3. In the next section, we will
indeed see closely related Hermitian matrix models which
do not exist for any N. Despite this, the Hermitian matrix
model defined through (9) is useful. It can be employed to
determine the interaction between eigenvalues and to esti-
mate the root-mean-square fluctuations of X� matrices.

(We also refer to this as the size of the eigenvalue bunch.)
Scalar eigenvalues in 0d theory are related to the phases

� of the Wilson lines winding on temporal and spatial
directions by

Lx�a ¼ ��a ða ¼ 1; � � � ; NÞ: (11)

The ’t Hooft coupling �0d has the dimension of ðmassÞ4 and
its value sets the typical mass scale of the 0d theory (9). In
particular, typical fluctuation of the eigenvalues of the
dynamical fields is set by this scale. Because of the generic
noncommutativity of X� matrices, the relative positions of

6The relation between the continuum one-loop effective action
on T4 and the one-loop effective action for the one-site theory
given in Eq. (5) is analogous of the one between the action of the
XY model and its Villain form.
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the eigenvalues make sense only when their separation is of

order or larger than �1=4
0d [34].

The one-loop effective action of the matrix model around
the diagonal background can be calculated if all eigenvalue

pairs are well-separated j ~xa � ~xbj � �1=4
0d , corresponding

to the case where all eigenvalues are weakly coupled.
Integrating out massive ‘‘W bosons’’ (off-diagonal ele-
ments) by using the background field gauge yields

S1 loop½x�ab� ¼ 2
X
a<b

logj ~xa � ~xbj2: (12)

Clearly, this is nothing but Eq. (5) restricted to its Kaluza-
Klein (KK) zero mode. Thus, as in the one-loop potential
(5) of the full theory, the Hermitian model as well predicts
eigenvalue attraction and also exhibits the same IR singu-
larity whenever two eigenvalues coincide.

More importantly, the Hermitian matrix model (9)
allows the determination of the typical size of eigenvalue
fluctuations. In ’t Hooft’s large-N limit, the root-mean-
square fluctuations �X are

�X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

N
trðX2

�Þ
�s
� �1=4

0d : (13)

This result has various interesting implications.
The analysis of the continuum T4 and weak-coupling

(b ! 1) domain of lattice gauge theory exhibits similar

behavior. Let L ¼ a. Then, �X � 1=½logð1=L�Þ�1=4L <
1=L. At asymptotically small L, the size of the eigenvalue
bunch is much smaller than the size 2�=L of the dual torus
where eigenvalues are residing. In this domain, clearly,
nonperturbative fluctuations cannot overwhelm broken
center symmetry.

It is well-known that Eguchi-Kawai reduction holds in
the strong coupling domain of lattice gauge theory, for
0 � b < bc ¼ 0:19. This is a lattice domain unrelated to
continuum physics, whereas the above analysis is valid for
sufficiently large b. What happens to �X if we decrease b
to being of order few? Of course, this is unjustified, but
demonstrates the trend of the root-mean-square fluctua-

tions. Naive use of the �X � 1=b1=4a shows that when

b1=4 is order one, the quantum fluctuations may be as large
as the size of the dual torus. In this domain, eigenvalues
feel the size of the compact space they live in and we
expect the strong fluctuations to lead to center restoration.
This is indeed the case.

In this paper, we will study Yang-Mills theory with
massive adjoint fermions with mass m. When m ¼ 1,
the discussion is the same as the original Eguchi-Kawai
reduction. For ma� few, the perturbative-loop analysis
indicates that only a finite subgroup of center symmetry
would restore; however, such analysis does not take into
account nonperturbative fluctuations. We propose that
these fluctuations tend to uniformize the eigenvalue distri-
bution rather quickly, even when ma� few, providing the
resolution of the problem stated in the introduction.

III. EGUCHI-KAWAI EQUIVALENCE FOR
MASSIVE QCD(ADJ)

In this section we explain why it is natural to expect that
the Eguchi-Kawai reduction holds for the QCD(Adj) with
massive adjoint fermions at sufficiently small volume. Our
analysis is based on the one-loop potential for diagonal
components of fields and estimates of nonperturbative
quantum fluctuations. We start with the zero temperature
case and then generalize to the finite temperature.

A. QCD(Adj) at zero temperature on T4 at small L

Let us consider the QCD(Adj) at zero temperature on a
symmetric four-torus, with size L. At sufficiently small L,
gauge coupling at the scale of the compactification is small
and we may analytically compute the one-loop effective
action on T4. The reason for doing this computation, apart
from trying to determine the center-symmetry realization,
is twofold. One is we would like to compare with the one-
site theory, given in (31). More importantly, we give evi-
dence that some (not all) implications of one-loop action
are, in full theory, overwhelmed by large nonperturbative
quantum fluctuations, and therefore, incorrect.
The one-loop effective action, in the Wilson line back-

ground (4), induced by gauge and fermionic fluctuations
with periodic boundary conditions can be written as

S1�loop½�ab� �¼ X
a<b

X
k1;...;k4

�
2log

�X4
�¼1

ð2�k�þ�ab� Þ2
L2

�

�4ND
f log

�X4
�¼1

ð2�k�þ�ab� Þ2
L2

þm2

��
; (14)

where �ab� ¼ �a� � �b�, and m is the fermion mass. Similar

to original EK model (5), this expression has IR singular-
ities whenever two (or more) eigenvalues coincide, which
we discuss thoroughly in the Appendix. The theory may
have different saddles which are expressed in terms of
noncommuting matrices. The classification of the saddles,
using the techniques of Ref. [43], of QCD(Adj) as a
function of mass of the fermion is given in the Appendix.

When we consider a regime where j ~�abj 
 2�, we can
split (14) into the zero and non-zero-momentum contribu-
tion. The eigenvalue dynamics is dominated by the inter-
actions between nearby eigenvalues and the effect of high
KK modes is negligible. Therefore, we will use the trun-
cated Hermitian matrix model (15) to gain an understand-
ing of the typical eigenvalue fluctuations. Strictly speaking,
the truncation can be justified only when the ðZNÞ4 center
symmetry is completely broken and consequently there
exists a clear separation of scales between the KK modes
and zero modes. In a center-symmetric background, this is
not the case. However, at large-N, the states obtained by
quantizing the theory on a center-symmetric vacuum fill
the ½0; 2�=L� energy range uniformly. If we consider a

finite but small range j ~�abj 
 2�, there are still OðN2Þ
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states (in perturbation theory) in this interval. We may
therefore use the Hermitian model to probe the interaction
of nearby eigenvalues, and their fluctuations. The eigen-
value dynamics of the full theory is mimicked rather
accurately by the truncated Hermitian matrix model.

The truncation of the KK modes in (1) yields the zero-
dimensional Hermitian matrix model7

S0d ¼ N

�0d

Tr

�
� 1

4
½X�; X��2 þ XND

f

f¼1

�c fð��½X�; c f�

þmc fÞ
�
; (15)

where �0d ¼ �4dð1=LÞ=L4 � 1= logð1=L�ÞL4 is the zero-
dimensional ’t Hooft coupling, and � is the strong scale of
QCD(Adj).

The �1=4
0d and m are the two scales in the Hermitian

matrix model (15). In particular, for the m ¼ 1 theory,
which corresponds to the original EK model discussed in
Sec. II, the root-mean-square fluctuations of matrices are

set by this scale �Xðm ¼ 1Þ � �1=4
0d . With standard

’t Hooft scaling, this is OðN0Þ in the large-N limit. This
is a crucial observation that will be important below.
Because of the generic noncommutativity of X� matrices,

the relative positions of the eigenvalues make sense only

when their separation is of order or larger than �1=4
0d [34].

The one-loop effective action of the matrix model
around the diagonal background can be calculated if all

eigenvalue pairs are well-separated j ~xa � ~xbj � �1=4
0d , cor-

responding to the case where all eigenvalues are weakly
coupled. Integrating out massive ‘‘W bosons’’ (off-
diagonal elements) by using the background field gauge
yields

S1 loop½x�ab� ¼ 2
X
a<b

logj ~xa � ~xbj2

� 4ND
f

X
a<b

logðj ~xa � ~xbj2 þm2Þ: (16)

Note that this is nothing but Eq. (14) restricted to its KK
zero mode, as expected.

The effect of adjoint fermions, which is most manifest in
(16), is to generate repulsion among eigenvalues. At
m ¼ 1, since the fermions do not contribute, they have
no impact on �X. For finite fermions’ mass, the effect of
fermions makes �X larger than that of the m ¼ 1 case.
Although we will not prove this statement, it is easy to
understand it on physical grounds. When fermion mass is

zero, then the one-loop potential is unbounded from
below only at large eigenvalue separation; hence

�Xðm ¼ 0Þ ¼ 1. From now on, we assume �XðmÞ 	
�Xðm ¼ 1Þ ¼ �1=4

0d . Somewhat conservatively, we use

the smaller of the fluctuations in what follows.
Let us now discuss the realization of ðZNÞ4 symmetry

based on the effective action (16) for the Hermitian matrix
model.

1. ND
f ¼ 0 (bosonic)

The Nf ¼ 0 or m ¼ 1 limits are the same and are

discussed in Sec. II. We repeat the main result for conve-
nience. The one-loop action leads to the mutual attraction
of eigenvalues at large eigenvalue separation, and hence,
eigenvalues must clump. This implies broken center sym-
metry. However, at small eigenvalue separation, one-loop
approximation is not valid; the background of the commut-
ing Wilson line saddles breaks down. Because of non-
perturbative quantum fluctuations, the eigenvalues do not
collapse to a point; rather the eigenvalue clump has a finite

extent of the order �X � �1=4
0d � ½�4dð1=LÞ�1=4=L. Note

that, although the size of the eigenvalue clump is sup-
pressed with respect to 1=L at small �4dð1=LÞ and hence
center symmetry is broken, it scales as OðN0Þ in the
large-N limit. This will be crucial later.

2. ND
f ¼ 1=2 (single Majorana)

When ND
f ¼ 1=2 and m ¼ 0, the theory is 4d N ¼ 1

pure super Yang-Mills theory. In this case, the one-loop
effective action (16) vanishes, and in fact, this is true to all
loop orders due to supersymmetry. Taking nonperturbative
fractional instanton effects into account, the center is un-
broken on R3 � S1 as discussed in [7]. In supersymmetric
theories with supersymmetry preserving boundary condi-
tions, it is expected that there are no phase transitions as the
volume is varied [39]. At large-N, the absence of phase
transitions transmutes to exact volume independence [7]
and unbroken ðZNÞ4 center symmetry. However, it is also
possible to construct a metastable center-broken sector
[44], which becomes stable at large-N.
When m is fixed and nonzero, by taking L ! 0, (16) is

positive, and therefore, ðZNÞ4 symmetry breaks down. If L
is fixed and m ! 0, a center-symmetry preserving back-
ground exists for a finite range of m. This aspect is dis-
cussed thoroughly in Ref. [45]. This noncommutativity of
limits requires care in drawing conclusions about this case.

3. ND
f 	 1: Uniformization of eigenvalue distribution

The effective action (16) predicts attraction at short
distance j�xj & m, and repulsion at long distance
j�xj * m. Then one may naively conclude that all eigen-
values clump and ðZNÞ4 symmetry is broken. However, one
should notice that this effective action is valid only at

7It should be understood that the Hermitian model (15) is used
as an auxiliary. In the strict L ¼ 0 limit, and for massless
fermions, the partition function of the Hermitian model diverges.
One-loop potential is unbounded from below as eigenvalue
separations tend to infinity. At finite-L, the target space of
eigenvalues is bounded, it cannot run off to infinity, and the
partition function of the finite-L theory exists.
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j�xj * �1=4
0d . When �1=4

0d & m attractive force emerges at

�1=4
0d & j�xj & m, and hence ðZNÞ4 is broken (left of

Fig. 1). When �1=4
0d * m, however, it predicts only repul-

sion; eigenvalue fluctuation is of order �1=4
0d and hence they

cannot clump to a small region where (16) predicts attrac-
tion (right of Fig. 1).

At sufficiently small, but OðN0Þ compactification
radii L, we can always guarantee that nonperturbative
quantum fluctuations overwhelm fermion mass, i.e.,

�1=4
0d � ½�4dð1=LÞ�1=4=L * m. In this case, fermion mass

is negligible and for the purpose of center-symmetry real-
ization, the theory cannot be distinguished from the mass-
less theory, for which center symmetry is unbroken. At
such values of L, since the target space of eigenvalues is
compact four-torus ~T4 with size 1

L , the repulsion implies

that the eigenvalues will uniformly distribute over ~T4.
This is the sense in which lower dimensional nonpertur-

bative quantum fluctuations help restoration of center
symmetry at mL� few, as opposed to quantum field the-
ory on R3 � S1 where full center restoration requires
mLN � few.

As we will see in the Appendix, the ðZNÞ4 broken phase
which consists of k bunches of eigenvalues may exist when

ð�0d=kÞ1=4 
 m. However, the radius of each bunch is of

order ð�0d=kÞ1=4, which is smaller than the eigenvalue

fluctuation in the ðZNÞ4 symmetric phase ð�0dÞ1=4, and
hence even if the ðZNÞ4 broken phase exists, tunneling to
such a state is highly suppressed.

The above argument explains the reason for the working
of Eguchi-Kawai reduction in Refs. [32,33] for heavy
fermions. In [32], initial configuration for simulation cor-
responds to X� ¼ 0 (single bunch). It is unstable and
collapses to the ðZNÞ4 symmetric phase.

B. QCD(Adj) at finite temperature
on asymmetric T3 � S1

We can generalize the argument of the previous subsec-
tion to the finite-temperature QCD(Adj) on an asymmetric

four-torus T3 � S1. Circumferences of temporal and three
spatial circles are taken to be � and L. On fermions, we
impose antiperiodic and periodic boundary conditions
along temporal and spatial circles, respectively.
Completely analogous to the discussion of Sec. III A, at

small L, the eigenvalue dynamics of the full theory is
mimicked rather accurately by the truncated Hermitian
matrix quantum mechanics with action:8

S1d ¼ N

�1d

Z �

0
dtTr

�
1

2
ðDtX

iÞ2 � 1

4
½Xi; Xj�2

þ XND
f

a¼1

�c að�0Dtc a þ �i½Xi; c a� þmc aÞ
�
; (17)

where

�1d ¼ �4d

L3
: (18)

The ’t Hooft coupling �1d has the dimension of ðmassÞ3 and
its value sets the typical mass scale of the theory. In
particular, typical fluctuation of the eigenvalues of the
dynamical fields is given by this scale. The mapping be-
tween the scalar eigenvalues and the phases � of theWilson
loops is the same as in (11), but now only running over
spatial directions. Since the S1 direction is compact, unlike
its decompactification limit S1 ! R, the Wilson line along
that direction cannot be gauged away. We parametrize
Wt ¼ diagðei�1�; � � � ; ei�N�Þ, or At ¼ �i��1 logWt.
The one-loop effective action of the matrix quantum

mechanics around the static diagonal background in the
background field gauge can be computed in the weak-
coupling domain,

�1=3
1d

j ~xa � ~xbj

 1 or �1=3

1d � 
 1; (19)

resulting in

S1d;1 loopð�; ~xÞ

¼ 2
X
a<b

X1
n¼�1

log

��
2�n

�
þ ð�a � �bÞ

�
2 þ j ~xa � ~xbj2

�

� 4ND
f

X
a<b

X1
n¼�1

log

��
2�ðnþ 1=2Þ

�
þ ð�a � �bÞ

�
2

þ j ~xa � ~xbj2 þm2

�
; (20)

where �a and ~xa represent diagonal components of
the gauge field At and three scalars Xi, respectively.

FIG. 1. The scales in the problem. Left panel: m * �1=4
0d and

mass is important. Right panel: m & �1=4
0d and mass is negligible

with respect to quantum fluctuations. We can always realize the
latter case by taking the size of the four-torus sufficiently small,
but still OðN0Þ. See the text for explanations.

8We repeat the same cautionary note as in Sec. III A. The
classical theory written in Eq. (17) does not exist as a quantum
theory. In the strict L ¼ 0 limit, and for massless fermions (or
fermions with a finite mass), the theory does not have a ground
state. In this paper, we study the finite-L, N ! 1 limit of (1)
which is a well-defined quantum theory. The Hermitian model
(17) will be useful as an auxiliary to infer some general lessons
about the finite-L case.
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By subtracting a constant factor, (20) can be rewritten as
[46] (for reference, we quote both periodic and antiperiodic
boundary conditions along � circle)

S�1d;1 loop ¼ 2
X
a<b

logðcoshð�j ~xa� ~xbjÞ� cosð�ð�a ��bÞÞÞ

� 4ND
f

X
a<b

logðcoshð�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j ~xa � ~xbj2 þm2

q
Þ


 cosð�ð�a ��bÞÞÞ: (21)

From the expression of S�1d;1 loop, one might naively con-

clude that eigenvalues ~xa and �a coincide, because the
one-loop action is negative infinity at that point. However,
the analysis is valid only when condition (19) is satisfied;
thus drawing reliable conclusions requires care.

The � ! 1 limit of (21) is both intuitive and insightful.
Since it is the limit of arbitrarily low temperatures, the
fermionic boundary conditions should not matter, and in-
deed, this is transparent from (21); the hyperbolic cosine
increases unboundedly, and the trigonometric cosine is
bounded, and hence the one-loop expression is dominated
by the former.9 The ground-state energy of the system at
one-loop order (or one-loop potential) can be deduced
from the limit lim�!1S1d;loop=� � E1d;loop½j ~xabj� and the

result is

E1d;1 loop½j ~xabj�¼2
X
a<b

j ~xa� ~xbj�4ND
f

X
a<b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j ~xa� ~xbj2þm2

q
;

lim
m!0

E1d;1 loop½j ~xabj�¼ ð2�4ND
f Þ

X
a<b

j ~xa� ~xbj: (22)

This is an intuitive and simple result10 and various remarks
are in order regarding the chiral ðm ¼ 0Þ limit on R.

(1) For ND
f > 1=2, E1d;1 loop½j ~xabj� is unbounded from

below and eigenvalues mutually repel each other.

The classical minima corresponding to the space of
commuting triples ½Xi; Xj� ¼ 0 are unstable against

perturbative quantum fluctuations. This means, at
the L ¼ 0 limit, the Hermitian matrix quantum
mechanics (17) does not have a ground state.

(2) At finite L, since the target space of eigenvalues is
compact three-torus ~T3 with size 1=L, the repulsion
implies that eigenvalues will uniformly distribute
over ~T3. This implies unbroken center symmetry
in the N ¼ 1 limit and the theory obeys volume
independence.

(3) For 0 � ND
f < 1=2, E1d;1 loop½j ~xabj� is bounded from

below. The minimum is at j ~xabj ¼ 0. However, in
this domain, one-loop analysis is not reliable, and

there are quantum fluctuations of order �1=3
1d . At

ND
f ¼ 1=2, m ¼ 0, the ground-state energy is zero

to all orders in perturbation theory due to
supersymmetry.

In the following, we study in more detail the phase
structure of the four-dimensional theory by using (21)
and estimates of the nonperturbative quantum fluctuations.
We first explain ND

f ¼ 0 (bosonic) and ND
f ¼ 1=2 (or one

Majorana fermion) cases. We then study the case with
ND

f 	 1, our main interest in this paper.

1. ND
f ¼ 0 (bosonic)

The one-loop action (21) generates an attraction be-
tween eigenvalues at long distance and the center symme-
try is broken. More precisely, there are N3 saddles related
to each other by center conjugations. The tunneling be-
tween these saddles is suppressed in the large-N limit and
the theory is in a center-broken phase. However, the ei-
genvalues do not collapse to a single point due to the
nonperturbative quantum fluctuations; the clump has a

finite size of order �1=3
1d � ½�4dð1=LÞ�1=3=L which is

OðN0Þ in the large-N limit.

2. ND
f ¼ 1=2 (single Majorana)

The supersymmetric theory (ND
f ¼ 1=2 and m ¼ 0) has

been studied extensively, because its maximally supersym-
metric cousin has a dual description as the D0-brane
system. In this case the one-loop potential falls off
exponentially,

S�1d;1 loop �
X
a<b

expð��j ~xa � ~xbjÞ; (23)

and the ground-state energy is E1d;1 loop½j ~xabj� ¼
lim�!1S�1d;1 loop=� ! 0. This follows from the cancella-

tion of the attractions and repulsions between eigenvalues
due to supersymmetry. Consequently, there exists a space
of flat directions. Therefore, once eigenvalues are well
separated, they will propagate freely like the gas of
D0-branes to all order in perturbation theory.

9Also note that at the � ! 1 limit, At can be gauged away.
Hence, it should not appear in the one-loop potential.
10We could have guessed this result by physical reasoning as
follows: In the weak-coupling domain where ~�1d ¼
�1d=j ~xabj3 
 1 is small and one-loop analysis is reliable, the
Lagrangian (17) reduces to a collection of bosonic and fermionic
harmonic oscillators:

L � 1

2
j@t ~Xabj2 þ 1

2
j ~xa � ~xbj2j ~Xabj2 þ fermionic oscillators:

The eigenvalue differences of background ~X matrices are iden-
tified with the frequencies of harmonic oscillators, !b

ab ¼ j ~xa �
~xbj and !f

ab ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij ~xa � ~xbj2 þm2
p

. In the chiral limit, !f
ab ¼

!b
ab. In gauge quantum mechanics, there are 2

P
a<b many

massive bosonic fluctuations and 2� 2ND
f

P
a<b many massive

fermionic fluctuations. Hence, the background dependence of
the ground-state energy of the system is

E ¼ X
bosons

1

2
!b � X

fermions

1

2
!f ¼ E1d;1 loop½j ~xabj�;

which is given in (22).
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In order to study nonperturbative aspects, it is more
useful in this case to recall that the theory is formulated
on T3 � R, and to discuss the system in Hamiltonian
formulation. As asserted above, to all orders in perturba-
tion theory, the theory has a moduli space, and all possible
realizations of center symmetry are possible. However,
nonperturbatively, this is not the case. Quantization of
the zero-momentum bosonic modes gives rise to a discrete
spectrum and a gap.

Witten studied the gauge quantum mechanics for
finite-N within Born-Oppenheimer approximation and
showed that the bosonic ground-state wave function (ignor-
ing fermionic zero modes which are not crucial in what
follows) is constant

�0ð ~�1; . . . ; ~�N�1Þ ¼ 1 (24)

and the excited states have an energy gap [39]. The center
symmetry and volume independence was not discussed in
Ref. [39]; however, its results have natural implications
which apply to our discussion. In particular, we can in-

troduce an eigenvalue distribution function 	ð ~�Þmeasuring
the density of eigenvalues. The density is everywhere non-

negative and obeys
R
d3 ~�	ð ~�Þ ¼ 1. Since the ground-state

wave function spreads uniformly over the perturbative flat
directions,

	ð ~�Þ ¼ 1

ð2�Þ3 ; (25)

and the center is unbroken. Unlike the discussion in
Sec. III B 1, it is also unbroken at large-N.
Nonperturbatively, we have a unique saddle singlet under
center conjugations, and this is the main difference with
respect to purely bosonic theory which has N3 saddles.

When the fermion is massive, there is a subtlety due to
the order of limits of small mass vs small-L analogous to
the discussion in Sec. III A 2, with similar conclusions.

Finally, at large-N, this theory has a metastable bound
state of eigenvalues [44] (with diverging lifetime as
N ! 1) which is analogous to the one in maximally
supersymmetric theory [47] corresponding to the black
zero-brane in type IIA supergravity.

3. ND
f 	 1

First consider the case with m ¼ 0. From the one-loop
effective action (21), it is apparent that repulsive force
coming from fermions dominates at long distance. In the
limit where T3 is shrunk to zero size, the resulting Hermitian
quantum matrix model is not well defined; the one-loop
potential is unbounded from below for large eigenvalue
separations. For finite T3 � R, the eigenvalues can no lon-
ger run off to infinity; instead they spread over the dual ~T3

uniformly. We expect the center-symmetric phase to con-
tinue upon compactification, down to T3 � S1� so long as

�1=3
1d � � 1. In this domain, the center symmetry is intact,

and in the large-N limit, volume independence must hold.

In the high temperature limit, �1=3
1d � 
 1, fermions

decouple due to thermal mass, eigenvalues clump, and a
metastable bound state of eigenvalues exists. Let us assume
j��xj, j���j 
 1, where �x ¼ maxa;bfj ~xa � ~xbjg and

�� ¼ maxa;bfj�a � �bjg. Then the second term in the

right-hand side of (21) is negligible, due to the large
thermal mass of fermions, and the effective action becomes
that of the zero-dimensional bosonic matrix model,

S�1d;1 loop � S0d;bos½x�a � ¼ 2
X
a<b

logj ~xa � ~xbj2; (26)

where we used the identification x4a ¼ �a. This potential
produces attraction between eigenvalues. This model is
studied extensively, and taking into account nonperturba-
tive effects, a bound state of eigenvalues exists and it
satisfies conditions j��xj, j���j 
 1. In this domain,
ðZNÞ4 center symmetry is completely broken.
Generalization to nonzero m is straightforward and fol-

lows from the discussion of Sec. III A 3 on T4. At suffi-

ciently smallOðN0Þ volume such thatm 
 �1=3
1d , the effect

of mass is small, and hence attraction in one-loop action is
overwhelmed by nonperturbative quantum fluctuations. In
this domain, the ðZNÞ3 center symmetry is intact.

IV. LATTICE MODEL AND MONTE CARLO
SIMULATION

In Sec. III A, we explained on continuum T4 and
T3 � S1 why the Eguchi-Kawai reduction holds for the
QCD(Adj) at zero and finite temperature, based on
perturbative-loop analysis, supplemented crucially with
the estimates of nonperturbative quantum fluctuations.
Below, we study the unitary matrix model and one-
dimensional lattice model by usingMonte Carlo simulation.
It is hard to implement the thermal model on a computer

since the temporal direction is not reduced. Moreover, in
order to describe phenomena typical to the finite-
temperature system, we need to take the effective spatial
volume11 sufficiently large compared to Nt. As for a lattice
model with an isotropic lattice spacing, roughly speaking,
we need to take the spatial lattice size Ns to be twice larger
than the temporal one Nt, Ns * 2Nt. Since the Neff

s is
related to the matrix size N for the large-N reduced models

11The space size in its ordinary sense is fixed. By developing
perturbation theory around a center-symmetric background, say,
for simplicity with only one-dimension compact, we observe that
both the lowest states and the spacing between the states is
suppressed by a factor of N and is given by 2�=ðLNÞ as opposed
to the usual (center-broken) KK spectrum where the level spac-
ing is 2�=L. In other words, to all orders in perturbation theory,
the effective space size is enhanced into Leff ¼ LN. [See the
discussion in [26] for QCD(Adj) and related discussions in a
review [37] for quenched Eguchi-Kawai model (QEK) and
TEK.] This is the perturbative essence of volume independence,
and in the sense of neutral sector observables, the decompacti-
fication limit can be reached at N ! 1 while keeping L fixed.
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in the sense described in footnote 11, we need to take N
large enough to satisfy this condition. When we use the
original Eguchi-Kawai reduction for the spatial directions,
finite-N correction behaves as 1=N rather than 1=N2, as we
will show numerically. This fact indicates that the effective

lattice size scales as Neff
s � N1=3, and it is not practical for

numerical simulations. Therefore, to gain more effective
spatial volume, we impose a twisted boundary condition on
the spatial directions. For the latter, the effective volume is
more enhanced, and volume independent domain can be
reached more quickly. We call the QCD(Adj) with the
twisted boundary condition as TQCD(Adj). The introduc-
tion of TQCD(Adj), which is algorithmically more conve-
nient, is our main improvement over the one-site model of
Ref. [32].

To explain the efficiency of the TQCD(Adj), we start
with the zero temperature case, that is, the single-site
model with a periodic boundary condition along the tem-
poral direction on fermions. Then we apply the twist to the
finite-temperature case, that is, the one-dimensional lattice
model with an antiperiodic boundary condition on fermi-
ons along the temporal direction, and then see the Eguchi-
Kawai reduction holds in this case. Especially we show this
reduced model at finite temperature describes the confine-
ment/deconfinement transition.

A. Single-site theories

1. QCD(Adj) on 14 lattice

The single-site matrix model can be obtained from a
four-dimensional lattice gauge theory by reducing the
number of lattice sites to one in all directions [32]. The
action is

S0d ¼ �2bN ReTr

�X
�<�

V�V�V
y
�V

y
�

�
þ SF; (27)

where V� ð� ¼ 1; 2; 3; 4Þ corresponds to the link variable

in the four-dimensional theory. The inverse ’tHooft cou-
pling constant b should be chosen appropriately depending
on the lattice spacing a. The fermionic part SF is obtained
as a dimensional reduction of the Wilson-Dirac fermion
term

SF ¼ XND
f

f¼1

�
�c fc f � 


X3
i¼1

f �c fð1� ��ÞV�c fV
y
�

þ �c fð1þ ��ÞVy
�c fV�g

�
: (28)

The hopping parameter 
 can be expressed as


 ¼ 1

8þ 2am0

; (29)

where m0 is the bare mass.
This action has a ðZNÞ4 center symmetry

V� ! e2�in�=NV� ðn� ¼ 0; 1; � � � ; N � 1Þ: (30)

If this symmetry is not broken, then the model is equivalent
to the translationally invariant subsector of lattice theory
with an arbitrary number of sites, including an infinite
lattice limit.
Although detailed analytic evaluation of one-loop effec-

tive potential depends on the choice of lattice fermions,12

intuitively, the absence of the center-symmetry breaking
phase follows closely the discussion on continuum T4. The
discussion on T4 can easily be generalized to the 14 lattice.
The role of the compactification scale L is replaced by the
lattice spacing a in the one-site model. The main lesson
that we learn is that the center symmetry on the 14 lattice
model is in fact much more robust than the center on
continuum T4.
The one-loop action for the one-site theory in the clas-

sical background of commuting Wilson lines ½V�; V�� ¼ 0

where V� ¼ diagðei�1� ; � � � ; ei�N�Þ is given by

S1 loop ¼ 2
X
a<b

log

�
4

a2
X4
�¼1

sin2
�
�ab�
2

��

� 4ND
f

X
a<b

log

�
1

a2
X4
�¼1

sin2�ab�

þ
�
m0 þ 2

a

X4
�¼1

sin2
�
�ab�
2

��
2
�
: (31)

The first term is induced by gauge fluctuations and leads to
eigenvalue attraction [13]. Geometrically,

P ab
� � 2

a

��������sin
�
�a� � �b�

2

���������¼ 2

a
jei�a� � ei�

b
� j (32)

is the separation between two eigenvalues of the Wilson
line in the � direction. P 2 � P

4
�¼1ðP ab

� Þ2 is the spectrum
of massive gauge fluctuations (W bosons), familiar from
the usual D-brane pictures as the spectrum of open strings
ending on branes, where eigenvalues of the Wilson line are
identified with branes. The second term, proportional to
ND

f , is induced by fermionic fluctuations, and is equal to

�4ND
f

P
a<b log½M2

f½�ab� �� where M2
f½�ab� � is the spectrum

of fermions.
Equation (31) may be rewritten in a form mimicking the

continuum expression on T4 given in (14):

S1 loop½�ab� �

¼ 2
X
a<b

log

�X4
�¼1

ðP ab
� Þ2

�
� 4ND

f

X
a<b

log

�X4
�¼1

ðP ab
� Þ2

þ X
�<�

a2ðP ab
� Þ2ðP ab

� Þ2
2ð1þm0aÞ þ m2

0

ð1þm0aÞ
�
; (33)

12Here, we use the Dirac-Wilson fermion with Wilson parame-
ter r ¼ 1; [33] uses overlap fermions, and also discusses naive
fermions.
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where we have subtracted a holonomy-independent con-
stant term. This expression can be Poisson resummed and
be written in terms of Wilson lines as

S1 loop½�ab� � ¼ X
a<b

X
~n2Z4nf0g

ei
~�ab� ~nP ~nðm0aÞ; (34)

as discussed in the Appendix. The only difference with
respect to the continuum expression on T4 is that

P1site
~n ð0Þ ¼ e~nP

T4

~n ð0Þ; (35)

where e ~n is an enhancement factor of a one-site model over
continuum T4, for both bosonic and fermionic contribu-
tion. In general, due to peculiarities of the dispersion
relation of the one-site model, the center stability is further
enhanced on the one-site model with respect to continuum
T4. Asymptotically, for j ~nj � 1, e~n ! 1 as expected on
physical grounds, by just inspecting the dispersion
relations.

The fermionic contribution to e~n is numerically sizeable
and has interesting implications. For example, on T4, start
with mL ¼ 1. Following the discussion of the Appendix,
the singly-winding Wilson lines do get stabilized (in per-
turbation theory) at mL ¼ 2:027, whereas for the one-site
model, the same phenomena take place at m0a ¼ 9:3. This
is due to the fact that in the domain of heavy fermion bare
mass, the last term in (33), which may roughly be viewed
as an ‘‘effective mass’’ m2

eff , is suppressed with respect to

the bare mass, meff �
ffiffiffiffiffiffiffiffiffiffiffiffi
m0=a

p
. For ND

f ¼ 1 theory, the

fermions’ contribution dominates, leading to eigenvalue
repulsion, and unbroken center symmetry for the theory
defined on a 14 lattice, or EK reduction of QCD(Adj) to a
single-site lattice.

If one-loop perturbation theory was the whole descrip-
tion, this would be the transition to a ðZ2Þ4 restored phase.
However, as explained above, many phases can coexist and
it is beyond perturbation to determine which phase is
chosen in the end. Interestingly, the point where the center
symmetry (partially) restores in simulation is very close to
the prediction by perturbation theory 
 � 0:037. This is
approximately the value of 
 where Ref. [32] observed the
full center restoration, not justZ2. In Fig. 4, we can also see
the restoration around the same value. Although we could
not see partial breaking clearly by measuring the observ-
able employed in Ref. [32], the discrepancy between hjWji
in large-
 start and the one in small-
 start may indicate
the existence of a partial breaking phase.

2. TQCD(Adj) at zero temperature

In compactified QCD(Adj), as we will see explicitly
from simulations, the finite-N corrections turn out to be
order 1=N, as opposed to the perturbative expectation on
R4 [35]. As explained in the results section of Sec. I, there
are two plausibly related explanations for this behavior.
One is related to the discussion of effective volume in the

reduced model. In the reduced model, N serves the role of
an emergent spacetime volume, at least in a perturbative
description in finite volume around a center-symmetric
configuration. Finite-N corrections should scale as finite-
volume corrections. However, what is not always clear is
the factor Np via which volume enhancement takes
place Veff � NpV,13 and p may in fact be determined
nonperturbatively.
In compact space, one cannot gauge away zero-

momentummodes, and these modes are crucial in studying
perturbation theory in finite volume. In perturbation theory,
the spectrum of the theory relies on the background for the
Wilson lines. If theory has massless adjoint fermions, there
will also be fermionic zero modes in the spectrum.
Typically, there are order N light or massless bosonic and
order N fermionic zero modes, which may generate non-
perturbative 1=N effects [36].
Both problems can simultaneously be solved and 1=N

corrections can systematically be improved by using
boundary conditions which cannot be obeyed by either
bosonic or fermionic (if there are any) zero modes. This
can be done by using the twisted boundary conditions of
’t Hooft [48]. This idea is, of course, not new, and is used
by Witten in Ref. [39] to lift the zero modes in N ¼ 1
super Yang Mills theory in the context of supersymmetric
theories on T3 � R, and by Gonzalez-Arroyo and Okawa
[15] in the context of large-N reduced models.
Our main observation can be summarized by using the

following pedagogical exercise. (The generalization to the
theories that we use in simulations is straightforward. The
prescription given below works equally well on lattice and
continuum.) Let �ðx1; x2; x3; x4Þ denote either a unitary
gauge field or an adjoint fermion field. We impose the
following generalized boundary conditions on fields

�ð. . . ; x� þ L; . . .Þ ¼ B��ð. . . ; x�; . . .ÞBy
�: (36)

For the particular case of one-site matrix models, we can
set�ðx1; x2; x3; x4Þ ¼ � ¼ constant. For the theory on the
14 lattice, we consider two choices for B�:.

pbc: B� ¼ 1N;

Twist: B1 ¼ C ffiffiffi
N

p � 1 ffiffiffi
N

p ; B2 ¼ S ffiffiffi
N

p � 1 ffiffiffi
N

p ;

B3 ¼ 1 ffiffiffi
N

p � C ffiffiffi
N

p ; B4 ¼ 1 ffiffiffi
N

p � S ffiffiffi
N

p ;

(37)

where C ffiffiffi
N

p and S ffiffiffi
N

p are
ffiffiffiffi
N

p � ffiffiffiffi
N

p
(noncommuting) clock

and shift matrices obeying C ffiffiffi
N

p S ffiffiffi
N

p ¼ e�ið2�= ffiffiffi
N

p ÞS ffiffiffi
N

p C ffiffiffi
N

p .

A particular representation is

13Of course, for QEK-like configuration, p ¼ 1, and for TEK-
like configurations, p ¼ 2; see, for example, [37]. However,
these deductions are in perturbation theory around particular
backgrounds, and the determination of p is likely
nonperturbative.

LARGE-N REDUCTION IN QCD-LIKE THEORIES WITH . . . PHYSICAL REVIEW D 82, 125013 (2010)

125013-11



C ffiffiffi
N

p ¼ diagð1; !;!2; � � � ; !
ffiffiffi
N

p �1Þ;

S ffiffiffi
N

p ¼

0 1 0 � � � 0
0 0 1 � � � 0
..
. ..

. ..
. . .

. ..
.

0 0 0 � � � 1
1 0 0 � � � 0

0
BBBBBB@

1
CCCCCCA;

(38)

where ! ¼ expð2�i= ffiffiffiffi
N

p Þ.
The first case in (37) is the original QCD(Adj) with

periodic boundary conditions and does not lift any zero
or light modes associated with holonomy, or fermions. In
this case, finite-N corrections turn out to be largest, of
order 1=N.

The second case in (37) is a twist of QCD(Adj). The
twist lifts all possible zero or light modes from the spec-
trum. In this case, finite-N corrections turn out to be of
order 1=N2.

The action of the theory with twisted boundary condi-
tions can be turned into a theory with periodic boundary
conditions and an action with an insertion of ’tHooft flux.
This is our definition of ‘‘twisted’’ QCD(Adj) [or TQCD
(Adj)]:

S0d ¼ �2bN ReTr

�X
�<�

Z��V�V�V
y
�V

y
�

�
þ SF; (39)

where Z�� is the twist factor. Geometrically, Z�� is asso-

ciated with the ’tHooft flux passing through the ð��Þ
plaquette. Here we adopt ‘‘symmetric twist’’

Z�� ¼ Z�
�� ¼ e2�i=

ffiffiffi
N

p
ð�< �Þ: (40)

As the area enclosed by fermionic ‘‘plaquette’’ terms is
zero, the flux passing through it is zero. Thus, fermionic
action is unaltered. This procedure, apart from helping
QCD(Adj) algorithmically, also cures the global instability
[17–19] of the TEK model. We numerically compare the
behaviors of finite-N corrections for QCD(Adj) and TQCD
(Adj) below.

3. Numerical results for ND
f ¼ 1

We now discuss the Monte Carlo results for QCD(Adj)
and TQCD(Adj) at zero temperature. We restrict our analy-
sis to the case with a single Dirac fermion in adjoint
representation.14

In Fig. 2, the expectation value for the absolute value of
the Wilson loop (averaged over all directions),

jWj � 1

4

X4
�¼1

jV�j; (41)

in the QCD(Adj) and the TQCD(Adj) at zero temperature
is plotted.15 For both the QCD(Adj) and TQCD(Adj), hjWji
is of order 1=N and hence the ðZNÞ4 symmetry is unbroken.
(As already shown in [32], it is unbroken in a rather large
parameter region.) The extent of the next-to-leading cor-
rection is not clear from this plot; we fit it by hjWji �
c=N þ d=N2 for QCD(Adj) and hjWji � c0=N þ d0=N3

for TQCD(Adj), where c, d, c0, d0 are constants.
In Fig. 3, expectation values of the plaquettes are plot-

ted. From this plot, the finite-N correction for the QCD
(Adj) turns out to be of order 1=N. On the other hand, the
finite-N correction for the TQCD(Adj) is of order 1=N2 as
expected.
In Fig. 4, expectation values of Wilson lines hjWji near

the phase transition are shown. The argument in Sec. IVA1
suggests the transition is of first order because several
phases coexist. To confirm, we studied and observed hys-
teresis. We started simulation at 
 ¼ 0:01 (small-
 start)
and 
 ¼ 0:05 (large-
 start), and gradually increased/
decreased the value of 
. At each point, we collected
500–2000 samples, which is enough to evaluate the expec-
tation values. As can be seen from the plot, there is a clear
hysteresis. Thus we conclude the transition is indeed of
first order.
We also studied the distribution of TrðV�V�Þ=N as in

[32], and did not find partial breaking of the center
symmetry. However, around 
 ¼ 0:04 in Fig. 4, there is

 0

 0.05

 0.1
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not twisted, b=0.50, κ=0.09
twisted, b=0.50, κ=0.09
twisted, b=0.50, κ=0.00

FIG. 2. Expectation values of the Wilson loop in QCD(Adj)
and TQCD(Adj) at b ¼ 0:50, 
 ¼ 0:09, and 
 ¼ 0 (bosonic
twisted Eguchi-Kawai model). Fitting curves are of the form
c=N þ d=N2 for the former and c0=N þ d0=N3 for the latter.
TQCD(Adj) at b ¼ 0:50, 
 ¼ 0:09, and 
 ¼ 0 agree quite well,
as expected because 
 ¼ 0:09 corresponds to a quite heavy
fermion.

14We implemented the rational hybrid Monte Carlo algorithm
[49] with the multimass conjugate gradient solver [50].
Numerical coefficients in the rational approximation necessary
for the rational hybrid Monte Carlo simulation were obtained by
using the simulation code provided at [51].

15We use the absolute value of the Wilson line operator in small
volume to distinguish a center-symmetric saddle point from
multisaddle configurations for which hWi is nonvanishing at
each saddle, but vanishes due to phase averaging over all saddles
(which is permitted in quantum theory due to tunneling).
Multisaddle configurations, in the large-N limit, lead to sponta-
neously breaking of the center symmetry, whereas a center-
symmetric saddle continues to respect the center symmetry.
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some discrepancy between hjWji in the large-
 start and
that in the small-
 start. Hysteresis continues with a
smaller gap within 0:0375< 
< 0:0475. This may be
interpreted as a partial breakdown of center symmetry
[52], where the unbroken phase coexists with a partially
broken phase.

B. One-dimensional lattice: Reduced model
at finite temperature

We first introduce a one-dimensional lattice formulation
corresponding to the large-N reduced model at finite tem-
perature and then apply two different types of twists to this
model. An implication of volume independence is that one
can study confinement/deconfinement transition on R3 �
S1� on the equivalent unitary matrix model, corresponding

to a 13 � Nt lattice so long as ðZNÞ3 center symmetry
associated with the spatial cycles is not spontaneously
broken. We indeed observe the confinement/deconfine-
ment transition in the reduced model. For the comparision
of 1=N corrections, we also plot some numerical results for
the QCD(Adj) (without twist) at finite temperature.

1. (T)QCD(Adj) at finite temperature

On the 13 � Nt lattice or T3 � S1� continuum formula-

tions, the relation between twisted boundary conditions,
zero (or light) modes, and suppression of finite-N effects
can systematically be studied.
Let �ðt; x; y; zÞ denote either a unitary gauge field or an

adjoint fermion field. We impose, the following general-
ized boundary conditions on fields:

�ðt; xþ L; y; zÞ ¼ A�ðt; x; y; zÞAy;

�ðt; x; yþ L; zÞ ¼ B�ðt; x; y; zÞBy;

�ðt; x; y; zþ LÞ ¼ �ðt; x; y; zÞ:
(42)

For the particular case of matrix models, we can set
�ðt; x; y; zÞ ¼ �ðtÞ. We consider three choices for A
and B:.

pbc : A ¼ 1N; B ¼ 1N;

Twist 1: A ¼ C ffiffiffi
N

p � 1 ffiffiffi
N

p ; B ¼ S ffiffiffi
N

p � 1 ffiffiffi
N

p ;

Twist 2: A ¼ CN; B ¼ SN;

(43)

where CN and SN are N � N clock and shift matrices
defined earlier.
The first case in (43) is the original QCD(Adj) with

periodic boundary conditions and does not lift any zero
or light modes associated with holonomy, or fermions. In
this case, finite-N corrections turn out to be of order 1=N.
The second case in (43) is a partial twist of QCD(Adj).

The twist lifts a 1=
ffiffiffiffi
N

p
fraction of bosonic light modes and

fermionic zero modes (in cases where fermions are light).
This can be seen by explicitly solving the boundary con-
ditions. In this case, finite-N corrections turn out to be of

order 1=N3=2. This is explained below after introducing the
twisted model.
The third case in (43) is a twist of QCD(Adj), which lifts

all bosonic light modes and fermionic zero modes. This
can be seen by explicitly solving the boundary conditions.
In this case, finite-N corrections seem to be rather tame.
We study the theory reduced to a one-dimensional

SUðNÞ unitary matrix model

Slat ¼ �2bN
X
t

ReTr

�X
i

UtðtÞViðtþ 1ÞUy
t ðtÞVy

i ðtÞ

þX
i<j

ZijViðtÞVjðtÞVy
i ðtÞVy

j ðtÞ
�
þ SF; (44)

where ViðtÞ ði ¼ 1; 2; 3Þ corresponds to the link variable
along the spatial direction in the four-dimensional theory.
For the usual nontwisted model Zij ¼ 1 and Zii ¼ 0,

while, for twisted models, Zij is given by16
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FIG. 4. Expectation values of the Wilson loop hjWji in QCD
(Adj) at b ¼ 0:50, N ¼ 25. Clear hysteresis can be seen.
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FIG. 3. Expectation values of the plaquette in QCD(Adj) at
b ¼ 0:50, 
 ¼ 0:09 and TQCD(Adj) at b ¼ 0:50, 
 ¼ 0:09,

 ¼ 0. The 1=N correction is of order 1=N for the QCD(Adj)
and 1=N2 for TQCD(Adj).

16In simulations, we use a symmetric twist which is more
efficient. The above boundary conditions can be modified to
incorporate the symmetric twists.
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Twist 1: Zij ¼ Z�
ji ¼ e2�i=

ffiffiffi
N

p
ði < jÞ;

Twist 2: Zij ¼ Z�
ji ¼ e2�i=N ði < jÞ:

(45)

The number of sites Nt is related to the temperature T by
� ¼ 1=T ¼ aNt. The fermionic part SF is given by

SF ¼ XND
f

f¼1

�c fD
ðfÞ
W c f; (46)

where DW is the usual Wilson-Dirac operator. The explicit
form of SF after reducing the spatial directions is

SF ¼ X
t

�
�c ðtÞc ðtÞ � 


X3
i¼1

f �c ðtÞð1� �iÞViðtÞc ðtÞVy
i ðtÞ

þ �c ðtÞð1þ �iÞVy
i ðtÞc ðtÞViðtÞg � 
f �c ðtÞð1� �tÞ

�UtðtÞc ðtþ 1ÞUy
t ðtÞ þ �c ðtÞð1þ �tÞUy

t ðt� 1Þ
� c ðt� 1ÞUtðt� 1Þg

�
: (47)

We impose antiperiodic boundary condition for the fer-
mions on the S1� and generalized boundary conditions

given in (43) on reduced directions. The action has a global
center symmetry, which we split for convenience as
ðZNÞ3 � ZN ,

ViðtÞ ! e2�i=NViðtÞ;
ðUt¼1 . . .Ut¼Nt

Þ ! e2�i=NðUt¼1 . . .Ut¼Nt
Þ:

(48)

If the ðZNÞ3 symmetry is not spontaneously broken, then
this model is equivalent to the one in the infinite spatial
volume lattice. This implies the phase transition of infinite
volume theory, associated with the realization of the tem-
poral ZN factor, can be studied by using the unitary matrix
model.

The relation between the twists, number of light modes,
and the observed form of the finite-N corrections is

Twist Zero modes Finite-Ncorr:

None N 1=N
eið2�=

ffiffiffi
N

p Þ ffiffiffiffi
N

p
1=N3=2

eið2�=
ffiffiffi
N

p Þ None 1=N2

There is a nice geometric interpretation for twist 1 in
terms of a classical background, and foliation of the non-
commutative plane. This gives, in perturbation theory, that

effective volume should scale as V � N3=2. However, for
twist 2, there is no classical background solution. Because
of strong quantum fluctuations, a classical background
cannot be written. Of course, this is not a concern.

The emergence of V � N3=2 in the case of twist 1 can be
explained in perturbation theory as follows: For simplicity,

let us again consider the twist Z12¼ e2�i=
ffiffiffi
N

p
, Z13¼Z23¼ 1.

A natural candidate of the ground state is

V1 ¼ C ffiffiffi
N

p � 1 ffiffiffi
N

p ;

V2 ¼ S ffiffiffi
N

p � 1 ffiffiffi
N

p ;

V3 ¼ 1 ffiffiffi
N

p � C ffiffiffi
N

p :
(49)

This is because this configuration satisfies ViVj ¼
Z�
ijVjVi, and at the same time eigenvalues spread as uni-

formly as possible. This configuration keeps the ðZ ffiffiffi
N

p Þ3
subgroup of the center symmetry, which is enough for the
Eguchi-Kawai reduction to work. Then, along V1 and V2

directions
ffiffiffiffi
N

p
sites arise as a fuzzy torus, similar to TEK,

and
ffiffiffiffi
N

p
sites emerges along the V3 direction similar to

QEK. So this configuration corresponds to Veff � N3=2

lattice sites. If one views finite-N corrections around
N ¼ 1 analogous of finite-volume corrections in compac-
tified theories, then it is expected that finite-N corrections
in the one-dimensional reduced model should be a power

series expansion in 1=N3=2.

2. Monte Carlo simulation for ND
f ¼ 1

Here we show the Monte Carlo results for the one-
dimensional lattice model for ND

f ¼ 1. The numerical

algorithm adopted is the same as the one in the previous
subsection.
First let us see that the ðZNÞ3 center symmetry is not

broken. In Fig. 5, we plot the expectation value of an
averaged Wilson line given by

jWj � 1

3Nt

X3
i¼1

XNt

t¼1

jViðtÞj; (50)

at b ¼ 0:5 and various 
, and Nt ¼ 1 for QCD(Adj). As
expected, the ðZNÞ3 is not broken when quarks are suffi-
ciently light for both models. We can see similar behavior
for the TQCD(Adj) except for the finite-N corrections.
From Figs. 6 and 7, it is clearly seen that hjWji goes to

zero as 1=N for the QCD(Adj) while 1=N3=4 for the TQCD
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FIG. 5. Expectation value of the spatial Wilson line in QCD
(Adj) (without twist) at b ¼ 0:50. When the quark is lighter, the
Wilson line becomes zero at large-N; that is, ðZNÞ3 center
symmetry is not broken.
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(Adj). That the Wilson line behaves as hjWji � N�3=4 ¼
1=

ffiffiffiffi
V

p
for the TQCD(Adj) is the same as what happened in

the model in the previous section. The same pattern can
also be observed with Nt > 1.

In Fig. 8, the plaquette is plotted for the QCD(Adj) and

TQCD(Adj) with two types of twist. The Ansatz const:þ
const:=N3=2 for the twist 1 is consistent with the data, and
by assuming it, the extrapolated value at N ¼ 1 agrees

with the one obtained from the nontwisted model. For twist
2, const:þ const:=N2 is consistent with the data. In Fig. 9,
a similar behavior can be seen for the expectation value of
the Polyakov loop defined by (51):

jPj ¼ 1

N

��������TrY
Nt

t¼1

UtðtÞ
��������; (51)

We observe that by using twist 2, we can suppress finite-N
corrections more. We notice that, up to N ¼ 25, we do not
observe the jump in the expectation value of the plaquette,
which corresponds to the bulk transition.
Now, let us consider the confinement/deconfinement

phase transition in the large-N reduced model at finite
temperature. We take 
 ¼ 0:10. From the experience in
pure bosonic Yang-Mills theory, which is studied exten-
sively in [40,41], it is known that one has to take the
number of spatial links Ns to be large (roughly Ns *
2Nt) in order to see the deconfinement transition clearly.
For QCD(Adj) without twist this is a rather severe con-
straint, becauseNeff

s is related to the number of colorsN by

Neff
s � N1=3. As a result, at Nt ¼ 2, we could not observe

the transition below N ¼ 30, although we could observe a
clear transition for Nt ¼ 1. In contrast, in TQCD(Adj), the
transition can be seen at small values of N. In Fig. 10 we
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FIG. 6. hjWji at b ¼ 0:50, 
 ¼ 0:10, Nt ¼ 1 for (nontwisted)
QCD(Adj).
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FIG. 7. hjWji at b ¼ 0:50, 
 ¼ 0:10, Nt ¼ 1 for TQCD(Adj).
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FIG. 10. Expectation values of the Polyakov loop and Wilson
line at N ¼ 16, Nt ¼ 2, 
 ¼ 0:10.
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plot the expectation value of the Wilson line and the
Polyakov loop for Nt ¼ 2. We can clearly see a jump of
the expectation values of the Polyakov loop around b ¼
0:33 for Nt ¼ 2, which corresponds to the confinement/
deconfinement transition.17 This result is consistent with
the one given by large volume simulations for pure Yang-
Mills theory [for example, SUð8Þ YM theory simulated on
the 103 � 5 lattice gives, in the extrapolated infinite vol-
ume limit, bc � 0:34 [40,41] ], confirming the finite-
temperature version of equivalence nonperturbatively.

Before closing this section, let us give an estimate for the
the physical temperature of the transition. By using the
2-loop beta function of the bosonic Yang-Mills theory
(neglecting fermions because they are heavy), b is related
to be the temperature T and lattice lambda parameter
�LAT as

T

�LAT

¼ 1

Nt

�
11

24�2
�

�
51=121

exp

�
12�2

11�

�
; (52)

where � ¼ 1=ð2bÞ. If we take �LAT to be of order
Oð1 MeVÞ as in the QCD with SUð3Þ, by substituting it to
(52), the transition temperature turns out to be of order
Oð100 MeVÞ, as expected.

V. STABILIZING NONCOMMUTATIVE
YANG-MILLS THEORY

There is a well-know perturbative equivalence between
the TEK model and noncommutative YM theory.
Nonperturbatively, this relation is problematic due to a
global instability [17–20]. In the perturbative description,
the twist-eater background is used to generate a fuzzy
torus, the noncommutative base space of target theory.
The spontaneous center-symmetry breaking in the TEK
model is associated with the spontaneous collapse of the
noncommutative torus. This instability, in effect, is related
to the center-symmetry breaking instability of the TEK
model. For a nice discussion of the relation between non-
commutative theories and matrix models, see [53].

In this work, we suggest that TQCD(Adj) can be used to
define Yang-Mills theory on noncommutative space (for
recent developments, see, e.g., [54]).

As asserted above, TEK construction is problematic due
to instability of the twist-eater background [17–20].
Similar construction with the fuzzy sphere also fails [20].
In noncommutative field theory, this instability corre-
sponds to tachyonic modes in gluon propagator [55,56].

When adjoint fermions are introduced, the situation is
different. The center symmetry is stabilized even at the
one-site lattice and the twist-eater configuration is
stable. Hence TQCD(Adj) with appropriate parameter

scalings can serve as a nonperturbative formulation of non-
commutative Yang-Mills theory with adjoint fermions. The
interesting point is that the background is stable even if
fermions are very heavy. In such a situation, low energy
physics is almost a bosonic one, but instability in the one-
site model is removed thanks to fermion induced stabilizing
effects. We expect that the same effect can also be achieved
by introducing a twist to the double-trace deformation of
the Eguchi-Kawai model [31], which is purely bosonic.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we investigated the volume reduction for
large-N gauge theory with adjoint fermions [7]. We used
perturbative one-loop analysis crucially supplemented
with the estimates of nonperturbative quantum fluctuations
to analytically explain the zero temperature result of
Ref. [32]. We have shown that for heavy fermions there
exists a large-small volume equivalence, with an inter-
mediate volume dependent phase. In the sense of dynam-
ics, the theory exhibits a 4d-0d-4d cascade of dimensions.
We have used the small volume phase to extract results for
large volume theory.
Next, we generalized the volume independence to finite

temperature, and confirmed it numerically. In effect, we
have constructed a one-dimensional lattice model and
analyzed it by using Monte Carlo simulation to directly
show that the center symmetry is preserved for a wide
parameter region including heavy fermions. In particular,
we introduced a twisted version of the large-N reduced
theory with adjoint fermions for numerical efficiency and
then succeeded in observing the confinement/deconfine-
ment transition. The temperature agrees with large volume
simulations of pure Yang-Mills theory. We also argued that
TQCD(Adj) with appropriate parameter scaling can serve
as a nonperturbative formulation of noncommutative
Yang-Mills theory.
There are several directions for future research. Our

discussion of QCD(Adj) with the ND
f ¼ 1 fermion can be

generalized to address mass spectrum and other nonper-
turbative aspects. By introducing more fermion flavors, our
reduced models may be used to address the conformality or
confinement problem, to address the determination of the
lower boundary of the conformal window, and perhaps to
study models relevant to the technicolor scenario.
In this work, we have seen that due to nonperturbative

quantum fluctuations the restoration of full center symme-
try occurs not at mLN � few, but at mL� few. This
suggests that the number of double-trace operators sug-
gested in [31] for theories on T4 and T3 � R is a conser-
vative overestimation, and might be reduced considerably
without spoiling unbroken center symmetry. If so, since
deformed reduced theories are purely bosonic, the simula-
tion cost becomes cheaper and it can be a practical tool. If
it works, it can be used as a template to study QCD with
fundamental matter.

17In order to take the continuum limit, we need to analyze large
Nt. However, to do this, we also need to take N large such that
Neff

s * 2Nt. It is beyond our current numerical resources and we
leave detailed analysis for larger Nt for future work.
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APPENDIX: QCD(ADJ) ON CONTINUUM T4 AT
FINITE-L AND ONE-LOOP ANALYSIS

In this appendix, we will rewrite the one-loop potential
on small-T4 (14) in terms of Wilson lines by using Poisson
resummation. Poisson resummation is a duality which
maps a sum over KK-momenta given in (14) to a sum
over a winding number. The two are equivalent expres-
sions, and some aspect of physics is more transparent in
one of the two.

Since (14) is periodic under �ab� ! �ab� þ 2�, it can be

Fourier expanded:

S1�loop½�ab� � ¼ X
a<b

X
~n2Z4nf0g

ei
~�ab� ~nP ~nðmLÞ: (A1)

For a given winding number ~n � ðn1; . . . ; n4Þ,

X
a<b

ei
~�ab� ~n ¼ 1

2

X
a;b

ei
~�ab� ~n � 1

2

X
a

1

¼ 1

2
ðjtrðVn1

1 � � �Vn4
4 Þj2 � NÞ: (A2)

It is also useful to express this sum in terms of trace over
adjoint representation matrices, given by

�adjð ~nÞ ¼ ðVn1
1 . . .Vn4

4 Þ � ðVn1
1 . . .Vn4

4 Þy; (A3)

or, equivalently,

�adjð ~nÞ ¼

1N�N

eið ~�1� ~�2Þ� ~n
. .
.

eið ~�a� ~�bÞ� ~n
. .
.

2
66666664

3
77777775:

(A4)

Clearly, tr�adjð ~nÞ ¼ jtrðVn1
1 � � �Vn4

4 Þj2. Equation (14) can

dually be rewritten as a sum over winding modes

S1�loop½V1; . . . ; V4�
¼ 2

�2

X
a<b

X
~n2Z4nf0g

1

j ~nj4 ð�1þ ND
f m

2L2j ~nj2

� K2ðmLj ~njÞÞ � cosð ~n � ~�abÞ
� 1

�2

X
~n2Z4nf0g

m2
~nðjtrðVn1

1 � � �Vn4
4 Þj2 � NÞ; (A5)

where m2
~n is interpreted as the mass square of the Wilson

line with winding number ~n. Unlike the similar sums
appearing in one-loop effective potential on R4�d � Td

with 1 � d � 3 which are absolutely convergent [7], the
series (A5) is conditionally convergent.18 This is, of
course, physical and related to nontrivial infrared (IR)
aspects of the theory which we discuss below.

IR singularities, conditional convergence, and
noncommutative saddles

The series in (14) and (A5) are equivalent expressions,
related to each other via Poisson resummation. Consider
the zero KK-momenta subsector of (14). Since eigenvalue
separation has an interpretation as momentum, (14) exhib-
its an IR singularity whenever

P
4
�¼1ð�ab� Þ2 ¼ 0 for some

a, b. This IR problem is also manifest in lattice one-site
one-loop action (31). The series (A5) is conditionally
convergent, and whenever two eigenvalues are coincident,P

~n2Z4nf0g exhibits logarithmic IR divergences due to

modes with large-winding number j ~nj ! 1. Winding
modes have an interpretation in terms of spacetime dis-
tance [25] and this is the same IR problem as in (14). The
physical interpretation of divergence is as follows:
Whenever two (or more) eigenvalues are coincident, there
are (in perturbation theory) massless modes (analog of W
bosons or open strings). IR divergence comes about be-
cause we have integrated out these massless modes that we
should have kept in the correct description of long-distance
dynamics of the effective theory.

18In (A5), the subtraction of the constant divergent term is
related to the absence of log divergent and holonomy-
independent

P
a¼b terms in the first line, as well as (14). With

this subtraction, any singularity that may appear in the sum (A5)
or its dual (14) is physical IR singularity. IR aspects of one-loop
effective action can be examined in either picture.
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Whenever two (or more)
P

4
�¼1ð�ab� Þ2 ¼ 0, the zeroth

order assumption that one can expand the fluctuations
around commuting saddles (4) is incorrect. There are
circumstances where commutative saddle points of the
classical theory may be a good description at one-loop
order in perturbation theory for some range of m. For
example, if m ¼ 0, then the one-loop effective action
(14) and (A5) reduces to

S1�loop½�ab� �¼ ð2�4ND
f Þ

X
a<b

X
k1;...;k4

log

�X4
�¼1

ð2�k�þ�ab� Þ2
L2

�

¼ð�1þ2ND
f Þ

1

�2

X
~n2Z4nf0g

1

j ~nj4 ðtr�adjð ~nÞ�NÞ:

(A6)

This one-loop action is bounded from below and generates
a repulsion between eigenvalues.

If m is sufficiently large, then the one-loop action (14)
and (A5) is unbounded from below and leads to an attrac-
tion between eigenvalues. A configuration where all eigen-
values clump and center is broken is the minimum.
However, the action is IR divergent there. This is an artifact
of perturbation theory. Whenever eigenvalues are close to

each other, then the relevant scale in the theory is �1=4
0d , and

the dynamics is strongly coupled for eigenvalues in the

j ~xabj & �1=4
0d domain where one should not use perturbation

theory.
At one-loop order in perturbation theory, the actions (14)

and (A5) as well as the one-site version (31) realize all the
saddles conjectured to exist in Ref. [43]. At m ¼ 0, the
leading fluctuations are quadratic or Gaussian; at m ¼ 1,
the leading fluctuations are quartic according to the clas-
sification of Ref. [43]. As mL is dialed, all interesting
saddles with a varying number of quadratic and quartic
fluctuations appear in massive QCD(Adj). In Refs. [13,43],
only the two extreme cases were shown to exist in pure
Yang-Mills theory in d dimensions, as d is varied.

Since the one-loop action has IR singularities, the way to
obtain the set of saddle points requires some care.

(1) Introduce an auxiliary IR cutoff �IR 
 m, modify-
ing gauge contribution in (14) to

P
4
�¼1ð2�k� þ

�ab� Þ2L�2 þ�2
IR [36]. At any finite but infinitesimal

value of �IR, we can sensibly compare the one-loop
effective action of different saddles, and find the
global minima at a given value of mL. At m ¼ 1,
the global minima are at V� ¼ 1 (and its center

conjugates). This can be studied by using the
Hermitian matrix model (15).

(2) Assume that the global minimum is a k-bunch con-
figuration of Wilson line phases. The nonperturba-
tive width of each clump, due to quantum
fluctuations, is determined by the zero-dimensional
matrix model. Interactions between different clumps
are well approximated by one-loop effective action,
and are repulsive. Dynamics inside each clump is
approximated by the SUðN=kÞ matrix model,

Sclump ¼ ðN=kÞ
ð�0d=kÞ Tr

�
� 1

4
½X0�; X0��2

þ XND
f

f¼1

�c 0
fð��½X0�; c 0

f� þmc 0
fÞ
�
; (A7)

where we put primes in order to emphasize that
matrices are ðN=kÞ � ðN=kÞ. Then, ’t Hooft cou-
pling effectively becomes �0d=k, and hence the
nonperturbative width of each clump is

�ð�0d=kÞ1=4.
(3) At relatively large values of fermion mass, mL� 1,

one may expect that only a small subgroup of ðZNÞ4
symmetry persists. However, if k is sufficiently large
that distance between bunches becomes smaller

than the fluctuation scale, 2�=ðLk1=4Þ & �1=4
0d ¼

�1=4
4d =L, interaction between nearby bunches cannot

be evaluated by one-loop approximation, and dis-
tinction of bunches becomes obscure. This implies
that the k-bunch phase is indistinguishable from the
uniform phase. (See Fig. 11.)

FIG. 11. If k is large enough so that the distance between two
nearest bunches 2�=ðLk1=4Þ becomes smaller than the quantum

fluctuation scale �1=4
0d , interaction between these two bunches

cannot be evaluated by using one-loop effective action. Quantum
fluctuation turns the k-bunch phase into the uniform phase.
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