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We demonstrate the classical stability of the BTZ black hole within the context of topologically massive

gravity. The linearized perturbation equations can be solved exactly in this case. By choosing standard

boundary conditions appropriate to the stability problem, we demonstrate the absence of modes which

grow in time, for all values of the Chern-Simons coupling.
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I. INTRODUCTION

Topologically massive gravity (TMG) [1], in three-
dimensional anti-de Sitter space has been the subject of
considerable interest recently (see, for example, [2–7] for a
partial list of references). As in any theory, a first step is to
search for solutions to the classical equations of motion.
Fortunately, the structure of the equations for TMG guar-
antee that the known solutions without a Chern-Simons
coupling � ¼ 1 are also solutions when � is finite. In
particular, then, we already have a constant curvature black
hole solution at our disposal, namely, the BTZ black hole
[8]. One of the most remarkable features of the BTZ black
hole is the role that it has played in understanding many
aspects of the AdS/CFT correspondence, and its role in the
near-horizon geometry of higher-dimensional black holes.

Given a black hole solution, a first order of business is to
examine its classical stability properties. Typically, this is
accomplished by resorting to the linearized approximation,
and exploring solutions to the associated boundary value
problem. Our purpose here is to examine the stability of the
BTZ black hole within the context of topologically massive
gravity, for all values of the Chern-Simons coupling �.

The key to our analysis lies in the fact that the perturba-
tion equations can be solved exactly. We can thus search
explicitly for modes which grow in time; the presence
of such modes would indicate a classical instability. Of
course, a crucial ingredient in this analysis is the choice
of boundary conditions. The original asymptotic boundary
conditions for three-dimensional anti-de Sitter gravity
were determined by Brown and Henneaux [9]. Recently,
it has been shown that one may relax these conditions
slightly in topologically massive gravity, for certain ranges
of the coupling � [10]. We adopt these generalized bound-

ary conditions at asymptotic infinity as the appropriate
conditions to impose on the linear perturbations. In the
presence of a black hole background, one also needs to
impose boundary conditions at the horizon. We establish
the fact that by simply demanding boundedness of the
perturbation (necessary for the linearized approximation
to be valid), the absence of unstable modes is guaranteed.
Stability of black holes in warped anti-de Sitter has
recently been discussed in [11].
The plan of this paper is as follows. In Sec. II, we present

the basic equations of topologically massive gravity and
solve directly the first order equations of motion in the
BTZ background. In Sec. III, we identify potential unstable
modes and confront them with the appropriate boundary
conditions. In Sec. IV, we present an alternative approach
to the problem, which is based on the second order analysis
of [4]. The absence of unstable modes in also confirmed
from this viewpoint. In Sec. V, we conclude with some
brief remarks.

II. METRIC PERTURBATIONS

The action for topologically massive gravity is taken in
the form

S ¼ � 1

16�G

Z
d3x

ffiffiffiffiffiffiffi�g
p �

Rþ 2

l2

�
� 1

32��G

�
Z

d3x
ffiffiffiffiffiffiffi�g

p
�����

�
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�
@��

�
�� þ 2

3
��
���

�
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�
; (1)

where� is the Chern-Simons coupling, and the parameter l
sets the scale of the cosmological constant of anti-de Sitter
space, � ¼ �1=l2.
In the following, we will be interested in the linear

approximation around a background spacetime, and there-
fore decompose the metric tensor as g�� ! g�� þ h��.

Working in the transverse traceless gauge, with r�h�� ¼
g��h�� ¼ 0, the equation of motion for a background
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which is locally isometric to anti-de Sitter space takes
the form

ðr2 þ 2Þ
�
h�� þ 1

�
��

	
r	h
�

�
¼ 0: (2)

It is convenient to define the operators

ðDMÞ�
 ¼ ��

 þ 1

�
��

	
r	;

ðDL=RÞ�
 ¼ ��

 � l��

	
r	:

(3)

The third order equation of motion can then be written in
the form [3]

ðDLDRDMhÞ�� ¼ 0: (4)

The first order equation for a massive graviton is given
by ðDMhÞ�� ¼ 0, namely

��
	
r	h
� þ�h�� ¼ 0: (5)

The BTZ black hole metric can be written in the form

ds2 ¼ �sinh2�dt2 þ cosh2�d�2 þ d�2; (6)

where we have introduced the radial coordinate r ¼
cosh�; the horizon and infinity then correspond to
� ¼ 0, 1, respectively. We choose units such that the
mass of the black hole is M ¼ 1 and set l ¼ 1. In the
following, we will also use coordinates u ¼ tþ� and
v ¼ t��.

To solve the equation of motion (5), we make an ansatz
for the perturbation in the form

h�� ¼ e�i!t�ik�

Fuu Fuv Fu�

Fvu Fvv Fv�

F�u F�v F��

0
B@

1
CA: (7)

Using ��uv ¼ 1ffiffiffiffiffi�g
p ¼ 4

sinh2� , the equations of motion can be

written in the form [7]

�hFuu � hFuv ¼
���� 1

4i

�
sinhð2�ÞFu�; (8)

�hFuv � hFvv ¼
���þ 1

4i

�
sinhð2�ÞFv�; (9)

�hFu� �hFv� ¼ i

sinhð2�Þ ½�Fvvð��þ 1Þ
�Fuuð��� 1Þþ 2�coshð2�ÞFuv�; (10)

F�� ¼ 4

sinh2ð2�Þ ½2 coshð2�ÞFuv þ Fuu þ Fvv�; (11)

together with the differential equations

dFuv

d�
¼

���þ 1

sinhð2�Þ
��

Fuv

�
4h �h

ð��þ 1Þ2 � coshð2�Þ
�

� Fvv

�
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ð��þ 1Þ2
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dFvv

d�
¼

���þ 1

sinhð2�Þ
��

�Fvv

�
4h �h

ð��þ 1Þ2 � coshð2�Þ
�

þ Fuv

�
1þ 4 �h2

ð��þ 1Þ2
��

; (13)

where we have defined h ¼ ð!þ kÞ=2, �h ¼ ð!� kÞ=2.
The case of chiral gravity � ¼ �1 will be treated sepa-
rately below.
The Eqs. (12) and (13) are readily transformed into a

second order hypergeometric equation (see [7] for details).
The asymptotic � dependence of the two solutions of

the second order equation is of the form Fvv / eð1��Þ�

and Fvv / eð3��Þ�, respectively. The solutions with the
former asymptotic behavior are obtained as descendants
of a ‘‘highest weight’’ solution [6] of (8)–(13), which is
obtained by setting Fuu ¼ Fuv ¼ Fu� ¼ 0. We then have

Fv� ¼ i

sinhð2�Þ
���þ 1

h

�
Fvv; (14)

F�� ¼ 4

sinh2ð2�ÞFvv; (15)

h ¼ � i

2
ð��þ 1Þ: (16)

Choosing the branch h ¼ i
2 ð��þ 1Þ, we find a right-

moving solution

hR�� ¼ eð1��Þtþikðt��Þðsinh�Þ1��ðtanh�Þik

�
0 0 0

0 1 2
sinhð2�Þ

0 2
sinhð2�Þ

4
sinh2ð2�Þ

0
BBB@

1
CCCA; (17)

while the branch h ¼ � i
2 ð��þ 1Þ also leads to a right-

moving solution

HR
�� ¼ eð��1Þtþikðt��Þðsinh�Þ1��ðtanh�Þ�ik

�
0 0 0

0 1 � 2
sinhð2�Þ

0 � 2
sinhð2�Þ

4
sinh2ð2�Þ

0
BBB@

1
CCCA: (18)

From the above expressions we see explicitly that (17) and
(18) are ingoing and outgoing at the horizon, respectively.
The outgoing modes are relevant for white holes while the
ingoing modes are relevant for black holes.1 We will thus
focus on the mode (17).

1In fact, it turns out that even if we were to keep the outgoing
modes, they would be eliminated by the boundary conditions
given below.
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The solutions of the second order equation with asymp-

totic behavior Fvv / eð��3Þ� are descendants of an ingoing
highest weight solutions obtained from (17) upon substi-
tution u $ v, h $ �h, � ! ��, leading to

hL�� ¼ eð1þ�Þt�ikðtþ�Þðsinh�Þ1þ�ðtanh�Þ�ik

�
1 0 2

sinhð2�Þ
0 0 0
2

sinhð2�Þ 0 4
sinh2ð2�Þ

0
BBB@

1
CCCA: (19)

III. STABILITY

The task now is to identify those solutions which obey
the generalized boundary conditions [10] at infinity, and
which grow in time. In terms of the coordinates ð�; u; vÞ,
an admissible metric perturbation has to satisfy either the
boundary conditions

h�� ¼ e�2�f��;

h�u ¼ e�2�f�u;

h�v ¼ k�ve
�ð1þ�Þ� þ e�2�f�v;

huu ¼ fuu;

huv ¼ fuv;

hvv ¼ kvve
ð1��Þ� þ fvv;

(20)

or the boundary conditions

h�� ¼ e�2�f��;

h�u ¼ k�ue
ð�1þ�Þ� þ e�2�f�u;

h�v ¼ e�2�f�v;

huu ¼ kuue
ð1þ�Þ� þ fuu;

huv ¼ fuv;

hvv ¼ fvv:

(21)

Here, the functions f and k may only depend on ðu; vÞ but
are otherwise unrestricted. The additional �-dependent
terms are absent for j � j >1. Upon examination of the
above solutions, we observe that the ingoing solutions
grow exponentially in time, and also satisfy these boundary
conditions, provided j � j <1. These solutions thus repre-
sent potentially unstable modes. The right-moving per-
turbation hR�� obeys the boundary conditions (20), while

the left-moving solution hL�� obeys the boundary condi-

tions (21). We wish to determine if such solutions can be
eliminated by imposing a physically acceptable boundary
condition at the horizon. To see this, it suffices to invoke
boundedness of the solution, which is required in order for
the linear approximation to be valid [12–14]. Boundedness
of the solution near the horizon is most easily seen by
transforming to Kruskal coordinates [15]

R ¼ tanh
�

2
cosht; T ¼ tanh

�

2
sinht: (22)

Since the Kruskal coordinates are well defined at the
horizon, we must also require the perturbation to be well
behaved there. However, one can check that the Kruskal
components of hL�� and hR�� diverge at the horizon, thus

excluding them as physically acceptable. For example, if
we examine the relation between the components of hR��

in the ð�; u; vÞ and ðR; T;�Þ coordinate systems near the
horizon at t ¼ 0, we find that hRR � h��, hTR � ��1hv�,

hTT � ��2hvv. From (17), it is then clear that boundedness
of the perturbation in the Kruskal coordinates requires
�<�1, which is therefore incompatible with the con-
dition j�j< 1. Alternatively, one may state that bounded-
ness of the perturbation requires the existence of a
nonsingular linearized diffeomorphism, �� with h�� !
r��� þr��� such that g�	h	� � 1, and this leads to

boundary conditions both at the horizon and infinity.
Given the explicit expression

ðhLÞ�� ¼ eð1þ�Þt�ikðtþ�Þðsinh�Þ1þ�ðtanh�Þ�ik

�
� 4

sinh2ð2�Þ 0 � 8
sinh3ð2�Þ

� 4 coshð2�Þ
sinh2ð2�Þ 0 � 8 coshð2�Þ

sinh3ð2�Þ
2

sinhð2�Þ 0 4
sinh2ð2�Þ

0
BBBB@

1
CCCCA; (23)

which satisfies the asymptotic boundary conditions at
infinity for j�j< 1, it is not difficult to show that a non-
singular diffeomorphism that renders the perturbation
bounded at the horizon cannot exist for this range of �.
For example, in order to be able to write ðhLÞ�� in the form
r��� requires a diffeomorphism �� � �� near the hori-

zon. However, this is nonsingular only when �> 1, which
is thus incompatible with the requirement j�j< 1.
A similar argument applies to the right-moving perturba-
tion ðhRÞ��. Thus, the solutions are excluded as physically
unacceptable. It should also be noted that for j�j> 1, the
relevant boundary conditions are given by (20) and (21)
without the �-dependent terms. As a result, there are no
potentially unstable modes which grow exponentially in
time and obey these boundary conditions.
The generic metric perturbation with the same asymp-

totic behavior as (19) has a time dependence given by
replacing � ! �� 2n, n 2 N in the exponent [6].
However, for n � 0, there are no growing modes which
satisfy the asymptotic boundary conditions. Similarly,
generic metric perturbation with the same asymptotic
behavior as (17) have a time dependence given by replac-
ing� ! �þ 2n, n 2 N. Again, such modes are excluded
by the asymptotic boundary conditions.
The remaining case to deal with is when � ¼ �1. The

modes (17) and (19) then become pure gauge transforma-
tions and thus do not represent a physical perturbation of
the black hole. However, at the chiral point � ¼ 1, a new
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class of logarithmic modes arises [5]. It is obtained by
differentiating (17) before setting � ¼ 1 [16], leading to a
solution of the form

hlog�� ¼ �yð�; �ÞhR��; (24)

where yð�; �Þ ¼ �þ ln½sinhð�Þ�. The generalized bound-
ary conditions for � ¼ �1 can be obtained by making the

replacement eð1��Þ� ! � in (20), and eð1þ�Þ� ! � in (21).
The asymptotic � dependence of (24) is then consistent
with these generalized boundary conditions. However, as is
clear from the form of yð�; �Þ, the nonboundedness of hR��

at the horizon implies the nonboundedness of h
log
��, and

consequently all of its descendants. The antichiral point
� ¼ �1 is treated in a similar fashion.

In conclusion, we have show that all potentially unstable
solutions, growing in time and obeying the generalized
boundary conditions at asymptotic infinity are excluded
by the requirement of boundedness of the solution at the
horizon. According to these criteria, the BTZ black hole is
thus a stable solution of topologically massive gravity for
all values of the Chern-Simons coupling �.

IV. SCALAR FORMULATION
OF METRIC PERTURBATIONS

In [4], it was shown that the action for topologically
massive gravity can be recast in terms of a single massive
scalar field, with the mass related to the Chern-Simons
coupling parameter. Consequently, it was established that
the perturbation equations for all gauge invariant modes
can be formulated as second order massive scalar field
equations. It is well know that the equation for a massive
scalar field in the background of the BTZ metric can be
solved exactly in terms of hypergeometric functions,
and this will allow us to explicitly study the stability of
the BTZ black hole. As well as confirming the analysis of
the previous section, it will also highlight an alternative
viewpoint on the boundary conditions relevant for a stabil-
ity analysis.

It is well known that there exists a class of topological
black holes in anti-de Sitter space, with line element [17]

ds2 ¼ �fðrÞdt2 þ f�1ðrÞdr2 þ r2hijðxÞdxidxj; (25)

where

fðrÞ ¼
�
k� 2M

rd�3
þ r2

l2

�
: (26)

The parameter k can take the values k ¼ 1, 0, �1, and the
cosmological constant is � ¼ �ðd� 1Þðd� 2Þ=2l2. The
novel feature of these topological black holes is the
fact that there exists a massless black hole when k ¼ �1.
The crucial point to note here is that the metric ansatz for
the BTZ black hole (with mass parameter equal to one) is
of the same form as the massless topological black hole
with M ¼ 0, k ¼ �1, d ¼ 3, and we set l ¼ 1. Thus, the

stability analysis of the massless topological black hole
performed in [18] can be used to analyze the stability of
the BTZ black hole within the context of topologically
massive gravity. In [18], the massive scalar field equation
was solved exactly. However, in order to apply those
results to the case at hand, we need to specify the scalar
field in terms of metric components, and re-analyze the
stability question within that context.
To proceed, we consider a scalar field� of massm in the

BTZ background,

ðr2 �m2Þ� ¼ 0: (27)

As shown in [4], the essential dynamics of topologically
massive gravity is encoded in a scalar field of mass
m2 ¼ ð��þ 2Þ2 � 1. Furthermore, all independent gauge
invariant perturbations can be recast as scalar field equa-
tions for various masses. Choosing the ansatz

� ¼ �ðrÞe!t�ik�; (28)

brings the radial equation to the form�
�
�
f
d

dr

�
2 þ V

�
�ðrÞ ¼ �!2�ðrÞ; (29)

where � ¼ r1=2�, and

V ¼ f

r2

�
k2 þ 1

4
þ

�
3

4
þm2

�
r2
�
: (30)

In order to investigate the stability properties of the
black hole, it is useful to recast Eq. (29) as a Sturm-
Liouville equation

A� ¼ ��; (31)

where the Schrödinger operator is given by

A ¼ � d2

dr2�
þ VðrÞ; (32)

with eigenvalue � ¼ �!2, and the tortoise coordinate r�
is defined by dr� ¼ dr

f . Our task is to solve this equa-

tion subject to appropriate boundary conditions. Given
the Sturm-Liouville form, this involves searching for
eigenvalue solutions which are normalizable with respect
to the standard measure [12,19],

1 ¼
Z

dr����: (33)

In particular, unstable modes will correspond to normal-
izable (!> 0) states of the Schrödinger operator A.
Near the horizon, this condition of normalizability

demands that the solution behave as �� ðr� 1Þ�, and
thus we impose a Dirichlet boundary condition � ! 0
on the perturbation [12,19,20]. For large r, normalizability

requires�� rð1=2Þ��. However, the scalar field for TMG is
related to a metric component by [4]

� ¼ z3=2hzz; (34)

DANNY BIRMINGHAM, SUSAN MOKHTARI, AND IVO SACHS PHYSICAL REVIEW D 82, 124059 (2010)

124059-4



where the upper half-space coordinate z� 1
r for large r. In

terms of this coordinate, the generalized asymptotic
boundary condition is hzz ¼ Oð1Þ, and thus we require
�� 1

r3=2
, for large r.

To proceed towards the solution of (29), we change
variables to a new radial coordinate defined by

z ¼ 1� 1

r2
: (35)

Thus, z ¼ 0 now corresponds to the location of the horizon
r ¼ 1, while z ¼ 1 corresponds to r ¼ 1. The master
equation can then be written as

zð1� zÞ d
2�

dz2
þ

�
1� 3z

2

�
d�

dz
þ

�
A

z
þ Bþ C

1� z

�
� ¼ 0;

(36)

where

A ¼ �!2

4
;

B ¼ � 1

4

�
1

4
þ k2

�
;

C ¼ � 1

4

�
m2 þ 3

4

�
:

(37)

Defining

�ðzÞ ¼ z	ð1� zÞ
FðzÞ; (38)

allows the master equation to be reduced to hypergeomet-
ric form

zð1� zÞ d
2F

dz2
þ ½c� ðaþ bþ 1Þz� dF

dz
� abF ¼ 0; (39)

provided that

	 ¼ �!

2
; 
 ¼ 1

4
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

p
; (40)

with the coefficients determined as follows:

a ¼ 1

4
þ 	þ 
þ 1

2

ffiffiffiffiffiffiffiffiffi
�k2

p
;

b ¼ 1

4
þ 	þ 
� 1

2

ffiffiffiffiffiffiffiffiffi
�k2

p
;

c ¼ 2	þ 1:

(41)

Without loss of generality, we can take

	 ¼ !

2
; 
 ¼ 1

4
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

p
: (42)

In the neighborhood of the horizon, the two linearly
independent solutions of (39) are Fða; b; c; zÞ and
z1�cFða� cþ 1; b� cþ 1; 2� c; zÞ. With the choice
(42), the solution which is regular (satisfying Dirichlet
boundary conditions) at the horizon is then given by

�ðzÞ ¼ z	ð1� zÞ
Fða; b; c; zÞ: (43)

Having imposed the Dirichlet boundary condition at the
horizon, we can now analytically continue this solution to
infinity. In general, the form of the solution near z ¼ 1 is
given by [21]

� ¼ z	ð1� zÞ
 �ðcÞ�ðc� a� bÞ
�ðc� aÞ�ðc� bÞ

� Fða; b; aþ b� cþ 1; 1� zÞ

þ z	ð1� zÞ
þc�a�b �ðcÞ�ðaþ b� cÞ
�ðaÞ�ðbÞ

� Fðc� a; c� b; c� a� bþ 1; 1� zÞ; (44)

where c� a� b ¼ 1
2 � 2
. The generalized asymptotic

boundary condition requires that �� ð1� zÞ3=4 near
z ¼ 1. First, we consider the case when m2 > 0. Then

<� 1

4 and the second term in (44) clearly vanishes at

infinity. In order to guarantee the vanishing of the divergent
first term, we must demand that

c� a ¼ �n; or c� b ¼ �n; (45)

where ðn ¼ 0; 1; 2; 3; . . .Þ. In particular, the condition c�
a ¼ �n becomes

! ¼ �1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

p
þ

ffiffiffiffiffiffiffiffiffi
�k2

p
� 2n: (46)

It is then clear that unstable modes with!> 0 do not exist
since k2 � 0.
For m2 ¼ 0, corresponding to � ¼ 1, we have


 ¼ �1=4, and c� a� b ¼ 1. As a result, the analytic
continuation to z ¼ 1 contains logarithmically divergent
terms, and is given by

� ¼ z	ð1� zÞ�1=4 �ðaþ bþ 1Þ
�ðaþ 1Þ�ðbþ 1Þ

þ �ðaþ bþ 1Þ
�ðaÞ�ðbÞ z	ð1� zÞ3=4 X1

n¼0

ðaþ 1Þnðbþ 1Þn
n!ðnþ 1Þ!

� ð1� zÞn½lnð1� zÞ � c ðnþ 1Þ � c ðnþ 2Þ
þ c ðaþ nþ 1Þ þ c ðbþ nþ 1Þ�; (47)

where ðaÞn ¼ �ðaþ nÞ=�ðaÞ, and c ðzÞ ¼ �0ðzÞ=�ðzÞ. To
guarantee the absence of the divergent first term, we now
require aþ 1 ¼ �n or bþ 1 ¼ �n. Note that these con-
ditions also ensure the vanishing of the logarithmic terms
in (47). Since c� a� b ¼ 1, we can write these condi-
tions as (45), which we have already shown have no
solutions. The appearance of logarithmic terms in the
solution here is equivalent to their appearance in the for-
malism of Sec. III.
For �1<m2 < 0, the range of 
 is � 1

4 <
< 1
4 , and

the solution is given by (44). The absence of unstable
solutions is again guaranteed by (45).
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Finally, for m2 ¼ �1, we have 
 ¼ 1
4 , and c� a�

b ¼ 0. The solution then takes the form

� ¼ z	ð1� zÞ1=4 �ðaþ bÞ
�ðaÞ�ðbÞ

X1
n¼0

ðaÞnðbÞn
ðn!Þ2

� ½2c ðnþ 1Þ � c ðaþ nÞ � c ðbþ nÞ
� lnð1� zÞ�ð1� zÞn: (48)

Consistency with the generalized asymptotic boundary
conditions requires a ¼ �n or b ¼ �n. However, since
c� a� b ¼ 0, these conditions again reduce to (45).

In conclusion, we have established the absence of un-
stable modes for the BTZ black hole within the scalar field
formulation of topologically gravity. This result confirms
the first order analysis of the previous section. In the
previous section, we used boundedness of the perturbation
at the horizon to eliminate the potentially unstable modes.
It is worth mentioning that these modes can also be elim-
inated by requiring the perturbation to be normalizable
at the horizon. Normalizability at the horizon requires
that �� ðr� 1Þ�, and hence h�� � �2þ�. By examining

the solutions hL we see that normalizability at the horizon
requires �> 3. For hR normalizability at the horizon
requires �<�3. Both conditions are incompatible with
the generalized asymptotic boundary conditions, thereby
excluding such modes.

V. DISCUSSION

We have discussed the classical stability of the BTZ
black hole as a solution of topologically massive gravity.
The linearized perturbation equations are exactly solvable,
and this allowed us to explicitly examine the behavior of
the solutions subject to certain boundary conditions at the
horizon and infinity. Using the Brown-Henneaux boundary
conditions at infinity, extended to incorporate the Chern-
Simons term, and boundedness of the perturbation at the
horizon, allows us to establish the stability of the BTZ
black hole. This result was confirmed by studying the
perturbation within the scalar field formulation of [4],
and using normalizability of the perturbation.
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[8] M. Bañados, C. Teitelboim, and J. Zanelli, Phys. Rev. Lett.

69, 1849 (1992).
[9] J. D. Brown and M. Henneaux, Commun. Math. Phys. 104,

207 (1986).
[10] M. Henneaux, C. Martinez, and R. Troncoso, Phys. Rev. D

79, 081502 (2009).

[11] D. Anninos, G. Compère, S. de Buyl, S. Detournay, and
M. Guica, J. High Energy Phys. 11 (2010) 119.

[12] G. Gibbons and S. A. Hartnoll, Phys. Rev. D 66, 064024
(2002).

[13] C. V. Vishveshwara, Phys. Rev. D 1, 2870 (1970).
[14] R. Gregory and R. Laflamme, Nucl. Phys. B428, 399

(1994).
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