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Shock waves are supersonic disturbances propagating in a fluid and giving rise to dissipation and drag.

Weak shocks, i.e., those of small amplitude, can be well described within the hydrodynamic approxima-

tion. On the other hand, strong shocks are discontinuous within hydrodynamics and therefore probe the

microscopics of the theory. In this paper, we consider the case of the strongly coupled N ¼ 4 plasma

whose microscopic description, applicable for scales smaller than the inverse temperature, is given in

terms of gravity in an asymptotically AdS5 space. In the gravity approximation, weak and strong shocks

should be described by smooth metrics with no discontinuities. For weak shocks, we find the dual metric

in a derivative expansion, and for strong shocks we use linearized gravity to find the exponential tail that

determines the width of the shock. In particular, we find that, when the velocity of the fluid relative to the

shock approaches the speed of light v ! 1 the penetration depth ‘ scales as ‘� ð1� v2Þ1=4. We compare

the results with second-order hydrodynamics and the Israel-Stewart approximation. Although they all

agree in the hydrodynamic regime of weak shocks, we show that there is not even qualitative agreement

for strong shocks. For the gravity side, the existence of shock waves implies that there are disturbances of

constant shape propagating on the horizon of the dual black holes.

DOI: 10.1103/PhysRevD.82.125003 PACS numbers: 12.38.Mh, 04.70.Bw

I. INTRODUCTION AND SUMMARY

The AdS/CFT correspondence [1–4] realizes in practice
the idea of describing gauge theories in terms of strings [5]
and provides a new tool to study gauge theories at strong
coupling. Recently, motivated by experimental and theo-
retical work on heavy ion collisions at Relativistic Heavy
Ion Collider (RHIC), there was a wave of interest in using
AdS/CFT to study the dynamics of strongly coupled plas-
mas, for a review see [6–10] and references therein. The
main initial focus was on the low viscosity of the fluid and
the drag force experienced by a quark moving through the
plasma. More generically, in conformal plasmas, such as
the one studied in AdS/CFT, the hydrodynamic description
of the theory is valid up to length scales of order of the
inverse temperature. Below that scale standard hydrody-
namics breaks down, and we need to resort to the dual
gravity description, which does not break down until the
(much smaller) bulk string scale is reached. Alternative
descriptions that are not based directly on microscopics,
such as the Israel-Stewart theory, can be tested by
comparison with the microscopic theory provided by the
dual gravity.

In the present paper, we focus on a particular phenome-
non in fluid dynamics, namely, shock waves. These are
supersonic disturbances that propagate in the fluid and are
typically produced by an object moving supersonically in
the fluid or by a localized release of energy such as in
explosions or collisions. In ideal fluids, they are described

by a surface of discontinuity where the normal velocity and
the pressure have a jump. In the framewhere the shock is at
rest, the fluid goes from supersonic to subsonic, with the
kinetic energy of the fluid converted into pressure and heat.
This process is irreversible and generates entropy. In fact, it
is the only dissipative mechanism in the case of strictly
ideal fluids. In practice, of course, the fluid is never ideal so
at small scales the viscosity also causes dissipation. If the
shock wave is produced by an object moving in the fluid it
also generates drag. Away from the shock the hydrody-
namic approximation is good and allows to compute the
jumps in velocity and pressure by using the conservation of
energy (and other charges) across the shock. However, in
the region of discontinuity the gradients are in general
large and a microscopic theory is necessary to have an
appropriate description. In fact, this breakdown of hydro-
dynamics is the reason why dissipation occurs in shock
waves even for ideal fluids. For that reason, shock waves
are not only phenomenologically interesting but, on the
theoretical side, can be considered as a useful probe of the
system. In practice, they are usually studied in nonrelativ-
istic systems and in fluids such as air and water. The
relativistic case is of interest in astrophysics and, in par-
ticular, in heavy ion physics, which is the system closest to
the one studied in this paper.
In the context of heavy ion physics, there are different

situations where shock waves can appear. One is during the
period of the creation of the quark-gluon plasma. A simple
model of particle production which gives reasonable
results is Landau’s hydrodynamic model [11]. This model
assumes that the fluid thermalizes instantaneously and
then evolves according to ideal hydrodynamics. All the
entropy is created at the initial stage as a result of the
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thermalization process. In a purely ideal hydrodynamical
model the entropy can be generated only from shock waves
which would therefore play an important role. However,
initially the quark-gluon plasma is far from equilibrium,
and therefore a hydrodynamical approximation might not
be valid.

Within AdS/CFT entropy production in a heavy ion
collision has been studied in [12] where two shock waves
moving at the speed of light collide creating trapped sur-
faces. Also, [13] studies the problem of reconstructing the
bulk metric from the boundary. Several other aspects are
examined in [14–16]. Related work on gravitational shock
waves appears in [17–27].

Another instance where shock waves might appear in
heavy ion collisions is the process where a hard parton
moves through the plasma. The hard parton can be a
heavy quark, a meson, or a gluon. Calculations in AdS/
CFT [28–32] show that there is a Mach cone created. That
is, the energy density of the wave is concentrated in a angle
close to the Mach angle. This is highly suggestive of the
formation of a shock wave that cannot be described by the
linearized approximations used in previous calculations.
The real space profile of the stress-energy tensor of a
moving quark, calculated in [29], also supports the idea.
Independently from AdS/CFT, the possibility of shock
waves in heavy ion collisions has been explored both
theoretically and experimentally in [33–50].

II. SHOCK WAVES IN HYDRODYNAMICS

Hydrodynamics can be used to study the region away
from the shock where the gradients are small. For weak
shocks, i.e., those of small amplitude, a hydrodynamic
approximation that includes viscosity resolves the discon-
tinuity and provides a smooth description of the shock
wave. This can be corrected at higher orders in gradients
if so desired. In this section, we start by considering the
ideal fluid case for arbitrary shocks and then the higher-
order hydrodynamic approximation for weak shocks. We
also analyze the Israel-Stewart theory to compare later
with the microscopic results.

A. Ideal hydrodynamics

Ideal hydrodynamics is valid far from the shock and
determine the main properties of shock waves. These are
well known, and we describe them in this subsection as
applied to our particular fluid. In relativistic ideal hydro-
dynamics, the energy-momentum tensor is given by

T�� ¼ p��� þ ðpþ �Þu�u�; (1)

where p is the pressure, � the energy density, and u� the
four velocity of the fluid. The equations of motion are
given by conservation of T��,

@�T
�� ¼ 0; (2)

and the equation of state, which for the strongly coupled
N ¼ 4 plasma is dictated by conformality and reads1

� ¼ 3p ¼ 3ð�TÞ4: (3)

For a shock wave with a planar front, located for conve-
nience at x ¼ 0 (see Fig. 2), both Ttx and Txx are constant
throughout the fluid:

Ttx ¼ 4putux ¼ 4p
v

1� v2
; (4)

Txx ¼ pð1þ 4u2xÞ ¼ p
1þ 3v2

1� v2
: (5)

The possibility of a shock wave arises because there are
different values of pressure and velocity that give the same
value of Ttx and Txx. For example, the ratio Ttx=Txx

depends only on the velocity, and, as is seen from the
plot in Fig. 3, different velocities can give the same
ratio Ttx=Txx. More precisely, if we take that for
x ! �1, v ¼ v1, and T ¼ T1 and for x ! 1, v ¼ v2,
and T ¼ T2, we can ensure that T

tx and Txx are constant by
imposing

v2 ¼ 1

3v1

; p2 ¼p1

9v2
1�1

3ð1�v2
1Þ
; T2 ¼T1

�
9v2

1�1

3ð1�v2
1Þ
�
1=4

:

(6)

A particular case is v1 ¼ v2 ¼ vs where vs ¼ 1ffiffi
3

p is the

speed of sound. In that case, the jumps in v and T vanish. In
general, we have

1> v1 >
1ffiffiffi
3

p > v2 >
1

3
(7)

as can be seen from the relation v1v2 ¼ 1
3 . In particular, if

v2 ¼ 1=3 on one side of the shock, the fluid on the other
side moves at the speed of light. In principle, the conser-
vation laws allow one to switch the values of the velocity
between the front and back of the shock, i.e., take v1 < vs

and v2 > vs, but such solution would convert thermal
energy into kinetic energy violating the second law of
thermodynamics. In Fig. 4,we show the ratio of the pres-
sures on the two sides. The supersonic side of the shock has
a lower pressure, which goes to zero when v1 approaches
one. For an object moving through the fluid this has the
effect of changing the pressure that the object experiences.
Indeed, defining the projector perpendicular to u� as
P�� ¼ ��� þ u�u� we obtain from Eq. (1)

P��@�T
�� ¼ 0;) @�T þ u�@�ðTu�Þ ¼ 0 : (8)

1We follow the conventions of [51] with regard to the nor-
malization of the stress-energy tensor. That is, our stress tensor is
related to the conventionally defined one by T

��
our ¼ 8�2

N2 T
��. In

gravity this is reflected in T
��
our ¼ 16�G½5�

N T��, where G½5�
N is the

five-dimensional Newton’s constant.
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For a stationary solution, taking the � ¼ 0 component
we obtain

ui@ið�TÞ ¼ 0 (9)

after replacing u0 ¼ �, where � is the Lorentz factor. We
see that �T is conserved along a streamline. In particular,
for a situation as in Fig. 1 we can follow a streamline from
infinity to the point A and obtain, with and without a shock
wave, the pressure

pðshockÞ
A ¼ �4

2p2 ¼ 27v41
ð9v21 � 1Þð1� v21Þ

p1;

pðno shockÞ
A ¼ �41p1 ¼ p1

ð1� v21Þ2
;

(10)

where we have used Eq. (3) and the matching conditions
(6) for the pressure and velocity across the shock wave.

Another interesting aspect of shock waves is the entropy
production that is associated with them. In ideal hydro-
dynamics the entropy current is given by

s� ¼ 4�4T3u�; (11)

where we have chosen the normalization to give the
entropy density of a fluid at rest. The difference between
s0 on the two sides of the shock is given by

�s0 ¼ s0subsonic � s0supersonic

¼ 4�4ðT3
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u22

q
� T3

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u21

q
Þ;

�s0 ¼ 4�4T3
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
1

q �
31=4v1

�
9v2�1

1

1� v2
1

�
1=4 � 1

�
:

(12)

The entropy production comes from the difference of the
two fluxes

�sx ¼ sxsubsonic � sxsupersonic

¼ 4�2T3
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
1

q �
3�3=4

�
9v2

1 � 1

1� v2
1

�
1=4 � v1

�
: (13)

Kinetic energy from the supersonic side is transformed
into thermal energy in the subsonic side and this creates
entropy. Notice also that the ideal hydro is correct far from
the shock, so this calculation gives the correct entropy
production even if the fluid is not ideal.

B. Viscous hydrodynamics

The stress-energy tensor for relativistic hydrodynamics
can be organized in a series expansion in powers of 1

LT ,

where L is a typical length scale over which the four-
velocity changes and T is the temperature. In such an
expansion, the first-order term is the viscous term. Since
the plasma we are interested in is conformal, its bulk
viscosity is zero. The shear viscosity is given by �

s ¼ 1
4�

[52]. The stress-energy tensor to the first order is given by

T�� ¼ ð�TÞ4ð��� þ 4u�u�Þ � 2ð�TÞ3���; (14)

where

P�� ¼ ��� þ u�u�; ���P�	@ð�u	Þ �
1

3
P��@�u

�:

(15)

Notice that

T���� ¼ �3ð�TÞ4u�; (16)

which can be taken as the definition of u� and T, namely,
u� is a time like eigenvector of T�� whose eigenvalue is
�3ð�TÞ4. This definition can be used at any order in the
hydrodynamic expansion and is sometimes called the
Landau frame.
Now we would like to see how a weak shock wave is

resolved if the effects of viscosity are included. We con-
sider a flow where the four velocity and temperature are
functions only of x:

T ¼ TðxÞ; u� ¼ ð�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ uðxÞ2;

q
uðxÞ; 0; 0Þ: (17)

As before, conservation of the energy-momentum tensor
implies that the components Ttx and Txx are constant
throughout the fluid. They are now given by

Ttx ¼ 4ð�TÞ4uðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ uðxÞ2�

q 4

3
þ ð�TÞ3uðxÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ uðxÞ2u0ðxÞ

q
¼ �Ttx; (18)

Txx¼ð�TÞ4ð1þ4uðxÞ2Þ�4

3
ð�TÞ3ð1þuðxÞ2Þu0ðxÞ¼ �Txx:

(19)

(2)

A

(1)

FIG. 1. A supersonic flow reaches a fixed object creating a
stationary shock wave. In heavy ion physics, this scenario might
be realized by a heavy parton moving through the plasma, as
suggested by the existence of a Mach cone.
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The asymptotic behavior of T, uðxÞ determines the con-
stants �Ttx, �Txx Conversely, in terms of �Ttx, �Txx and uðxÞ the
temperature is given by

�T ¼ 1

31=4

�
� �Ttx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ uðxÞ2p
uðxÞ2 � �Txx

�
1=4

; (20)

which is in fact valid to all orders in the hydrodynamic
expansion since it follows from the definition (16).

Let us suppose that asymptotically on the supersonic
side the temperature and velocity approach constants

T1 ¼ lim
x!�1TðxÞ ¼ Tð0Þ

�
1�

ffiffiffi
2

p
3

u1
�
;

u1 ¼ 1ffiffiffi
2

p þ u1 ¼ lim
x!�1uðxÞ:

(21)

Four-velocity 1ffiffi
2

p corresponds to the speed of sound in a

conformal plasma. The remaining equation Ttx ¼ � �Ttx

gives a differential equation for uðxÞ. Since first-order
hydrodynamics is valid only for weak shocks, we expand
in a power series in u1. It then becomes clear that it is
useful to define a new variable


 ¼ 4�Tð0Þu1
3

x; (22)

in terms of which we have

uð
Þ ¼ 1ffiffiffi
2

p þ u1�uð1Þð
Þ þ u21�uð2Þð
Þ þ . . . : (23)

The equations of motion imply that �uð1Þð
Þ satisfies the
equation (primes denote derivation with respect to 
)

�u0ð1Þ ¼ �u2ð1Þ � 1; (24)

with solution

�uð1Þ ¼ tanhð�
Þ: (25)

This has the same form as the solution for a weak shock in
nonrelativistic hydrodynamics [53], and indeed Eq. (24)
coincides with the first integral of the Burgers equation,
familiar in that context.
As we already noted, in ideal hydrodynamics one can

freely exchange the two sides of the shock, so that in the
rest frame of the shock the fluid’s velocity may change
either from subsonic to supersonic or from supersonic to
subsonic. However, the existence of friction in the first-
order hydrodynamics breaks this symmetry and only the
latter solution is allowed.
The approach to the asymptotic values of T and u is

described by TðxÞ � Tasympt þ eiqx�T, uðxÞ � uasympt þ
eiqx�u, where Tasympt is either T1 or T2, depending on

which of the asymptotic regions we are looking at.
Expanding the equations for conservation of energy and
momentum to the first order in �T, �u provides us with a
system of two equations with two unknowns �T, �u.
Demanding that there is a nonzero solution determines q
to be2

iq

�T
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p

v
ð3v2 � 1Þ; (26)

where we use uasympt ¼ vffiffiffiffiffiffiffiffiffi
1�v2

p . For weak shocks, we ex-

pand (26) around the speed of sound v� 1ffiffi
3

p þ �v to obtain

iq

�T
¼ 2

ffiffiffi
6

p
�v ; (27)

which agrees with the explicit solution (25). For strong
shocks, for which jqj is not small in comparison with T,
there is no reason to expect (26) to be a good approxima-
tion. We compare it with other approximations in subse-
quent sections.

C. Second-order hydrodynamics
and Israel-Stewart theory

Let us now consider how shock waves are resolved in
second-order hydrodynamics and in Israel-Stewart theory.
For the N ¼ 4 plasma, the stress-energy tensor has been
computed to second order in [51,54] (see also [55]) and is
given by

T�� ¼ ð�TÞ4ð��� þ 4u�u�Þ � 2ð�TÞ3���

þ ð�TÞ2
�
ðln2ÞT��

2a þ 2T��
2b þ ð2� ln2Þ

�
�
1

3
T
��
2c þ T

��
2d þ T

��
2e

��
; (28)

where

FIG. 2. Sketch of a shock wave in the rest frame of the inter-
face. For ideal hydrodynamics there is a discontinuity at x ¼ 0.
Including the higher-order terms in the expression of the stress-
energy tensor resolves the discontinuity. The conventions of the
paper are that the fluid moves to the right. The left hand side is
supersonic and the right hand side is subsonic since the opposite
configuration violates the second law of thermodynamics.

2Notice that this gives real exponential that decay away from
the shock.
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��� ¼ P��P�	@ð�u	Þ � 1

3
P��@�u

�; D ¼ u�@�

(29)

T
��
2a ¼ ��	�ð���Þ

� u�l	; T
��
2c ¼ @�u

����; (30)

T��
2b ¼ �����

� � 1

3
P����	��	; (31)

T��
2d ¼ DuDu� � 1

3
P��Du�Du�; (32)

T��
2e ¼ P��P�	Dð@ð�u	ÞÞ � 1

3
P��P�	Dð@�u	Þ; (33)

l� ¼ ��	�uu
�@	u�:

We follow the conventions of [51], where �0123 ¼ 1 and
the brackets denote symmetrization. The Ttx and Txx com-
ponents of the stress tensor are again constant but now
given by

Ttx ¼ uðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ uðxÞ2

q �
4ð�TðxÞÞ4 � 4

3
ð�TðxÞÞ3

þ ð�TðxÞÞ2
�
2

9
ð4� ln2Þu0ðxÞ2 þ 2

3
uðxÞu00ðxÞ

��
; (35)

Txx ¼ ð�TðxÞÞ4ð1þ 4uðxÞ2Þ � 4

3
ð1þ uðxÞ2Þð�TðxÞÞ3

þ ð�TðxÞÞ2ð1þ uðxÞ2Þ
�

�
2

9
ð4� ln2Þu0ðxÞ2 þ 2

3
uðxÞu00ðxÞ

�
: (36)

First, we carry out linear analysis near the asymptotics at
x ! �1, where we expect

TðxÞ ¼ Tasympt þ �Teiqx;

uðxÞ ¼ uasympt þ �ueiqx:
(37)

Keeping only linear terms in �T, �u, we solve

Ttx ¼ �Ttx; Txx ¼ �Txx; (38)

where �Ttx, �Txx are given by the asymptotic values

�T tx ¼ 4ð�TasymptÞ4uasympt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2asympt

q
;

�Txx ¼ ð�TasymptÞ2ð1þ 4u2asymptÞ:
(39)

The 2 by 2 linear system for �u, �T has a nonzero solution
only if its determinant is zero. This condition determines q
to be

iq

�Tasympt
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p �
1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2ð3v2 � 1Þð2� logð2ÞÞp �
vð2� logð2ÞÞ ;

(40)

where v ¼ uasymptffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þu2asympt

p . This is intended as an improvement

on the first-order formula (26). Note that the argument of
the square root becomes negative for velocities greater than

v >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5� 2 logð2Þ
12� 6 logð2Þ

s
� 0:678871: (41)

This indicates that, not unexpectedly, computations in
second-order hydrodynamics should not be trusted beyond
the weak shock regime, i.e., beyond velocities close to the
speed of sound jv� vsj � vs. Note that the velocity (41)

0.0 0.2 0.4 0.6 0.8 1.0
v0.0

0.1

0.2

0.3

0.4
T tx T xx

FIG. 3 (color online). The ratio Ttx=Txx for different veloc-
ities. For v1 >

1
3 the equation Ttx=Txx ¼ const has two solutions

and hence allows for a jump in velocity. When v1 ¼ 1ffiffi
3

p there is

no jump.

0.0 0.2 0.4 0.6 0.8 1.0
v0

1

2

3

4

5

6

7
p2 p1

FIG. 4 (color online). The ratio of pressure for the two sides of
a shock wave as a function of the incident velocity v1. When
v1 < 1=3 there is no shock. For v1 <

1ffiffi
3

p , v2 >
1ffiffi
3

p the pressure

and the temperature on the supersonic side (2) are smaller than
those on the subsonic side. Kinetic energy from the supersonic
side is transformed to thermal energy on the subsonic side
thereby increasing the entropy. The entropy production in this
process is discussed further in Sec. II C.
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is different from the velocity of discontinuity propagation
in second-order hydrodynamics and Israel-Stewart theory

vdisc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2ð2� ln2Þ

s
� 0:618546: (42)

Next, we solve for the shock solution for speeds that are
close to the speed of sound. To this end, we have to use the
solution of first-order hydrodynamics (25) and expand to
second-order in u1, the difference between the actual
asymptotic speed and the speed of sound. Using (23), we
now solve

Ttx ¼ �Ttx; Txx ¼ �Ttx: (43)

Again, the temperature field is given by (20) and the
second term in the expansion of the velocity must satisfy

�u02 ¼
1

3

�
�u1ð

ffiffiffi
2

p
�u1ð1� ðlog4� 2Þ�u1Þ

þ 6�u2 þ
ffiffiffi
2

p ðlog4� 7ÞÞ þ 4
ffiffiffi
2

p �
; (44)

where, as before, the derivatives are with respect to

 ¼ 4�

3 u1Tð0Þx. The solution is given by

�u2ð
Þ ¼ 1

6

�
4

ffiffiffi
2

p ð1� ln2Þ lncosh

cosh2


þ 5
ffiffiffi
2

p �
tanh2
þ tanh
þ 


cosh2


��
: (45)

This solution agrees with the one derived in gravity in
Sec. III, using the prescription of [51]. It also agrees with
the linear analysis carried out above. Indeed, we can
determine q through

iq� ¼ lim
x!�1

d2u=dx2

du=dx
(46)

and compare them to the values following from (40). Since
this derivation is identical to the one we use in Sec. we
omit it here.

The entropy current has been discussed in [54,56,57].
In second-order hydrodynamics, it has an ambiguity. For
illustration, we consider here the expressions for the cur-
rent and the entropy production proposed in [56]:

s� ¼ 4��u� � 
��

4T
������u

�; (47)

@�s
� ¼ �

2T
������: (48)

It is easy to check that the solution (45) satisfies (47) and
(48). Interestingly, as seen in Fig. 5, the entropy production
is larger on the supersonic side of the wave.

Similarly, we can examine the asymptotic tail of shock
waves in the Israel-Stewart theory [58,59]. This is a theory
originally proposed to cure the instantaneous propagation
of discontinuities in first-order relativistic hydrodynamics.

A new tensor ��� is introduced that parametrizes the

departure from the ideal fluid:

T�� ¼ pð��� þ 4u�u�Þ þ ���: (49)

The tensor ��� is connected to the velocity and tempera-
ture fields by

��� þ 
�u
�D��

�� ¼�2���� þ 
!ð!�
��

��þ!�
��

��Þ;
(50)

whereD� is the so called conformal derivative3 and 
� (or
alternatively 
!) is a parameter the value of which has
to be determined from microscopics. One often uses the
rescaled, dimensionless parameters �� and �
� defined by

� ¼ ��ð�TÞ3; 
� ¼ �
�
�T

: (51)

For the N ¼ 4 superconformal plasma

�� ¼ 1; �
� ¼ 2� ln2

2
: (52)

Alternatively, one may initially leave these parameters
undetermined and then choose them to fit specific quanti-
ties. In the case of a shock wave, !�� ¼ 0. In order to
examine the asymptotic falloff in a linearized theory, we
perturb the asymptotic values of u, T with (37) and, in
addition, one component of the ��� tensor with

4 2 2 4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S

FIG. 5 (color online). Entropy production as determined by the
divergence of the first-order entropy current s� ¼ 4��u� is
plotted versus 
 ¼ 4u1x�T

3 . For the first-order solution (25)

(higher curve), the production is symmetric with respect to the
front. For the second-order solution (45) (lower curve), the
entropy production is slightly displaced towards the supersonic
side of the jet. The normalization of the vertical axis is such that
the difference �sx for the two sides for the first-order solution is
1. Notice that the two curves do not have to integrate to the same
number since the asymptotic velocity and temperature differ for
the first and second-order solutions, cf. Equations (25) and (45).

3For a definition of D�, !
�� and a comparison between the

Israel-Stewart theory and second-order hydrodynamics for con-
formal plasmas, one can consult [56]
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�00ðxÞ ¼ ��00eiqx: (53)

The resulting three by three system has a solution only if q
is given by

iq

�T
¼ 3v2 � 1

v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p

��þ �
�ð1� 3v2Þ : (54)

Notice that there is a pole, which for the N ¼ 4 values
(52) is located in v� :92. On the other hand, the fully
microscopic calculation based on the gravity dual (and
described in Sec. IV) shows that q remains finite at all
v < 1. This may lead one to choose ��, �
� in such a way the
pole in (54) is located at v ¼ 1. However, even with this
choice the Israel-Stewart theory fails to capture the asymp-
totic behavior of q at v ! 1. Equation (54) predicts that q
increases linearly with � ¼ 1ffiffiffiffiffiffiffiffiffi

1�v2
p , whereas the linearized

gravity analysis of Sec. IV predicts q / �1=2.

D. Effective hydrodynamics

Effective hydrodynamics is the approach where one
attempts to model the effect of higher-order terms in the
gradient expansion of T�� with terms that are high in
derivatives but linear in velocity. Such an approach has
been taken up in Ref. [60] and may seem an ideal way to
encode results of a linearized theory. Effective hydrody-
namics for a conformal theory in flat space can be summa-
rized by writing the stress tensor as

T�� ¼ p��� þ ð�þ pÞu�u� þ���; (55)

��� ¼ �2
Z

dt0
Z

d3x0Dðx� x0; t� t0Þ���ðx0; t0Þ; (56)

Dðx; tÞ ¼
Z

d!d3ke�i!þikx�ð!; k2Þ: (57)

The effective viscosity �ð!; k2Þ is taken to be a function
of !, k2 such that it correctly reproduces the location of
the poles of the scalar, shear, and sound modes up to the
desired order. For the N ¼ 4 plasma, it has been calcu-
lated up to the fifth order in [60] and found to be

� ¼ �0ð1þ i�0;1!þ �0;2!
2 þ i�2;1!k2 þ i�0;3!

3

þ �4;0k
4 þ �2;2!

2k2 þ �0;4!
4 þ � � �Þ; (58)

�0 ¼ �þ p

2
; �0;1 ¼ 2� ln2; �2;0 ¼ � 1

2
;

�0;2 � �1:379; �2;1 � �2:275; �0;3 � �0:082;

�4;0 � 0:565; �0;4 � 2:9; �2;2 � 1:1;

(59)

where we have not given the uncertainties of each coeffi-
cient. One can attempt to resum this fifth-order expression
into a rational expression with one or two poles [60].

To compute the asymptotic tails of the shock in effective
hydrodynamics, we consider again perturbations of the
type (37) in the rest frame of the shock. The result is
given by

iq

�T
¼ 3v2 � 1

v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p �0

�ð� vqffiffiffiffiffiffiffiffiffi
1�v2

p ; q2

1�v2Þ
; (60)

where v is the speed of the fluid relative to the shock. The
actual curve q ¼ qðvÞ is determined by linearized gravity
and can only be found numerically; the result is shown in
Fig. 6. A simple ansatz for the effective viscosity does not
reproduce this curve very well. For example, an effective
viscosity with one or two poles will always give q ! 0 as
v ! 1, in contrast to the behavior following from linear-
ized gravity. On the other hand, as seen in Fig. 6, the
expansion of Ref. [60] gives a reasonable approximation
for q on the subsonic side of the shock.
We can take the idea of effective hydrodynamics one

step further by simply encoding our numerical curve into
an expression for T��, so that agreement with linearized
gravity is perfect by construction. In general, any hydro-
dynamic approximation amounts to reconstructing T��

from its timelike eigenvector u� [cf. Equation (16)].
Consider the fluid at rest with a sound wave of small
amplitude ", propagating along x with momentum k and
(in general complex) frequency !ðkÞ. From conservation
of T�� and the traceless condition, we find that the Fourier
components of �T�� are given by

�Ttt ¼ "; �Ttx ¼ !

k
";

�Txx ¼ !2

k2
"; �Tyy ¼ �Tzz ¼ k2 �!2

2k2
":

(61)

0.2 0.4 0.6 0.8 1.0
v

6

4

2

2

4

Im q T

FIG. 6 (color online). The solid (blue) line represents the
numerical results discussed in Sec. IV. The (purple) dashed
line is the first-order hydrodynamics result, and the (green)
longer-dashed line is the second-order result. The (blue) dotted
line is the Israel-Stewart result, and the dotted-dashed line is the
result for the effective hydrodynamics theory of Sec. IID. None
of the theories captures the v ! 1 asymptotics of the numerical
result.

SHOCK WAVES IN STRONGLY COUPLED PLASMAS PHYSICAL REVIEW D 82, 125003 (2010)

125003-7



It is now a simple matter to compute the timelike eigen-
vector of T��, identify �u ¼ !

4qT4
0

" as the x component of

the four velocity, and write �T�� as

�T�� ¼ �T
��
ð0Þ þ �T

��
ð1Þ ; (62)

where �T
��
ð0Þ is the variation of the ideal fluid energy-

momentum tensor T��
ð0Þ ¼ ð�T0Þ4ð��� þ 4u�u�Þ and

�T
��
ð1Þ is an extra contribution given by

�Txx
ð1Þ ¼

4

3k!
ð3!2 � k2ÞT4

0�u; (63)

�Tyy
ð1Þ ¼ �Tzz

ð1Þ ¼ � 2

3!k
ð3!2 � k2ÞT4

0�u: (64)

In these expressions, ! should be understood as a function
of k obtained by solving numerically the gravity equations

for the sound wave. Notice that the function 3!2�k2

!k is

regular for k ! 0, so �T
��
ð1Þ is a well defined function of

�u. It is nonlocal since it involves an infinite number of
derivatives. Nevertheless, in the linear approximation, we
can work with this energy-momentum tensor that reprodu-
ces exactly the sound pole and the asymptotic behavior of
the shock wave far from the shock. Later, in the numerical
section, we give an approximate result for the function
!ðkÞ that could be used, if so desired, to further simplify
and approximate �T��

ð1Þ . Such effective hydrodynamics is

still not sufficient to describe the center of the shock, where
the linearized approximation is not applicable, but at least
it summarizes all the information we were able to extract
from gravity without attempting to find the full numerical
solution to the Einstein equations in the bulk.

III. SHOCK WAVES IN THE GRAVITY-
HYDRODYNAMICS CORRESPONDENCE

In a strong shock wave, the region near the shock is
beyond the hydrodynamic approximation and can only be
described as a jump in the hydrodynamic quantities. In the
case of the strongly coupledN ¼ 4 plasma, hydrodynam-
ics ceases to be valid at distances shorter than the inverse
temperature. However, at those distances the bulk descrip-
tion in terms of gravity does not break down suggesting
that gravity can resolve the shock waves and provide a
smooth description for them. However, the velocity and
temperature are not well defined in the region of the shock,
so the best characterization is in terms of the energy
density, namely, TttðxÞ. In this section, we first study
such function in the case of weak or hydrodynamic shocks.
In that case, we can reproduce the results of the previous
section and obtain the dual metric (within the hydrody-
namic approximation). Afterwards, we consider strong
shocks and, by using linearized gravity, obtain the width
of the shock, as determined by the exponential tails on both
sides. This is detailed information that can only be

obtained from a microscopic theory of the system. In
principle, one would like to go further and obtain TttðxÞ
by solving the Einstein equations in the bulk numerically,
but such a calculation is beyond the scope of this paper.

Weak shocks: an explicit solution in the
fluid-gravity correspondence

The four conservation equations @�T
�� ¼ 0 are not

enough to determine the nine independent components of
T�� in the boundary theory. Hydrodynamics amounts to a
restriction on T�� by providing an expression for it in
terms of four variables, the velocity vi¼1;2;3, and tempera-

ture T, which are then determined from the conservation
equations. The expression for T�� is given as a derivative
expansion, and its precise form can only be determined
from a microscopic theory of the system.
From the dual gravitational point of view, the energy-

momentum tensor sets the boundary conditions for an
asymptotically AdS metric and the conservation equations
@�T

�� ¼ 0 are necessary consistency conditions for the

existence of a solution to the Einstein equations with such
boundary data. As recently explained by Bhattacharyya
et al. [51], those metrics generically have naked singular-
ities. The condition of the metric being nonsingular im-
poses a restriction to T��, which is a counterpart of the
restriction seen in the hydrodynamic construction. In fact,
when this analysis is done in a derivative expansion, as
shown in [51], it provides a microscopic derivation of the
hydrodynamic equations for the strongly coupled N ¼ 4
plasma.
In this section, we use the BHMR construction [51] to

obtain the metric dual to the shock waves in the hydro-
dynamic regime up to terms which are third order in the
derivative expansion.
Let us start by summarizing the procedure as adapted to

our particular problem. The starting point is the boosted
black brane in Eddington-Filkenstein coordinates:

ds2ð0Þ ¼ �2u�dx
�drþ ð�TðxÞÞ4

r2
u�u�dx

�dx�

þ r2���dx
�dx�; (65)

where

u� ¼ ðu0ðxÞ; uðxÞ; 0; 0Þ; u0ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ uðxÞ2

q
: (66)

Since uðxÞ and TðxÞ are not constant, this metric does not
solve the Einstein equations

�GMN ¼ RMN þ 4gMN ¼ 0; (67)

whereM, N ¼ r, t, x, y, z denote five-dimensional indices
(whereas �, � ¼ t, x, y, z denote four-dimensional indi-
ces). To find a solution, we introduce a formal parameter �
and expand
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u� ¼ uð0Þ� þ �uð1Þ� þ �2uð2Þ� þ �3uð3Þ� þOð�4Þ; (68)

TðxÞ¼Tð0ÞðxÞþ�Tð1ÞðxÞþ�2Tð2ÞðxÞþ�3Tð3ÞðxÞþOð�4Þ:
(69)

At the same time, the metric is corrected by adding an
expansion

ds2 ¼ ds2ð0Þ þ �ds2ð1Þ þ �2ds2ð2Þ þOð�3Þ: (70)

The tensor �GMN is expanded in powers of �, with the rule
that each x derivative counts as one extra power of �. The
equations are solved order by order. For that purpose, it is
convenient to introduce the vector

~u� ¼ ðuðxÞ; u0ðxÞ; 0; 0Þ; (71)

orthogonal to u�. In this way, the metric corrections can be
parametrized as

ds2ðnÞ ¼ ðsðnÞ1 þ sðnÞ2 Þu�u�dx�dx� þ sðnÞ2 ���dx
�dx�

þ 2sðnÞ3 u�dx
�drþ sðnÞV ~u�u�dx

�dx�

þ sðnÞT

�
~u�~u�dx

�dx� � 1

2
ðdy2 þ dz2Þ

�
; (72)

where the functions sðnÞ1;2;3, sV , sT describe scalar, vector, and

tensor perturbations classified according to the local SOð3Þ
group that leaves u� invariant. Notice that each ds2ðnÞ should
in turn be expanded using (68). Following [51], we make the

gauge choice gðnÞrr ¼ 0, gðnÞ�r � u�, and g
��
ð0Þ g

ðnÞ
�� ¼ 0 for all

n > 0. In that case, it is convenient to parametrize the
fluctuations as

sðnÞ1 ¼ 1

r2
kðnÞðx; rÞ; sðnÞ2 ¼ r2hðnÞðx; rÞ;

sðnÞ3 ¼ 3

2
hðnÞðx; rÞ; sV ¼ 1

r2
jðnÞðx; rÞ;

sðnÞT ¼ r2�ðnÞðx; rÞ:

(73)

In order to solve the equations order by order, it is conve-
nient to decompose �GMN into its scalar, vector, and tensor
parts which decouples the equations. The procedure is in
principle straightforward, and we proceed to describe the
results.

(i) Order 1. The first equations that we obtain are
u00 ¼ 0, T0

ð0Þ ¼ 0 implying that

uð0ÞðxÞ ¼ uð0Þ; Tð0ÞðxÞ ¼ Tð0Þ; (74)

namely, they are constant functions. In that case, the
zero order metric is an exact solution and there is no
first-order correction to the metric:

hð1Þ ¼ kð1Þ ¼ jð1Þ ¼ �ð1Þ ¼ 0: (75)

The temperature, however, is corrected to

Tð1Þ ¼ �
ffiffiffi
2

p
3

Tð0Þuð1Þ: (76)

(ii) Order 2. The first equation we find is

u0ð1Þð2u2ð0Þ � 1Þ ¼ 0: (77)

We can take uð1Þ constant which leads us to a trivial

solution, or otherwise we require uð0Þ ¼ 1ffiffi
2

p , imply-

ing that the zero order solution describes a fluid
moving at the speed of sound, which is the appro-
priate starting point to describe shocks in the hydro-
dynamic approximation. The other equations give

hð2Þ ¼ 0; kð2Þ ¼ 2

3
r3u0ð1Þ;

jð2Þ ¼ � 2ffiffiffi
3

p r3u0ð1Þ; �ð2Þ ¼ u0ð1Þ
3�Tð0Þ

F1

�
r

�Tð0Þ

�
;

(78)

where

F1ðyÞ ¼ ln

�ð1þ y2Þð1þ yÞ2
y4

�
� 2 arctanyþ �:

(79)

Notice that at this order uð1Þ is undetermined. This is

a particular property of our solution that requires us
to go to higher orders to obtain the metric.

(iii) Order 3. The first equation we obtain is

u00ð1Þ ¼
8

3
�Tð0Þuð1Þu0ð1Þ; (80)

which allows us to solve for uð1Þ as we do further

below. The components of the metric are corrected
by

hð3Þ ¼0;

kð3Þ ¼2

3
r3u0ð2Þ �

ffiffiffi
2

p
3
r2u00ð1Þ;

jð3Þ ¼� 2ffiffiffi
3

p r3u0ð2Þþ
4

ffiffiffi
2

p

3
ffiffiffi
3

p uð1Þu0ð1Þð�Tð0ÞÞ3F2

�
r

�Tð0Þ

�
;

�ð3Þ ¼ u0ð2Þ
3�Tð0Þ

F1

�
r

�Tð0Þ

�
� 4

ffiffiffi
2

p
9�Tð0Þ

uð1Þu0ð1ÞF3

�
r

�Tð0Þ

�
;

(81)

with

F2ðyÞ ¼ 1

2
ðy4 � 1Þ

�
2 arctanyþ ln

�
1þ y2

ð1þ yÞ2
��

� 1

2
�y4 þ y3 þ y2 � 25

12
; (82)

SHOCK WAVES IN STRONGLY COUPLED PLASMAS PHYSICAL REVIEW D 82, 125003 (2010)

125003-9



F0
3ðyÞ ¼

1

y5�y

�
2ð1�y3Þ

�
arctany��

2
� lnð1þyÞ

�
þð1þy3Þ lnð1þy2Þ�4y3 lny

þ7�2ln2�2ð1þyÞ
1þy2

� 2

1þy
�4y2

�
:

(83)

We give the derivative of F3, since it is the function
that enters in subsequent calculations. It can be
integrated explicitly in terms of dilogarithms, but
the expression is not very illuminating. The tem-
perature is given by

�Tð2Þ ¼ �
ffiffiffi
2

p
3

�Tð0Þuð2Þ þ 1

3
u0ð1Þ: (84)

We want to write the metric up to order �2, which
requires computing uð2Þ. Since it is undetermined at

this order, we continue the expansion.
(iv) Order 4. At this order, we only look for the equation

determining uð2Þ. However, we need to include and

keep track of the terms uð3Þ, Tð3Þ, hð4Þ etc. to be sure
that they do not appear in such equation. What we
get is

u00ð2Þ �
8

3
�Tð0Þðuð1Þuð2ÞÞ0

¼
ffiffiffi
2

p
3

ð7� 2 ln2Þu02ð1Þ

� 4
ffiffiffi
2

p
9

�Tð0Þu2ð1Þu
0
ð1Þð1þ 4 ln2Þ: (85)

The last equation, together with (80), can be easily
solved to obtain, at this order,

u ¼ uð0Þ þ uð1Þ þ uð2Þ; (86)

uð0Þ ¼ 1ffiffiffi
2

p ; (87)

uð1Þ ¼ �u1 tanh
; (88)

uð2Þ ¼ u21
6

�
4

ffiffiffi
2

p ð1� ln2Þ lncosh

cosh2


þ 5
ffiffiffi
2

p �
tanh2


þ tanh
þ 


cosh2


��
; (89)

where


 ¼ 4�Tð0Þu1
3

x; (90)

and we set the formal parameter � ¼ 1. It is interesting to
note that the equation for uð1Þ determines that the fluid

reaches the shock wave supersonically and leaves

subsonically. In other words, we are not free to exchange
the subsonic and supersonic sides of the shock. The reason
is that we are choosing gravity solutions which are regular
in the infalling Eddington-Filkenstein coordinates as ap-
propriate for a black hole. The constant u1 is arbitrary and
determines the amplitude of the shock, namely, the asymp-
totic value of the velocity. For consistency of the approxi-
mation, we require u1 � 1ffiffi

2
p . In fact, u1 plays the role of

the small parameter, as can be seen from the fact that the
velocity depends on x through 
, and so each x derivative
brings in an extra power of u1. The behavior at infinity is
given by

uðx!�1Þ
’ 1ffiffiffi

2
p 	u1� 2u1e	2


�
1þ 1

3
u1ð4

ffiffiffi
2

p � 4ln2� 5
ffiffiffi
2

p Þ

�

(91)

’ 1ffiffiffi
2

p 	 u1 � 2u1e	2
þð1=3Þu1ð4
ffiffi
2

p �4 ln2�5
ffiffi
2

p Þ
: (92)

We write the correction in the exponential form for an
easier comparison with the hydrodynamic result. For the
temperature we have

Tðx ! �1Þ ¼ Tð0Þ �
ffiffiffi
2

p
3

Tð0Þu1: (93)

For the velocity we have

vðx!1Þ ’ 1ffiffiffi
3

p þ�vþ ¼ 1ffiffiffi
3

p � 2
ffiffiffi
2

p

3
ffiffiffi
3

p u1 þ 14

9
ffiffiffi
3

p u21; (94)

vðx!�1Þ’ 1ffiffiffi
3

p þ�v�¼ 1ffiffiffi
3

p þ2
ffiffiffi
2

p

3
ffiffiffi
3

p u1� 2

3
ffiffiffi
3

p u21: (95)

The first check is that the condition (6)

vð�1Þvðþ1Þ ¼ 1

3
þOðu31Þ; (96)

is satisfied to the considered order. From Eq. (92), the
exponential tail is given by

vðx ! �1Þ ¼ 1ffiffiffi
3

p þ �v� þ c�eiq�x; (97)

for some constants c�, and the penetration depth deter-
mined by

iq�
�T�

¼ 2
ffiffiffi
6

p
�v� þ 6

ffiffiffi
2

p
�v2�ð1� ln2Þ; (98)

in complete agreement with the hydrodynamic calculation.
This is not surprising since the hydrodynamic equations
arise from gravity. The calculation in this section, however,
allows us to compute in addition the dual metric, which to
this order is given by
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ds2 ¼ �2u�dx
�drþ 1

r2
ðð�TÞ4 þ kÞu�u�dx�dx�

þ r2���dx
�dx� þ 1

r2
j~u�u�dx

�dx� (99)

þ �r2ð~u�~u�dx�dx� � 1

2
ðdy2 þ dz2ÞÞ; (100)

where u� ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
; u; 0; 0Þ, ~u� ¼ ðu;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
; 0; 0Þ,

and u should be expanded as u ¼ uð0Þ þ uð1Þ þ uð2Þ, using
the uðnÞ computed in (89). The temperature is also

expanded as

T ¼ Tð0Þ �
ffiffiffi
2

p
3

Tð0Þuð1Þ �
ffiffiffi
2

p
3

Tð0Þuð2Þ þ 1

3�
u0ð1Þ; (101)

whereas the other functions entering the metric are
given by

k ¼ 2

3
r3ðu0ð1Þ þ u0ð2ÞÞ �

ffiffiffi
2

p
3

r2u00ð1Þ; (102)

j¼� 2ffiffiffi
3

p r3ðu0ð1Þ þu0ð2ÞÞþ
4

ffiffiffi
2

p

3
ffiffiffi
3

p uð1Þu0ð1Þð�Tð0ÞÞ3F2

�
r

�Tð0Þ

�
;

(103)

� ¼ u0ð1Þ þ u0ð2Þ
3�Tð0Þ

F1

�
r

�Tð0Þ

�
� 4

ffiffiffi
2

p
9�Tð0Þ

uð1Þu0ð1ÞF3

�
r

�Tð0Þ

�
;

(104)

with the F1;2;3 as defined above. The expansion parameter

is the strength of the shock as determined by the constant
u1 appearing in uðnÞ.

IV. STRONG SHOCKS: THE LINEARIZED
GRAVITYAPPROXIMATION

Strong shocks are characterized by large gradients of
velocity and temperature and cannot be studied within
hydrodynamics: we can say that hydrodynamics does not
resolve their profiles. However, the gauge-gravity corre-
spondence is not limited to small gradients, and so the
gravity side of it should contain information about strong
shocks as well. We now discuss how that information can
be extracted.

In principle, we expect that there are exact solutions to
the five-dimensional Einstein equations, and those solu-
tions describe strong shocks exactly. This belief is based
on the observation that the asymptotic values of u� and T

on the far left and far right of the shock have vanishing
gradients and are therefore well reproduced even by the
ideal hydro (see Sec. II). On the gravity side, to each of
these asymptotics, there corresponds a five-dimensional

AdS black brane, suitably boosted and with a suitable value
of the temperature. Then, there must be a five dimensional
solution describing a geometry that smoothly interpolates
between these two regions—the gravity dual of a strong
shock.
The exact solution (assuming it exists) described in the

preceding paragraph would tell us all there is to know
about a strong shock, in particular, the profile of the
average energy density �ðxÞ. So far, however, we have
not been able to find any such solution explicitly. In this
section, we provide partial information about the profile of
a strong shock, obtained by looking at linearized gravity on
the backgrounds corresponding to each of the two asymp-
totic regions (x ! �1). The results of Sec. III are valid for
small gradients but include nonlinear corrections in the
amplitude of the shock, whereas the results of Sec. IV are
valid for arbitrary gradients but are linear in the amplitude
of the perturbation, which should then be small (region far
from the shock).

A. Equations of linearized gravity

In linearized gravity, one writes the metric in the form

g�� ¼ gð0Þ�� þ h��, where gð0Þ�� is the metric of the AdS

black brane, and h�� is a perturbation, and works to the

first order in the perturbation. Solutions to the linearized
Einstein equations are known as quasinormal modes.
In this paper, we consider solutions that depend only on
the coordinate (x) along the direction in which the shock
propagates and, possibly, time. In this section, we adopt the
convention �T ¼ 1; the temperature dependence can be
recovered by multiplying the wave numbers by �T.
Because of the translational invariance along the brane
directions, we can search for these solutions in the form

h��ðt; x; rÞ ¼ r2H��ðrÞe�i!tþiqx:

We adopt the convention that ! and q refer to the boosted
frame moving at the speed of the shock and their primed
counterparts !0 and q0 to the unboosted frame, connected
with the fluid. Note that there are actually two such
unboosted frames (the fluid on the two sides of the shock
moves with different velocities), but in the linearized
approximation the two sides are disconnected and can be
considered separately.
Linearized gravity has by now become a familiar tool in

studies of the kinetics of the strongly coupled N ¼ 4
plasma but in a setting that is typically different from
ours. In many cases (as, for example, in the computation
of the viscosity [52]), one considers relaxation of an initial
perturbation. Then, one picks a real wavenumber q and
looks for the corresponding (complex) frequencies. Here,
in contrast, we are interested in propagation of a boundary
disturbance, that is, in how far a perturbation with a given
frequency extends into the plasma on either side of the
shock. For this, we pick a real ! and look for the corre-
sponding (complex) q. Specifically, wewill be interested in
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perturbations with ! ¼ 0, as we expect these to describe
the behavior of the average energy density of a shock wave
sufficiently far away from it.4

A classification of the quasinormal modes of an
(unboosted) AdS black brane has been given in [61]; a
comprehensive recent review of quasinormal modes is
[62]. According to that classification, metric fluctuations
group into several channels, corresponding to different
gauge-invariant combinations of the components of H��.

Here, we are interested in the sound channel. The corre-
sponding quasinormal modes satisfy the equation [61]

Z00 þ PðuÞZ0 þQðuÞZ ¼ 0; (105)

where primes denote derivatives with respect to u ¼ r20=r
2,

PðuÞ ¼ � 3!02ð1þ u2Þ þ q02ð2u2 � 3u4 � 3Þ
ufðuÞ½3!02 þ q02ðu2 � 3Þ� ;

QðuÞ ¼ � 4q02u2

fðuÞ½3!02 þ q02ðu2 � 3Þ�

þ 3!04 þ q04ðu4 � 4u2 þ 3Þ þ!02q02ð4u2 � 6Þ
4uf2ðuÞ½3!02 þ q02ðu2 � 3Þ� ;

and fðuÞ ¼ 1� u2. Remember that in these expressions,
!0 and q0 are in units5 of �T and refer to the unboosted
frame. They are related to the frequency and wavenumber
in the boosted frame by the Lorentz transformation

!0 ¼ ! cosh	� q sinh	; (106)

q0 ¼ �! sinh	þ q cosh	; (107)

where tanh	 ¼ v, the speed of the shock. For static per-
turbations, we set ! ¼ 0 and substitute the resulting
expressions for !0 and q0 into Eq. (105), to obtain

PðuÞ ¼ 3þ 3u2 � 5�2u2 þ 3�2u4

ufðuÞð�2u2 � 3Þ ; (108)

QðuÞ ¼ � 4�2u2

fðuÞð�2u2 � 3Þ þ q2
�2u2 � 1

4uf2ðuÞ ; (109)

where we have used the shorthand � ¼ cosh	.
The same expressions can be obtained by starting

directly in the boosted frame. In this case, the unperturbed
metric is

ds20 ¼ r2���dx
�dx� þ r40

r2
ðdt cosh	� dx sinh	Þ2

þ dr2

r2ð1� r40=r
4Þ ;

and the perturbation reads

ds21 ¼ r2½H00dt
2 þH11dx

2 þ 2H01dtdx

þHðdy2 þ dz2Þ�eiqx

(all H�� are functions of r only). The relevant gauge-

invariant combination (at ! ¼ 0) is

ZðrÞ ¼ H00ðrÞ þ
�
1þ r20

r4
�2

�
HðrÞ; (110)

and satisfies Eq. (105) with the coefficient functions given
by Eqs. (108) and (109).
For computation of properties of the plasma via the

gauge-gravity correspondence, we only need to consider
Eq. (105) in the region outside the horizon r0 < r <1,
which we will refer to as the physical region. In terms of
the variable u, it corresponds to 0< u< 1. A noteworthy
property of the coefficient functions (108) and (109) is that,
at sufficiently large boost velocities,

cosh	> cosh	cr ¼
ffiffiffi
3

p
; (111)

and P and Q both have poles inside the physical region at

u ¼ u1 

ffiffiffi
3

p
cosh	

: (112)

From the outset, we might have anticipated that we would
need to impose boundary conditions at the boundaries of
the physical region u ! 0 and u ! 1 but not at any interior
point. We therefore need to explore the nature of the
singularity at u ¼ u1 in more detail.
Let us search for solutions near u ¼ u1 in the form

Z� ðu� u1Þs. For the exponent s, we find two roots

s ¼ 0 or s ¼ 3: (113)

Fuchs’s theorem [63] guarantees that the larger root
corresponds to a regular solution, expandable in powers
of w ¼ u� u1 as follows: Z ¼ w3 þOðw4Þ. As for the
solution corresponding to the smaller root, in general, we
expect it to have the form

ZðuÞ ¼ c0 þ c1wþ c2w
2 þ c3w

3 þ c03w
3 lnwþ . . .

(114)

The recursion equation for the coefficients cn, which is
obtained by substituting Eq. (114) in Eq. (105), degener-
ates at the order (and only at the order) at which the second
solution appears, in our case the order w3. Whether or nor
the logarithmic term in (114) is nonzero then depends on
the precise values of the coefficients of all the terms up to
OðwÞ order in the expansions of PðuÞ and QðuÞ. As it turns

4To be sure, it is not obvious a priori that the shock wave
profile is static; there could be instabilities in the nonlinear
central region that cause oscillating behavior. In the linearized
theory, a possible signal of such an instability would be the
absence of a physically acceptable static solution (due, for
instance, to a singularity in the equation). We have not found
any such signals in our calculations.

5And so are twice as large as their counterparts in [61]; hence
an extra overall 1

4 in the second term in Q.
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out, there is a curious cancellation among these terms, such
that c03 ¼ 0 for all values of � and q. We conclude that both

solutions are regular at u ¼ u1, and a boundary condition
there is not required.

B. Boundary conditions: Irreversibility

The choice of boundary conditions for quasinormal
modes that is suitable for applications of the gauge-gravity
duality to kinetic theory has been discussed in the literature
(see, for example, Ref. [52]), and we do not deviate from
it here. Our computation, however, requires an analytical
continuation of these boundary conditions, which is the
subject of this subsection.

At u ! 0 (the boundary of the AdS space), we use the
standard

Zð0Þ ¼ 0: (115)

At u ! 1 (the near-horizon region), we first consider real
!0 and pick, as usual, the wave infalling with respect to the
black brane:

Zðu ! 1Þ � ð1� uÞ�i!0=4: (116)

For the present problem, having to do with propagation of a
perturbation in space, rather than in time, we need to
analytically continue this expression to complex !0 given
by the Lorentz transformation (106) (!0 is complex
because so is q). In particular, for the static case (! ¼
0), we have !0 ¼ �q sinh	 and thus

Zðu ! 1Þ � ð1� uÞð1=4Þiq sinh	: (117)

This choice is equivalent to choosing the solution that is
regular in infalling Eddington-Filkenstein coordinates as
done in Sec. III. There is an exceptional case 	 ¼ 	cr, the
critical value given by Eq. (111). For this value of 	, the
analytical continuation to ! ¼ 0 causes confluence of
the singularities at u ¼ 1 and u ¼ u1, which modifies the
asymptotic behavior near u ¼ 1. We consider this case
separately later in this subsection.

Recall that ZðuÞ corresponds, via the gauge-gravity
duality, to a perturbation in the plasma that depends on x
as expðiqxÞ. On physical grounds, we expect that perturba-
tions corresponding to the tails of a shock at x ! �1
decay away from the shock. This means that we must
pick q with a positive (negative) Im q for the fluid at
positive (negative) x. Recall also that positive (negative)
x correspond to the subsonic (supersonic) side of the shock.
Thus, according to Eq. (117), ZðuÞ is regular at the horizon
on the supersonic side but singular on the subsonic one.

Formulating a boundary problem for the regular case
presents no difficulty; the second solution to Eq. (105)
diverges at u ! 1, and the boundary condition (117) se-
lects the one that does not. The singular case (Imq > 0) is a
bit trickier; we wish to retain the divergent solution and
reject the convergent one. To achieve that, we peel off the
singular part as follows:

ZðuÞ ¼ ð1� uÞs�ðuÞ; (118)

where

s ¼ � 1

4
i!0 ¼ 1

4
iq sinh	 (119)

(Res < 0) and demand that�ðuÞ is analytic at u ¼ 1. This
works whenever

2s � integer: (120)

Indeed, the regular solution behaves as ð1� uÞ�s and the
corresponding � as ð1� uÞ�2s. Provided the inequality
(120) is satisfied, this is not analytic and is rejected by our
boundary condition.
Note that the inequality (120) is sufficient but not nec-

essary for the singular boundary problem to make sense.
Suppose (120) is not satisfied for some values of q and 	,
but both solutions for � are regular at u ¼ 1. We consider
such a q to be an eigenvalue of our problem (at that
particular 	) because we can always form a linear combi-
nation of the two regular solutions that satisfies the second
boundary condition (115) On the other hand, it is a priori
possible that (120) fails in such a way that one of the
solutions for Z contains a logarithm of 1� u. In this
case, we truly have no recourse; indeed, the singular part
cannot even be peeled off as in (118). Interestingly, the
condition (120) never breaks down for the ‘‘main’’ branch
of qðvÞ, as defined below.
We anticipate that there is more than one eigenvalue of q

for each value of the shock’s speed v. We refer to these as
different branches and denote them as qnðvÞ. Let us men-
tion some of the properties of these eigenvalues for the case
! ¼ 0.
First, setting q ¼ �i� makes all the coefficients in the

Eq. (105) real and turns the condition (117) real as well. We
conclude that the eigenvalues qnðvÞ are all purely imaginary
and s all purely real. (This is not the case at ! � 0.)
Second, while the functions (108) and (109) do not

depend on the sign of q, the condition (117) does. Hence,
the set of the eigenvalues qnðvÞ at a nonzero v is not
symmetric about q ¼ 0. The reflection q ! �q, without
changing the direction of the shock’s velocity, is equivalent
to reflection of both space and time: x ! �x and t ! �t. In
particular, it exchanges the subsonic and supersonic sides of
the shock. The absence of symmetry under q ! �q corre-
sponds to the condition (already noted in Sec. IIB) that the
fluid must be supersonic in front of the shock and subsonic
behind it and never vice versa—a condition that reflects,
ultimately, the second law of thermodynamics. In calcula-
tions on the gravity side, the source of this irreversibility is
the choice of the infalling wave in Eq. (116).
The main branch. The branch q0ðvÞ, for which expðiqxÞ

decays away from the shock the slowest, will be referred to
as the main branch and often denoted simply as qðvÞ. This
is the branch that crosses zero at v ¼ 1=

ffiffiffi
3

p
and is the only
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one seen in the small-gradient (hydrodynamic) approxima-
tion discussed in Sec. II.

The exceptional case. The preceding discussion of the
boundary conditions does not apply to the exceptional
case ! ¼ 0, 	 ¼ 	cr when the singularities at u ¼ 1 and
u ¼ u1 coincide. This case needs to be considered sepa-
rately. At ! ¼ 0 and 	 ¼ 	cr, Eq. (105) becomes

Z00 þ 3u2 � 1

ufðuÞ Z0 þ 1

f2ðuÞ
�
4u2 þ q2

3u2 � 1

4u

�
Z ¼ 0:

(121)

Solutions near u ¼ 1 are of the form ZðuÞ � ð1� uÞs with
s ¼ 1� i

q

2
ffiffiffi
2

p : (122)

Consider the substitution

ZðuÞ ¼ ð1� u2Þ1=2�ðuÞ: (123)

Equation (121) becomes

�00 � 1

u
�0 þ 4u3 þ q2ð3u2 � 1Þ

4uf2ðuÞ � ¼ 0: (124)

Note that for q2 ¼ �2 the coefficients in Eq. (121) are all

regular at u ¼ 1. Hence, q ¼ �i
ffiffiffi
2

p
are eigenvalues of the

boundary problem. Since 	 ¼ 	cr is supersonic, only

q ¼ �i
ffiffiffi
2

p
(125)

is physical; it lies on the main branch. Curiously, although
the behavior at u ¼ 1 prescribed by Eq. (122) is in general

different from that prescribed by Eq. (117), for q ¼ �i
ffiffiffi
2

p
(and s ¼ 1=2) they coincide. As a result, the curve qðvÞ
corresponding to the main branch is continuous at v ¼ vcr.

For branches above the main branch, iqnðvcrÞ is large, so
that only one of the solutions to Eq. (121) is regular at u ¼
1. The boundary condition is to choose the regular solution,
which corresponds to choosing the plus sign in Eq. (122).
This is equivalent to using

ZðuÞ ¼ ð1� uÞiq=2
ffiffi
2

p
�ðuÞ (126)

[cf. Equation (117)] but allowing �ðuÞ to vanish (linearly)
at u ¼ 1. Indeed, as v goes through vcr, �ð1Þ goes con-
tinuously through zero. Thus, these other branches are also
continuous at v ¼ vcr.

C. Quasinormal modes for special values of v

1. v ¼ 0 (fluid at rest)

The case of a plasma at rest has already been studied. In
particular, as argued, for example, in [64], the eigenvalue q
is given by the lowest glueball mass in Witten’s QCD3

construction [65]. The reason is that, in the Euclidean
space, both finite temperature N ¼ 4 and QCD3 are
dual to the same AdS black hole. For the channel we are
considering, the glueball mass was computed in [66] giving

iq ¼ 2:3361 in perfect agreement with our numerical
results. This provides a nice check of the calculation,
although we should point out that, in the frame where the
shock wave is at rest, the velocity of the fluid is always v >
1
3 , so v ¼ 0 is not directly relevant to our problem.

2. v ¼ 1=
ffiffiffi
3

p
(the speed of sound)

This is the limit when the strength of the shock (as
measured by changes in various quantities between the
left and right of the shock) vanishes. As we have seen in
Sec. II, in this limit q ¼ 0. The corresponding solution to
Eq. (105) is

ZðuÞ ¼ u2:

3. v ¼ ffiffiffiffiffiffiffiffi
2=3

p
(the singular point)

In this case, the pole corresponding to the horizon u ¼ 1

merges with the one at u ¼ u1 since v ¼ ffiffiffiffiffiffiffiffi
2=3

p
implies

u ¼ u1. Interestingly, in this case, we can find the exact

eigenvalue iq ¼ ffiffiffi
2

p
, and the eigenfunction is given in

terms of a hypergeometric function:

yðuÞ ¼ u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

p �
1þ u

u

�ð1þiÞ=2

� F2;1

�
3þ i

2
;
�1þ i

2
; 1þ i; 1þ 1

u

�
: (127)

With this definition we find

ZðuÞ ¼ �ReðyðuÞÞ þ C1ImðyðuÞÞ; (128)

where C1 is a constant that we evaluate numerically to be
C1 ¼ 0:38898 from the boundary conditions.

4. v ! 1 (ultrarelativistic limit)

Numerical solution (described in the next subsection)
shows that the values of s, Eq. (119), for the physical
branches become large in the limit v ! 1, and the maxima
of the eigenfunctions scale towards u ¼ 0. This suggests
that we can obtain an equation applicable in the ultrarela-
tivistic limit by neglecting u in comparison with unity in
the coefficient functions (108) and (109). We obtain

PðuÞ ¼ 3� 5�2u2

uð�2u2 � 3Þ ; (129)

QðuÞ ¼ � 4�2u2

�2u2 � 3
þ q2

�2u2 � 1

4u
: (130)

These expressions suggest further that we define a new
variable x as follows:

x ¼ u2

u21
¼ 1

3
u2cosh2	; (131)

and take the formal limit cosh	 ! 1 while keeping x
fixed. Equation (105) becomes
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Z00 þ 2

1� x
Z0 þ p2

16

�
3� 1

x

�
1ffiffiffi
x

p Z ¼ 0; (132)

where primes now denote derivatives with respect to x, and

p2 
 q2u1 ¼ q2
ffiffiffi
3

p
cosh	

: (133)

The change of variables (131) and the limit cosh	 ! 1
map the physical region 0< u< 1 to 0< x<1, with the
Dirichlet boundary conditions at both ends. As before,
the point x ¼ 1 (formerly u ¼ u1) is a singular point of
the equation but not of either of the two linearly indepen-
dent solutions. Thus, in numerical integrations, we can
circumvent this point by first displacing it into the complex
plane, i.e., replacing 1� x with 1� xþ i� in Eq. (132)
(the sign of � does not matter) and then taking the limit of
the solution at � ! 0.

It follows from Eq. (132) that all solutions must have
extrema (maxima, if we agree to choose the overall sign of
Z in a certain way) at x ¼ 1. The solutions vanish linearly
at x ¼ 0 and, provided Imp < 0, exponentially at x ! 1:

Zðx ! 1Þ � x9=8 exp

�
�i

1ffiffiffi
3

p px3=4
�
: (134)

In Fig. 7, we plot the eigenfunctions corresponding to the
smallest two values of jImpj. According to Eq. (133),
these determine the asymptotics of the main (lowest) and
the next lowest branches of qnðvÞ in the ultrarelativistic
limit v ! 1. Numerically, we find

iq0ðvÞ ¼ 1:895
ffiffiffiffi
�

p
; iq1ðvÞ ¼ 5:424

ffiffiffiffi
�

p
:

Note that numerical solution is needed only to determine
the coefficients in these formulas: the scaling with �
follows directly from Eq. (133) and the fact that
Eq. (132) contains no parameters.

D. Numerical results

Apart from the very few values of v (discussed earlier),
for which we have found analytical solutions to Eq. (105),
we have resorted to solving this equation numerically.
We have used two numerical methods: (i) the shooting
method and (ii) the series expansion. Where their domains
of applicability overlap, these methods have produced
equivalent results.
In the shooting method, we peel off the nonanalytic part

as in Eq. (118) and set up an initial value problem for�ðuÞ
at u close to 1. From (105), the expansion of�ðuÞ near u ¼
1 is

Zðu ! 1Þ ¼ ð1� uÞs½1þ Að1� uÞ þ . . .�; (135)

where s is given by (119) and

A ¼ 1

8ð2sþ 1Þ
�
q02 �!02 � 4sþ 16q02ð2s� 1Þ

2q02 � 3!02

�
: (136)

The initial value problem is

�ð1� �Þ ¼ 1; (137)

�0ð1� �Þ ¼ �A: (138)

We can then adjust q (on which both q0 and !0 depend) so
that the boundary condition (115) at the other end is
satisfied. The limit � ! 0 is expected to be smooth when-
ever the boundary conditions (137) and (138) are sufficient
to reject the second solution. This is always the case for the
regular problem (Res > 0) but not for the singular one
(Res < 0). In the latter case, (137) and (138) are sufficient
only if

Re s >� 1

2
; (139)

which is a stronger condition than (120).
Another caveat is that we need to develop a way for

circumventing the singular point u ¼ u1 in the case when
the shock velocity (relative to the fluid) exceeds the critical
value given by (111) and the singularity moves into the
physical region 0< u< 1. Even though, as we have seen,
solutions to Eq. (105) are always regular at u ¼ u1, the
singularity in the coefficient functions precludes passing
through this point by means of a numerical integration. The
approach we adopt here is to consider solutions that are not
exactly static in the boosted frame but oscillate with a
small (real) frequency !. A nonzero ! displaces the sin-
gularity into the complex plane, so that the equation can be
integrated numerically. The eigenvalues and eigenfunc-
tions at ! ¼ 0 can then be obtained as limits of those at
! � 0 as ! ! 0. The absence of singularity in the solu-
tions guarantees that these limits are smooth.
In the series expansion method, one develops two power

series expansions, one near u ¼ 0, the other near u ¼ 1,
starting with the terms prescribed by the boundary

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  2  4  6  8  10

Z
(x

)

x

FIG. 7. The wavefunctions (arbitrarily normalized) corre-
sponding to the ground state (solid line) and the first excited
state (dashed line) of Eq. (132).
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conditions (115) and (117) [after peeling off the nonanalytic
behavior at u ! 1 as in (118)]. The logarithmic derivatives
of these two expansions are then matched at an intermediate
point of the interval 0< u< 1. One expects that, if the
expansions near the endpoints are taken to sufficiently high
orders, the results will be insensitive to the precise value of u
at which the matching occurs. This method does not require
any special device to circumvent the singular point u ¼ u1.
Indeed, that can be verified by developing a third series
around the point u ¼ u1 and then matching the logarithmic
derivatives with the two series developed around u ¼ 0,
u ¼ 1. The results are indistinguishable numerically.

In Fig. 8, we show several branches of qnðvÞ obtained by
these methods. It is interesting to note that a good approxi-
mation to the main branch is given by6

iq

�T
¼ 4

�
3

2

�
1=4 ffiffiffiffi

�
p �

v� 1ffiffiffi
3

p
�
: (140)

A better approximation can be found by including more
parameters in the fit. Including one more parameter, the
curve

iq

�T
¼ ffiffiffiffi

�
p 1� v

ffiffiffi
3

p
FvþG

; (141)

where

F ¼ 1

2

�
3

2

�
3=4ð21=4 � 1Þ2;

G ¼ � 31=4ð1þ 21=2 � 23=4Þ
25=4

;

(142)

gives a better approximation close to the speed of sound
and the large � asymptotics.

These approximations can also be used to obtain an
approximate function !0ðq0Þ (the dispersion law) for the
sound waves. Transforming to the unboosted frame and
using v ¼ � 0

q0 , we find that the approximation (140)

provides us with the following implicit equation for!0ðq0Þ:
q0ðq02 �!02Þ3=2 ¼ 16

�
3

2

�
1=2

�
!0 þ q0ffiffiffi

3
p

�
: (143)

The other fit can also be used in this way, but the resulting
equation is more complicated and we omit it here.

V. DISCUSSION

In this work, we have used the AdS/CFT correspondence
to study shock waves propagating in a strongly coupled
plasma. Shock waves appear quite generically when the
motion of the fluid is supersonic and produce dissipation
and drag even for zero viscosity. In the case of ideal fluids,
they are associated with surfaces where the velocity and
pressure are discontinuous. The discontinuity indicates a
failure of the hydrodynamic approximation and should
generically be resolved by a microscopic description of

the system which, in this context, is provided by the dual
gravity description. An exception is the case of weak
shocks, which propagate close to the speed of sound, where
the inclusion of dissipation, namely, viscosity, resolves the
shock. In this case, the dual metric can be found using an
expansion in the strength of the shock. On the other hand,
strong shocks are beyond the hydrodynamic approxima-
tion. They can only be resolved by finding the dual gravity
solution, which should be a smooth wave propagating
without deformation on the horizon of the black hole. Far
from the shock, the solution differs slightly from a boosted
black hole, which allows for a perturbative study of the
solution. In particular, we have computed, in the rest frame
of the shock, the exponential tail of the solution, namely,
the width or penetration depth of the shock. It is a function
of the velocity, which we have determined numerically.
In particular, when the speed of the incoming fluid ap-
proaches the speed of light, the penetration depth ahead of
the shock goes to zero as the inverse square root of the

gamma factor ‘� ��ð1=2Þ. Since the length scale goes to
zero, this scaling exponent is an ultraviolet property of the
theory, as can also be seen from the bulk calculation, where
the exponent is determined by the properties of the metric
near the boundary. It would be of interest for future work to
establish the value of this exponent for other backgrounds
in the context of AdS/CFT or perhaps even directly from
perturbative gauge theory calculations, for example, in
QCD. More generically, since shock waves probe micro-
scopic properties of the system, they are an ideal tool to
study the transition from the microscopic to an effective
hydrodynamic description. For example, we have shown
that, for strong shocks, the dependence of the penetration
depth on the velocity of the incoming fluid is not correctly

2 4 6 8 10

5

5

10

Im q T

FIG. 8 (color online). Imaginary parts of q=ð�TÞ versus
� ¼ 1ffiffiffiffiffiffiffiffiffi

1�v2
p are plotted. The main branch crosses 0 at the speed

of sound. The dotted sections of the curves denote unphysical
values of q—those that are discarded as they correspond to
perturbations growing exponentially at the respective asymptotic
infinities. The solid sections denote physical values (correspond-
ing to �ImðqÞ< 0 for subsonic � and �ImðqÞ< 0 for super-
sonic). The asymptotics for � ! 1 for the main branch and the
one above it are discussed in Sec. IVC 4.

6Here we restore the dependence on T.
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reproduced either by second-order hydrodynamics or by
the Israel-Stewart theory. It is possible to encode our
results into effective linearized hydrodynamics of the
type proposed in [60] but with effective viscosity given
by a numerically determined function of !0 and q0. The
linearized description, however, is valid only far from the
shock. It would be interesting to see if an improved effec-
tive description exists that can correctly capture the main
properties of shock waves in the nonlinear region. It might
be interesting to look into other approaches such as the one
pursued in [67].

Although we have understood several basic properties of
shock waves in the context of AdS/CFT, there are many
interesting questions that we have not addressed here and
would be interesting to pursue. One important question is if
the full solutions dual to shock waves can be found analyti-
cally or by numerical methods. They are interesting objects
in gravity since they correspond to black branes with
different asymptotic temperatures on the two sides of the
wave. Such waves propagate without deformation and
generate entropy by expanding the area of the horizon.
Perhaps they are quite a generic phenomenon not restricted
only to examples appearing in the context of AdS/CFT.
Other, perhaps simpler, problems to consider are related to
the introduction of dynamical quarks by means of probe
branes [68] in the background of the shock. A shock should
appear on the brane, giving rise to a force on quarks and
meson emission from the shock. Finally, the introduction
of dynamical quarks can also provide a closer point of
contact with the quark-gluon plasma experiments at RHIC,
where generation of a Mach cone by a heavy quark prop-
agating in the plasma has been recently suggested [69]. For
that reason, it would be of great interest to understand the
conditions under which a moving quark generates a strong
shock such as the one studied in the present paper.
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APPENDIX A: THE EQUATIONS OF MOTION
FOR THE PERTURBATIONS

In this appendix, we derive the equations of motion for
various perturbations of the metric. The background metric
is given by

ds20 ¼ r2���dx
�dx� þ r40

r2

�
dt

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p � dx
vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p

�
2

þ dr2

r2ð1� r40=r
4Þ (A1)

and the perturbation by

ds21 ¼ r2eiqxðH00dt
2 þH11dx

2 þ 2H01dtdx

þHðdy2 þ dz2ÞÞ: (A2)

There are seven independent equations coming from

~GMN ¼ RMN þ 4gMN ¼ 0: (A3)

We form the linear combination

L ¼ AMN ~GMN; (A4)

where the only nonzero entries for the A matrix are the
linearly independent equations, which are the rr, rt, rx, tt,

xx, yy, xt components of ~GMN . After choosing four entries
for AMN , namely, Arr, Arx, Axx, Ayy, one can eliminate

H01,H11, and their derivatives fromL. Only four constants
are needed since two of the equations are first order. After
this operation L is a function of only H00, H, and their
derivatives. One cannot use the three remaining constants
to eliminate one of the functions and its derivatives. The
reason is that only two constants are free; the third one can
be thought of as an overall rescaling of L, and there are
three coefficients to eliminate, the three factors multiplying
H, H0, H00. A redefinition

H00ðrÞ ¼ ZðrÞ � gðrÞHðrÞ; (A5)

and choosing gðrÞ such that the coefficient of H00 vanishes
allows us to write a decoupled equation for ZðrÞ. With the
choice of

gðrÞ ¼ 1þ r4h
r4

1

1� v2
; (A6)

the final equation for ZðrÞ is

Z00ðrÞ þ Z0ðrÞ 1
r

�
5r4 � r4h
r4 � r4h

þ 8r4h
r4h � 3r4ð1� v2Þ

�

� ZðrÞ
�

16r8h
r2ðr4 � r4hÞðr4h � 3r4ð1� v2ÞÞ

� q2
r4h � r4ð1� v2Þ

ðr4 � r4hÞ2ð1� v2Þ
�
¼ 0: (A7)

This equation coincides with the equation for the sound
pole [61] when one boosts to the frame where the black
hole is moving. Now we can trace back the equations and
find the equations of motion for the rest of the perturbation
components. Tracing back the procedure to derive the
equation for ZðrÞ, we find that

H0ðrÞ ¼ HðrÞ 2r4h
rðr4 � r4hÞ

� Z0ðrÞ r4ð1� v2Þ
r4h � 3r4ð1� v2Þ

þ ZðrÞ 2r3r4hð1� v2Þ
ðr4 � r4hÞðr4h � 3r4ð1� v2ÞÞ ; (A8)
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H0
00ðrÞ ¼H00ðrÞ 2r4hðr4ð1þv2Þ� 3r4hÞ

r5v2ðr4� r4hÞ� rðr8� r8hÞ

þZ0ðrÞ
�
2

3
þ 4r4h
3ðr4h� 3r4ð1�v2ÞÞ

�
þZðrÞ

� 4r4hð�2r8hþ r4r4hð4� 3v2Þþ r8ðv2þv4� 2ÞÞ
rðr4� r4hÞðr4hþ r4ð1�v2ÞÞðr4h� 3r4ð1�v2ÞÞ :

(A9)

We can treat the ZðrÞ, Z0ðrÞ terms as a source since ZðrÞ
satisfies a decoupled equation. For the last two perturba-
tions H01, H11, it is easier to define a linear combination of
them

~HðrÞ ¼ vH11ðrÞ þ 2H01ðrÞ: (A10)

Treating terms containing HðrÞ, ZðrÞ as sources ~H
satisfies

~H0ðrÞ ¼ ~HðrÞ 4r4h
rðr4 � r4hÞ

þ Z0ðrÞ 2r
4
hðr4 � r4hÞvðr4hðv2 � 2Þ þ 4r4ð1� v2ÞÞ

ðr4 � r4hÞðr4h � 3r4ð1� v2ÞÞ2

� ZðrÞ 2vr
4
hð3r8hðv2 � 2Þ � 9r8ð1� v2Þ2 þ r4r4hð17� 20v2 þ 3v4ÞÞ

rðr4 � r4hÞðr4h � 3r4ð1� v2ÞÞ2

þ ZðrÞ vq2r6ð1� v2Þ
ðr4 � r4hÞðr4h � 3r4ð1� v2ÞÞ �HðrÞvðq

2r6ðv2 � 1Þ þ 2r4hðr4ð5� 3v2Þ þ r4hðv2 � 2ÞÞÞ
r5ðr4 � r4hÞð1� v2Þ : (A11)

Having determined ~HðrÞ the last two perturbations satisfy

H0
01ðrÞ ¼ ~HðrÞ 2r4h

rðr4 � r4hÞð1� v2Þ þHðrÞ 2vr
4
hðr4hð1� 2v2Þ � 3r4ð1� v2ÞÞ

r5ðr4 � r4hÞð1� v2Þ2 � Z0ðrÞ 2vr4h
r4h � 3r4ð1� v2Þ

� ZðrÞ 2vr4hð3r4ð1� v2Þ þ r4hð2v2 � 3ÞÞ
rðr4 � r4hÞð1� v2Þðr4h � 3r4ð1� v2ÞÞ ; (A12)

H0
11ðrÞ ¼ � ~HðrÞ 4vr4h

rðr4 � r4hÞð1� v2Þ þ Z0ðrÞ 2r
4
hðv2r4h � 2r4ð1� v2ÞÞ
ðrh4h � 3r4ð1� v2ÞÞ2

þHðrÞ
�

q2r

r4 � r4h
þ 2r4hðv2r4hð1þ v2Þ þ r4ð1þ 2v2 � 3v4ÞÞ

r5ðr4 � r4hÞð1� v2Þ2
�

þ ZðrÞ 2r
4
hð�9r8ð1� v2Þ2ð1þ v2Þ þ v2r8hð3v2 � 5Þ þ r4r4hð7þ v2 � 11v4 þ 3v6ÞÞ

rðr4 � r4hÞð1� v2Þðr4h � 3r4ð1� v2ÞÞ2

þ ZðrÞ q2r5ð1� v2Þ
ðr4 � r4hÞðr4h � 3r4ð1� v2ÞÞ : (A13)

We can now find the asymptotic behavior for all perturba-
tions close to the horizon and close to the boundary. The
results are summarized in Table I.

The behavior of H01 and H11 close to the boundary are
consistent with the equations of motion for the boundary
stress-energy tensor. The last can be rewritten as

T01 ¼ 0; �T11 ¼ 0; (A14)

where �T�� denote the perturbations away from the ideal
boosted fluid stress-energy tensor. From the AdS/CFT
dictionary, we know that

�T01 ¼ lim
r!1r

2H01ðrÞ ¼ 0;

�T00 ¼ lim
r!1r

2H11ðrÞ ¼ 0:
(A15)

in agreement with (A14).

APPENDIX B: EXPANSION NEAR
THE BOUNDARY

Given a conserved boundary energy-momentum tensor
the boundary conditions for an asymptotic AdS metric are
fixed. There is a procedure [70] that allows one to find such
metric expanded in powers of 1

r , where r is the radial

coordinate in the Poincaré AdS patch, such that r ¼ 0 is
the horizon and r ¼ 1 the boundary. In our case, the
procedure simplifies. We fix the energy-momentum tensor
to be

Ttt ¼ "ðxÞ;
Ttx ¼ C1;

Txx ¼ C2;

Tyy ¼ Tzz ¼ 1

2
"� 1

2
C2;

(B1)
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which is obviously conserved (@�T
�� ¼ 0). The energy density "ðxÞ has to be computed from the hydrodynamic

equations, or a guess can be made. In any case, this fixes the boundary condition and allows us to extend the metric as:

TABLE I. The behavior of the perturbations close to the boundary, the horizon, and the pole of the Eq. (A7) is given. Here, rf ¼
1

31=4
rh

ð1�v2Þ1=4 is the location of the pole of (A7). The boundary conditions for the perturbations at the boundary r ! 1 are that the metric

is unchanged from the Minkowski metric. At the horizon, the condition is that the asymptotic behavior corresponds to an infalling
graviton in the unboosted black hole. In the linearized approximation, the overall scaling factor does not appear, and we only show the
power law behavior. The normalization of the perturbations close to the horizon are relative to the normalization of ZðrÞ.
The normalization of ZðrÞ is taken to be 1 for the factor multiplying ðr� rhÞ�iðqv=4rh

ffiffiffiffiffiffiffiffiffiffiffi
ð1�v2Þ

p
Þ. For v �

ffiffi
2
3

q
, the relative coefficients

~C1;2 are not computed. The asymptotic behavior of H01, H11 is not shown for brevity but can be easily inferred from (A12) and (A13).

r ! 1 r ! rh r ! rf

ZðrÞ r�4 ðr� rhÞ�iðqv=4rh
ffiffiffiffiffiffiffiffiffiffiffi
ð1�v2Þ

p
Þ �0 þ �1 þ ðr� rfÞ þ �2ðr� rfÞ2 þ � � �

H00ðrÞ r�4 2v2

3v2�2
ðr� rhÞ�iðqv=4rh

ffiffiffiffiffiffiffiffiffiffiffi
ð1�v2Þ

p
Þ; v <

ffiffi
2
3

q
hð0Þ0 þ hð0Þ1 ðr� rfÞ þ � � �

HðrÞ r�4 1�v2

3v2�2
ðr� rhÞ�iðqv=4rh

ffiffiffiffiffiffiffiffiffiffiffi
ð1�v2Þ

p
Þ, v <

ffiffi
2
3

q
~C1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r� rh

p
, v �

ffiffi
2
3

q
h0 þ h1ðr� rfÞ þ � � �

~HðrÞ r�9 � 2ivð�iqvþ2ð1�2v2Þ
ffiffiffiffiffiffiffiffiffi
1�v2

p
�q2ð1�v2Þ3=2Þ

ð3v2�2Þðqv�4i
ffiffiffiffiffiffiffiffiffi
1�v2

p
Þ � ðr� rhÞ�iðqv=4rh

ffiffiffiffiffiffiffiffiffiffiffi
ð1�v2Þ

p
Þ,

v <
ffiffi
2
3

q
~C2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r� rh

p
, v �

ffiffi
2
3

q
~h0 þ ~h1ðr� rfÞ þ � � �

H01ðrÞ r�9 hð01Þ0 þ hð01Þ1 ðr� rfÞ þ � � �
H11ðrÞ r�9 hð11Þ0 þ hð11Þ1 ðr� rfÞ þ � � �
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where the boxed terms are fixed by the boundary conditions,
and the rest can be computed from solving the Einstein
equations. In the absence of an exact metric for the shock
wave, this expansion provides more information about it and
could possibly be used in the future as a check of given
solutions and as a starting point for a numerical method.
Although we show a few terms, it should be noted that using
a computer algebra program, we found easily the expansion

up to order 1
r30

, although it is too lengthy to display here.
These are enough terms to attempt a reconstruction of the
metric using Padé approximants. The condition that deter-
mines the function "ðxÞ then comes from demanding that the
metric does not develop a singularity. In fact, in Fefferman-
Graham coordinates the AdS-Schwarzschild black hole
metric becomes degenerate at the horizon, and one cannot
go beyond the horizon in these coordinates.
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