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For the five-dimensional spacetimes whose four-dimensional sections are static, spherically symmetric

(SOð3Þ), and flat asymptotically, we study the behavior of Arnowitt-Deser-Misner mass, tension, and

momentum densities characterizing such asymptotically hypercylindrical metrics under boosts along the

cylindrical axis. For such stringlike metrics two boost-invariant quantities are found, which are a sort of

‘‘string rest mass squared’’ and the sum of mass and tension densities. Analogous to the case of a moving

point particle, we show that the asymptotically hypercylindrical geometries can be classified into three

types depending on the value of the string rest mass squared, namely, ‘‘ordinary string’’, ‘‘null string’’ and

‘‘tachyonlike string’’ geometries. This asymptotic analysis shows that the extraordinary metrics reported

recently by some of the authors belong to the tachyonlike string. Consequently, it is likely that such

extraordinary solutions are the final states of tachyonic matter collapse. We also report two new vacuum

solutions which belong to the null string and the tachyonlike string, respectively.
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I. INTRODUCTION

In general relativity with five spacetime dimensions,
hypercylindrical static vacuum solutions have been studied
by many authors [1–3]. These solutions were extended to
spacetime dimensions higher than five [4,5] or to inclusion
of dilatonic scalar and antisymmetric form fields [6]. (See
also references therein.)

The stationary extension including a motion along the
string direction was also considered by Chodos and
Detweiler [7] a long time ago in the context of Kaluza-
Klein dimensional reduction, and their geometrical prop-
erties were studied by Kim and Lee [8] recently. These
stationary vacuum solutions are the most general solutions
for the metric ansatz given by

ds2 ¼ gttdt
2 þ 2gtzdtdzþ gzzdz

2 þ g��½d�2

þ �2ðd�2 þ sin2�d�2Þ�: (1)

Here the metric components are functions of the � coor-
dinate only. Thus, the geometry is stationary, spherically
symmetric on any slices at z ¼ constant and uniform along
the z direction.

Such solutions are characterized by three parameters.
By considering the asymptotic behaviors of the metric
components at infinity, one can see that these parameters
correspond to ADM mass, tension, and momentum den-
sities. The presence of the additional momentum density
parameter appears to be due to a ‘‘constant’’ motion of the
stringlike object [7,8]. Therefore, since the geometry is
stationary and uniform along the z direction, one might
expect that the nonvanishing momentum density could be
removed by a suitable boost transformation along that
direction. Namely, one may consider an observer moving
along the string direction at the same speed. Interestingly,
however, it was noticed that the momentum parameter is
not always removed by boost transformations [7,8]. Thus,
it is not understood well how such spacetime could be
formed. Moreover, it has not been studied well about
what values of those three parameters are allowed
physically.
In this paper, we investigate the behavior of asymptotic

ADM quantities characterizing hypercylindrical space-
times under arbitrary boost transformations along the
z direction in order to understand such interesting behavior
better. In the case of a point particle moving along the
z direction with energy E and momentum pz in the
Minkowski spacetime, although both energy and momen-
tum are not invariant under a boost, one can find a boost-
invariant combination of them. This is nothing but the rest
mass squared, i.e., m2

0 � E2 � p2
z . Depending on the sign

of the rest mass squared, the particles are divided into three
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classes, i.e.,‘‘ordinary particle’’ (m2
0 > 0), ‘‘null particle’’

(m2
0 ¼ 0) and ‘‘tachyon’’ (m2

0 < 0), respectively. In the

case of a uniform stringlike object moving along the string
direction, on the other hand, neither such invariant quantity
nor classification is known.

Based on the behavior of asymptotic ADM quantities
under boost transformations, we define a string rest mass
squared, which plays the same role as the particle rest mass
squared. We also show that this definition is related to the
dominant energy condition applied to hypercylindrical
matter distributions. In analogy with a moving particle
case, the asymptotic geometries may also be divided into
three types, namely, ‘‘ordinary string’’, ‘‘null string’’ and
‘‘tachyonlike string’’. This analysis on the ADM parame-
ters on boost transformations indicates that the extraordi-
nary solution in Ref. [8] belongs to the tachyonlike string
geometry. Consequently, it is likely that such an extraor-
dinary solution is a final state of tachyonic matter collapse.
In fact, tachyon scalar field of an unstable D-brane or a
brane-antibrane system are of very interest in the context
of string theory and tachyon cosmological models [9].
(See also references therein.)

In Sec. II, by considering the dominant energy condition
to see if it gives some constraints on the physical values of
the ADM parameters, the ‘‘gravitational dominant energy
condition’’ is imposed. In Sec. III, we study the behaviors
of asymptotic forms of a stringlike geometry under boost
transformations along the string. We also classify these
asymptotic spacetimes according to their transformation
properties. In Sec. IV, we explicitly present several exact
vacuum solutions belonging to those classes. In Sec. V, we
summarize the results and discuss physical implications
of them.

II. PHYSICAL RANGES IN ADM PARAMETERS

Consider any asymptotically hypercylindrical space-
times which are described by the metric in the form of
Eq. (1). By asymptotically hypercylindrical metrics we
mean, at least at spatial infinity, that the four-dimensional
section of the five-dimensional spacetime under considera-
tion is static, spherically symmetric (SOð3Þ) and flat and
that the geometry is uniform along the fifth direction
with also admitting a constant momentum flow. Then the
asymptotic forms of such spacetime metrics may be given
by

gtt ’ �1þ 4Gð2M� �Þ
3�

; gzz ’ 1þ 4GðM� 2�Þ
3�

;

gtz ’ � 4GP

�
; g�� ’ 1þ 4GðMþ �Þ

3�
; (2)

where G is the five-dimensional Newton’s constant. These
spacetimes could arise from a matter source localized in
3-spatial dimensions, which is uniformly extended to and
moving along the z direction. By applying the definitions

of gravitational ADM quantities, one can see that M, �,
and P above indeed denote the ADM mass, tension, and
momentum densities, respectively.
Even if ranges of these three integration constants are

arbitrary mathematically, physical values may be re-
stricted. It is well known that the ADM mass of an asymp-
totically flat spacetime is non-negative provided that the
dominant energy condition is satisfied. It is also proved that
the purely gravitational contribution to the spacetime ten-
sion is positive definite for transverse asymptotically flat
spacetimes without horizons that arise from brane matter
sources [10]. We expect that the magnitude of the gravita-
tional momentum P may be limited by given values of
M and �. Finding such physical ranges in gravitational
ADM quantities would be very difficult in general.
In order to get some hints, let us consider ordinary

matter distributed hyper-cylindrically in five-dimensional
flat spacetime. Let the matter distribution take the form of a
moving fluid with tension ~� and momentum ~p along z:

Tab ¼ ~�uaub � ~�zazb þ ~pðuazb þ zaubÞ; (3)

where ua and za denote the timelike and spacelike Killing
vectors orthonormal to each other so that the matter distri-
bution possesses the translational symmetry along z. Here
we assumed, for simplicity, that the matter distribution has
a spatial translational symmetry along the x4 ¼ z direction
with ~�i ¼ 0 ¼ ~pi for i ¼ 1, 2, 3 and has vanishing shears.
Now, we consider the dominant energy condition for

matter, that is, ja ¼ �Tab�
b is a future-directed timelike

vector for any timelike vector �a. Without loss of general-
ity, we may choose �a ¼ ua þ �za with j�j< 1. The
dominant energy condition restricts the energy, tension,
and momentum densities. The timelikeness of ja restricts

~�� ~� � 2j~pj; (4)

and its future directedness gives

~�þ ~� � 0: (5)

Thus, we can see that the energy density ~� is non-negative
and that the magnitudes of the momentum and tension
densities cannot be bigger than the energy density, i.e.,
j~pj, j~�j � ~�.
Suppose that this hypercylindrical matter distribution is

confined at the central region. Then, in the linearized
gravity analogy, it is known that the ADM mass, tension,
and momentum densities at transverse asymptotically
flat region are given by M ¼ R

dV ~�, � ¼ R
dV~�, and

P ¼ R
dV ~p, respectively. Here dV is the spatial volume

element at the z ¼ constant surface. Thus, at least for
hypercylindrical matter distributions producing weak
gravitational fields around, we see that the ADM gravita-
tional quantities satisfy

M� �

2
� jPj; Mþ � � 0: (6)
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Consequently, this condition above gives several bounds
for the ADM quantities. Namely, the ADM mass is non-
negative (M � 0), which is consistent with the positive
energy theorem if it holds even in our case and the physical
values of P and � are not arbitrarily large but bounded such
that

�M � P; � � M

for a given value of the ADM mass density. We do not
know that these conditions will still be satisfied in general.
However, it is likely that the ADM quantities also satisfy
Eq. (6) if hypercylindrical spacetime solutions are the end
state of ordinary matter collapse satisfying the dominant
energy condition. Therefore, we conjecture a sort of gravi-
tational dominant energy condition that the ADM mass,
tension, and momentum densities of a transverse asymp-
totically flat stringlike spacetime satisfy Eq. (6) provided
that the dominant energy condition for matter is satisfied.

III. CLASSIFICATION OFASYMPTOTIC
STRING-LIKE GEOMETRIES

Let us consider an observer O0 moving along the
z direction with a constant velocity vz ¼ tanh� with re-
spect to an observer O in ðt; zÞ (2). The coordinates ðt0; z0Þ
for O0 can be obtained from the boost transformation
given by

t0
z0

� �
¼ cosh�� sinh�

� sinh� cosh�

� �
t
z

� �
: (7)

Consequently, the ADM mass, tension, and momentum
densities in the primed coordinates are given by

M0 ¼ Mcosh2�� �sinh2�� P sinh2�;

�0 ¼ �Msinh2�þ �cosh2�þ P sinh2�;

P0 ¼ � 1

2
ðM� �Þ sinh2�þ P cosh2�:

(8)

As in the case of a moving particle, we expect that there
are some boost-invariant quantities. One can easily see that
the sum of the mass and tension densities is one of such
quantities. For later convenience we define a boost-
invariant quantity

M � Mþ �: (9)

The invariance of M can be understood in the following
way: For the case of matter in Eq. (3), the trace of the stress-
energy tensor is Ta

a ¼ �ð~�þ ~�Þ.1 Note that this quantity
is scalar which is invariant under arbitrary coordinate

transformations at any spacetime point. Then, we can easily
see that the integrated quantity

�
Z

dVTa
a ¼

Z
dVð~�þ ~�Þ

is also invariant under the z boost. Here the spatial volume
dV is orthogonal to the z direction. In the linearized gravity
analogy, therefore, the boost invariance of this integral for
matter implies the boost invariance of M ¼ Mþ �
subsequently.
Note that

1

2
TabT

ab � 1

4
ðTa

a Þ2 ¼ ð~�� ~�Þ2
4

� ~p2

is also a scalar quantity. Although any combination of
TabT

ab and ðTa
a Þ2 becomes a scalar quantity, this combina-

tion above is special in the following sense. Namely, only
this quantity changes its sign from positive to negative
when the dominant energy condition is violated. Since
the dominant energy condition implies that the trajectory
of physical matter is timelike or null, the violation of
such condition indicates the crossing of the light cone. In
the linearized gravity analogy, the corresponding scalar
quantity is given by

M2
0 �

ðM� �Þ2
4

� P2: (10)

Indeed, it can be shown from Eq. (8) that this quantity is
boost invariant.
The quantity M2

0 is a sort of string rest mass squared

analogous to the rest mass squared of a moving particle.
Note that M2 � P2, which is analogous to the rest mass
squared for a moving particle, is not boost invariant in the
case of stringlike objects. Note also that M2

0 is not positive

definite in general.
It turns out that the following combination is useful:

B� � M� �

2
� P: (11)

Note that BþB� ¼ M2
0. These quantities are observer

dependent, but transform in a simple way as

B0� ¼ e�2�B� (12)

under the boost. Note that the sign of B� does not change.
For the case of a particle B� corresponds to E� pz. The
definiteness of the sign of E� pz guarantees causality.
Namely, a timelike (spacelike) motion remains timelike
(spacelike) under boost transformations.
In the new variables, the gravitational dominant energy

condition (6) can be expressed as

M2
0 � 0; M � 0; Bþ � 0: (13)

If B� � 0, the ADM mass, tension, and momentum den-
sities can be written in terms of the observer invariant and
dependent quantities by

1We point out that the actual trace has additional contributions
coming from the pressure on the perpendicular plane to the z
direction which we ignored for simplicity. Since those terms are
scalars under z boosts, the considerations below are not affected.
However, it should be pointed out that the tracelessness does not
imply ~� ¼ �~� for actual matters.
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M ¼ 1

2

�
Mþ B� þM2

0

B�

�
; � ¼ 1

2

�
M� B� �M2

0

B�

�
;

P ¼ � 1

2

�
�B� þM2

0

B�

�
: (14)

The set of ADM quantities ðM;M2
0; B�Þ has one to one

relation with the other set of ADM quantities ðM; �; PÞ
provided that B� � 0. The case of B� ¼ 0 will be treated
below.

It is convenient to divide the ADM parameter space into
three cases depending on the sign of M2

0 as in Fig. 1. We

call these cases as ordinary string, null string, and tachyon-
like string for M2

0 > 0, M2
0 ¼ 0, and M2

0 < 0, respectively.
Note thatM2

0 ¼ 0 is the boundary for the energy condition
in Eq. (13) to be satisfied. The behaviors of the mass and
momentum densities under the boost are explicitly shown
in Fig. 2.2 The variation of tension is readily readable since
M ¼ Mþ � is boost invariant.

(i) Ordinary string [M2
0 > 0]: This class corresponds to

the shaded regions in Fig. 1 and is the counterpart of
a moving particle having timelike trajectory. The
‘‘string energy condition’’ (6) is satisfied for the
case of the meshed region only. The (boosted)
Schwarzschild black string belongs to this case. In

this meshed region, as shown in the black dashed and
dotted curves in Fig. 2, the momentum value mono-
tonically decreases if an observer moves parallel to
the initial string momentum direction. As the veloc-
ity of the observer increases, it crosses zero at

jBþj ¼
ffiffiffiffiffiffiffi
M2

0

q
for an observer who comoves with

the string object. The ADM mass, on the other
hand, decreases as the boost increases and bounces
up after passing a minimum value for the comoving
observer. The ADM tension, on the other hand,
increases as the boost increases and bounces down
after passing a maximum value. In other words, the
ADM tension takes maximum value when the rela-
tive velocity between the observer and the string
vanishes. As the relative velocity increases, the
ADM tension decreases gradually.

(ii) Null string [M2
0 ¼ 0]: This class consists of the

boundary lines between the shaded regions and the
unshaded region in Fig. 1 and is the counterpart of a
massless particle. The condition (6) is satisfied for
the thick line only. The change of the mass and
momentum densities under the boost are plotted as
the black and gray solid lines in Fig. 2, which
correspond to the case B� ¼ 0.
Since BþB� ¼ M2

0, the case of M2
0 ¼ 0 (i.e., M�

� ¼ �2P) gives Bþ ¼ 0 or B� ¼ 0. In case of
Bþ ¼ 0, we may use the set ðM;M2

0; B�Þ in

Eq. (14).3 Namely, the mass, tension, and momen-
tum densities are given by

M ¼ Mþ B�
2

; � ¼ M� B�
2

; P ¼ B�
2

:

The boost transformation (12) leads to

P0 ¼ Pe�2�: (15)

Note that the sign of the momentum does not change
under the motion of observer, and we cannot make
the momentum vanish by boosts if the initial
momentum is nonzero. In addition, if the initial
momentum is zero, we cannot make it be finite by
using the z boost. This property is similar to the case
of chasing a massless particle.

(iii) Tachyon-like string [M2
0 < 0]: This class consists

of the white region in Fig. 1. The black dot-dashed
and gray dot-dashed curves in Fig. 2 denote the
change of the mass and momentum densities under
the boost. For given values of M2

0 and M, Fig. 2

shows that the ADM momentum squared has a
nonvanishing minimum value given by

P2 ¼ �M2
0:

FIG. 1 (color online). Classification of string solutions. The
solid lines are given by M ¼ �� 2jPj and M ¼ ��. The
red-meshed region satisfies the dominant energy conditions.

2Although this figure shows the relationship between M and
Bþ or between P and Bþ, we can also interpret this as the
behaviors of M and P under boost by regarding Bþ as a boost
parameter since B0þ ¼ e2�Bþ and M0 ¼ M.

3If B� ¼ 0, vice versa. In case that both Bþ ¼ 0 ¼ B�, we
have P ¼ 0 and M ¼ � ¼ M=2.
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This point can always be reached by a suitable
boost transformation, and we have M ¼ � and
Bþ ¼ jM0j or �jM0j in this case. Note that any
other observer measures M � �, resulting in the
growth of the momentum squared given by the
following formula:

P2 ¼ �M2
0 þ

ðM� �Þ2
4

:

Notice also that the mass monotonically changes
under the boost.

So far we have studied the behavior of ADM quantities
under the boost transformations and subsequent classifica-
tions of the stringlike spacetime geometries. Here we show
how the geodesic motions in the tachyonlike string differ
from those in the ordinary string at the asymptotic region.
The effective potential for the radial motion of a geodesic
in the spacetime with metric (1) is given by

Veffð�Þ ¼ 1

g��
ðgttE2 � 2Epzg

tz þ p2
zg

zz þ L2g�� þm2Þ;

where L, E, and pz are the spatial angular momentum
around the three dimensions, the energy, and the momen-
tum along z coordinate of the test particle, respectively.
The test mass-squared m2 is positive, zero, and negative
depending on timelike, null, and spacelike geodesics,
respectively.

The asymptotic behavior of this effective potential
becomes

Veffð�Þ ’ �p2
? �

�
ðm2 � p2

?ÞMþ 3M2
0

Bþ
ðE� pzÞ2

þ 3BþðEþ pzÞ2
�
2G

3�
;

where p2
? ¼ E2 � p2

z �m2 is the momentum density of

the test particle at � ¼ infinity along the direction orthogo-
nal to the string.
Let us consider the motion of a test particle with p? ¼ 0

moving on the background of string solutions satisfying
gravitational dominant energy condition, i.e., M> 0,
Bþ > 0, and M2

0 > 0. Then the form of the effective

potential shows that all test particles are attracted toward
the string center. On the tachyonlike string background
with M2

0 < 0 keeping M> 0 and Bþ > 0, on the other

hand, some test particles are repelled by the string, even
in the absence of the angular momentum.
In this sense, the geometric property of the tachyonlike

string is critically different from that of the ordinary string.

IV. VACUUM STRING SOLUTIONS

In this section, we explicitly demonstrate some exact
vacuum solutions which belong to each case in the pre-
vious section. The most general vacuum solution to the
Einstein equation with the ansatz (1) is as follows:

gtt¼D�ð2= ffiffi
3

p ffiffiffiffiffiffiffiffiffi
1þ�2

p
ÞðsD2�=

ffiffiffiffiffiffiffiffiffi
1þ�2

p
�cD�ð2�=

ffiffiffiffiffiffiffiffiffi
1þ�2

p
ÞÞ;

gzz¼D�ð2= ffiffi
3

p ffiffiffiffiffiffiffiffiffi
1þ�2

p
ÞðcD2�=

ffiffiffiffiffiffiffiffiffi
1þ�2

p
�sD�ð2�=

ffiffiffiffiffiffiffiffiffi
1þ�2

p
ÞÞ;

gtz¼�ðcsÞ1=2D�ð2= ffiffi
3

p ffiffiffiffiffiffiffiffiffi
1þ�2

p
ÞðD2�=

ffiffiffiffiffiffiffiffiffi
1þ�2

p
�D�ð2�=

ffiffiffiffiffiffiffiffiffi
1þ�2

p
ÞÞ;

g��¼
�
1�K2

�2

�
2
D4=

ffiffi
3

p ffiffiffiffiffiffiffiffiffi
1þ�2

p
; (16)

where c� s ¼ 1 and Dð�Þ ¼ ð1þ K=�Þ=ð1� K=�Þ.
Here the parameters c, s, K, and � are complex numbers
in general, and it turns out that the following values of
parameters make real metric components:

1.5 1.0 0.5 0.5 1.0 1.5

1.5

1.0

0.5

0.5

1.0

1.5

1.5 1.0 0.5 0.5 1.0 1.5

1.5

1.0

0.5

0.5

1.0

1.5

FIG. 2. The change of the ADM mass and momentum densities for (Bþ=M) for several different values of string rest mass squared.
The dashed, dotted, black (gray) and dot-dashed curves correspond to M2

0=M
2 ¼ 1=4, 1=36, 0, and �1=4, respectively. The boosted

Schwarzschild black string and the Kaluza-Klein bubble solution correspond to the black dotted curve and the gray dotted curve with
M2

0=M
2 ¼ 1=36, respectively.
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class I : c ¼ cosh2�; s ¼ sinh2�; �; �; K 2 R;

(17)

class II : c ¼ 1

2
� iq; s ¼ � 1

2
� iq; � ¼ �i ��;

j ��j � 1; q; ��;K 2 R; (18)

class III : c ¼ 1

2
� iq; s ¼ � 1

2
� iq; � ¼ �i ��;

j ��j � 1; K ¼ iQ; q; ��;Q 2 R: (19)

These solutions were, in fact, found by Chodos and
Detweiler [7] and later analyzed in Refs. [8,11]. The
ADM quantities are represented by

M ¼
ffiffiffi
3

p þ ðcþ sÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p K; � ¼
ffiffiffi
3

p � ðcþ sÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p K;

P ¼ 2
ffiffiffiffiffi
cs

p
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �2
p K: (20)

Then, M2
0, M, and B� are given by

M2
0 ¼

�2

1þ �2
K2; M ¼ 2

ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p K;

B� ¼ ðc1=2 � s1=2Þ2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p K: (21)

Thus, we can see that � and K are boost-invariant parame-
ters, whereas c (or q) is boost dependent. Note also that
M2

0 � 0 for class I, and M2
0 � 0 for class II and III. Since

�M2
0=M

2 ¼ ��2=12, we have 0 � �M2
0=M

2 � =12 for

class II and �M2
0=M

2 � =12 for class III.

A. Ordinary string solutions

In this subsection, we consider the solutions whose
asymptotic parameters satisfy M2

0 > 0. The class I solu-

tions in Eq. (17) except for the case of � ¼ 0 belongs to the
ordinary string. As explained in the previous section, we
can make any finite value of ADM momentum parameter
be zero by a suitable boost transformation in this case. Thus
we consider only the case � ¼ 0 (i.e., c ¼ 1 and s ¼ 0).

The solutions in this case are static and were found in
Refs. [1,7]. The metric is given by [2,3]

ds2 ¼ �
�
1þ K=�

1� K=�

��ð2ð1þ ffiffi
3

p
�Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þ�2Þ

p
Þ
dt2

þ
�
1þ K=�

1� K=�

��ð2ð1� ffiffi
3

p
�Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þ�2Þ

p
Þ
dz2

þ
�
1� K2

�2

�
2
�
1þ K=�

1� K=�

�
4=

ffiffi
3

p ffiffiffiffiffiffiffiffiffi
1þ�2

p

� ðd�2 þ �2d�2
ð2ÞÞ: (22)

The metric (22) becomes the well-known Schwarzschild

black string solution when � ¼ 1=
ffiffiffi
3

p
with positive K.

For this case, we see that M2
0 ¼ K2=4, M ¼ 3K, and

Bþ ¼ K=2, satisfying the gravitational dominant energy
condition in Eq. (13).
The Kaluza-Klein bubble solution, which can be ob-

tained by the double-Wick rotation t ! iz and z ! it,

corresponds to � ¼ �1=
ffiffiffi
3

p
with positive K. Therefore,

we have M2
0 ¼ K2=4, M ¼ 3K, and Bþ ¼ �K=2. Thus,

this case does not satisfy the gravitational dominant energy
condition. Consequently, the Kaluza-Klein bubble metric
cannot presumably be formed as a final state of ordinary
matter collapse satisfying dominant energy condition.
Then, one may speculate it is formed as a final state of
the collapse of past directed matter. However, it is not true
because the future-directed condition is satisfied, M> 0.
The geodesic motions in this spacetime were studied in
Ref. [11] in detail.

B. Null string solutions

This case corresponds to M2
0 ¼ 0 or M� � ¼ �2P.

M2
0 ¼ 0 gives K ¼ 0 or � ¼ 0. The case of K ¼ 0 gives

the flat spacetime, which we are not interested in. In

Eq. (20), we may have c1=2 ! 1 and s1=2 ! �1 as
� ! þ0 to give a finite nonvanishing momentum density.

Thus, by taking the limit of �ðcsÞ1=2 ! 1 and � ! þ0

with � ¼ ffiffiffiffiffi
cs

p
2�=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
fixed, we have

ds2 ¼
�
1þ K=�

1� K=�

��ð2= ffiffi
3

p Þ��dt2 þ dz2 þ 2� log
�þ K

�� K

� ðdt� dzÞ2
�
þ

�
1� K2

�2

�
2
�
1þ K=�

1� K=�

�
4=

ffiffi
3

p

� ðd�2 þ �2d�2
ð2ÞÞ: (23)

We can directly check that the above metric is a solution of
the Einstein equation. This metric with nonvanishing � has
not been reported in the literature as far as we know.
Note that the ADM parameters are given by

M ¼ ð ffiffiffi
3

p þ �ÞK; � ¼ ð ffiffiffi
3

p � �ÞK; P ¼ ��K:

We see that the three-dimensional area of � ¼ constant
surface becomes infinite as � ! K and that this surface is
indeed a naked singularity.

C. Tachyon-like string solutions

The ADM parameters satisfy M2
0 < 0. In this case, as

explained above, we can always make a suitable boost trans-
formation such thatM ¼ � with Bþ ¼ jM0j or�jM0j. This
choice determines c ¼ 1=2 ¼ �s, and the solutions are
characterized by � and K in Eqs. (18) and (19). Here � can
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be expressed as � ¼ �i
ffiffiffi
3

p
p, where p ¼ P=M is the

momentum to mass ratio.
Now the metric for this case is expressed as [8]

ds2 ¼ f�1ð�Þ½�ð!tÞ2 þ ð!zÞ2� þ f2ð�Þg2ð�Þðd�2

þ �2d�ð2ÞÞ: (24)

Here the timelike 1-form !t and the spacelike 1-form !z

are

!t ¼ cosðp�Þdt� sinðp�Þdz;
!z ¼ sinðp�Þdtþ cosðp�Þdz; (25)

with Killing coordinates t and z. For jpj< 1=
ffiffiffi
3

p
(class II),4

the functions fð�Þ, gð�Þ, and �ð�Þ are given by

fð�Þ ¼
�
1þ K=�

1� K=�

�
2=

ffiffi
3

p ffiffiffiffiffiffiffiffiffiffi
1�3p2

p
; gð�Þ ¼ 1� K2

�2
;

�ð�Þ ¼
ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3p2

p log
1þ K=�

1� K=�
: (26)

Note that, as p ! 0 (i.e., � ! 0), this solution becomes
the null string solution (23) with � ¼ 0. The function �
monotonically increases from zero to infinity as � de-
creases from infinity to K. The geodesic motions in this
spacetime are studied in Ref. [12]. At � ¼ K, except for

the case of jpj ¼ ffiffiffiffiffiffiffiffiffiffiffi
5=27

p
, there exists a curvature singular-

ity which is naked for jpj< 1=ð2 ffiffiffi
3

p Þ and null for

1=ð2 ffiffiffi
3

p Þ � jpj< ffiffiffi
2

p
=3. There is no curvature singularity

if jpj � ffiffiffi
2

p
=3.

For jpj> 1=
ffiffiffi
3

p
(class III), we have

fð�Þ ¼ exp

�
2tan�1ðQ=�Þffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3p2 � 1

p
�
; gð�Þ ¼ 1þQ2

�2
;

�ð�Þ ¼
ffiffiffi
3

p
tan�1ðQ=�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3p2 � 1

p ; (27)

which describe wormhole solutions regular everywhere
[7,8]. The function � monotonically increases from zero
to 	=2 as � decreases from infinity to zero.

For the case of jpj ¼ 1=
ffiffiffi
3

p
(i.e., �2 ¼ �1), the ADM

quantities and the metric components appear to be singular.
However, regular solutions exist when K ! 0 as well with
keeping 
 ¼ 2Kffiffi

3
p ffiffiffiffiffiffiffiffiffiffi

1�3p2
p be fixed.

fð�Þ ¼ e2
=�; gð�Þ ¼ 1; �ð�Þ ¼ 3


�
: (28)

The ADM quantities become

M ¼ � ¼ 3


2
; P ¼ �

ffiffiffi
3

p
2


:

V. SUMMARYAND DISCUSSION

We have considered asymptotically stationary hypercy-
lindrical metrics in five dimensions characterized by the
ADM mass, tension, and momentum densities. Motivated
by the linearized gravity analogy, the gravitational domi-
nant energy condition was conjectured by which the physi-
cal ranges of these three quantities are restricted as in
Eq. (6). The study of boost transformations of these three
quantities for such stringlike metrics along the string shows
that there are two boost-invariant quantities, which are the
string rest mass squared (M2

0) and the ADM (massþ
tension) density (M). Analogous to the case of a moving
point particle, we show that the asymptotically hypercylin-
drical geometries can be classified into three types depend-
ing on the value of the string rest mass squared, namely,
ordinary string (M2

0 > 0), null string (M2
0 ¼ 0), and ta-

chyonlike string (M2
0 < 0) geometries. Note that the hyper-

cylindrical solutions satisfying the gravitational dominant
energy condition such as the Schwarzschild black strings
belong to the ordinary string. The Kaluza-Klein bubble
solution also belongs to the ordinary string, but it does not
satisfy the gravitational dominant energy condition.
This analysis on boost transformations for ADM pa-

rameters shows that the extraordinary solutions [e.g., class
II in Eq. (18)] reported in Refs. [7,8] belong to the tachyon-
like string. We expect that the collapse of hypercylindrical
matter distribution with momentum flow ends up with
stationary vacuum solutions in Eq. (16). If the collapsing
matter satisfies the dominant energy condition, all the way
down to the final stationary state, the spacetime produced
will probably belong to the ordinary string with the gravi-
tational dominant energy condition satisfied. Although the
details of the collapsing processes are not known, we
expect that the collapse of tachyonic matter presumably
ends up with some stationary spacetimes belonging to
the tachyonlike string, for instance, the extraordinary
solutions.
In this paper, we have not given any restriction on the

values of three ADM quantities asymptotically character-
izing the hypercylindrical spacetimes with momentum
flow. Usually, one imposes some conditions on these
ADM quantities such as the gravitational dominant energy
condition we conjectured and simply discards all other
solutions which do not satisfy such conditions since those
solutions are probably resulted from the collapse of un-
physical matter. The reasons we consider those solutions
that do not satisfy the gravitational dominant energy con-
dition as well are the following: First of all, notice that the
well-known Kaluza-Klein bubble solution does not satisfy
the gravitational dominant energy condition although it
belongs to the ordinary string. However, this solution4The case of p ¼ �1=

ffiffiffi
3

p
will separately be treated below
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does not have a naked singularity and is perfectly regular
everywhere provided that the z coordinate is suitably com-
pactified.5 Similarly, although the extraordinary solutions
belong to the tachyonlike string, some of them having

jpj � 1=2
ffiffiffi
3

p
are regular. As explained above, there is no

curvature singularity for jpj � ffiffiffi
2

p
=3 or jpj ¼ ffiffiffiffiffiffiffiffiffiffiffi

5=27
p

.
Even if there appears a curvature singularity in the case

of 1=ð2 ffiffiffi
3

p Þ � jpj< ffiffiffi
2

p
=3 (jpj � ffiffiffiffiffiffiffiffiffiffiffi

5=27
p

), it is actually on
the null hypersurface located at � ¼ K so that it does not
affect physics outside. These regular solutions might be
useful in the future. It would be of interest understanding
how these regular geometries violating the gravitational
dominant energy condition are actually formed through the
collapse of matter. Finally, it is interesting to see that
tachyonlike string solutions might be possible since our
metric ansatz assumes an infinitely extended or compacti-
fied cylindrical direction along z. A formation of stationary

solutions would be impossible if tachyonic matter collapse
occurs with full spherical symmetry.
Finally, we point out that our analysis for stationary

hypercylindrical solutions with momentum flow has been
done only in five-dimensional spacetime. However, we
expect that the main results obtained in this paper will still
be valid qualitatively for such spacetime solutions in
dimensions higher than five.
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