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Bezručovo nám.13, CZ-74601 Opava, Czech Republic

(Received 25 August 2010; published 9 December 2010)

Current-carrying string loop dynamics in Schwarzschild-de Sitter spacetimes characterized by the

cosmological parameter � ¼ 1
3 �M2 is investigated. With attention concentrated to the axisymmetric

motion of string loops it is shown that the resulting motion is governed by the presence of an outer tension

barrier and an inner angular momentum barrier that are influenced by the black hole gravitational field

given by the mass M and the cosmic repulsion given by the cosmological constant �. The gravitational

attraction could cause capturing of the string having low energy by the black hole or trapping in its

vicinity; with high enough energy, the string can escape (scatter) to infinity. The role of the cosmic

repulsion becomes important in vicinity of the so-called static radius where the gravitational attraction is

balanced by the cosmic repulsion—it is demonstrated both in terms of the effective potential of the string

motion and the basin boundary method reflecting its chaotic character, that a potential barrier exists along

the static radius behind which no trapped oscillations may exist. The trapped states of the string loops,

governed by the interplay of the gravitating mass M and the cosmic repulsion, are allowed only in

Schwarzschild-de Sitter spacetimes with the cosmological parameter � < �trap � 0:00497. The trapped

oscillations can extend close to the radius of photon circular orbit, down to rmt � 3:3M.
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I. INTRODUCTION

Recent cosmological tests indicate presence of dark
energy with properties close to those of nonzero (but
very small) repulsive cosmological constant (�> 0) re-
sponsible for the observed present acceleration of the
expansion of our Universe [1]. More precisely, these cos-
mological tests indicate that the dark energy represents
about 74.5% of the energy content of the observable
Universe that is very close to the critical energy density
�crit corresponding to the almost flat Universe predicted by
the inflationary scenario [2]. Further, there are strong in-
dications that the dark energy equation of state is very
close to those corresponding to the vacuum energy, i.e.,
to the cosmological constant [3]. Therefore, it is quite
important to study the cosmological and astrophysical
consequences of the effect of the observed cosmological
constant implied by the cosmological tests to be
� � 1:3� 10�56 cm�2.

The relevance of the repulsive cosmological constant in
the cosmological models was discussed in detail by [4]. Its
role in the vacuola models of mass concentrations im-
mersed in the expanding Universe is treated in [5–8] and
its relevance is even shown for astrophysical situations
related to active galactic nuclei and their central super-
massive black holes [9]. The black hole spacetimes with
the� term included are described in spherically symmetric
case by the Schwarzschild-de Sitter (SdS) geometry
[10–13] and in axially symmetric, rotating case by the
Kerr-de Sitter (KdS) geometry [14]. In the spacetimes
with the repulsive cosmological term, motion of photons
is treated in a series of papers [15–23], while motion of test

particles and perfect fluid was studied in [5,24–30].
Equilibrium positions of spinning test particles were in-
vestigated in [31–34]. The cosmological constant can be
relevant in both the geometrically thin [9,10,24,35,36] and
thick accretion discs [37–41] orbiting around supermassive
black holes in the center of giant galaxies. Moreover, it was
recently shown that in spherically symmetric spacetimes
such disc structures can be described with high precision
by an appropriately chosen Pseudo-Newtonian potential
[42,43] that appears to be useful in studies of motion of
interacting galaxies [44].
Quite recently, an interesting study of relativistic

current-carrying strings moving axisymmetrically along
the axis of a Kerr black hole appeared [45]. Tension of
such a loop string prevents its expansion beyond some
radius, while its world sheet current introduces an angular
momentum barrier preventing the loop from collapsing
into the black hole. There is an important possible astro-
physical relevance of the current-carrying strings [45] as
they could in a simplified way represent plasma that ex-
hibits associated stringlike behavior via dynamics of the
magnetic field lines in the plasma [46,47] or due to thin
isolated flux tubes of plasma that could be described
by an one-dimensional string [48]. Such a configuration
was also studied in [49,50]. It has been proposed in [45]
that this current configuration can be used as a model for jet
formation.
Here we investigate dynamics of a current-carrying

string loop, characterized by its tension and angular mo-
mentum, in the field of a Schwarzschild-de Sitter black
hole, generalizing thus the previous works [50,51] related
to the string loops determined by tension only. Considering
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capture, trapping and scattering of circular string loops by
the black hole we identify the role of the repulsive cosmo-
logical constant in the string dynamics. It is well known
that even such a very simple axisymmetric two-body prob-
lem demonstrates apparent chaotic behavior reflected by
the so-called strange repeller due to the presence of the
tension terms in the motion [50]. In order to reflect the
chaotic character of the string motion, we use the method
of Poincaré surfaces and we determine the basin boundary
separating the space of initial condition due to different
asymptotic outcomes of the string motion.

We study a string loop threaded on to an axis of the black
hole chosen to be the y axis—see Fig. 1. The string loop
can oscillate, changing its radius in x� z plane, while
propagating in y direction. The string loop tension and
world sheet current form barriers governing its dynamics.
These barriers are modified by the gravitational attraction
of the black hole characterized by the mass M and the
cosmic repulsion determined by the cosmological constant
�. We focus our attention on the interplay of the gravita-
tional attraction and cosmic repulsion influencing the
string loop motion.

II. RELATIVISTIC CURRENT-CARRYING
STRINGS LOOP IN SPHERICALLY

SYMMETRIC SPACETIMES

The relativistic description of the string motion can be
given in terms of a properly chosen action reflecting both
the string and spacetime properties and enabling derivation
of the equations motion. We summarize the equations of
string motion in the standard form discussed in [45].

The string world sheet is described by the spacetime
coordinates X�ð�aÞ with � ¼ 0, 1, 2, 3 given as functions
of two world sheet coordinates �a with a ¼ 0, 1 that imply
induced metric on the world sheet in the form

hab ¼ g��X
�
;aX

�
;b: (1)

The string current localized on the world sheet is described
by a scalar field�ð�aÞ. Dynamics of the string, inspired by

an effective description of superconducting strings repre-
senting topological defects occurring in the theory with
multiple scalar fields undergoing spontaneous symmetry
breaking [52], is described by the action

S ¼
Z

d2�
ffiffiffiffiffiffiffi�h

p ð�=cþ hab’;a’;bÞ (2)

where ’;a ¼ ja determines current of the string and �> 0
reflects the string tension. For ja ¼ 0, � ¼ 0 we have null
strings.
Varying the action with respect to the induced metric hab

yields the world sheet stress-energy tensor density (being
of density weight one with respect to world sheet coordi-
nate transformations)

~� ab ¼ ffiffiffiffiffiffiffi�h
p ð2jajb � ð�þ j2ÞhabÞ; (3)

where

ja ¼ habjb; j2 ¼ habjajb: (4)

The contribution from the string tension with �> 0 has a
positive energy density and a negative pressure (tension).
The current contribution is traceless, due to the conformal
invariance of the action—it can be considered as a 1þ 1
dimensional massless radiation fluid with positive energy
density and equal pressure [45].
Varying the action with respect to X� we arrive to

equations of motion

ð~�abg��X
�
;aÞ;b � 1

2
~�abg��;�X

�
;aX

�
;b ¼ 0; (5)

while varying the action with respect to ’ yields the 1þ 1
dimensional wave equation

ð ffiffiffiffiffiffiffi�h
p

hab’;aÞ;b ¼ 0; (6)

i.e., the current is divergenceless. Similarly, �ab
;b ¼ 0, i.e.,

the world sheet stress-energy tensor is divergenceless with
respect to hab covariant derivative [45].
Any two-dimensional metric is conformally flat metric,

i.e., there is

hab ¼ �2�ab; (7)

where �ab is locally flat metric and � is a world sheet
scalar function. Adopting coordinates �a ¼ ð	; �Þ such
that �	� ¼ 0 and �		 ¼ ���� ¼ �1, the conformally
flat gauge is equivalent to the conditions

h	� ¼ 0; h		 þ h�� ¼ 0;
ffiffiffiffiffiffiffi�h

p
hab ¼ �ab: (8)

Then the conformal factor is given by

h�� ¼ �2��� ¼ g��: (9)

In the conformal gauge, the equation of motion of the
scalar field reads

’;		 � ’;�� ¼ 0: (10)

black hole

z

r
string loop

y

x

string trajectory

FIG. 1. Schematic picture of a string loop moving around a
black hole. Assumed axial symmetry of the string loop allows to
investigate only one point on the loop; one point path can
represent whole string movement. Trajectory of the loop is
then represented by the black curve on the picture, given in
2D x� y plot.
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In spherically symmetric spacetimes, the axisymmetric
string loops can be characterized by coordinates

X�ð	;�Þ ¼ ðtð	Þ; rð	Þ; 
ð	Þ; �Þ: (11)

(Notice that in axially symmetric spacetimes the condi-
tions has to be more complex [45].) The assumption of
axisymmetry implies that the current is independent of �
and ja;� ¼ 0. Using the scalar field equation of motion we

can conclude that the scalar field can be expressed in linear
form with constants j� and j	

’ ¼ j��þ j		: (12)

Introducing new variables

J2 � j2� þ j2	; ! � �j�=j	; (13)

we express the components of the world sheet stress-

energy density ~�ab
in the form

~� 		 ¼ J2

g��

þ�; ~��� ¼ J2

g��

��; (14)

~� �	 ¼ �2!J2

g��ð1þ!2Þ : (15)

The string dynamics depends on the current through the
world sheet stress-energy tensor. The dependence is ex-
pressed using the parameters J2 and !. The minus sign in
the definition of ! is chosen in order to obtain correspon-
dence of positive angular momentum and positive !.

A. Equations of the string motion

Using the gauge and string axisymmetry conditions, the
equations of string motion (5) take the form�

~�		g��X
�

�
;	
� 1

2

�
~�		g��;�X

�X� þ ~���g��;�

�
¼ 0:

(16)

For � ¼ � the equation is satisfied identically. For � ¼ t it
yields the energy conservation condition

~� 		gtt _t ¼ �E; (17)

where E is a constant that has to be identified with total
string energy related to the Killing vector field ( @

@� )

divided by 2�. For � ¼ r and � ¼ 
 the motion equations
read�

~�		grr _r

�
;	
¼ 1

2

�
~�		g��;rX

�X� þ ~���g��;r

�
(18)

�
~�		g

 _


�
;	
¼ 1

2

�
~�		g��;
X

�X� þ ~���g��;


�
: (19)

In the spherically symmetric spacetimes the equations of
motion of the string loop are significantly simplified due to
the symmetry properties. The motion is independent of the

parameter ! and depends only on the parameter J2 repre-
senting the angular momentum.

B. Integrals of the motion

For a Killing vector field �� a conserved Killing current
must exist [45]. Writing the Killing equation in the form
g��;��

� ¼ 0, the world sheet vector density that is the

contraction of the world sheet energy density with the
pullback of the Killing one-form to the world sheet

J b
� ¼ ~�abX�

;ag���
� (20)

has to satisfy the conservation law

J b
�;b ¼ 0: (21)

Integrating over any closed world sheet cross section
determines the conserved quantity related to the Killing
vector field

Q� ¼
Z

J b
�dSb: (22)

Taking the integral over a surface of constant 	 we obtain,
because of the axisymmetry of the string loop, the relation

�Q� ¼ E ¼ 2�E; (23)

where E is the constant introduced in Eq. (17) having the
meaning of the Killing energy of the string divided by 2�.
For the axial Killing vector we arrive at

Q� ¼ L ¼ �4�j�j	 (24)

which is clearly a constant for the solution we consider. It
should be stressed that without the current the string carries
no angular momentum.

C. Motion in spherically symmetric spacetimes and
its effective potential

We can write any vacuum spherically symmetric space-
time in the form

d s2 ¼ �AðrÞdt2 þ A�1ðrÞdr2 þ r2ðd
2 þ sin2d�2Þ:
(25)

The characteristic function AðrÞ describes a particular
spacetime.
The gauge condition (8), takes the form

_t 2 ¼ AðrÞ�2 _r2 þ AðrÞ�1r2 _
2 þ AðrÞ�1r2sin2
: (26)

The components of the string equations of motion (16)
take relatively simple form for the spherically symmetric
metric (25). For � ¼ t the conservation law reads (17)

_tAðrÞ~�		 ¼ E: (27)

Considering (26), we arrive for � ¼ r and � ¼ 
 to the
formulas
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€r ¼ _
2
�
AðrÞr� @rAðrÞ

2
r2
�
� _r

@	�
		

�		

þ sin2


�
���

�		 AðrÞr� @rAðrÞ
2

r2
�
; (28)

€
 ¼ � 2

r
_r _
�@	�

		

�		
_
þ ���

�		 sin
 cos
; (29)

where

@	�
		 ¼ � 2J2

g2��

ðrsin2
 _rþ r2 sin
 cos
 _
Þ: (30)

Component ~��	
of the world sheet stress-energy tensor is

not present in string equations of motion (28) and (29).
Further, the string motion does not depend on !, which is
obvious for spherically symmetric spacetimes.

Considering the gauge condition (26) and the conserva-
tion law (27), the equations of motion can be expressed in
the ‘‘integrated’’ form

AðrÞð~�		Þ2ðAðrÞ�1 _r2 þ r2 _
2Þ þ Vðr; 
Þ ¼ 0; (31)

where

Vðr; 
Þ ¼ �E2 þ AðrÞr2sin2
ð~�		Þ2 (32)

plays the role of an ‘‘effective potential’’. Since the first
term of the equations of motion is always positive in the
static parts of the spherically symmetric spacetimes, the
string motion is confined to the region where

Vðr; 
Þ � 0; (33)

being bounded by the relation fulfilled by the energy
parameter

E ¼ Ebðr; 
Þ �
ffiffiffiffiffiffiffiffiffi
AðrÞ

p
r sin
~�		

(34)

¼ ffiffiffiffiffiffiffiffiffi
AðrÞp �

J2

r sin

þ�r sin


�
: (35)

We find directly that Ebðr; 
Þ ¼ 0 just where AðrÞ ¼ 0, i.e.,
at the spacetime horizons; it diverges at infinity and at
r ¼ 0 when J2 > 0. Assuming that the string loop will
start its motion from rest, i.e., assuming _rð0Þ ¼ 0 and
_
ð0Þ ¼ 0, the initial position of the string will be located
at some point of the energy boundary Eb of its motion.

It is useful to use the Cartesian coordinates that are
introduced in the form

x ¼ r sinð
Þ; y ¼ r cosð
Þ: (36)

The boundary string energy in Cartesian coordinates is

Ebðx; yÞ ¼
ffiffiffiffiffiffiffiffiffi
AðrÞ

p �
J2

x
þ x�

�
¼

ffiffiffiffiffiffiffiffiffi
AðrÞ

p
fðxÞ; (37)

where r ¼ rðx; yÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. The function AðrÞ reflects

the spacetime properties, while fðxÞ those of the string

loop. The behavior of the boundary energy function is
given by interplay of the functions AðrÞ and fðxÞ. Let us
stress that we use in the following a simplification enabled
by the assumption of purely axisymmetric oscillations

of the string loop, namely � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2

p
! x, assuming

x > 0.
The local extrema of the boundary energy function Eb

are of crucial importance since they determine the regions
of different character of the string loop motion. Stationary
points of Ebðx; yÞ are determined by the conditions

ðEbÞ0x ¼ 0 , xA0
rf ¼ �2rAf0x (38)

ðEbÞ0y ¼ 0 , A0
ry ¼ 0; (39)

where we assume fðxÞ> 0 for x > 0. The prime ðÞ0m de-
notes derivation with respect to the coordinate m. In order
to determine character of the stationary points at ðxe; yeÞ
given by the stationary conditions, i.e., whether it is a
maximum (‘‘hill’’) or minimum (‘‘valley’’) of the energy
boundary function Ebðx; yÞ, we have to consider the con-
ditions

½ðEbÞ00yy�ðxe; yeÞ< 0ðmaxÞ> 0ðminÞ (40)

½ðEbÞ00yyðEbÞ00xx � ðEbÞ00yxðEbÞ00xy�ðxe; yeÞ> 0: (41)

Behavior of the energy boundary function Ebðx; yÞ in each
of the directions x and y is relevant for the character of the
string motion boundary. The behavior in the x direction in
equatorial plane (y ¼ 0) gives the information if the
boundary is open to the origin of coordinates (BH horizon),
and the behavior in the y direction gives the information if
the boundary is open to the infinity.
It is obvious from Eqs. (35) and (37) that we can make

the rescaling Eb ! Eb=� and J ! J=
ffiffiffiffi
�

p
assuming

�> 0. This choose of ‘‘units’’ will not affect string bound-
ary equations, and this is equal to set the string tension
� ¼ 1 in Eqs. (35) and (37).

III. ANALYSIS OF THE MOTION OF
STRING LOOPS

We shall successively study properties of the axisym-
metric string loop motion for the special cases of spheri-
cally symmetric spacetimes: flat, de Sitter, Schwarzschild
and Schwarzschild-de Sitter in order to clearly demonstrate
the role of the cosmological constant.
In our numerical calculations of the string loop motion

wewill set the string tension� ¼ 1. The starting pointP of
the string motion will be properly chosen, usually a little
bit below the equatorial plane. If the string will be starting
from the rest ( _r ¼ 0, _
 ¼ 0) with some given angular
momentum J, the string energy can be calculated from
the energy boundary function E ¼ EbðJÞ.
First, we illustrate the role of the string parameters in the

clearest form—for the motion in the flat spacetime.
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A. Flat spacetime

For the flat spacetime the characteristic function of the
line element (25) takes the form

AðrÞ ¼ 1 (42)

and there is no characteristic length scale. The effective
potential is given by the relation

Vðr; 
Þ ¼ �E2 þ r2sin2
ð~�		Þ2; (43)

while the boundary energy function takes the form

EbðxÞ ¼ J2

x
þ x: (44)

It diverges Eb ! þ1 for both x ! 0 and x ! 1. Using
the condition for the extrema of the boundary energy
function (38) and (39), we find that the minimum of
EbðxÞ is located at

xmin ¼ J; (45)

for all y and the boundary energy

Emin ¼ 2J: (46)

Notice that in the y direction the energy boundary function
is totally flat.

The behavior of the energy boundary Eb is illustrated in
Fig. 2. Clearly, the convex shape of the function EbðxÞ for
all y ensures that there will always be an inner and outer
boundary for the motion in the x direction. If the string is
located at the radius xmin with energy Emin ¼ 2J it will not
oscillate, keeping its position at this stable equilibrium
point. The minimum of the boundary energy Emin corre-
sponds to the dashed line at Fig. 2(b). Motion of the string
is allowed if its energy satisfy the condition E> Emin.

Equation (28) for the motion of strings with nonzero
tension and current (angular momentum) takes for the flat
spacetime expressed in the spherical coordinates the form

€r ¼ _
2r� _r
@	�

		

�		 þ rsin2

���

�		 ; (47)

while (29) remains unchanged. These equations can be
integrated numerically. The typical results are represented
in Fig. 3.
It is intuitively clear that while moving in the y direction,

the amplitude of the string loop oscillations in the x direc-
tion, representing oscillations of the loop as a whole,
remains constant. Properties of the flat spacetime does
not change while transporting the loop in any direction
since the center of the spherical symmetry can be chosen at
any point of the spacetime, keeping thus constant ampli-
tude of oscillations. This fact can be easily demonstrated
formally expressing the equations of the string motion in
the x� y coordinates. The equations take the form

€x�		 þ _x@	�
		 � x��� ¼ 0; (48)

€y�		 þ _y@	�
		 ¼ 0; (49)

where

�		 ¼ J2

x2
þ 1;

��� ¼ J2

x2
� 1;

@	�
		 ¼ � 2J2

x3
_x:

(50)

Since the first equation governing the oscillations in the x
direction does not depend on y, it directly implies that
magnitude of the oscillations is constant during the motion
in the y direction since we do not consider dissipative
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FIG. 2. The boundary energy Eb as a function of Cartesian
coordinate x (36) (case (a)) and the string parameter J (case (b))
for the flat spacetime. String loop initial conditions marked by
the black point are given by coordinates x0 ¼ 5, y0 ¼ 1 and the
string parameter J ¼ 11, corresponding to the energy E ¼: 29.
The dashed curve (line) represents the minima of the boundary
energy function EbðminÞ.
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FIG. 3. The boundary energy Ebðx; yÞ for given J (case (a)) and
a string loop trajectory (case (b)) in the flat spacetime. The thick
solid curve represents the path of the string loop starting from
rest ( _x ¼ 0, _y ¼ 0,) at x0 ¼ 5, y0 ¼ 1, while the thin solid curve
represents string with initial momentum in y direction _y ¼ 0:5,
_x ¼ 0 at x0 ¼ 5, y0 ¼ 5:04. We use string parameter J ¼ 11 and
string energy E ¼ 29:2 in both cases. The dotted lines represent
boundaries E ¼ Eb for the string motion.
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phenomena; for example, there is no gravitational radiation
of the axially oscillating string.

The motion can be expressed in a simple explicit inte-
grated form. Defining a new time coordinate ~	 by

d ~	 ¼ 1

�		 d	; (51)

equations of the string motion (48) and (49) take the form

€~x� J4

x3
þ x ¼ 0; (52)

€~y ¼ 0; (53)

where _~x ¼ dx=d~	. Analytic solutions of the Eqs. (52) and
(53) are

x2ð~	Þ ¼ 1

2

�
x20 þ

J4

x20
þ _~x20 þ 2x0 _~x0 sinð2~	Þ

þ
�
x20 �

J4

x20
� _~x20

�
cosð2~	Þ

�
; (54)

yð~	Þ ¼ _~y0~	þ y0; (55)

where x0 (y0) is initial position and _~x0 ( _~y0) is initial speed
in x or y direction.

B. de Sitter spacetime

For the de Sitter spacetime the characteristic function of
the line element (25) takes the form

AðrÞ ¼ 1� 1

3
�r2 ¼ 1� r2

r2c
; (56)

where a characteristic length scale determined by the
cosmological constant is introduced by

rc ¼
ffiffiffiffiffiffiffiffiffi
3=�

p
(57)

and gives extension of the so-called cosmic horizon of the
de Sitter spacetime [5,14].

In the case of the de Sitter spacetime the boundary
energy function has different asymptotical behavior in
comparison the case of the flat spacetime due to the cosmic
repulsion—there is Eb ! þ1 for r ! 0, but Eb ! �1
for r ! 1. The equation for extrema of the boundary
energy function (39) gives y ¼ 0 while (38) implies a
quadratic equation in x2

2�x4 � 3x2 þ 3J2 ¼ 0: (58)

The extrema condition can be expressed in the simple
form

J2 ¼ J2E � x2
�
1� 2

3
�x2

�
: (59)

The loci of minimum xEðminÞ and maximum xEðmaxÞ of the
boundary energy function are given by

x2EðminÞ ¼
r2c
4
ð1� XÞ; x2EðmaxÞ ¼

r2c
4
ð1þ XÞ; (60)

where a new parameter

X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8J2

r2c

s
(61)

is introduced. We can see that the maxima and minima
exist if J < Jmax, where

Jmax ¼ rc=
ffiffiffi
8

p ¼ 1=
ffiffiffiffiffiffiffi
8�

p
: (62)

Assuming J=rc � 1, we obtain asymptotic formulas

xEðminÞ � J; xEðmaxÞ ¼ rcffiffiffi
2

p
�
1� J2

r2c

�
; (63)

and we directly see that for very small values of the
cosmological constant the internal solution corresponding
to the minimum coincides with the solution for the flat
spacetime, while the outer solution corresponding to the

maximum is located near rc=
ffiffiffi
2

p
with the string parameter

J=rc representing a small correction.
The extremal values of the boundary energy EbðminÞ and

EbðmaxÞ are given by the relations

EbðminÞ ¼ Ebðx ¼ xEðminÞ; J;�Þ; (64)

EbðmaxÞ ¼ Ebðx ¼ xEðmaxÞ; J;�Þ: (65)

In de Sitter spacetime these extrema can be expressed in
an explicit form

EbðextÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3

4
	 X

4

s �
2J2

rc
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1	 X

p þ rc
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1	 X

p �
; (66)

where ‘‘þ’’ stands for the maximum and ‘‘�’’ for the
minimum.
In the limit of J2=r2c � 1, we find

EbðminÞ � 2J

�
1� 1

2

J2

r2c

�
; (67)

EbðmaxÞ � rc
2

�
1þ J4

r4c

�
: (68)

The values of the boundary energy at the local extrema
EminðJÞ and EmaxðJÞ are illustrated in Fig. 4(a).
The motion of the string loop in the de Sitter spacetimes

is of the oscillatory character analogical to the motion in
the flat spacetime for energy E< Emax, while it is unlim-
ited for E> Emax—see Fig. 3. We give the sections of
constant x and y, i.e., in the directions reflecting character
of the oscillatory motion of the string loops.
The equation for the string motion in the spherical

coordinates (28) can be written for de Sitter spacetime in
the form
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€r ¼ _
2r� _r
@	�

		

�		 þ rsin2

���

�		 þ�

3
sin2ð
Þr3

�
2�

�		

�
;

(69)

while (29) remains unchanged. Comparing this equation
for radial string motion with those for the motion in the flat
spacetime (47), we can see that the contribution of the
cosmological constant is given by the last term in Eq. (69).
For �> 0 and �> 0 this term is positive, therefore, the
repulsive cosmological constant has tendency to stretch the
string.

The only plane where the string loop can stay at equi-
librium position in de Sitter spacetime is the equatorial
plane (y ¼ 0), but this position is unstable. Any deviation
from the equatorial plane leads to the motion in the y
direction. The influence of the repulsive cosmological
constant on the string motion is illustrated in Fig. 5. As
follows from the role of the term (69), the string loop
oscillates in the x direction while moving and speeding
up in y direction, due to the influence of the cosmological
constant.

Since in the de Sitter spacetime the center of the spheri-
cal symmetry can be chosen at any point of the spacetime,
similarly to the case of the flat spacetime, the amplitude of
the oscillatory motion again remains constant. We can
demonstrate this fact formally by expressing the equations
of the motion in the x-y plane:

€x�		 þ _x@	�
		 � x��� ¼ 2��

3
x3; (70)

€y�		 þ _y@	�
		 ¼ 2��

3
x2y: (71)

The equation for the oscillatory motion in the x direction is
independent of y and its amplitude will remain constant
during the motion in the y direction. Of course, the ampli-
tude is now influenced by the cosmological constant term
as clear from the equation of the energy boundary (see
Fig. 6).
Using the relation (51) we arrive to

€~x� J4

x3
þ x ¼ 2�

3
xðJ2 þ x2Þ; (72)
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FIG. 4. Boundary energy function Ebðx; y; JÞ for the de Sitter spacetime. (a) Thick solid curves correspond to the maxima and
minima of Eb in the x direction that exist for J < Jmax. For comparison we also show the minimum for the flat spacetime as a thick
dashed curve. A thin solid line represents the energy Ebðx0; y0; JÞ for x0 ¼ 5, y0 ¼ �1. Figures (b) and (c) give representative y ¼
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taken in the minimum and maximum of the boundary energy function x profile. We choose representative values of string parameter J:
J1 ¼ 11 (solid line) and J2 ¼ 18 (dashed line). The string loop is assumed to be starting from the point x0 ¼ 5, y0 ¼ �1 for the cases
1,2 and x0
 ¼ 98, y0
 ¼ �1 for the case 2*. Calculated energies for the string loop motion are E1 ¼: 30, E2 ¼: 70, E2
 ¼: 20. In all
cases we assume the string loop starting from the rest ( _x ¼ 0, _y ¼ 0). Restricted area for the string motion Vðx; yÞ> 0 is shaded.
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€~y ¼ 2�

3
yðJ2 þ x2Þ: (73)

In order to obtain the solution for the x motion we have to
find the roots of the cubic equation in x

�x3 þ ð2J2�� 3Þx2 þ 6C1x� 3J4 ¼ 0: (74)

Denoting the three roots a, b, c, we find the equation of x
motion in terms of the Jacobi elliptic function
JacobiSNðu;mÞ

x2 ¼ ðb� cÞJacobiSN
� ffiffiffiffiffiffiffiffiffiffiffiffi

a� c

3

r
	þC2;

b� c

a� c

�
2 þ c; (75)

where C1, C2 are constants of integration. The y motion
can be integrated numerically only.

C. Schwarzschild spacetime

For the Schwarzschild spacetime the characteristic func-
tion of the line element (25) takes the form

AðrÞ ¼ 1� 2M

r
: (76)

This geometry introduces a characteristic length scale
corresponding to the radius of the black hole horizon that
is given by the condition AðrÞ ¼ 0 and is determined by
rh ¼ 2M. Recall that the innermost stable circular orbit of
the free particle motion is located at rISCO ¼ 6M, the
radius of marginally bound orbit is located at rmb ¼ 4M,
while the photon circular orbit is located at rph ¼ 3M [4].

In the Schwarzschild spacetime, there is Eb ! þ1 for
r ! 1, but a new kind of asymptotic behavior appears
near the black hole horizon—Eb ! 0 for r ! 2M. Typical
behavior of the boundary energy function is demonstrated
by its profiles in the x and y directions—see Fig. 7.
The extrema Eq. (38) leads to the cubic equation in x

coordinate

x3 �Mx2 � J2xþ 3MJ2 ¼ 0; (77)

while (39) gives y ¼ 0. Using the dimensionless coordi-
nate ~x ¼ x=M, (~y ¼ y=M, ~r ¼ r=M) and dimensionless
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FIG. 6. Boundary energy function Ebðx; yÞ (a) and the string
loop path (b) for the case 1 given in Fig. 4. Amplitude of the
string motion in the x direction remains constant, while string is
being accelerated in the y direction.
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(thick line). We assume a string loop starting from the rest ( _~x ¼ 0, _~y ¼ 0) at the point ~x0 ¼ 5, ~y0 ¼ 1 for cases 1–4 and at the point
~x0 ¼ 25, ~y0 ¼ 1 for the case 1* (trajectory of the type 1). The energies calculated for the string motion are given as follows: ~E1 ¼: 4,
~E2 ¼: 8, ~E3 ¼: 17, ~E4 ¼: 23, ~E1
 ¼: 29.

M. KOLOŠ AND Z. STUCHLÍK PHYSICAL REVIEW D 82, 125012 (2010)

125012-8



string parameter ~J ¼ J=M (dimensionless energy ~E ¼
E=M), the extrema equation can be expressed in the form

~J 2 ¼ ~J2E � ~x2ð~x� 1Þ
~x� 3

: (78)

Clearly, we have to restrict our considerations to the region
above the black hole horizon r > rh. The extrema function
~J2E diverges at ~x ¼ 3 and at infinity—see Fig. 8. The local
extrema of the function ~J2E are located at radii given by the
condition

~x 2 � 5~xþ 3 ¼ 0: (79)

For our discussion, the minimum of ~J2E located at

~x min ¼ 5þ ffiffiffiffiffiffi
13

p
2

� 4:303; (80)

is only relevant. The corresponding minimal value of ~J2E
reads

~J 2
EðminÞ ¼

47þ 13
ffiffiffiffiffiffi
13

p
2

� 46:936: (81)

The boundary energy function has two extrema, maximum
and minimum, located above the black hole horizon (at ~x >
2), when (in the following, we can assume ~J > 0 due to the
spherical symmetry of the spacetime)

~J > ~JEðminÞ: (82)

For ~J ¼ ~JEðminÞ, the energy boundary function ~Ebð~x; ~JÞ has
an inflex point. For ~J < ~JEðminÞ there are no extrema of the

energy boundary function above the horizon. Using the
general formulas (64) and (65), we give the extremal values
of the boundary energy function in dependence on the
string parameter ~JE in Fig. 7(a). The x profiles of the
boundary energy function are for selected typical values
of the string parameter illustrated in Fig. 7(b). The oscil-
latory motion in the x direction is allowed for string loops
with ~J > ~JEðminÞ and energy satisfying the condition
~EbðminÞðJÞ< ~E< ~EbðmaxÞðJÞ. String loops with ~J < ~JEðminÞ,
or with ~E< ~EbðmaxÞðJÞ and ~J > ~JEðminÞ, can be captured by

the black hole.
The y profiles of the boundary energy function (illus-

trated in Fig. 7(c) for the same selected values of the string
parameters as in Fig. 7(b)) determine whether the oscillat-
ing strings are trapped in the black hole field or escape to
infinity. The string loop can escape to infinity if its energy
is bigger then the ‘‘rest’’ energy in infinity, i.e., for ~E>
~EminðflatÞ, given by (46). The escape is thus determined by

the limiting energy in the flat spacetime. (The captured and
trapped states of the oscillating strings are shaded in the
Fig. 7(a)).
It is quite interesting to determine the conditions for

existence and extension of regions of trapped states of the
oscillating string loops in dependence on the motion con-
stants ~J and ~E. Such states, in which the string loop may
not escape to infinity neither may not be captured by the
black hole, correspond to ‘‘lakes’’ determined for appro-
priately chosen energy levels by the energy boundary
function ~Ebðx; y; ~JÞ. To do so, restrictions from the x pro-
files and y profiles of the boundary energy function has to
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FIG. 8. String parameter functions ~Jð~xÞ determining character of the boundary energy function ~Eb, given for three representative
values of ~y. The function ~JEð~xÞ (thick solid curve) determining extrema of Eb is independent of ~y. Dashed curves represent
the functions ~JL1ð~x; ~yÞ, ~JL1ð~x; ~yÞ. For ~y ! 1 these curves coalescence to the function ~J ¼ ~x (thick dashed curve on the third figure).
The thin solid curves represent numerically calculated ‘‘projected’’ angular momentum function ~Jpð~x; ~yÞ that is determined by the

projection of the extremal (maximal) energy level ~EbðmaxÞð~xmax; ~y; ~JÞ onto the energy boundary function itself. Regions where ‘‘lakes’’

can exist are shaded. The lowest ‘‘big lake’’ exist for ~J ¼ ~JL1ðminÞ, extending to ~y ¼ 1 in the ~y direction and down to ~xmt in the ~x

direction. For ~J > ~JL1ðminÞ the lake can extend asymptotically to ~y ¼ 1 at ~x ¼ ~J. For ~JEðminÞ < ~J < ~JL1ðminÞ the ‘‘lake’’ does not reach
infinity.
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be properly combined, in dependence on the string (angu-
lar momentum) parameter ~J.

First, the restrictions for the trapped oscillations in the x
direction has to be represented by an projected angular
momentum function ~Jpð~x; ~yÞ determined by the projection

of the extremal (maximal) energy level ~EbðmaxÞð~xmax; ~y; ~JÞ
onto the energy boundary function itself. It is numerically
constructed in a simple way: we choose for a fixed ~y a value
of ~Jp, find the corresponding value of the energy boundary

function maximum ~EbðmaxÞð~xmax; ~y; ~JpÞ and the related

coordinate ~xp where ~EbðmaxÞð~xmax; ~y; ~JpÞ ¼ ~Ebð~xp; ~y; ~JpÞ.
Second, we can show by solving equation

~E bð~x; ~y; ~JÞ ¼ ~EminðflatÞð~JÞ ¼ 2~J (83)

that the trapped states of the oscillating string loops could
exist if

~J L1ð~x; ~yÞ< ~J < ~JLð~x; ~yÞ (84)

where the ‘‘lake’’ angular momentum functions ~JL1ð~x; ~yÞ
and ~JL2ð~x; ~yÞ are solutions of (83). In the equatorial plane
(~y ¼ 0), the trapped regions are most extended and the
‘‘lake’’ angular momentum functions take the simple form

~J L1 ¼ ~xð ffiffiffi
~x

p þ ffiffiffi
2

p Þffiffiffiffiffiffiffiffiffiffiffiffi
~x� 2

p ; ~JL2 ¼ ~xð ffiffiffi
~x

p � ffiffiffi
2

p Þffiffiffiffiffiffiffiffiffiffiffiffi
~x� 2

p : (85)

The functions ~JL1ð~xÞ and ~JL1ð~xÞ are illustrated in Fig. 8(a).
The minimum of the function ~JL1ð~xÞ coincides with its

intersection with the function ~JEð~xÞ. It is located at the
radius

~x mt ¼ ~xL1ðminÞ ¼ 9þ ffiffiffiffiffiffi
17

p
4

� 3:3 (86)

that determines the so-called marginally trapped radius
giving the smallest value of the x coordinate allowed for
the oscillating string loops. The related value of the string
parameter ~JL1ðminÞ is given by

~J 2
L1ðminÞ ¼

349þ 85
ffiffiffiffiffiffi
17

p
8

: (87)

Therefore, the region of trapped motion is restricted to
radii ~x > ~xmt � 3:3; the critical value of the string parame-
ter reads ~JL1ðminÞ ¼ ~Jmt � 9:35.

The results relevant for the trapped states are summa-
rized in Fig. 8. The regions of trapped oscillations are most
extended at the equatorial plane (~y ¼ 0) and shrink with j~yj
increasing. For ~JEðminÞð~x; ~yÞ< ~J < ~JL1ð~x; ~yÞ the trapped

region is given by the projected angular momentum func-
tion ~Jpð~x; ~yÞ, for ~J > ~JL1ðminÞ it is given by ~JL1ð~x; ~yÞ and
~JL2ð~x; ~yÞ. For j~yj ! 1 the region reduces to ~x ¼ ~J. The
most extended ‘‘lake’’ of trapped oscillations exists for
~J ¼ ~Jmt that extends up to j~yj ! 1 and down to ~x ¼ ~xmt

(for ~y ¼ 0).
In the Schwarzschild spacetimes, we can distinguish

four different types of the behavior of the boundary energy

function and the character of the string loop motion; in
Fig. 7 we denote them by points numbered 1 to 4. The first
case J < JL2 corresponds to no inner and outer boundary
and the string can be captured by the black hole or escape
to infinity, in the second case, ~JL2 < ~J < ~JE, there is an
outer boundary and the string loop cannot escape to infin-
ity, and it must be captured by the black hole. The third
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FIG. 9. String loop motion in the Schwarzschild spacetime.
Four types of the motion as given in Fig. 7 are presented. The
boundary energy function is given for the selected values of
the string parameter ~J and the trajectories are constructed for the
related energies calculated under the assumption of the rest
initial state of the string.
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case, ~JE < J < ~JL1, corresponds to the situation when both
inner and outer boundary exist and the string is trapped in
some region forming a potential ‘‘lake’’ around the black
hole. In the fourth case ~JL1 < ~J the string cannot fall into
the black hole but it can escape to infinity (or be trapped).
The situation is illustrated in Fig. 9. The states of the
oscillating string loop are allowed for the intervals of
coordinates ~x, ~y (and string parameter ~J) in the shaded
region given by a corresponding energy level.

The trajectories of the string loop are obtained by inte-
grating the equation for the string motion in the spherical

coordinates (28) that can be written for the Schwarzschild
spacetime in the form

€~r¼ _
2ð~r�3Þ� _~r
@	�

		

�		 þ sin2


�
���

�		 ð~r�2Þ�1

�
; (88)

while the Eq. (29) remains unchanged. Now, the amplitude
of the string loop motion is changed during the motion
off the equatorial plane due to the gravitational effects of
the mass located at the center of symmetry—in the
Schwarzschild (and SdS) spacetime there is the only center
of symmetry, contrary to the cases of flat and dS
spacetimes.
The string path for all four types of motion can be found

in Fig. 9. The string loop is starting from the rest _~x ¼ 0,
_~y ¼ 0, and the starting point is chosen at ~x0 ¼ 5, ~y0 ¼ 1,
i.e., above the equatorial plane. The string parameter ~J is
chosen, while the energy ~E is calculated from the equation
~E ¼ ~Ebð~JÞ. For energy ~E1 ¼: 4, ~E2 ¼: 8 (cases 1,2), the
string falls into black hole, Fig. 9(a) and 9(b) for energy
~E3 ¼: 17, the string is trapped in some region above the
black hole horizon, Fig. 9(c), and for energy ~E4 ¼: 23, the
string escapes to infinity, Fig. 9(d).
In the cases 1 and 4, when the energy boundary function

reaches infinity, the oscillating string loop approaching the
black hole from large distances (infinity) can be scattered,
rescattered, or captured by the black hole field, as demon-
strated in Fig. 10.
Motion of current-carrying string loop in Schwarzschild

spacetime has been also studied in [49] using a different
approach of [53]. The results obtained in those work agree
with those presented here.

D. Schwarzschild-de Sitter spacetime and the effect of
the cosmological constant

The most general spacetime we consider here is the SdS
one. The characteristic function of the line element (25)
then takes the form

AðrÞ ¼ 1� 2M

r
� 1

3
�r2 ¼ 1� 2

~r
� �~r2: (89)

In this case two characteristic length scales given by the
mass parameter M and the cosmological constant � are
introduced. It is therefore convenient to use the dimension-
less coordinate ~r ¼ r=M (~x ¼ x=M, ~y ¼ y=M) and a
dimensionless cosmological parameter

� ¼ 1

3
�M2: (90)

In order to clearly demonstrate the role of the cosmological
constant, we will use in our figures � ¼ 10�4 and
� ¼ 10�6. Of course, these values are very large in com-
parison with values expected for realistic supermassive
black holes in active galactic nuclei, when for even the
most extreme case of quasar TON618 with the mass of the
central black hole estimated to be M� 6:6� 1010M�,
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FIG. 10. Scattering, capturing and backscattering of a string
loop in the Schwarzschild spacetime. The string is starting from
the point with coordinates ~x0 ¼ 6, ~y0 ¼ �200, having the same
string (angular momentum) parameter ~J ¼ 9 and various mo-
mentum in the ~y direction and related energy: _~y ¼ 3 and ~E ¼:
21:7 for scattering, _~y ¼ 3:25 and ~E ¼: 22:1 for capturing, _~y ¼
2:75 and ~E ¼: 21:4 for backscattering. After the scatter, the
amplitude of the string loop oscillations in the x direction is
reduced; there is conversion of oscillatory energy to the kinetic
energy in the y direction. This effect was described as ‘‘string
transmutation’’ in [49]. The same effect is also observed in the
case of rotating black holes—see [45].
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there is �� 10�24 ([42,54]). However, for astrophysically
realistic values of �, the string loop motion is of the same
character as presented in our discussion, only the scales of
the static radius (and the cosmological horizon) are shifted
to values much larger than those considered here. Different
situations (with much larger values of �) are possible in the
early Universe [38].

The horizons of the SdS spacetime are again given by
AðrÞ ¼ 0. For � < 1=27, there are the cosmological ~rc and
black hole ~rh horizons that are given by the relations
[10,38]

~r h ¼ 2ffiffiffiffiffiffi
3�

p cos
�þ �

3
; ~rc ¼ 2ffiffiffiffiffiffi

3�
p cos

�� �

3
(91)

where

� ¼ cos�1ð3 ffiffiffiffiffiffi
3�

p Þ: (92)

For � ¼ 1=27 the horizons coalesce at ~r ¼ 3, while for
� > 1=27 the SdS spacetime describes a naked singularity.
The photon circular orbit is located at ~rph ¼ 3, indepen-

dently of the cosmological parameter (see [15]). The
crucial role plays the static radius

~r s ¼ ��1=3 (93)

where the gravitational attraction of the black hole acting
on a test particle is just balanced by the cosmic repulsion
[10]. Thus, no circular orbits of test particles are possible at
~r > ~rs and ~r < ~rph. The ISCO location is implicitly deter-

mined by the condition

� ¼ �ms � ~r� 6

~r3ð4~r� 15Þ : (94)

The stable orbits exist at spacetimes with

� < �ms ¼ 12

154
� 0:000237 (95)

when two ISCO orbits exist—the inner and outer ones [5].
In the SdS spacetime, the asymptotic behavior of the

boundary energy function is determined by the presence of
the black hole horizon and the cosmological horizon—
there is Eb ! 0 for both r ! rh, rc. Typical behavior of
the boundary energy function (its x and y profiles) is
represented in Fig. 11.
Introducing the dimensionless string (angular momen-

tum) parameter ~J ¼ J=M and energy ~E ¼ E=M, the
extrema Eq. (38) leads to the quintic equation in the ~x
coordinate
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FIG. 11. Boundary energy function ~Ebð~x; ~y; ~J; �Þ of the SdS spacetime with the cosmological parameter � ¼ 10�4. (a) Thick solid

curves correspond to the maxima, minima and second maxima of ~Eb in the ~x direction. Maximal energy for trapped states, ~E ¼
2~J

ffiffiffiffiffiffiffiffiffiffiffi
Að~rsÞ

p
represents the dashed curve, while the thin dotted lines represent the energy profiles ~Ebð~x0; ~y0; ~JÞ taken at the spacetime

points with coordinates ~x0 ¼ 5, ~y0 ¼ 1 (for the states represented by points 1–5) and ~x0 ¼ 25, ~y0 ¼ 1 (for 1
, 4
). The states are
chosen with representative values of the string parameter: ~J1 ¼ 1:5, ~J2 ¼ 5, ~J3 ¼ 9, ~J4 ¼ 11, and ~J5 ¼ 18. (There is ~J1
 ¼ ~J4 and
~J4
 ¼ ~J5.) Region where ‘‘lakes’’ corresponding to the trapped states can exist is shaded. The figures (b) and (c) show ~x� and ~y�
profiles of the boundary energy function; we use ~Ebð~x; 0; ~JÞ (b) and ~Ebð~xmin; ~y; ~JÞ (c). (For cases 1,2 there is no minimum in the ~x
direction and we use ~Ebð3; ~y; ~JÞ instead.) The profiles are presented for the chosen representative values of string parameter: ~J1 ¼ 1:5
(dotted curves), ~J2 ¼ 5 (dashed curves), ~J3 ¼ 9 (thin curves), J4 ¼ 11 (thick curves) and ~J5 ¼ 18 (thick dotted curves). We assume a
string loop starting from the rest at the point ~x0 ¼ 5, ~y0 ¼ 1 for cases 1–5 and at the point ~x0 ¼ 25, ~y0 ¼ 1 for the cases 1
, 4

(trajectories of the type 1 and 4). The energies calculated for the string motion are given as follows: ~E1 ¼: 4, ~E2 ¼: 8, ~E3 ¼: 16,
~E4 ¼: 23, ~E1
 ¼: 28, ~E4
 ¼: 35 and ~E5 ¼: 54. Trajectories of the type 1–4 correspond to the cases 1–4 in the Schwarzschild spacetime
(see Figs. 7 and 9), while trajectories of the type 5 correspond to the type-2 trajectories in the de Sitter spacetime [see Figs. 4 and 5(b)].
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� 2

3
�~x5 þ ~x3 � ~x2 � ~J2~xþ 3~J2 ¼ 0; (96)

while (39) gives again ~y ¼ 0, but also an additional
condition—A0

~r ¼ 0 determining a maximum of the energy
boundary function in the y direction that is located at
~rmax ¼ ~rs. Clearly, the static radius plays a fundamental
role in the motion of string loops, similarly to the case of
the motion of test particles.

First, we examine restrictions for motion in the x direc-
tion. Equation (96) can expressed in the form

~J 2 ¼ ~J2E � ~x2ð~x� 1� 2�~x3Þ
~x� 3

: (97)

The function ~JE is illustrated in Fig. 12 (we assume ~J > 0
again).

The zero points of the function ~J2Eð~x; �Þ are given by the
condition

� ¼ �z � ~x� 1

2~x3
(98)

while its divergent points are located at the radius of the
photon circular orbit ~xph ¼ 3, independently of the value of

the cosmological constant.
The local extrema of the function ~J2Eð~x; �Þ are located at

radii given by the condition

� ¼ �Eð~xÞ � ~x2 � 5~xþ 3

~x3ð4~x� 15Þ : (99)

The zero point of the function �Eð~xÞ is located at
~xEðzÞ ¼ ~xmin � 4:303, given by (98) relevant in the

Schwarzschild spacetimes. Its divergence point is located
at ~xEðdÞ ¼ 15=4—notice that it coincides with the diver-

gence point of the function �msð~xÞ governing the ISCO
orbits of the SdS spacetimes. There are three extrema
points of the function �E taking values (see Fig. 15)

�EðeÞ1;3 ¼ 1633	 129
ffiffiffiffiffiffiffiffi
129

p
33750

; �EðeÞ2 ¼ 1

27
: (100)

The only physically relevant extremal point, located at ~x >
15=4, is given by the third (lowest) solution. It is located at

~x ¼ 3ð17þ ffiffiffiffiffiffiffiffi
129

p Þ
16

� 5:3; (101)

see Fig. 15.
The physically relevant extremal points of the function

~J2Eð~xÞ thus exist only for

� < �trap � 1633� 129
ffiffiffiffiffiffiffiffi
129

p
33750

� 0:00497: (102)

For such values of �, there are two maxima of the boundary
energy function enabling the oscillations in the x
direction. The role of the cosmological parameter in the
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FIG. 12. String parameter functions ~Jð~x; �Þ determining character of the boundary energy function ~Ebð~x; ~y; ~J; �Þ. The functions are
given for three representative values of ~y in the SdS spacetime with � ¼ 10�4. (In the case of ~y ¼ 1, we present position of all the
states chosen to describe the character of the boundary energy function.) The function ~JEð~xÞ (thick solid curve) determining extrema
of Eb is independent of ~y. Dashed curves represent the functions ~JL1ð~x; ~yÞ, ~JL2ð~x; ~yÞ. These functions have a common point at ~x ¼
~J ¼ ~JRS, but this intersection point exists only above ~JL1ðminÞ, i.e., for ~y2 < ~y2max ¼ ~r2s � x2min, where xmin ¼ ~JL1ðminÞ. The value of ~ymax

gives maximal extension of the ‘‘lake’’ corresponding to the trapped states in the ~y direction—for � ¼ 10�4 it takes the value ~ymax ¼:
19:8. The thin solid curves represent numerically calculated ‘‘projected’’ angular momentum functions ~Jpð~x; ~yÞ that are determined by

the projection of the extremal (maximal) energy level ~EbðmaxÞð~xmax; ~y; ~JÞ onto the energy boundary function itself. (Note that in the SdS
spacetimes there are two branches, and the upper branch of these functions is irrelevant for the trapped states.) In the case of y ¼ ~ymax,
there is an extra thin line ~x ¼ ~J where the common point of ~JL1, ~JL2 occurs. Regions where the ‘‘lakes’’ can exist are shaded. We see
that the ‘‘lake’’ area is shrinking with increasing ~y, and for y ¼ ymax it is reduced to the one point corresponding to ~x ¼ ~J ¼ ~JL1ðminÞ.
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behavior of the boundary energy function is illustrated in
Figs. 14 and 15.

Now, assuming � < �trap, we find that the function
~JEð~x; �Þ has a minimum ~JEðminÞð~xmin; �Þ and a maximum
~JEðmaxÞð~xmax; �Þ—see Fig. 12. Oscillatory motion in the x

direction is then possible only for ~JEðminÞ < ~J < ~JEðmaxÞ. In
SdS spacetimes with � > �trap, the oscillations in the x

direction does not appear and the string loop is directly
captured by the black hole or escapes to infinity (see
Fig. 16. for an illustration).

Restrictions for the motion in the ~y direction are given
by the condition A0

~r ¼ 0—see (39)—that has to be com-
bined with the condition giving extremal points of the
boundary energy function at ~y ¼ 0 for all values of ~J and
independently on ~x. For 0< �< 1=27, there exists a
maximum (‘‘ridge’’) of ~Ebð~x; ~yÞ that is located at ~rs. At
~y ¼ 0, there is a minimum for ~J < ~rs and a maximum for

~J > ~rs. (For � > 1=27, there is a maximum at ~y ¼ 0.)
The ‘‘ridge’’ represents a barrier for the motion in both
directions. The ‘‘ridge’’ can represent a boundary of the
motion in the ~y direction only for string loops starting at
~r < ~rs; there is no boundary in the ~y direction for strings
starting their motion in the outer direction at ~r > ~rs, see
Fig. 14.
In order to determine the character of the string loop

motion, especially the possibility to be in the trapped
states, we have to find the lowest value of boundary energy
at the static radius EbðRÞ ¼ Ebð~rs; 
Þ. From Eq. (35) we

obtain

ð ~EbÞ0
 ¼ 0 , cosð
Þ
�
~rs �

~J2

~rssin
2ð
Þ

�
¼ 0: (103)
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FIG. 13. Boundary energy ~EbðRÞ at the top of the ‘‘ridge’’ at the
static radius as a function of coordinates 
 and ~x. The cosmo-
logical parameter is chosen to be ~y ¼ 10�4 and the string
parameter ~J ¼ 9. We can see that the minimum of ~EbðRÞ located
at ~x ¼ ~J is above ~xmin giving position of the minimum of the
potential valley for trapped string loop oscillations; cf. (103).
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FIG. 14. Profiles of the boundary energy function of the string
motion in the SdS spacetime with � ¼ 10�4. The ~x profiles (left)
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vicinity of the ‘‘ridge’’ at the static radius. We show case 1 when
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FIG. 16. No trapped oscillations can exist (no ‘‘lakes’’) for
� > �trap � 0:00497. Boundaries of the motion and trajectories

are given for values of � close to the limiting values. Dotted
curves represent the boundaries for the string motion, string
trajectories are represented by the solid thin curves. Black hole
horizons, static radius and cosmological horizons are represented
by the full, dashed and dotted circles.
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Being interested in cosð
Þ � 0 points, we see that the
minimal energy on the ‘‘ridge’’ is located at 
R given by
the relations

~r 2
s sin

2
R ¼ ~x2R ¼ ~J2; (104)

and its value is given by

~E bðRÞðminÞ ¼ 2~J
ffiffiffiffiffiffiffiffiffiffiffi
Að~rsÞ

q
¼ 2~J

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3�1=3

p
: (105)

For cos
 ¼ 0 (at 
 ¼ �=2, i.e., ~y ¼ 0), there is another
extremal point at the ‘‘ridge’’, with energy being given by

~E bðRÞðmaxÞ ¼
�~J2
~rs

þ ~rs

� ffiffiffiffiffiffiffiffiffiffiffi
Að~rsÞ

q
(106)

¼ ð~J2�1=3 þ ��1=3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3�1=3

p
: (107)

It is a maximum for ~J < ~rs and a minimum for ~J > ~rs. The
situation is illustrated in Figs. 13 and 14—for the boundary
energy profiles in the ~y direction, the character of the local
extrema at ~y ¼ 0 is determined by the magnitude of the
string (angular momentum) parameter ~J. Clearly, no
trapped states are possible outside the static radius, since
for ~J > ~rs, there is a saddle point of the boundary energy
function at ~y ¼ 0 where minimum in the ~x direction is
located. The string loop can escape to infinity if its energy
overcomes the minimum energy on the ‘‘ridge’’, i.e., when
E> EbðRÞðminÞ.

Following the procedure introduced for the
Schwarzschild spacetime, we again determine conditions
for existence and extension of regions of the string loop
trapped states, i.e., for the ‘‘lakes’’ given by appropriately
chosen energy levels restricted by the boundary energy
function ~Ebð~x; ~y; ~J; �Þ. We have to combine the restriction
put on the motion in the x and y directions. In the
x direction, the restrictions are represented by the
‘‘projected’’ angular momentum functions ~Jp	ð~xp	; ~y; �Þ.
In the SdS spacetimes (with � < �trap), the projected an-

gular momentum function is constructed by the same
procedure as in the Schwarzschild spacetime, but it has
two branches due to the special character of the SdS space-
times. Near the static radius of such SdS spacetimes, there
is an outer maximum of the boundary energy function
~EbðmaxþÞð~xþ; ~y; ~J; �Þ for all values of ~J < ~JEðmaxÞ, while
for the range ~JEðminÞ < ~J < ~JEðmaxÞ there is an additional

maximum ~Ebðmax�Þð~x�; ~y; ~J; �Þ close to the black hole ho-

rizon, and there is an energy minimum located between the
maxima, where oscillations of the string loop in the x
direction are allowed. The first branch (standard one) is
constructed by projecting the inner maximum
~Ebðmax�Þð~x�; ~y; ~Jp; �Þ, located near the black hole horizon,

onto the boundary energy function ~Ebð~x; ~y; ~Jp; �Þ when

condition ~Ebðmax�Þð~x�; ~y; ~Jp; �Þ< ~EbðmaxþÞð~xþ; ~y; ~Jp; �Þ is

satisfied. We have to construct the second branch when
condition ~Ebðmax�Þð~x�; ~y; ~Jp; �Þ> ~EbðmaxþÞð~xþ; ~y; ~Jp; �Þ
holds, by projecting the outer maximum onto the energy

function ~Ebð~x�; ~y; ~Jp; �Þ. (Note, however, that the addi-

tional branch of the projected angular momentum function
is shown to be irrelevant for the trapped states.)
In the y direction the restrictions are given by the two

‘‘lake’’ angular momentum functions ~JL1ð~x; ~y; �Þ and
~JL2ð~x; ~y; �Þ that are given by the solutions of the equation

Ebð~x; ~y; ~J; �Þ ¼ EbðRÞðminÞ: (108)

In the equatorial plane (y ¼ 0), the solutions take the form

JJL1 ¼
~xð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~xð1� 3�1=3Þ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 3~x�1=3 þ �~x3

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~x� 2� �~x3
p ; (109)

JJL1 ¼
~xð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~xð1� 3�1=3Þ

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 3~x�1=3 þ �~x3

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~x� 2� �~x3
p : (110)

The functions ~JL1 and ~JL2 are illustrated in Fig. 12(a)
where typical sections of ~y ¼ const are given. These two
functions have a common point at ~xR ¼ ~J (~r ¼ ~rs), where
they have a common point also with the function ~JEð~x; �Þ;
we denote the point ~JRS. The minimum of the function ~JL1
also coincides with the intersection of this function with
~JE. It is located at ~xL1ðminÞ given by the equation

~x6�2 þ ð3� ~xÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~x� 3~x�1=3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 3~x�1=3 þ ~x3�

p
� 2~x4�þ 4~x3�þ 3~x2�1=3 � ~xð1þ 9�1=3Þ þ 4 ¼ 0:

(111)

The related value of the string parameter can be calculated
from the condition ~JL1ðminÞ ¼ ~JL1ð~xL1ðminÞÞ.
For trapped states the energy level of the oscillating

string loop must be chosen in such a way that the motion
is limited by the energy boundary function in both x and y
directions. The trapped states are thus limited by the pro-
jected angular momentum function for ~JEðminÞ < ~J <
~JL1ðminÞ and by the ‘‘lake’’ angular momentum functions

for ~JL1ðminÞ < ~J < ~JRS. The results for the trapped states are
summarized in Fig. 12. It is clear that the trapped states are
always limited by radius located under or approaching the
static radius. Their extension is largest in the equatorial
plane y ¼ 0. There are no trapped states for string starting
above the static radius, i.e., at ~r > ~rs.
In order to ensure existence of the trapped states of the

string loop motion, the existence of some minimum
(valley) of the boundary energy function in the ~x direction
and fulfilling of the condition EbðRÞðminÞ > EbðminÞ have to be
guaranteed simultaneously. Therefore, the condition
~JEðminÞ < ~rS has to be satisfied that can be put into the form

�EðminÞð~xÞ< �s � 1

~x3
; (112)

where �EðminÞð~xÞ denotes part of the function �Eð~xÞ corre-
sponding to the minima. Since the maximum of the
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function �Eð~xÞ is located at ~x ¼ 3ð17þ ffiffiffiffiffiffiffiffi
129

p Þ=16� 5:3,
while the equation �Eð~xÞ ¼ ~x�3 is satisfied at ~x ¼ 6, it is
clear that the condition relevant for existence of trapped
states is satisfied—see Fig. 15.

The trapped states can appear only in the SdS spacetimes
with the cosmological parameter smaller than the critical
value of �trap � 0:00497 that is the other important limit on

the cosmological parameter relevant for the motion in the
field of SdS black holes. Notice that this limiting value of
the cosmological parameter is by more than one order
larger in comparison with the restricting value of � relevant
for the existence of stable circular geodesics �ms �
0:000237 that could be considered as a test particle analogy
for trapped string states.

Behavior of the energy boundary function ~Ebð~x; ~y; ~J; �Þ
in terms of the string parameter ~J is represented in
Fig. 11(a) together with the representative sections of the
energy functions with ~x ¼ const and ~y ¼ const.

In the SdS spacetimes, the classification of the behavior
of the boundary energy function is similar to the classifi-
cation relevant in the Schwarzschild spacetimes, giving
captured, trapped and escaped (including scattered or re-
scattered) motion (see Fig. 9).

An equation for the string motion in the spherical coor-
dinates (28) can be written for Schwarzschild–de Sitter
spacetime in the form

€~r ¼ _
2ð~r� 3Þ þ sin2


�
���

�		 ð~r� 2Þ � 1

�
� _~r

@	�
		

�		

þ �

3
sin2ð
Þ~r3

�
2

�		

�
; (113)

while (29) remains unchanged. The first line of Eq. (113)
corresponds formally to the relation relevant in the
Schwarzschild spacetime, while the last term represents
the string stretching originating in the repulsive cosmo-
logical constant (69).

We consider the test string starting from the rest and
from the same starting point ~x0 ¼ 5, ~y0 ¼ 1 as in the
Schwarzschild spacetime. This choice of starting point

gives five different types of the string motion—see Fig. 7
for classification. The first four correspond to the same
cases as in the Schwarzschild spacetime, but the fifth is an
extra case typical for the SdS (de Sitter) spacetimes. For
energy ~E ¼: 54 (case 5) there will be no outer boundary for
the string motion in ~x direction, so the string radius can
exponentially grow.
In the SdS spacetime we can also directly demonstrate

how the repulsive cosmological constant is speeding up the
string loop in y direction, see Figs. 17 and 18. Comparing
the boundaries (i.e. starting points) for the string motion
(see Fig. 19), we observe no differences with respect to the
case of Schwarzschild black holes in vicinity of the black
hole horizon Fig. 19(a), but significant differences occur in
vicinity of the cosmological horizon Fig. 19(b).
Notice that the results of the numerical integration dem-

onstrate quite interesting phenomenon of the static radius
serving as a repulsive barrier for the backscattered motion
(in the ~y direction) of the oscillating string (Fig. 20). There
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FIG. 17. Escaping string loop in the SdS spacetime with
� ¼ 10�4. The boundary of the motion and the trajectory is
given for ~J ¼ 8:5, ~E ’ 15:9 and ~r ¼ 7, 
 ¼’ 2:3. Notice the
throat of the Eb boundary located at ~r ¼ ~rs, ~x ¼ ~J.
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FIG. 18. String loop motion in the SdS spacetime with
� ¼ 10�4, demonstrating case 4 in Fig. 11. We can see that
the string motion is accelerated in the ~y direction due to the
cosmic repulsion.
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FIG. 19. Influence of the repulsive cosmological constant
demonstrated in behavior of the boundary energy function.
Boundary for the motion E ¼ Eb in the Schwarzschild
spacetime (thick curves) is compared to the related boundary
in the Schwarzschild-de Sitter spacetime (thin curves) with
� ¼ 10�4. There are no differences near the black hole horizon
~rh (solid circle), small above the static radius (dashed circle), and
large near the cosmological horizon ~rc (dotted circle).
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is another important effect observed as a result of the
numerical integration of the string loop motion—the pos-
sibility to lower amplitude of the string oscillations (in the
~x direction) while moving in vicinity of the black hole
horizon and to accelerate the string motion in the ~y direc-
tion that occurs both for the Schwarzschild and SdS space-
times. In this case the internal energy of the string loop is
transformed to the translation kinetic energy of the string.
(However, an opposite effect of amplitude amplification of
the oscillations in the ~x direction occurring in the vicinity
of the horizon is also possible; then the translation kinetic
energy is converted to the internal energy.) Of course, the
cosmic repulsion itself is a source of string acceleration.
Surely, all these phenomena are worth further studies.
String loops initially located above the static radius and

approaching the black hole could be captured by the black
hole, or scattered (rescattered) by its gravitational field.
Typical scattered or rescattered trajectories are given in
Fig. 20. The string loop motion is generally of chaotic
character and we can reflect this fact by the basin boundary
method representing different final outcomes of given
initial states as shown in the next section. The role of the
static radius ~rs is demonstrated in the Fig. 22(f). There is
only blue color above static radii in ~y direction—string
starting from the rest above the static radius in ~y direction
has to go directly to infinity.

IV. CHAOTIC MOTION OF THE STRING

It is well known that motion of strings has to be of
chaotic character due to the presence of the string tension
(and angular momentum) terms in the equations of motion
[50]—this can be directly demonstrated by properties of
the string trajectories in the phase space. We shall use here
methods of chaos theory (Poincaré surface sections) in
order to characterize possible states of the string loop
motion in terms of appropriately taken sections of the
phase space of initial conditions of the motion.
The string loop dynamics can be represented in a stan-

dard way by appropriate 2D slices of the 4D phase space of
initial conditions. We focus attention to construct distribu-
tion of the four types of the string loop motion (captured,
trapped, escaped, scattered or backscattered) in the phase
space of the initial conditions of the motion using the basin
boundary method. We compare the results obtained for the
Schwarzschild and SdS spacetimes in order to clearly
demonstrated the role of the cosmic repulsion.
Usually, it is convenient for a string loop, with a given

string parameter ~J, to fix the constant energy parameter
~E and impose a relation between values of ð~r; 
; _~r; _
Þ at the
initial time 	 ¼ 0. Using the basin boundary method
for chaotic scattering [50,55], the 2D slice of initial con-
ditions is separated to the four regions corresponding
to the four types of the string loop motion. Because of
numerical reasons, the determination of two escape asymp-
totic outcomes is not realized at infinity, but at some large
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FIG. 20. Scattering and rescattering of string loops in the SdS
spacetime with � ¼ 10�4. The strings are starting from ~x0 ¼ 6,
~y0 ¼ �90, with ~J ¼ 8 and various momenta in the ~y direction. On
the first pair of figures (scattering), we can see that for the string it
is difficult to overcome the static radius rs. Further, after crossing
the vicinity of the black hole horizon, the oscillatory amplitude is
diminished and the string is accelerated in the ~y direction. In the
following pairs of figures, various kinds of rescattering are dem-
onstrated showing new types of trajectories typical for the SdS
spacetimes: First, the string cannot cross the static radius to enter
the black hole region because of a repulsive barrier; second, the
string has not enough energy to enter the black hole region and is
turned back slightly above ~rs; third, the string crosses the black
hole region and is backscattered slightly under ~rs.
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but finite ~r. In the Schwarzschild spacetimes the string that
passes the cutoff radius could, in principle, go back, not
escaping definitely, but such procedure causes only a lim-
ited number of wrongly determined asymptotic outcomes
of the string motion [50]. In the Schwarzschild–de Sitter
spacetimes, there is a radius large enough to enable definite
decision on the character of the string motion asymptotic
outcome. Such a radius has to be larger than the static
radius due to the prevailing influence of the cosmic repul-
sion above the static radius.

The quantities ~r, 
, _~r, _
 (or ~x, ~y, _~x, _~y) form four-
dimensional phase space of initial conditions of the string
loop motion. Chaotic behavior of the string motion
was demonstrated in [50]. Here we discuss the differences
and similarities occurring in the Schwarzschild and
Schwarzschild-de Sitter spacetimes, comparing also the
cases with string parameter ~J ¼ 0 (strings with no current
and angular momentum) given in [50], with ~J � 0 consid-
ered in this paper.

We chose two different kinds of the initial state sections.
First, following [50] we use the standard approach taking
slices of ~E ¼ 14 and d

d	 ð~r cos
Þ ¼ _~y ¼ 0, i.e., we have a

fixed energy and zero initial momentum in the ~y direction.
The results are presented in Fig. 21. We can directly see a
signature of the cosmic repulsion given by the ‘‘backscat-
tered’’ (blue) region at the radii exceeding the static radius
of the SdS spacetime. The presence of the nonzero angular
momentum of the string loop is demonstrated in both the
Schwarzschild and SdS spacetimes by the presence of
the lower limit in the sections.

Second, we use an alternative approach in mapping the
distribution of the types of the string loop motion in the
phase space of the initial states that could give a more

complete and complex view of the situation. We consider
sections given simply by assumption of string loops (with
the same angular momentum as in the previous case)
starting from the rest, i.e., the slice of the phase space is
chosen to be _~r ¼ _
 ¼ 0 ( _~x ¼ _~y ¼ 0); of course, now dif-
ferent initial states (with different ~r, 
) have different
energy. Such a nonstandard approach gives a good illus-
tration of the distribution of the trapped states. Notice that
the trapped states can be determined quite regularly and
exactly by the energy conditions; of course, the motion in
the trapped states is chaotic. On the other hand, the chaotic
character is directly expressed in the distribution of the
escaped and captured trajectories in the phase space of the
initial conditions, since different types of the motion can
have the same energy. The results expressing the differ-
ences between the Schwarzschild and SdS spacetimes and
different string currents are illustrated in Fig. 22. (For
Figs. 21 and 22 we use resolution grid of 300� 300
points.) We first consider SdS spacetime with � ¼ 10�6

(and ~J ¼ 13) and related regions of the Schwarzschild
spacetime for ~J ¼ 0 and ~J ¼ 13 and then SdS spacetime
with � ¼ 10�4 (~J ¼ 13) and related enlargements of the
phase space regions of the Schwarzschild spacetime. Both
the role of the cosmological constant and the chaotic
character of the motion reflected in the distribution of the
asymptotic outcomes of the string loop motion are clearly
demonstrated.
Recall that we use astrophysically implausibly large

values of the cosmological parameter in order to clearly
illustrate the role of the cosmic repulsion. For astrophysi-
cally relevant values the figures are qualitatively of the
same character, but the regions of the cosmic repulsion
relevance are shifted to much larger dimensionless radii ~r.

FIG. 21 (color). Basin boundary of the phase space for the string motion in the Schwarzschild, cases a) with ~J ¼ 0 and b) with
~J ¼ 6, and SdS spacetimes, case c) with ~J ¼ 6. The slice is constructed for ~E ¼ 14, d

d	 ð~r cos
Þ ¼ _~y ¼ 0, with ~r 2 ð2; 27:5Þ on the

horizontal axis, and 
 2 ð0; �=2Þ on the vertical axis, see Fig. 4(b) from [50]. In SdS case, Fig. 21(c)., we use cosmological parameter
� ¼ 10�4. Yellow color represents trajectories captured by the black hole, green represents escaped trajectories 
 > �=2, while blue
represents escaped 
 < �=2 (backscattered) trajectories and red represents trapped trajectories when the string is neither captured
neither escaped. Void white space represents the region Vð~r; 
Þ> 0 where the motion of the string is not allowed.
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V. CONCLUSIONS

We have demonstrated how the tension and angular mo-
mentum (current) of a string loop, and the repulsive cosmo-
logical constant, affect the string loop motion in the field of
SdS black holes. In order to obtain a deeper understanding of
the related phenomena, we studied in detail also the motion
of current (angular momentum)-carrying string loops also in
the Schwarzschild spacetime, and in the flat and de Sitter
spacetimes giving asymptotic structure of the black hole
spacetimes. Because of the spherical symmetry of these
spacetimes, we were able to characterize the string loop
axially symmetric motion in terms of a single string parame-
ter combining the string angular momentum and tension
(�> 0), and the spacetime parameters. An effective poten-
tial method can be used efficiently by introducing a boundary

energy function where the string parameter J plays a role
analogical to those of the axial angular momentum in the
effective potential of the test particle motion. The conditions
put on the energy boundary function enable to find four
types of the motion: a) capture by black hole, b) trapping,
c) escape, d) scatter (backscatter) with escape. The minima
(maxima) of the energy boundary function determine stable
(unstable) equilibrium positions of the string loops that are
governed by both the string parameters ð�; ~JÞ and spacetime
parameters ðM;�Þ. This method enables a clear representa-
tion of the cosmic repulsion role in the string loop motion.
We have shown that the region of the string loop trapped

states is strongly restricted by the cosmic repulsion and can
exist only in the SdS spacetimes with the cosmological
parameter � < �trap ¼ 0:00497, that is by one order larger

than �ms ¼ 0:000237, limiting SdS spacetimes admitting

FIG. 22 (color). Basin boundaries of the phase space for the string motion. Yellow color represents captured trajectories, green
escaped trajectories ~y ! �1, while blue escaped trajectories ~y ! 1 scattered or backscattered and red represents trapped trajectories.
Black points in the low-left corner represent area below the horizon of the black hole. For Figs. 22(a)–22(c) we use ~x 2 ð0; 110Þ on
horizontal axis, and ~y 2 ð0; 110Þ on vertical axis. In SdS case, Fig. 22(c), we use cosmological parameter � ¼ 10�6. There is blue
region above ~y > ~rs ¼ 100where the string directly escapes to infinity (y ! 1). The red slope on Figs. 22(b) and 22(c) corresponds to
the trapped trajectories, see Fig. 9(c). For Figs. 22(d) and 22(e) we use on axis ~x 2 ð0; 25Þ, ~y 2 ð0; 25Þ—zoom of the two figures
above. In SdS case with � ¼ 10�4, Fig. 22(d) and 22(e) we distorted scaling of the axis ~x 2 ð0; 80Þ, ~y 2 ð0; 20Þ, to demonstrate clearly
the behavior of the ‘‘blue’’ escaped region for ~y > ~rs ¼: 21:5, ~x > ~rc ¼ 100.
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stable circular orbits and bound orbits of test particles, that
may be considered as an analogy of the trapped oscillatory
states of string loops. The regions of trapped states is

limited by the static radius ~rs ¼ ��ð1=3Þ from above and
by the radius of marginal trapping at the equatorial plane
~xmt � 3:3 from below. This is very close to the value
determined for the Schwarzschild spacetime for all relevant
SdS spacetimes, and is substantially lower in comparison
with the radii of the marginally stable and bound circular
orbits of test particles, being on the other hand relatively
close to the photon circular orbit located at ~rph ¼ 3, inde-

pendent of the value of the cosmological constant.
Because of the nonintegrable and chaotic nature of the

string equations of motion, numerical integration was used
and string trajectories were obtained for typical initial
conditions. We can see that in the SdS spacetimes, the
trapped motion of the string loops is possible only in an
appropriately restricted region of the spacetime given by
the influence of the cosmological constant, contrary to the
case of motion in the Schwarzschild spacetime where the
trapped orbits are not limited from above. At distances
large enough (above the static radius), the string loop
motion is fully governed by the cosmic repulsion.

In the Schwarzschild and SdS spacetimes there is one
specific center of symmetry related to the gravitating mass
and it is evident that the amplitude of the oscillations will
not be constant if the string loop will move in the y
direction as the gravitational attraction of the center will
be changed. On the other hand, in the flat and dS space-
times where the center can be chosen at any spacetime
point, the amplitude of the string loop oscillations remains
constant. Our numerical integrations demonstrated (in
agreement with results of [45,49]) that the amplitude of
the oscillations in the ~x direction can be reduced (in-
creased) while the string loop passes the black hole, being
accelerated (decelerated) in the ~y direction.

Using the basin boundary method appropriate for cha-
otic motion, we separated the phase space of initial con-
ditions into the four regions corresponding to four types of
the string loop motion. Again, the role of the cosmological
constant is clearly reflected by the properties of these
sections, and the role of the static radius is again immedi-
ately demonstrated.

We can summarize the effects of the repulsive cosmo-
logical constant in the following way.

(i) The cosmological constant (even very small) can
completely change character of the string loop
oscillatory motion.

(ii) The static radius of the SdS spacetimes, being very
relevant for the test particle motion, plays a crucial
role for the string loop motion too, giving boundary
to the trapped states to oscillating strings. A string
loop starting above the static radius from the rest in
the ~y direction, has to go directly to infinity see
Fig. 22(f) and 22(c).

(iii) The string loop is accelerated in the ~y direction due
to the repulsive cosmological constant influence—
see Fig. 19(b).

(iv) In the SdS (de Sitter) spacetimes there is, for some
combination of string parameters ~E, ~J, an extra
‘‘pathological’’ case of the string loop motion (see
points 5 (2) in Fig. 11 (Fig. 4)). The string radius is
exponentially growing in the ~x direction due to the
cosmic repulsion—an example trajectory can be
found in Fig. 5(b).

It should be noted that both effects (cosmic repulsion
and conversion due to black hole field) related to the
acceleration of the string loop in the ~y direction are inter-
esting from the point of view of acceleration of jets in
active galactic nuclei and microquasars. Similarly, the
inverse process of amplification of the string oscillation
amplitude in vicinity of the horizon can be interesting in
relation to excitation of quasiperiodic oscillations in the
field of black holes. Nevertheless, a large amount of work
is necessary in order to check if the phenomena mentioned
above could really be astrophysically relevant.
Finally, we would like to stress that the result presented

here for the standard general relativistic SdS geometry can
be relevant in the generalization of the general relativity
given by the fðRÞ models predicting solution of the SdS
type [56,57].
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[43] Z. Stuchlı́k and J. Kovář, Int. J. Mod. Phys. D 17, 2089

(2008).
[44] Z. Stuchlı́k and J. Schee, ‘‘Influence of the cosmological

constant on the motion of Magellanic Clouds in the field
of Milky Way’’ (unpublished).

[45] T. Jacobson and T. P. Sotiriou, Phys. Rev. D 79, 065029
(2009).

[46] V. Semenov, S. Dyadechkin, and B. Punsly, Science 305,
978 (2004).

[47] M. Christensson and M. Hindmarsh, Phys. Rev. D 60,
063001 (1999).

[48] H. C. Spruit, Astron. Astrophys. 102, 129 (1981).
[49] A. L. Larsen, Classical Quantum Gravity 11, 1201 (1994).
[50] A. V. Frolov and A. L. Larsen, Classical Quantum Gravity

16, 3717 (1999).
[51] Z. Gu and H. Cheng, Gen. Relativ. Gravit. 39, 1 (2006).
[52] E. Witten, Nucl. Phys. B249, 557 (1985).
[53] A. L. Larsen, Classical Quantum Gravity 10, 1541 (1993).
[54] J. Ziolkowski, Chin. J. Astron. Astrophys. 8, 273 (2008).
[55] E. Ott, Chaos in Dynamical Systems (Cambridge

University Press, Cambridge, 1993).
[56] S. Nojiri and S. D. Odintsov, arXiv:hep-th/0807.0685.
[57] T. P. Sotiriou and V. Faraoni, Rev. Mod. Phys. 82, 451

(2010).

CURRENT-CARRYING STRING LOOPS IN BLACK-HOLE . . . PHYSICAL REVIEW D 82, 125012 (2010)

125012-21

http://dx.doi.org/10.1103/PhysRevD.81.023501
http://dx.doi.org/10.1103/PhysRevD.81.023501
http://dx.doi.org/10.1142/S0217732305016865
http://dx.doi.org/10.1103/PhysRevD.60.044006
http://dx.doi.org/10.1103/PhysRevD.60.044006
http://dx.doi.org/10.1023/B:GERG.0000018088.69051.3b
http://dx.doi.org/10.1002/andp.19183611402
http://dx.doi.org/10.1088/0264-9381/17/21/312
http://dx.doi.org/10.1088/0264-9381/17/21/312
http://dx.doi.org/10.1007/BF00758012
http://dx.doi.org/10.1007/BF00758012
http://dx.doi.org/10.1103/PhysRevD.65.087301
http://dx.doi.org/10.2478/s11534-007-0033-6
http://dx.doi.org/10.1051/0004-6361:200809449
http://dx.doi.org/10.1051/0004-6361:200809449
http://dx.doi.org/10.1103/PhysRevD.77.043004
http://dx.doi.org/10.1103/PhysRevLett.102.021301
http://dx.doi.org/10.1007/s10714-008-0623-7
http://dx.doi.org/10.1103/PhysRevD.69.064001
http://dx.doi.org/10.1088/0264-9381/21/19/016
http://dx.doi.org/10.1088/0264-9381/21/19/016
http://dx.doi.org/10.1088/0264-9381/22/21/001
http://dx.doi.org/10.1088/0264-9381/22/21/001
http://dx.doi.org/10.1088/0264-9381/24/7/007
http://dx.doi.org/10.1088/0264-9381/24/7/007
http://dx.doi.org/10.1088/0264-9381/22/6/016
http://dx.doi.org/10.1088/0264-9381/22/6/016
http://dx.doi.org/10.1016/j.physletb.2006.01.069
http://dx.doi.org/10.1016/j.physletb.2006.01.069
http://dx.doi.org/10.1016/j.newast.2008.08.002
http://dx.doi.org/10.1103/PhysRevD.64.104016
http://dx.doi.org/10.1103/PhysRevD.64.104016
http://dx.doi.org/10.1088/0264-9381/23/11/016
http://dx.doi.org/10.1088/0264-9381/23/11/016
http://dx.doi.org/10.1007/s10714-009-0798-6
http://dx.doi.org/10.1007/s10714-009-0798-6
http://dx.doi.org/10.1088/0264-9381/24/10/009
http://dx.doi.org/10.1088/0264-9381/24/10/009
http://dx.doi.org/10.1088/0264-9381/25/3/038001
http://dx.doi.org/10.1088/0264-9381/25/3/038001
http://dx.doi.org/10.1088/0264-9381/22/17/019
http://dx.doi.org/10.1088/0264-9381/22/17/019
http://dx.doi.org/10.1051/0004-6361:20031457
http://dx.doi.org/10.1051/0004-6361:20031457
http://dx.doi.org/10.1103/PhysRevD.71.024037
http://dx.doi.org/10.1088/0264-9381/26/21/215013
http://dx.doi.org/10.1088/0264-9381/26/21/215013
http://dx.doi.org/10.1142/S021827180801373X
http://dx.doi.org/10.1142/S021827180801373X
http://dx.doi.org/10.1103/PhysRevD.79.065029
http://dx.doi.org/10.1103/PhysRevD.79.065029
http://dx.doi.org/10.1126/science.1100638
http://dx.doi.org/10.1126/science.1100638
http://dx.doi.org/10.1103/PhysRevD.60.063001
http://dx.doi.org/10.1103/PhysRevD.60.063001
http://dx.doi.org/10.1088/0264-9381/11/5/008
http://dx.doi.org/10.1088/0264-9381/16/11/316
http://dx.doi.org/10.1088/0264-9381/16/11/316
http://dx.doi.org/10.1007/s10714-006-0329-7
http://dx.doi.org/10.1016/0550-3213(85)90022-7
http://dx.doi.org/10.1088/0264-9381/10/8/014
http://arXiv.org/abs/hep-th/0807.0685
http://dx.doi.org/10.1103/RevModPhys.82.451
http://dx.doi.org/10.1103/RevModPhys.82.451

