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We examine the toroidal oscillations on the slowly rotating relativistic stars in tensor-vector-scalar

(TeVeS) theory with the Cowling approximation. As a result, we find that perturbation equations

describing the toroidal oscillations are same equation form as in general relativity (GR). Although the

frequencies of toroidal oscillations in TeVeS are not so different from those in GR, the momentum inertia

depends strongly on the gravitational theory. Thus, observing the frequencies of toroidal oscillations and

momentum inertia with high accuracy might reveal the gravitational theory in the strong-field regime.
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I. INTRODUCTION

Via many experiments, the validity of general relativity
(GR) has been shown in the weak gravitational field such as
the solar system, while the tests of gravitational theory in
the strong-field regime are still very poor. Accordingly, the
gravitational theory in the strong gravitational field has not
been constrained observationally. However, with the devel-
opment of technology, it is becoming possible to observe
the compact objects with high accuracy and via these
observations it could be possible to test the gravitational
theory in the strong gravitational field [1]. In practice,
some possibilities to distinguish the gravitational theory
are suggested. For example, using the surface atomic
line redshifts [2] or gravitational waves radiated from
the neutron stars [3], it could be possible to distinguish
the scalar-tensor theory proposed in [4] from GR.
Additionally, Corda suggested the definitive test for GR
with gravitational waves [5].

The tensor-vector-scalar (TeVeS) theory, which is
originally proposed by Bekenstein [6], is one of the
alternative gravitational theory and attracts considerable
attention. This theory is covariant formalism for modified
Newtonian dynamics [7,8]. The reason why this theory
gets attention is because this theory can explain the galaxy
rotational curve and Tully-Fisher law without the presence
of dark matter [6]. TeVeS also successfully explains the
strong gravitational lensing [9] as well as the galaxy
distributions through an evolving Universe without cold
dark matter [10]. It should be noticed that the bullet cluster
1E0657-558 might be good candidate to make a constraint
in the gravitational theory observationally [11], but so far
no one has made this attempt for TeVeS. Drawing attention
to the strong gravitational region of TeVeS, Giannios found
the Schwarzschild solution [12], Sagi and Bekenstein
found the Reissner-Nordström solution [13], and Lasky
et al. derived the Tolman-Oppenheimer-Volkoff (TOV)
equations in TeVeS and produced the static, spherically
symmetric stellar models in TeVeS [14]. Recently, Lasky

and Donova examined the stability and quasinormal modes
of black hole in TeVeS [15].
Additionally, it has been suggested how to distinguish

TeVeS from GR observationally. For example, one could
reveal the gravitational theory in the strong-field regime
with the redshift of the atomic spectral lines emanating
from the surface of neutron star [14], with the Shapiro
delays of gravitational waves and photons or neutrinos
[16], and with the spectrum of gravitational waves emitted
from the compact objects [17], where the compact objects
were assumed to be spherically symmetric. On the other
hand, in this article, we will focus on the toroidal oscil-
lations in the slowly rotating compact objects constructed
in [18], which are associated with the rmodes gravitational
waves. The r modes arise due to the rotational effects and
degenerate into zero frequency in the limit of nonrotation.
The observations of stellar oscillations via gravitational

waves are considered to provide a unique tool to estimate
the stellar parameters such as mass, radius, rotation rate,
magnetic fields, and equation of state (e.g., [19–23]),
which is called ‘‘gravitational wave asteroseismology’’.
The detailed analysis of the gravitational waves also makes
it possible to determine the radius of accretion disk around
supermassive black hole [24] or to know the magnetic
effect during the stellar collapse [25].
In this article, as a first step to see the dependence of

toroidal oscillations on the gravitational theory, we assume
the Cowling approximation, i.e., we see only fluid oscil-
lations and the perturbations of the other fields will be
omitted. The more detailed study including the oscillations
of the other fields will be done in the near future. This
article is organized as follows. In the next section, we
review the fundamental parts of TeVeS and the stellar
model with slow rotation in TeVeS. In Sec. III, we derive
the perturbation equations describing the toroidal oscilla-
tions with the Cowling approximation and present the
frequencies of toroidal oscillations as varying the stellar
parameters. Finally, we make a conclusion in Sec. IV. In
this article, we adopt the unit of c ¼ G ¼ 1, where c andG
denote the speed of light and the gravitational constant,
respectively, and the metric signature is ð�;þ;þ;þÞ.*hajime.sotani@nao.ac.jp
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II. STELLAR MODELS IN TEVES

A. TeVeS

The details of TeVeS can be found in [6]. TeVeS is based
on three dynamical gravitational fields; an Einstein metric
g��, a timelike four-vector field U�, and a scalar field ’.

Additionally there is a nondynamical scalar field �. The
vector field satisfies the normalization condition with
Einstein metric as g��U�U� ¼ �1, and the physical

metric ~g�� is defined with the Einstein metric as

~g�� ¼ e�2’g�� � 2U�U� sinhð2’Þ: (2.1)

The total action of TeVeS, S, contains contributions from
the three dynamical fields mentioned above, and a matter
contribution (see [6] for the details). This total action has
two positive dimensionless parameters, k and K, which are
corresponding to the coupling parameters for the scalar
and vector fields, respectively. Varying the total action S
with respect to g��, U�, and ’, one can get the field

equations for the tensor, vector, and scalar fields (see [6]
for the explicit field equations). Since the previous study
about the neutron star structure in TeVeS has shown that
the stellar properties are almost independent from the
scalar coupling k [14], in this article we focus only on
the dependence of vector coupling K. Although the
restrictions on K have not been discussed in great detail
in the literature, in [14], they showed that to construct the
stellar models, K has to be less than 2, and also that K
should be less than 1 to produce a realistic stellar mass.
Thus, in this article we examine as varying K in the range
of 0<K � 1.

B. Slowly rotating relativistic stellar models

As a background stellar model, we consider a slowly

rotating relativistic star with a uniform angular velocity ~�,
where the rotational axis is set to be � ¼ 0. Since the
details for constructing such stellar models are shown in
[18], in this section we describe only essential points.
In the framework for slow rotation, we assume to keep
only the linear effects in the angular velocity. Then, the
stellar models are still spherical, because the deformation

due to the rotation is of the order ~�2. Those stellar models
in TeVeS can be constructed by using the recipe shown in
[14], and the metric in physical frame is given by

d~s2 ¼ �e�þ2’dt2 þ e��2’dr2 þ r2e�2’ðd�2 þ sin2�d�2Þ
� 2!r2e�2’sin2�dtd�; (2.2)

where �, � , and ! are functions of the radial coordinate r.

Up to first order of ~�, the background fluid four-velocity of
the star is described as

~u � ¼ ½e�’��=2; 0; 0; ~�e�’��=2�: (2.3)

In TeVeS, another variable also needs to determine the
rotational dragging, i.e., induced vector field due to the

rotation, which is described as �U� ¼ �V ðrÞ [18]. With
appropriate boundary conditions at the stellar center and
infinity, by calculating two second order differential equa-
tions with respect to ! and V as shown in [18], one can
determine the distribution of rotational frame dragging.
About the stellar matter, we assume the perfect fluid
described by the energy-momentum tensor

~T �� ¼ ð~�þ ~PÞ~u�~u� þ ~P~g��; (2.4)

where ~� and ~P are the energy density and pressure in the
physical frame, respectively. The adopted equations of
state to construct the stellar model are the same ones as
in [3], which are polytropic ones derived by fitting func-
tions to tabulated data of realistic equations of state known
as EOS A and EOS II. The maximum masses of neutron
stars with these equations of state in GR are M ¼ 1:65M�
for EOS A and M ¼ 1:95M� for EOS II. That is, EOS A
and EOS II are considered as soft and intermediate equa-
tions of state, respectively.
As an example, the distribution of !ðrÞ in physical

frame for the stellar model with MADM ¼ 1:4M� and
~� ¼ 1 kHz is plotted in Fig. 1, where MADM denotes the
total Arnowitt-Deser-Misner (ADM) mass (see [14] for the
definition of ADM mass). In the previous article, it was
shown that the distribution of !ðrÞ depends on the value
of vector coupling, K, as well as the total angular momen-
tum of the star ~J, which is determined from the asymp-
totic behavior of !ðrÞ as !ðrÞ ¼ 2~J=r2 þOð1=r4Þ [18].
However, in this article, we find that, if one would see the
distribution of ! as a function of r=R where R is stellar
radius, those distributions with different value of K are
very similar to that in GR.

III. TOROIDAL OSCILLATIONS

In this article, we focus on the toroidal oscillations with
the Cowling approximation. That is, we consider only the
fluid perturbation with axial parity and the other perturba-
tions of scalar, vector, and tensor fields are neglected. We
should notice that the Cowling approximation in GR is

FIG. 1 (color online). Distribution of !ðrÞ in physical frame
with different values of K for the stellar model with EOS A and
~� ¼ 1 kHz, where stellar mass is fixed to be MADM ¼ 1:4M�.
In order to compare the results in TeVeS, the distribution in GR
is also plotted with a solid line.
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typically quite good for toroidal oscillations (axial parity)
because this type of oscillations does not involve the
variation of density, while for spheroidal oscillations (polar
parity) one can qualitatively discuss those frequencies, but
the error for typical relativistic stellar models could be-
come less than 20% for the fundamental modes and around
10% for the pressure modes [26]. Similarly in GR, we
might expect the validity of the Cowling approximation
for toroidal oscillations in TeVeS. However, as pointed out
in [18], for the slowly rotating star in TeVeS, there exists
the induced vector field due to the rotation and this induced
vector field might play an important role in the toroidal
oscillations when one considers the metric perturbation.
As a future work, we will examine the toroidal oscillations
with the perturbations of the other fields.

With the approximation of a slowly rotating star as
mentioned in Sec. II, we consider the rotational effect up

to first order of ~�. On this slowly rotating star, we add the
fluid oscillations. Then, the leading order in the linearized

field equations becomes �Oð ~�	Þ, where 	 expresses the
order of fluid oscillations. Additionally, one can see that
the coupling between the toroidal and spheroidal oscilla-

tion becomes higher order effects thanOð ~�	Þ (see [27] for
the ordering in GR). In this article, as a first step, we take
into account the leading order of the fluid oscillations, in
which we omit the coupling between the toroidal and
spheroidal oscillations. Considering the toroidal oscilla-
tions, the Lagrangian displacement vector for the fluid
perturbation is

~
 i ¼ ð~
r; ~
�; ~
�Þ ¼
�
0;�Z

1

sin�
@�Y‘m; Z

1

sin�
@�Y‘m

�
;

(3.1)

where Z is a function of t and r, while Y‘m ¼ Y‘mð�;�Þ is
the spherical harmonic function. Then, the perturbations of
four-velocity in the physical frame, �~u�, can be written as

�~ur ¼ 0; (3.2)

�~u� ¼ �e�’��=2@tZ
1

sin�
@�Y‘m; (3.3)

�~u� ¼ e�’��=2@tZ
1

sin�
@�Y‘m; (3.4)

�~ut ¼ ð ~��!Þr2e�4’��sin2��~u�: (3.5)

It should be noticed that in order to get the expression of
�~ut, we use the relation that ~g��~u

��~u� ¼ 0, which is

obtained from the normalization condition for fluid four-
velocity, i.e., ~g��~u

�~u� ¼ �1. With the Cowling approxi-

mation, the axial perturbation of energy-momentum tensor
is given by

� ~T�� ¼ ð~�þ ~PÞð�~u�~u� þ ~u��~u�Þ: (3.6)

The perturbation equation describing the toroidal oscil-
lations can be obtained by taking a variation of the energy-

momentum conservation law, ~r�
~T�� ¼ 0, which can be

reduced as ~r�� ~T�� ¼ 0 with the Cowling approximation.
The explicit forms with � ¼ � and � are

�‘mðt; rÞ 1

sin�
@�Y‘m � �‘mðt; rÞ cos�@�Y‘m ¼ 0; (3.7)

�‘mðt; rÞ@�Y‘m þ �‘mðt; rÞ cos�sin�
@�Y‘m ¼ 0; (3.8)

where the coefficients �‘m and �‘m are

�‘m ¼ @2t Zþ im ~�@tZ; (3.9)

�‘m ¼ 2ð!� ~�Þ@tZ: (3.10)

Calculating ðEq:ð3:7ÞÞ= sin�@�Y�
‘m þ ðEq:ð3:8ÞÞ@�Y�

‘m and

integrating over the solid angle, one can get the single
perturbation equation for the toroidal oscillations, such as

@2t Zþ im

�
~�� 2

‘ð‘þ 1Þ ð
~��!Þ

�
@tZ ¼ 0; (3.11)

where Y�
‘m denotes the complex conjugate of Y‘m and to

derive Eq. (3.11), we use the following relations;

Z 2


0

Z 


0

�
@�Y

�
‘m@�Y‘0m0 þ 1

sin2�
@�Y

�
‘m@�Y‘0m0

�

� sin�d�d� ¼ ‘ð‘þ 1Þ�mm0�‘‘0 ; (3.12)

Z 2


0

Z 


0

�
cos�

sin�
@�Y

�
‘m@�Y‘0m0 � cos�

sin�
@�Y

�
‘m@�Y‘0m0

�

� sin�d�d� ¼ im�mm0�‘‘0 ; (3.13)

where �‘‘0 denotes the Kronecker delta. Now, assuming
the time dependence of perturbation variable Z as
Zðt; rÞ ¼ ZðrÞei�t, the frequencies of toroidal oscillations
are given by

� ¼ �m

�
~�� 2

‘ð‘þ 1Þ ð
~��!Þ

�
: (3.14)

In spite of the fact that the adopted gravitational theory is
different from GR, these Eqs. (3.11) and (3.14) are same
forms as in GR. That is, at least with the Cowling approxi-
mation, the background scalar and vector fields do not
affect directly on the toroidal oscillations.
In the Newtonian limit, in which ! ! 0, the spectrum

of toroidal oscillations is discrete and the frequency

becomes single value as � ¼ ½2=‘=ð‘þ 1Þ � 1�m ~�.
However, when one considers the relativistic effect, i.e.,
frame dragging, the frequency of toroidal oscillations is not
a single value. Unlike Newtonian case, the frequencies
become the function of !, i.e., the function of r. Namely,
similar to GR case [27,28], the frequencies in TeVeS could
be continuous spectrum limited to a certain range. The
allowed frequencies are determined with the value of !
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inside the star. Since the value of !ðrÞ is monotonically
decreasing as r is increasing, the minimum and maximum
values of ! inside the star can be determined as those
values at the stellar surface and center, respectively,
i.e., !ð ~RÞ � ! � !ð0Þ. Combining this evidence with
Eq. (3.14), the frequency of toroidal oscillation should be
limited in the range of

j�minj � j�j � j�maxj; (3.15)

where �min and �max are

�min ¼ �m ~�þ 2m

‘ð‘þ 1Þ
�
~��!ð ~RÞ

�
; (3.16)

�max ¼ �m ~�þ 2m

‘ð‘þ 1Þ
�
~��!ð0Þ

�
: (3.17)

From an observational point of view, it is not sure whether
this continuous spectrum could be observed or not. In fact,
if one considers in GR the fast rotating star (or the coupling
with the spheroidal oscillations), the frequencies of toroi-
dal oscillations also show the discrete spectrum [23,29].
So, the observed frequencies might be a single value in the
range of Eq. (3.15). However, through the analysis as in
this article, we believe that one can estimate how the
gravitational theory affects on the frequency of toroidal
oscillations.

It is well known that with the slowly rotating approxi-
mation, the frequencies of toroidal oscillations in GR are
proportional to the angular velocity. On the other hand, the
frequencies of toroidal oscillations in TeVeS with ‘ ¼ 2
are shown in Fig. 2, where the stellar mass for EOS A
is fixed to be MADM ¼ 1:4M� with K ¼ 0:45. From this
figure, one can see that the frequencies even in TeVeS are

proportional to ~�, the same as in GR. Thus, we can define
the new parameters, amax and amin, as

amax �
��������
�max

m ~�

�������� and amin �
��������
�min

m ~�

��������; (3.18)

which are independent of the value of ~� and m. Figures 3
and 4 show these parameters in GR and in TeVeS as a
function of ~I defined by

~I � ~J
~�
; (3.19)

where ~I is constant and corresponding to the relativistic
generalization of momentum of inertia for slowly rotating
systems [18,30]. In these figures, as increasing the stellar
massMADM along each line, the values of amax and amin are
also increasing. It should be noticed that the value of ~I has
not been observed yet, but ~I is an important parameter
expressing the stellar configuration and that value might be
determined if the phenomena of precession of rotating
compact stars would be observed. From Figs. 3 and 4,
one can see that amax and amin are not so sensitive on the
gravitational theory, while ~I depends strongly on the gravi-
tational theory. In practice, if the values of amax and/or amin

would be determined, the value of ~I could change around
80% depending on the value of vector coupling K.
Additionally, it could be found that the values of amax

and amin are almost independent from the adopted equation
of state, but the corresponding value of ~I depends strongly
on the adopted equation of state. That is, via the detailed
observations of amax (or amin) and ~I, one could distinguish
not only the gravitational theory in the strong-field regime,
but also the equation of state constructed in the compact
object.

FIG. 2 (color online). Frequencies with ‘ ¼ 2 in TeVeS with
K ¼ 0:45 are plotted as a function of the stellar rotational
frequency ~� for the stellar model with MADM ¼ 1:4M� and
EOS A, where the solid lines denote the values of �max, while the
broken lines correspond to those of �min.

FIG. 3 (color online). Values of amax and amin in GR and in TeVeS for EOS A as functions of I, where the solid lines correspond the
results in GR and the dotted lines are those in TeVeS with different values of K, such as K ¼ 0:2, 0.5, 0.7, and 1.0.
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On the other hand, in Figs. 5 and 6, the ratios of amax and
amin in TeVeS to those in GR, which are defined by

�max � aðTeVeSÞmax

aðGRÞmax

and �min � aðTeVeSÞmin

aðGRÞmin

; (3.20)

are plotted as a function of the vector coupling K, where
the stellar masses are fixed as MADM ¼ 1:3M�, 1:4M�,
and 1:5M� for EOS A, and MADM ¼ 1:4M�, 1:6M�, and
1:8M� for EOS II. These figures show that with smaller K,
the values of �max and �min become around 1 indepen-
dently of stellar mass, while with larger K, one can see
small deviation of amax and amin in TeVeS from those in

GR at most a few %. Furthermore, it is also found that as
the stellar mass becomes larger, the values of �max and
�min are larger. So, with massive stellar model and with
larger value of K, it might be possible to distinguish the
gravitational theory by observing the detailed toroidal
oscillations with the help of the observation of stellar mass.

IV. CONCLUSION

In order to examine the dependence of frequencies of
toroidal oscillations on the gravitational theory, we con-
sider such oscillations on the slowly rotating relativistic
star in Tensor-Vector-Scalar (TeVeS) theory, where the

angular velocity ~� is assumed constant. For this aim, we
have derived the perturbation equations describing the
toroidal oscillations of neutron stars in TeVeS and examine
their specific frequencies as varying the vector coupling K
and stellar mass, where as a first step we focus only on the
fluid oscillations and omit the perturbations of tensor,
vector, and scalar fields (the Cowling approximation).
We find that the perturbation equations in TeVeS can be
written same form as in general relativity (GR). Therefore,
similarly in GR, the frequencies of toroidal oscillations
show the continuous spectrum at least in the frame with the
Cowling approximation. Comparing the results in GR and
in TeVeS, one can see that although it seems that those
frequencies are not so sensitive on the gravitational theory,
the value of relativistic generalization of momentum of
inertia depends strongly on the gravitational theory as well
as the adopted equation of state. So, observing the frequen-
cies of toroidal oscillations and momentum inertia with
high accuracy might be able to reveal not only the gravi-
tational theory in the strong-field regime, but also the
equation of state in the higher density region.
In this article, for simplicity, we adopt the Cowling

approximation. That is, our consideration restricts only
on the stellar oscillations. This means that we should do
a more detailed study including the perturbations of other
fields. With the oscillations of other fields, it could be
possible to obtain the additional information about the
different types of oscillation modes. That is, the observa-
tions of other oscillations can provide more accurate con-
straints on the gravitational theory in the strong-field

FIG. 4 (color online). Similar to Fig. 3, but for EOS II.

FIG. 5 (color online). Dependences of �max and �min on K for
EOS A, where the stellar masses are fixed to be 1:3M� (tri-
angles), 1:4M� (squares), and 1:5M� (circles). The solid and
dotted lines correspond to the values of �max and �min, respec-
tively.

FIG. 6 (color online). Similar to Fig. 5, but for EOS II, where
the stellar masses are fixed to be 1:4M� (triangles), 1:6M�
(squares), and 1:8M� (circles).
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regime. On the other hand, we should take into account
the mode coupling between the toroidal and spheroidal
oscillations, although such coupling is a higher order
effect. Considering this type of coupling, it is known in
GR that the spectrum of toroidal oscillations could become
discrete [29]. The same can be expected in the case of
TeVeS. If so, since the spheroidal oscillations depend
strongly on the gravitational theory [17], via the mode
coupling, the frequencies of toroidal oscillations could
also depend strongly on the gravitational theory. Thus,
the observations of toroidal oscillations might become
more important to distinguish the gravitational theory.
Furthermore, it might be important to study the depen-
dence of magnetic effects on the toroidal oscillations. In

practice, the quasiperiodic oscillations have been observed
during the decaying tail of giant flares and these phe-
nomena are believed to be related to the oscillations of
strong magnetized neutron stars [31]. Taking into account
the magnetic effects, it might be possible to obtain the
further constraint in the gravitational theory.
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