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We point out that there is a non-Abelian instability for a non-Abelian plasma which does not allow both

for a net nonzero color charge and the existence of field configurations which are coherent over a volume

v whose size is determined by the chemical potential. The basic process which leads to this result is the

Schwinger decay of chromoelectric fields, for the case where the field arises from commutators of

constant potentials, rather than as the curl of spacetime dependent potentials. The case where instability is

obtained can be expressed in terms of fields (with constant potentials) as Fa��Fa
�� < 0, Aa�Aa

� < 0.
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I. INTRODUCTION

The identification of the deconfined phase of quarks and
gluons at the Relativistic Heavy Ion Collider, a phase akin
to a non-Abelian plasma, has led to a number of inves-
tigations on instabilities in a non-Abelian plasma [1,2].
While some of these are concerned about an upgraded
version of instabilities in an Abelian plasma, such as the
Weibel instability, there have been numerical studies of the
evolution of instabilities in the hard thermal loop approxi-
mation and beyond. The purpose of this note is to point out
that there is an instability, and a certain no-go statement,
which is quite general and arises purely from non-Abelian
effects. It is fairly straightforward to understand how this
effect arises. For a statistical distribution of nonzero color
charge, we need a chemical potential. Because the charge
is non-Abelian in nature, the chemical potential is a matrix
in the Lie algebra of the color group. In fact, it may be
viewed as a background value for the time-component of
the potential A0 ¼ �itaAa

0 , where t
a form an orthonormal

basis for the Lie algebra of the color group G. (We may
actually take this matrix to be diagonal, but it is not
important at this stage.) If we have a constant background
A0, then there is an electric field generated via the commu-
tator term ½A0; Ai� in the field strength tensor. For modes of
Ai of wavelength �, this gives an electric field approxi-
mately constant over this length scale. This electric field
will then develop a Schwinger instability decaying via pair
production. If the particles which are produced have a
mass, there is an exponential suppression, but in the non-
Abelian plasma, we have effectively massless modes. The
end result of this argument is the following. Consider the
plasma coarse-grained over a distance scale �. Then one
possibility is that the color charge density is zero when
coarse-grained over this scale. The other possibility is that
the plasma cannot have Ai which are coherent over length
scales exceeding �. This is the essence of our no-go
statement.

The possibility of color charge density being zero has
been studied in the context of color superconductivity [3].
In the limit of large baryon number density, we expect a
color superconducting phase and it is important to have
color neutrality. Such a requirement can be imposed on
analyses of color superconductivity, but how it is achieved
is really a dynamical issue. (This is not the setting for our
question. We are concerned about a deconfined state, not
superconducting and for us the baryon chemical potential
can be zero. But there are points of connection.) Nonzero
charges can lead to large electric fields which are unstable,
can lead to energy being nonextensive and this is one
reason why stable matter must be neutral under gauge
charges [3]. Nevertheless, it is interesting to analyze
some of the nuances of how neutrality is achieved. Since
the chemical potential may be taken as a background value
for A0, the corresponding equation of motion (or integra-
tion of the constant mode of A0 in the functional integral)
seems to imply zero color charge. Strictly speaking this
argument needs to be qualified, since it is equivalent to
imposing the Gauss law integrated over functions which do
not vanish at spatial infinity. The true gauge transforma-
tions of the theory go to the identity element at spatial
infinity and so test functions for the Gauss law must vanish
at infinity. Imposing the Gauss law with constant values
for the gauge parameters is equivalent to eliminating all
charged states by fiat, which we do not want to do. One can
use a compact spatial manifold and then approach the limit
of large volumes to preserve the zero charge condition.
This provides a method for carrying out the analyses,
including many of the calculations in the literature, but it
is not quite an explanation. All this makes it useful to ask
the question we are asking: If we have a deconfined state of
gluons (and maybe quarks), and we try to have nonzero
color charge, what instabilities can arise?
The density matrix for a statistical distribution in

equilibrium is given by � ¼ exp½�ðH �P
i�iQiÞ=T�

where H is the Hamiltonian, Qi are conserved charges,
�i are the corresponding chemical potentials and T is the
temperature. We are interested in time-dependent pro-
cesses in this distribution, so we are concerned with
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real-time propagators and vertices averaged over states
with the density matrix �. The result is equivalent to
calculations at zero chemical potential, but with a
Hamiltonian H �P

i�iQi. Since the constant mode of
A0 couples to Q,it is clear that we can treat � as a
background value for A0. Consider now the non-Abelian
charge density due to quarks, say, Ja0 ¼ �q�0taq, or its

matrix version, ðJ0Þij ¼ �qi�
0qj, i, j being color labels for

the quarks. Under a gauge transformation gðxÞ 2 G, this
matrix changes as

J0 ! Jg0 ¼ g�1J0g: (1)

It is thus possible to choose gðxÞ such that J0 is diagonal
at each point. In other words, the gauge-invariant informa-
tion contained in J0 may be taken as the diagonal charge
densities. Thus, to specify a charge distribution, we need
only chemical potentials for the Cartan elements of the
Lie algebra. There are other ways to see this as well. For
example, if the charged particles form some irreducible
representation R (which may be thought of as arising from
the decomposition of a product of the representations of the
individual particles), then we know that such a representa-
tion can be obtained by quantizing the coadjoint orbit
action

S ¼ i
Z

dt
X
k

wk Trðhkg�1 _gÞ (2)

where wk are the highest weights defining the representa-
tion R and hk are the diagonal generators of the Lie
algebra. We see that the diagonal charges are sufficient
for our purpose. In a statistical distribution, we have to
think of such a representation for the global color charge
over each coarse-grained volume element, and this action
can be generalized to obtain the fluid flow equations for
color charge [4].

In the case of a non-Abelian plasma, there is an added
complication. While it is possible to define a gauge-
covariant charge density for the quarks (and other matter
particles), there is no gauge-covariant charge density for
the gluons. The integrated total charge has a gauge-
invariant expression. The chemical potential, introduced
as a background value for A0, does couple to this global
charge correctly. This also leads to terms quadratic in � in
the action, which is to be expected since the current for a
charged bosonic system depends on A� in addition to the

charged fields themselves. All these effects are included in
the replacement A0 ! A0 þ�. Since the diagonalization
of the charge density happens only by choice of gðxÞ, the
general ansatz for the background value of A0 is

A0 ¼ g�1�gþ g�1@0g: (3)

The group element g can be removed by an overall gauge
transformation,

A0 ! gA0g
�1 � @0gg

�1 ¼ �

Ai ! gAig
�1 � @igg

�1:
(4)

Designating the new spatial components of the potential as
Ai again, we see that we can use� as the background value
for A0.

II. CALCULATING THE EFFECTIVE
LAGRANGIAN

We shall carry out the calculations in Euclidean space.
While this is not necessary, as for many other calculations
at finite temperature and density, this is slightly simpler.
This means that the background value of the A0 becomes
imaginary. Thus the basic calculation to check for insta-
bility reduces to the following. Taking constant matrices
for A0 and Ai as the background values, we consider
fluctuations in the fields. The integration of the action to
quadratic order in the fluctuations leads to the standard
determinant. This has to be evaluated as a function of the
background values. The result is then analytically contin-
ued to imaginary values of the background A0. The result
can then be analyzed for instabilities. The instability of
interest to us is the Schwinger decay of the chromoelectric
field. This has been studied in some detail in the non-
Abelian case for electric fields which are given by the
curl of the gauge potentials [5], but, here, we are interested
in the case when the field arises from the commutator term
of the potentials. For the calculations which follow, we will
consider the group SUð2Þ since it is sufficient to capture the
effect we are interested in.
The integration over the quadratic fluctuations can be

phrased as an effective Lagrangian given by

Leff ¼ 1

2

Z dDp

ð2�ÞD
Z 1

0

ds

s
Tr½expð�s½�ðD2Þab���

� 2facbFc
���Þ� �

Z dDp

ð2�ÞD

�
Z 1

0

ds

s
Tr½expð�s½�D2�Þ� (5)

where the second term is the contribution from the
ghosts. Here D2 ¼ ð@� þ A�Þð@� þ A�Þ is the gauge-

covariant Laplacian with the background field Aa
�; it is a

3� 3-matrix in color space, as indicated by the color
indices a, b. Thus the operator �ðD2Þab��� � 2facbFc

��

can be considered as a 12� 12-matrix, in addition to its
coordinate space properties. The evaluation of the action
will follow a method which is similar to what was used
many years ago by Brown and Weisberger [6]. Writing
the SUð2Þ field Aab

� ¼ facbAc
� ¼ �acbAc

�, we can simplify

D2 as

� ðD2Þab ¼ p2 þ Y � Yab � 2ip � Aab (6)

where p� ¼ �i@�, Yab ¼ Aa
�A

b
� and Y ¼ TrYab.

The matrix Yab can be diagonalized by a suitable gauge

V. P. NAIR AND ALEXANDR YELNIKOV PHYSICAL REVIEW D 82, 125005 (2010)

125005-2



transformation, with eigenvalues �a. These eigenvalues
give the gauge-invariant characterization of the chromo-
electric and chromomagnetic fields. The �’s are positive in
the case of Euclidean signature for the contraction of
spacetime indices in Aa

�A
b
�, but one eigenvalue can be

negative with Minkowski signature. A choice of Aa
�

amounts to choosing three four-vectors, and in the

Euclidean metric we are using, we can always make the
choice

Aa
� ¼ ffiffiffiffiffiffi

�a

p
	a
�; a;� ¼ 1; 2; 3 Aa

4 ¼ 0: (7)

With this choice

Yab þ 2iðp � AÞab ¼
�1 �2ip3

ffiffiffiffiffiffi
�3

p
2ip2

ffiffiffiffiffiffi
�2

p

2ip3

ffiffiffiffiffiffi
�3

p
�2 �2ip1

ffiffiffiffiffiffi
�1

p

�2ip2

ffiffiffiffiffiffi
�2

p
2ip1

ffiffiffiffiffiffi
�1

p
�3

2
664

3
775: (8)

For our purpose, it is not necessary to consider this matrix in full generality, we can take �3 ¼ 0. In this case the
only nontrivial component of the field strength tensor is F3

12 ¼ �F3
21 ¼

ffiffiffiffiffiffiffiffiffiffiffi
�1�2

p
. Obviously, this will not give the most

general class of fields. However, we are aiming for the instability which arises from ½A0; Ai� and this choice is adequate to
illustrate the point. (Later, we will identify the x1-direction with time.) For the choice of �3 ¼ 0, schematically, we have

½Yab þ 2iðp � AÞab���� þ 2Fab�� ¼
Y þ 2ip � A 2F12 0 0

�2F12 Y þ 2ip � A 0 0
0 0 Y þ 2ip � A 0
0 0 0 Y þ 2ip � A

2
6664

3
7775 (9)

where each block is a 3� 3 matrix in color space. From this block diagonal form,

Tr 12�12 exp½sfðY þ 2ip � AÞ��� þ 2F��g� ¼ 2Tr3�3e
sðYþ2ip�AÞ þ Tr6�6e

s½ðYþ2ip�AÞ���þ2F���: (10)

The first term on the right-hand side cancels exactly the similar contribution from ghosts. The remaining 6� 6 matrix
corresponds to the indices 1, 2, for spacetime and the 3� 3 matrix in color space. The effective Lagrangian is thus

Leff ¼ 1

2

Z dDp

ð2�ÞD
Z 1

0

ds

s
e�sðp2þYÞ Tr6�6e

�sX (11)

where X is the 6� 6 matrix

ð�XÞ ¼

�1 0 2ip2
ffiffiffiffiffiffi
�2

p
0 �2

ffiffiffiffiffiffiffiffiffiffiffi
�1�2

p
0

0 �2 �2ip1
ffiffiffiffiffiffi
�1

p
2

ffiffiffiffiffiffiffiffiffiffiffi
�1�2

p
0 0

�2ip2
ffiffiffiffiffiffi
�2

p
2ip1

ffiffiffiffiffiffi
�1

p
0 0 0 0

0 2
ffiffiffiffiffiffiffiffiffiffiffi
�1�2

p
0 �1 0 2ip2

ffiffiffiffiffiffi
�2

p
�2

ffiffiffiffiffiffiffiffiffiffiffi
�1�2

p
0 0 0 �2 �2ip1

ffiffiffiffiffiffi
�1

p
0 0 0 �2ip2

ffiffiffiffiffiffi
�2

p
2ip1

ffiffiffiffiffiffi
�1

p
0

2
666666664

3
777777775
: (12)

For evaluating the remaining trace, it is convenient to use the integral representation

Tr e�sX ¼
I dz

2�i
e�sz @

@z
logdetðz� XÞ (13)

where the integration contour encircles all zeros of detðz� XÞ.
The determinant is easy to evaluate,

detðz� XÞ ¼ fz3 þ z2ð�1 þ �2Þ � ½4p2
1ðz�1 þ �2

1Þ þ 4p2
2ðz�2 þ �2

2Þ þ 3z�1�2�g2 (14a)

¼
�
z½z2 þ zð�1 þ �2Þ � 3�1�2�

�
1� 4p2

1ðz�1 þ �2
1Þ þ 4p2

2ðz�2 þ �2
2Þ

z½z2 þ zð�1 þ �2Þ � 3�1�2�
��

2
: (14b)

When this is used in (11) and (13), with the @z carried out, we get contributions from the poles which correspond to the
roots of the cubic polynomial inside the braces in (14a). It is then convenient to split the expression for Leff as L1 þ L2 with

NOTE ON SCHWINGER MECHANISM AND A NON-ABELIAN . . . PHYSICAL REVIEW D 82, 125005 (2010)

125005-3



L1 ¼
Z dDp

ð2�ÞD
Z 1

0

ds

s
e�sðp2þ�1þ�2Þ

I dz

2�i
e�sz

� @

@z
log½zðz2 þ zð�1 þ �2Þ � 3�1�2Þ� (15a)

L2 ¼
Z dDp

ð2�ÞD
Z 1

0

ds

s
e�sðp2þ�1þ�2Þ

I dz

2�i
e�sz

� @

@z
log

�
1� 4p2

1ðz�1 þ �2
1Þ þ 4p2

2ðz�2 þ �2
2Þ

z½z2 þ zð�1 þ �2Þ � 3�1�2�
�
:

(15b)

The evaluation of L1 is simple. The zeros of the relevant
cubic polynomial are z ¼ 0 and z ¼ z� with

z� ¼ 1

2
½�ð�1 þ �2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�1 þ �2Þ2 þ 12�1�2

q
�: (16)

We then find

L1 ¼ �ð�D=2Þ
ð4�ÞD=2

½ð�1 þ �2ÞD=2 þ ð�1 þ �2 þ zþÞD=2

þ ð�1 þ �2 þ z�ÞD=2�: (17)

� is the Eulerian gamma function. Notice that there are
singularities in this expression for D ¼ 4. These are, of
course, the standard renormalization singularities and can
be isolated by expanding ð�Þ4�DL1 in powers of � with
D ¼ 4� �. (The �-factor is the usual one for ensuring the
correct dimension for L1.) This leads to the expression

�4�DL1 ¼ 1

ð4�Þ2� ½ð�1 þ�2Þ2 þð�1 þ�2 þ zþÞ2

þð�1 þ�2 þ z�Þ2�þ ð�1 þ�2Þ2
ð4�Þ2

�
�
3

4
� 1

2
logð�1 þ�2Þ= ~�2

�
þð�1 þ�2 þ zþÞ2

ð4�Þ2

�
�
3

4
� 1

2
logð�1 þ�2 þ zþÞ= ~�2

�

þð�1 þ�2 þ z�Þ2
ð4�Þ2

�
�
3

4
� 1

2
logð�1 þ�2 þ z�Þ= ~�2

�
þOð�Þ (18)

where ~�2 ¼ 4�e���2, � being the Euler-Mascheroni
constant.

The first term on the right-hand side of (18) is the
potentially divergent contribution which is removed by
renormalization. The remainder gives the finite expression
we need for L1.

The evaluation of L2 is a little more involved and is
sketched out in the appendix. The final result is

L2 ¼� 1

ð4�ÞD=2�ðD=2Þ
Z 1

0
dz

Z 1

0
dx

ð1�xÞ�1þD=2

x
z�1þD=2

�
�
1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�xA1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�xA2

p
�

(19)

where

A1 ¼ 4z�1ðzþ �2Þ
ðzþ �1 þ �2Þ½ðzþ �1Þðzþ �2Þ � 4�1�2� (20)

and A2 is obtained by the exchange �1 $ �2 in the above
expression. In (19) also, there is a potentially divergent
contribution arising from the large z behavior of the inte-
grand. Its removal, along with the potentially divergent
term from (18) is discussed in the appendix.

A. The nature of the instability

We are now in a position to consider how instabilities
can arise from these results. In continuing the expressions
for L1, L2 to Minkowski space, one of the directions has to
be identified as the time-direction. We will take this to be
the 1-direction. Chromoelectric fields in Minkowski space
will thus correspond to the choice �1 < 0, �2 > 0. The
choice of �1, �2 > 0 will correspond to the purely chro-
momagnetic case, with 1-direction being interpreted as
spatial direction now.Wewill consider various possibilities
for the �’s one by one.

B. Case a

Consider first the case of �1 < 0, �2 > 0, �1 þ �2 > 0.
In this case, the factor ð�1 þ �2Þ2 þ 12�1�2 is positive for
�2 � j�1j. For this region

�1 þ �2 þ z� ¼ �1 þ �2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�1 þ �2Þ2 þ 12�1�2

p
2

> 0

(21)

and hence there is no instability in L1. As we come down

in the value of �2, this factor changes sign at �2 ¼ ð7þffiffiffiffiffiffi
48

p Þj�1j. For the region j�1j< �2 < ð7þ ffiffiffiffiffiffi
48

p Þj�1j, the
quantities �1 þ �2 þ zþ and �1 þ �2 þ z� are complex
conjugates of each other. Writing these as 
e�i�, we can
easily see from (17) that there is no imaginary part in L1 for
this region as well. Thus, there is no instability resulting
from L1.
Turning to ImL2, notice that we can set D ¼ 4 at this

stage because the integration range for z for the imaginary
part does not extend to infinity and so the issue of diver-
gences do not arise. The analysis of L2 then reduces to
the analysis of the condition A2ðzÞ> 1. The polynomial
factor in the denominator of the A’s, namely, that
ðz þ �1Þðz þ �2Þ � 4�1�2 ¼ z2 þ zð�1 þ �2Þ þ 3j�1j�2

is easily seen to be positive. Thus A1ðzÞ< 0 and the factorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xA1

p
is real for the full range (z > 0) of integration for

z. On other hand, A2ðzÞ, whose numerator is 4z�2ðzþ �1Þ
will show a change of sign for z ¼ ��1 > 0. However,
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even though A2ðzÞ> 0 for z > �1, we have A2ðzÞ � 1. This
is easily seen from the fact that

ðzþ �1 þ �2Þ½ðzþ �1Þðzþ �2Þ � 4�1�2�
� ðz� j�1jÞ½ðz� j�1jÞðzþ �2Þ þ 4j�1j�2�: (22)

The quantity in the square brackets on the right hand side
is � 4z�2 for z > j�1j. Thus the factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xA2

p
is also

real and hence there is no instability for this case from
either L1 or L2.

C. Case b

Now we turn to the case �1 < 0, �2 > 0, �1 þ �2 < 0.

The region ð7� ffiffiffiffiffiffi
48

p Þj�1j< �2 < j�1j has complex con-
jugate values for �1 þ �2 þ z� and there is no imaginary
part resulting from the last two terms in L1, as in the

previous case for �2 < ð7þ ffiffiffiffiffiffi
48

p Þj�1j. There is an imagi-
nary part from the logð�1 þ �2Þ term in L1, which will give

an instability for this range of �2. For �2 < ð7� ffiffiffiffiffiffi
48

p Þj�1j
(or j�1j> ð7þ ffiffiffiffiffiffi

48
p Þ�2) we have

�1 þ �2 þ z� ¼ �1 þ �2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�1 þ �2Þ2 þ 12�1�2

p
2

< 0:

(23)

There is then a nontrivial imaginary part in L1 which leads
to an instability. Thus we get instability from L1 for all �1,
�2 corresponding to this case.
Turning to L2, we may notice that the factor ðzþ �1 þ

�2Þ in the denominator of A1, A2 changes sign at z ¼
�ð�1 þ �2Þ. The additional factor in the denominator,
namely, ½ðzþ �1Þðzþ �2Þ � 4�1�2� has two positive roots
if j�1j=�2 > 7þ ffiffiffiffiffiffi

48
p 	 14. Otherwise, there are no real

roots and this factor is positive. The graphs of A1ðzÞ as a
function of z are as shown in Fig. 1. We see that for all
values of j�1j=�2, there are regions of z-integration for
which A1ðzÞ> 1, leading to an imaginary part for L2.
Similar statements apply for A2, see Fig. 2.

D. Case c

Even though it is not germane to our present discussion,
we may note that if we have the purely chromomagnetic
case with �1 > 0, �2 > 0, then

0.5 1 1.5 2

30

20

10

10

20

5 10 15 20

400

200

200

FIG. 1. Sample graphs of A1ðzÞ for 1< j�1j=�2 < 7þ ffiffiffiffiffiffi
48

p
(left) and for j�1j=�2 > 7þ ffiffiffiffiffiffi

48
p

(right). The value of A1 between 15 and
20 is large and positive and outside the frame of the graph on the right.
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FIG. 2. Sample graphs of A2ðzÞ for 1< j�1j=�2 < 7þ ffiffiffiffiffiffi
48

p
(left) and for j�1j=�2 > 7þ ffiffiffiffiffiffi

48
p

(right).
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�1 þ �2 þ z� ¼ ð�1 þ �2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�1 þ �2Þ2 þ 12�1�2

p
2

< 0

(24)

Thus the last term on the right hand side in (18) has an
imaginary component. For L2, the polynomial ðzþ �1Þ�
ðzþ �2Þ � 4�1�2 in the denominators of A1, A2 has roots
z�. For �1, �2 > 0, one root is negative and the other is
positive. A1ðzÞ is positive for z > zþ and goes to zero for
large z, with A1ðzÞ ! 1 for z� zþ ! 0þ. Thus there is a
range of z for which

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xA1

p
has an imaginary part.

Again a similar statement applies to A2. Thus for both L1

and L2 we get an instability for �1, �2 > 0. This is the well-
known vacuum instability in a chromomagnetic field.

It is interesting to characterize the instability in terms
of invariants of the field. We see easily that Fa

��F
a�� ¼

ðTrYÞ2 � TrY2 ¼ 2�1�2, and Y ¼ TrðYabÞ ¼ �1 þ �2.
The case where we have obtained instability may be char-
acterized in terms of the fields as

Fa��Fa
�� < 0; Aa�Aa

� < 0: (25)

III. DISCUSSION

The calculation we have presented shows the Schwinger
decay of chromoelectric fields for the case when the field is
generated by the commutator term, rather than the curl of
the potentials. For the purpose of demonstrating this result,
by virtue of the Euclidean and SUð2Þ rotational symme-
tries, it is sufficient to consider the case of one component
of the field strength, say F3

12 (analytically continued to

F3
02), being nonzero. This is the choice we have made in

Eq. (9). However, our result is general in terms of demon-
strating an instability in the non-Abelian plasma. For,
in order to incorporate nonzero non-Abelian charge, one
needs to introduce a chemical potential. In such a situation,
any Aa

i which is constant, or very slowly varying, over
some length scale will lead to an effective chromoelectric
field. Our calculation shows that some kind of instability is
then unavoidable. The resolution of the situation may be
that the plasma cannot sustain Aa

i which are slowly varying
over a length scale compared to the scale of the chemical
potential. Or it could be that nonzero charges are not
possible over a similar scale of coarse graining.

A further remark concerning the length scale is in order
as well. The key issue is that we can demonstrate the decay
of the field for a constant chromoelectric field. This is
basically a calculational limitation. The question then is
whether this calculation has any implications for inhomo-
geneous fields. One would expect that, if the field is slowly
varying, the qualitative result of instability should still
hold. A direct demonstration of this for the non-Abelian
fields would be nice, but is beyond the scope of the present
paper. However, we may note that some calculations for
inhomogeneous fields are available for the Abelian case.
One finds that the results for a constant field are in fact

obtained for inhomogeneous fields as well, provided
F02L

2 � 1, L being the scale on which the field varies
significantly [7]. Since the effective electric field for our
case is of the order of the chemical potential, one could
expect that the relevant length scale is determined by the
chemical potential. This is the reason for the expectation,
stated in the introduction, that the instability should afflict
fields coherent over scales exceeding the scale of the
chemical potential.
In conclusion, we may note that the instability we are

discussing hints at how statistical distributions tend to
move to color neutrality or a disordered state with no
coherent fields over distances long compared to the dimen-
sion given by the chemical potential.
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APPENDIX

1. Calculation of L2

For L2, we start with the representation

logA ¼
Z 1

0

dt

t
ðe�t � e�tAÞ: (A1)

Using this and eliminating @z by partial integration, the
expression (15b) for L2 becomes

L2 ¼
Z dDp

ð2�ÞD
Z 1

0

ds

s
e�sðp2þ�1þ�2Þ

I dz

2�i
e�sz

Z 1

0

dt

t
e�st

�
�
1� exp

�
4st

p2
1�1ðzþ �1Þ þ p2

2�2ðzþ �2Þ
zðz2 þ z�1 þ z�2 � 3�1�2Þ

��

¼
Z 1

0

ds

ð4�sÞD=2
e�sðzþtþ�1þ�2Þ

I dz

2�i

Z 1

0

dt

t

�
�
1� 1

C1ðzÞC2ðzÞ
�

(A2)

where

CkðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4t�kðzþ �kÞ

zðz2 þ z�1 þ z�2 � 3�1�2Þ

s
(A3)

for k ¼ 1, 2. For the second line of Eq. (A2) we have
carried out the p-integration. Note that the exponents in-
volving p2

k show that we need to take the z-contour to be

large enough, jzj> 2
ffiffiffiffiffi
t�

p
. Effectively, this means that we

should do the z-interal before doing the t-integral. In (A2),
we can further carry out the s-integration to get
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L2 ¼ �ð1�D=2Þ
ð4�ÞD=2

Z 1

0

dt

t

I dz

2�i
ðzþ tþ �1 þ �2Þ�1þD=2

�
�
1� 1

C1ðzÞC2ðzÞ
�
: (A4)

The factor ðzþ tþ �1 þ �2Þ�1þD=2 shows that, for the
z-integration, we have a branch cut along the negative
real axis starting at z ¼ �t� �1 � �2. We can deform
the original contour which is a large circle around the
origin, via the contour shown in Fig. 3, to the contour in
Fig. 4. Notice that because of the arguments given earlier,
the branch point z ¼ �t� �1 � �2 is always outside the
original contour, while the singularities of the square root
factors are always inside the contour. Integration along the
cut in Fig. 4 gives

L2¼�ð1�D=2Þ
ð4�ÞD=2

Z 1

0

dt

t

Z 1

tþ�1þ�2

dzðz� t��1��2Þ�1þD=2

�
�
ei�ðD=2�1Þ�e�i�ðD=2�1Þ

2�i

��
1� 1

C1ð�zÞC2ð�zÞ
�
:

(A5)

Using

ei�ðD=2�1Þ � e�i�ðD=2�1Þ

2�i
¼ � 1

�ð1�D=2Þ�ðD=2Þ (A6)

and shifting the variable of integration to z� �1 � �2, we
can write (A5) as

L2 ¼ � 1

ð4�ÞD=2�ðD=2Þ
Z 1

0

dt

t

Z 1

t
dzðz� tÞ�1þD=2

�
�
1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� tA1=z
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� tA2=z
p �

(A7)

where

A1 ¼ 4z�1ðzþ �2Þ
ðzþ �1 þ �2Þ½ðzþ �1Þðzþ �2Þ � 4�1�2� (A8)

and A2 is given by the same expression with �1 $ �2.
Changing the order of integration and making the substi-
tution t ¼ zx, we finally get

L2 ¼ � 1

ð4�ÞD=2�ðD=2Þ
Z 1

0
dz

Z 1

0
dx

� ð1� xÞ�1þD=2

x
z�1þD=2

�
1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� xA1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xA2

p
�
:

(A9)

This is the expression quoted in the text.

2. Renormalization: A consistency check

The potentially divergent part of L1 was obtained in
Eq. (18) as

�4�DL1div ¼ 1

ð4�Þ2� ½ð�1 þ �2Þ2 þ ð�1 þ �2 þ zþÞ2

þ ð�1 þ �2 þ z�Þ2�: (A10)

Using the expressions for z� from (16), this simplifies to

�4�DL1div ¼ 1

ð4�Þ2� ½2ð�
2
1 þ �2

2Þ þ 10�1�2�: (A11)

The expression for L2 can be recast as

L2 ¼ � 1

ð4�ÞD=2�ðD=2Þ
Z 1

0
d���1�D=2Gð�Þ (A12)

where � ¼ 1=z and

Gð�Þ ¼
Z 1

0

dx

x
ð1� xÞ�1þD=2

�
1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x ~A1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x ~A2

q �

(A13)

and ~A’s correspond to A’s with z ¼ 1=�; i.e.,

~A 1 ¼ 4��1ð1þ ��2Þ
½1þ �ð�1 þ �2Þ�½ð1þ ��1Þð1þ ��2Þ � 4�2�1�2�

(A14)

with �1 $ �2 to obtain ~A2 from ~A1. The divergence now
corresponds to small values of �. Carrying out a small
�-expansion,

FIG. 4. Contour for evaluating L2.

FIG. 3. Deformation of contour for branch cut at z ¼ �t�
�1 � �2.
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Gð�Þ ¼ � 4

D
�ð�1 þ �2Þ þ 8�2

DðDþ 2Þ
� ½D�1�2 þ ðD� 1Þð�2

1 þ �2
2Þ� þOð�3Þ: (A15)

We can use this expansion in (A12) and integrate; we are
interested in the small � region, so we use a cutoff e�� in
the integrand. (Whether we use this or something else, such
as e�a� for some a does not matter for the term of the form
�ðð4�DÞ=2Þ.) The term proportional to 1=� is then found
to be

L2div ¼ � 1

ð4�Þ2�
�
2ð�2

1 þ �2
2Þ þ

8

3
�1�2

�
: (A16)

Combining this with (A11), we find

Ldiv ¼ 1

ð4�Þ2�
22

3
�1�2 ¼ 1

ð4�Þ2�
11

3
Fa
��F

a��: (A17)

This is the expected and correct renormalization of the
action, and is consistent with the -function of

ðgÞ ¼ � g3

ð4�Þ2
22

3
(A18)

for SUð2Þ.
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