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We study a system of an elastic ball moving in the nonrelativistic spacetime with a nontrivial causal

structure produced by a wormhole-based time machine. For such a system, it is possible to formulate a

simple model of the so-called ‘‘grandfather paradox’’: for certain ‘‘paradoxical’’ initial conditions, the

standard straight trajectory of the ball would self-collide inconsistently. We analyze globally consistent

solutions of local equations of motion; namely, we find all trajectories with one self-collision. It is

demonstrated that all standard initial conditions have a consistent evolution, including those paradoxical

ones, for which the inconsistent collision-free trajectory is superseded by a special consistent self-

colliding trajectory. Moreover, it is shown that for a wide class of initial conditions, more than one

globally consistent evolution exist. The nontrivial causal structure thus breaks the uniqueness of the

classical theory even for locally deterministic physical laws.
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I. INTRODUCTION

Time travel is a phenomenon which has been attracting
interest both in fiction and general discussions for a long
time. However, only after a formulation of the theory of
relativity could such considerations be investigated on a
more scientific and solid basis. Already, special relativity
shows that different observers experience different times
and one of them can ‘‘travel’’ to the future of others by
means of his relative motion. Thanks to the general theory
of relativity a possibility opens that an observer could
travel even to his own past—his worldline could pass
through a geometrically or topologically nontrivial area
to a region where the worldline originally started [1,2].
Worldlines which even cross themselves are called closed
timelike curves (CTCs), and it is customary to say that
spacetimes with CTCs contain time machines [3,4].

Spacetimes with time machines are causally nontri-
vial—in such spacetimes one can send a signal to one’s
own past or even try to influence the past—which imme-
diately opens a question of consistency of standard physi-
cal laws as we know them. On a formal level, it is the
question of the existence of solutions of physical equations
of motion and the question of whether the initial value
problem is well-possessed. On a less formal level, these
problems can be phrased as the well-known ‘‘grandfather
paradox,’’ suggested, e.g., in [5–7]: in spacetimes with time
machines, one has to face a logical riddle of what happens
if one travels to his own past and kills his grandfather.
Consequently, one would never be born, and therefore, one
could not travel to the past.

This is a clearly inconsistent situation which suggests
that spacetimes with CTCs are pathological and they

should be excluded from serious scientific consideration.
However, a system containing live beings is too compli-
cated by too many unknown physical laws, and therefore,
one cannot be sure that the inconsistency of the grandfather
paradox is really inescapable. Therefore, people have tried
to formulate analogous situations for much simpler sys-
tems which could be studied exactly [8–11].
As an example, in [12], and especially in [13], the

system of the billiard balls in spacetime with wormholes
has been studied. This system allows a straightforward
reformulation of the grandfather paradox: the ball could
be sent through the time machine in such a way that it hits
itself and thus inconsistently prevents its entry to the time
machine, cf. Fig. 1. It seems that such paradoxical initial
conditions do not lead to a consistent evolution of the
system.
Perhaps surprisingly, the extensive studies of systems

with CTCs during the 1980s and the 1990s showed that for
a simple physical system, pathology of spacetimes is not so
severe and the equations of motion can be consistently
solved.
Let us formulate this point more precisely. We consider a

spacetime containing a time machine and we want to study
a system with well-known local physical laws (e.g., a
particle or electromagnetic field). We do not change these
local laws, i.e., we require that they hold locally in
any small spacetime domain. However, in addition to the
local laws, we also require the so-called principle of self-
consistency [8,10,14]. Namely, a globally consistent solu-
tion of local laws must exist. It means that we allow the
system to propagate to its own past; however, it must be
done in a consistent way with the original evolution in
the past. The past cannot be changed since it has already
been changed.
The key question of studies of time machines is whether

such globally consistent evolutions exist for given local
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laws and whether these global evolutions are sufficiently
generic. More accurately, we would like to show that there
exist consistent solutions for all, or, at least, for almost
all standard initial data. Otherwise, if the local laws have
no globally consistent solution, the spacetime would be
clearly pathological and we could rule it out from our
consideration. Similarly, the pathology would be serious
if the local physical laws had only few globally consistent
solutions.

As we have said, the studies of different systems show
that spacetimes with CTCs are not necessarily causally
pathological. Let us mention the results for a system of
interacting particles [8,12,13] or the scalar field theory
[9,10], where it was shown that standard local laws have
generic globally consistent solutions even in the presence
of CTCs. Another surprising result of such studies is that
the existence of time machines does not usually restrict
a number of consistent solutions, but on the contrary, it
leads to a possibility of more than one globally consistent
solution for given initial values. In spacetimes with time
machines, we thus usually lose the uniqueness of the
evolution [13].

Especially for the apparently paradoxical initial condi-
tions from the grandfather paradox-like situation, it was
shown [13] that a consistent evolution exists, although it
can be rather nonintuitive. On less formal level of the
human version of the paradox, it could be rephrased as a
conjecture of a hidden law which always prevents the
grandson from killing his grandfather [15].

In the present work, wewant to study the system of a ball
moving in a nonrelativistic space with CTCs, which is very
close to that of [13]. However, we have chosen a different
time-machine configuration which significantly simplifies
the analysis. We will be able to solve the equations of
motion explicitly and we will confirm the behavior de-
scribed above: paradoxical initial conditions are not really
paradoxical, and the evolution is not, in general, unique.
The contribution of our analysis is that it can be done very
explicitly, since our model is sufficiently simple; at the
same time, it is sufficiently nontrivial to reproduce the
most important features of systems with time machines.

Our work proceeds as follows. In the next section, we
describe the system of a ball moving in the space with
wormhole-based time machine. We derive the equations
characterizing trajectories. In Sec. III, we discuss the char-
acter and number of solutions for various initial conditions
and also the resolution of the ‘‘grandfather paradox’’.
Section IV describes the geometry of the trajectories, and
the paper is summarized in the conclusion.

II. DESCRIPTION OF THE SYSTEM

A. Wormhole time machine

The simplest and most natural way to construct a space-
time with CTCs is to use a wormhole [7,11,13]. The worm-
hole can be viewed as a shortcut between two location of
the spacetime. It forms CTCs if one of the mouths of the
wormhole lies in the past of the other mouth.
In the nonrelativistic setting, we can consider spatial

wormholes connecting two places in space with an addi-
tional time shift. The speed of light is infinite, and it
determines a unique notion of simultaneity and thus allows
us to define a global time—at least, before introducing the
time difference. Introducing the time shift means that
traveling through the wormhole not only sends the observer
to a different place in space but also to a different time.
A simple spatial wormhole in otherwise Euclidian space

can be obtained by the cutting and gluing method. For
example, we can cut out two spheres and glue their sur-
faces together, cf. [3] or [13]. We thus obtain a topologi-
cally and geometrically nontrivial space—it is not a simply
connected space, and the geometry on the glued surface is
not flat.
In this work, we consider an even simpler situation of the

wormhole with planar mouths instead of spherical ones.
Namely, we cut out from the space two planar sections
which we identify, as in Fig. 2. Since we use flat planar
sections, their identification is geometrically trivial. The

identified

identified

FIG. 2. Spatial representation of two simple wormholes. A
wormhole obtained by gluing two planar sections cut from
otherwise Euclidian space. Planar wormhole mouths could be
obtained, e.g., by squeezing the mouths of the spherical worm-
hole into very thin planes). The external curvature, with the
exception of the boundary of the planar sections, is vanishing,
and the geometry through the wormhole is thus flat.
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FIG. 1. The ball self-colliding inconsistently. The ball (in gray)
comes from a distant region and enters the wormhole without
any self-collision. It leaves the time machine (now in white) in
such a way that it inconsistently hits itself. Thus, this situation
represents an inconsistent evolution which is the direct analogue
of the grandfather paradox.
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whole curvature of the mouths is squeezed to the borders of
the planar sections, which can be understood as a kind of
solid frames on which the traversable parts of the worm-
hole are spanned. To avoid a discussion of the wormhole
boundary, we assume that the planar sections are much
larger than the scales of our experiments. As idealization,
we consider the mouths of our wormhole to be two half-
planes which form an angle � with a common boundary
line, called the axis.

If we identify these half-planes (first, say, at the same
moment of time), the space between them becomes a
locally Euclidean space with a conical singularity localized
on the axis. Indeed, if we restrict ourselves to the two-
dimensional picture and ignore the direction parallel to the
axis, our space forms a cone with the angle � around the
vertex.

Of course, this is a overidealized situation. We should
keep in mind that the mouths of the wormhole are large but
finite, so somewhere very far from the axis, the conical part
of the space ends and goes over to the full Euclidean space.
But in most of our discussions, we restrict ourselves only to
the part of the space between the mouths of the wormhole.
We thus effectively work in the conical space with angle �
around the axis.

Let us stress that in our construction, the mouths of the
wormhole are special and privileged. However, after en-
larging them to the semi-infinite size and restricting our-
selves only to the conical space between mouths, we can
no longer localize the position of the mouths by local
experiments. The geometry through the mouths is locally
Euclidean, as it is anywhere else. We thus obtained a space
which is axially symmetric with respect to the rotation
around the axis (it has also translation symmetry along
the axis and it is static). The position of the wormhole can
be identified only on scales larger than the wormhole, from
the surrounding globally Euclidean space.

Finally, we assume that the angle � 2 ð�2 ; �Þ. For �

smaller than �, we obtain interesting situations when the
straight trajectory of a free particle intersects itself. For
� > �=2, the straight trajectory intersects itself only once.
The second condition is not a crucial assumption; it just
simplifies the discussion.

Since we want to study a space with a time machine, we
have to identify the mouths of the wormhole with a time
shift�t. Of course, it destroys the standard causal structure
of the nonrelativistic spacetime (a clear distinction be-
tween future and past). Despite this, we will keep using
and referring to the original notion of the simultaneity and
to the global time of the surrounding space, which is,
certainly, reasonable for small wormholes; however, we
admit that it can be slightly confusing and less founded in
the idealized case considered below.

Indeed, the constructed spacetime is still locally
Euclidian (except the axis, of course), but endowed with
a strange causal structure. Hypersurfaces of simultaneity

(visualized in the standard nonrelativistic spacetime dia-
gram as horizontal planes) propagate through the worm-
hole and form ‘‘helical’’ surfaces winding around the axis.
This indicates that the spacetime contains CTCs. The
particle moving toward the wormhole reads that the exter-
nal time t increases continuously until it enters the worm-
hole mouth. By crossing one of the mouths, the external
time t either increases by �t into tþ �t, or decreases by
��t into t��t.
This can be visualized in the spacetime diagram in

Fig. 3. Here, two spatial directions perpendicular to the
axis are shown in horizontal directions; the direction par-
allel to axis is suppressed. The vertical direction corre-
sponds to time. Semiplanar mouths of the wormhole at one
moment are thus depicted as horizontal semilines, their
time evolution as vertical half-planes. The identification of
two such half-planes is not on the same vertical level, but
with the vertical shift �t. We assume that going through
the wormhole in counterclockwise direction takes us time
�t > 0 to the past, in clockwise direction to the future.

B. Equation of motion

Now, we want to derive equations of motion for a ball
moving in the nonrelativistic spacetime which has just
been described. We assume that the motion satisfies
classical local laws of motion. Additionally, we restrict
ourselves to motions perpendicular to the axis of the worm-
hole because the ball can self-interact only for such a
motion.
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FIG. 3. A spacetime diagram of the conical time machine.
The vertical direction is temporal; horizontal planes correspond
to the hypersurface of simultaneity of the original spacetime
(the third spatial direction is suppressed). Two half-planes on the
boundary of the conical spacetime represent the history of the
mouths of the wormhole, and they are identified with a time
shift �t.
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Clearly, a free particle moves uniformly along a straight
line. However, for � 2 ð�=2; �Þ, a straight line in a conical
space must intersect itself. If the trajectory of the particle
crosses itself in different times, we speak about self-
intersection. If the particle intersects its trajectory exactly
at the same time—which is allowed thanks to time shift
��t gained in the wormhole—it hits itself and we speak
about self-collision. Our goal is to describe trajectories
with exactly one consistent self-collision.

We assume that an elastic collision occurs when the ball
collides with itself. The classical elastic impact of two balls
is determined by the momentum and energy conservation
and the assumption that it occurs in one plane. In our case,
two versions of the same ball collide: the younger version
of the ball coming from infinity hits the older version
coming from the wormhole; after the collision, the younger
ball flies to the wormhole and the older one flies away to
infinity. Since the traverse of the wormhole does not
change the velocity of the ball, magnitude v of the out-
going velocity ~v of the younger ball is the same as the
magnitude of the incoming velocity ~v0 of the older ball. All
these conditions determine [16] that the impact of the ball
with itself must have the form depicted in Fig. 4. Namely,
in the rest frame of the wormhole, the incoming velocity ~u
of the younger ball is complementary to the mirror reflec-
tion of the outgoing velocity ~u0 of the older ball with
respect to the plane tangent to balls at the point of impact.
We call this plane the impact plane. Similar property holds
for velocities ~v and ~v0. Moreover, projections of the in-
coming and outgoing velocities ~u and ~v (respectively, ~v0
and ~u0) to the impact plane are the same.

Now, we want to find a location of the self-collision in
such a way that the outgoing younger ball consistently
passes to the incoming older ball. It can be done [16] in
two ways, depicted in Fig. 5. The key property is that the
impact plane must be radial, i.e., it contains the axis
(dashed line in the figure). Type I represents the situation
when the older ball touches the younger one by its rear part,
i.e., the younger version must collide from the left side.1

For type II, the younger ball touches its older version by its
front part and is incoming from the right side.
For both types, we can distinguish the physical colli-

sions with a positive momentum transfer from the younger
ball to the older ball from ‘‘spurious’’ collisions which
would need a negative momentum transfer. The latter are
unphysical not only for the sign of the exchanged momen-
tum but also because the ball would not fit geometrically
into space for such collisions—it would have to fly through
itself. For the physical self-collision of type I, the younger
ball must deflect leftward, i.e., closer to the vertex than if
it followed the collision-free trajectory. For the physical

u'

v

u + v'

v'

u

v'

FIG. 4. Character of self-collision of the ball with itself. The
incoming velocity ~u of the younger version of the ball (in gray) is
complementary to mirror reflection of the outgoing velocity ~v0 of
the older version of the ball (white) and similarly for velocities
~u0 and ~v.

(a)

(b)

FIG. 5. Physical self-collisions of types I and II. (a) The con-
figuration of type I represents a situation in which the younger
ball (in gray) is on the left side while the older ball (in white) is
on the right side with respect to the radial line. The self-collision
is physical when the momentum transfer is positive and the
trajectory of the particle is deflected leftward. (b) The configu-
ration of type II represents a situation in which the older ball is
on the left side while the younger ball is on the right side with
respect to the radial line. The self-collision is physical if the
trajectory of the particle is deflected rightward.

1Left and right side are selected by our choice of time shift of
the time machine.
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self-collisions of type II, the trajectory of the younger ball
is deflected rightward, cf. Fig. 5.

C. Pointlike particle

To determine parameters of the self-collision, we start
with a simpler case of a point particle, i.e., taking radius of
the ball R ! 0. In this case, the distinction between the
two types described above disappears2 and the geometry of
the self-collision is depicted in Fig. 6. The trajectory of the
incoming particle can be determined by two initial parame-
ters: the impact parameter �, which gives the distance of
the incoming trajectory from the vertex of the cone, and
the magnitude of incoming velocity u > 0. We adopt the
convention that the impact parameter � is positive if the
particle circles the cone in the counterclockwise direction,
and it is negative if it circles the cone in the clockwise
direction.

Of course, the parameters u and � do not determine the
incoming trajectory uniquely since they do not specify its
angular location around the axis and its temporal loca-
tion—we would need two additional parameters for that.3

However, the conical space has the rotational symmetry
and is static, so the exact angular and temporal location are
irrelevant for the character of solutions. Therefore, we can
ignore the additional initial parameters when we investi-
gate the geometry of the self-collision.

The self-collision can be parametrized by its radial
distance r > 0 from the axis and by the oriented scattering
angle ! 2 ð� �

2 ;
�
2Þ between the outgoing trajectory and

the radial direction; see Fig. 6(a).
Thanks to the symmetry of the self-collision with re-

spect to the radial direction, the angle ! also determines
the direction of incoming trajectory. For the same reason,
the outgoing particle also has velocity u and impact pa-
rameter �. The angle between the inner trajectory and the
radial direction is determined by the conical geometry and
it is equal to �

2 � �
2 , cf. Fig. 6(b). The length s of the inner

trajectory is then s ¼ 2r sin�=2.
The collision parameters r and ! encode the same

information as the initial parameters u and �. Indeed, �
in terms of r and ! is given by the simple geometry

� ¼ r sin!: (2.1)

Since the radial projection of the particle velocity before
and after the collision is the same (as a consequence of the
laws of the elastic impact, as we discussed for finite balls),
the incoming velocity u is related to the inner velocity v
along the trajectory between the self-collision as

u cos! ¼ v sin
�

2
: (2.2)

However, the inner velocity must be such that the particle
passes the inner trajectory exactly in the time �t gained in
the wormhole,

v ¼ s

�t
¼ 2r sin�2

�t
: (2.3)

We thus obtain relation for u:

u ¼ 2rsin2 �
2

�t cos!
: (2.4)

(a)

(b)

FIG. 6. Geometry of self-colliding point-particle trajectory.
(a) A point particle is approaching the wormhole from infinity
with a velocity u and impact parameter �; it collides with the
version of itself which has already passed through the time
machine, and with a velocity v moves toward the wormhole.
After passing the wormhole and self-colliding with itself, it
moves with the velocity u back to infinity. The self-collision
occurs at the distance r from the axis, and the outgoing trajectory
forms with the radial direction the orientated angle !. Thanks to
symmetry of the self-collision with respect to radial direction,
the angle ! is half of the angle between the incoming and
outgoing trajectory. (b) The same situation depicted in a map
which cuts the conical space not along the wormhole but along
the radial direction through the self-collision. The length s of the
straight trajectory between its self-intersection is given by s ¼
2� tan�2 ¼ 2r sin�2 .

2More precisely, the physical solutions of type I are geomet-
rically identical to spurious solutions of type II and vice versa.
Of course, for a point particle we cannot distinguish from which
side the particle hits itself.

3Here, we completely ignore motion along the axis of the
wormhole.
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It will be also useful to write down the relation for � as a
function of ! and u:

� ¼ u�t

4sin2 �
2

sinð2!Þ: (2.5)

Eqs. (2.1) and (2.4) thus relate the parameters of the
incoming trajectory u, � and the parameters of the self-
collision r, !. Their consequences will be discussed in
more detail in Sec. IV.

Before we return to the case of finite balls, let us note
that we can introduce similar parameters for the free
trajectory. The only difference is that r and ! refer, in
general, to self-intersection (i.e., not necessarily to self-
collision) of the free trajectory. Clearly, the angle! is now
given just by the conical geometry

! ¼ !free � �� �

2
: (2.6)

The solutions, for which the younger version of the particle
passes through the point of self-intersection later than
the older version (coming from the time machine), are
the solutions of type I. When the younger particle passes
the point of self-intersection earlier, we speak about the
solutions of type II.

The self-intersection threatens to become a self-collision
if time spent on the inner part of the free trajectory is equal
to the time shift of the time machine. Because u ¼ v for a
free trajectory , conditions (2.1) and (2.3) give

upx�t ¼ 2�px tan
�

2
: (2.7)

Such values upx, �px correspond to the paradoxical free

trajectory for which the particle occurs at the point of self-
intersection twice at the same time. For a point particle, it
is not possible to decide plausibly what happens in such a
situation. We can only observe that the same parameters
upx, �px also describe the trajectory with one self-collision,

which is given by the same parameters as paradoxical self-
intersection of the free trajectory, namely r ¼ �px= cos

�
2

and ! ¼ !free. A detailed analysis of this situation will be
done for finite balls in Sec. III.

The direction !free is also the boundary value between
physical collisions of types I and II. Physical self-collisions
of type I, for which the trajectory deflects leftward from
the free trajectory, are bounded within the interval
! 2 ð!free;

�
2Þ; while physical self-collisions of type II

(with rightward deflection) sweep out the interval
! 2 ð� �

2 ; !freeÞ.

D. Finite ball

We have to be more precise to define the parameters of
the self-collision for a finite ball. Let r be the radial
distance from the axis of the intersection of the incoming
and outgoing trajectories (extended beyond the actual self-
collision), and let ~r be the radial distance from the axis of

the self-intersection of the inner trajectory (for type II
extended beyond the self-collision); see Fig. 5. Clearly,
Eq. (2.1) still holds, and r ¼ ~r� Rðtan�=2� cot!Þ, with
upper sign for type I and lower sign for type II. The
geometry of the inner trajectory of the finite balls is iden-
tical with that of a point particle with modified impact
parameter ~� ¼ ~r sin!. The path s traveled during time
�t gained in the time machine must be corrected due to
a finite radius of balls, s ¼ ~s� 2R

cos�=2 , where, analogously

to the point-particle case, ~s ¼ 2~r sin�=2 is the length of the
inner trajectory between its self-intersection. The corrected
relation (2.3) together with (2.2) finally leads to equation
between u, �, and !:

� ¼ 1

4sin2 �
2

�
u4 t sin2!� 4R sin

�

2
sin

�
�

2
þ!

��
; (2.8)

again, with upper/lower sign for types I/II, respectively.
Physical self-collisions of type I or II are restricted by

the conditions

!>!free for physical solutions of type I; (2.9)

!<!free for physical solutions of type II; (2.10)

otherwise the ball would deflect to a wrong side of the free
trajectory and the momentum transfer from the younger to
older version of the ball would be negative.
Equation (2.8) supersedes relation (2.5) for the point

particle, as can be also seen by taking the limit R ! 0.
This can be regarded as the key equation of motion which
determines the scattering angle ! in terms of the initial
conditions u and �. The position of the self-collision
is then determined by the parameter r, which is given by
Eq. (2.1).

III. NUMBER AND CHARACTER OF SOLUTIONS

A. Pointlike particle

In the case of the point particle, there is only one length
scale u�t given by the initial velocity u and the time shift
�t. The velocity u thus changes only the scale of the whole
experiment. Therefore, we can fix u and study only the
relations among �, r, and !.
The relation between ! and � is given by Eq. (2.5) and

depicted in Fig. 7; the relation to the parameter r is given
by (2.1) [or, alternatively, implicitly by Eq. (2.4)].
We immediately see that the self-collision can happen

only for

j�j<�max � u�t

4sin2 �
2

: (3.1)

For larger j�j, the particle would not be fast enough to
travel through the wormhole and hit itself consistently—it
would be too far from the axis of the wormhole, and the
path through the wormhole would be too long.
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For j�j<�max, the map � ! ! is not a unique relation:
for a given � we have, in general, two ! satisfying (2.5).
For the given initial conditions, we thus obtain, in addition
to the collision-free trajectory, two self-colliding solutions.
These two solutions have the scattering angles comple-
mentary to � �

2 and represent completely different evolu-

tions of the system. Note that the self-colliding solutions
exist even if � < 0, i.e., if the free trajectory passes the
wormhole to the future.

All three possible solutions for the given initial condi-
tions (with � < �max) are shown in Fig. 8.

For the paradoxical value � ¼ �px, Eq. (2.7), the ‘‘para-

doxical’’ collision-free solution geometrically coincides
with one of the self-colliding solutions. It is called para-
doxical because, for these initial values, the free-moving
particle meets itself at the point of self-intersection exactly
at the same moment, so it cannot be the collision-free
solution. However, since for a pointlike particle we cannot

distinguish the noncolliding solution from the colliding
one, it is dubious to study the nature of this paradoxical
situation. Therefore, we will discuss the details of the
paradoxical initial conditions in the case of finite balls.
After that, we will return to the simpler case of a pointlike
particle to study the geometry of the trajectories in more
detail.

B. Paradoxical situations for a finite ball

In the case of finite balls, the system has an additional
length scale given by the radius R of the ball. Therefore, the
dependence on the velocity u is not trivial any more.
Nevertheless, we still fix the value of the initial velocity
and discuss the structure of the corresponding solutions.
The values of various quantities can, however, depend on u
in a more complicated way than just a rescaling.
Collision-free trajectories of a finite ball are again char-

acterized by the angle !free, and they can be also divided
into types I and II; see Fig. 9. However, due to the finite
radius of the balls, there is a whole interval of the impact
parameter �, for which the collision-free trajectory be-
comes paradoxical—if the ball hits itself inconsistently.
Checking the geometry of the free trajectory of a ball, it
turns out [16] that the boundary of this interval is given by
values of � determined by Eqs. (2.8) for types I and II with
! ¼ !free,

� paradoxical , � 2 ð�pxI; �pxIIÞ: (3.2)

Explicitly, the paradoxical values of the impact parameter
are given by

FIG. 7 (color online). The �-! diagram of consistent solutions
for a point particle. Each point of the graph in the �-! plane
represents a consistent solution for a point particle with at most
one self-collision. The velocity u is fixed (it changes only a scale
of the solutions), and the parameter r is given by Eq. (2.1).
Collision-free solutions are represented by the straight vertical
lines. The line ! ¼ �!free (in green) represents collision-free
trajectories to the future; the line ! ¼ !free represents free
trajectories to the past. The points below the value �px (in red)

corresponds to the solutions of type I, for which the younger
particle passes the point of self-intersection later than that
coming from the wormhole. The solutions with � > �px (in

blue) are of type II. The sinusoidal part of the graph represents
solutions with one self-collision. The part with!>!free (in red)
represents self-collisions of the type I; the part with!<!free (in
blue) represents self-collisions of type II. Self-colliding solutions
are thus possible only for j�j< �max. The point ð�px; !freeÞ
represents both the paradoxical collision-free solutions for
which younger and older versions of the particle meet at the
point of intersection at the same moment, and the consistent self-
colliding solution (which is geometrically identical to the para-
doxical solutions). Exact relation of these solutions is clarified in
the case of balls with a finite radius.

FIG. 8 (color online). Three possible solutions for given initial
conditions of a pointlike particle. For j�j< �max, � � �px there

exist three possible solutions: the collision-free trajectory (black)
and two self-colliding trajectories (red/gray and blue/light-gray).
One of the self-colliding trajectories is close to the free trajectory
(it coincides in the limit � ! �px); another is rather different.

BILLIARD BALL IN THE SPACE WITH A TIME MACHINE PHYSICAL REVIEW D 82, 124056 (2010)

124056-7



�pxI;II ¼ u4 t

2 tan�2
� R

sin�2
: (3.3)

For � < �pxI, the collision-free trajectory is of type I, i.e.,

the older version of the ball overtakes the younger one at
the point of intersection. If � > �pxII, the collision-free

trajectory is of type II, cf. Fig. 9.
The parameters of the self-colliding trajectories are

characterized by relations (2.8) and (2.1). We can depict
the physical solutions (cf. conditions (2.9)) with at most
one self-collision in a diagram analogous to the one we
used in the point-particle case; see Fig. 10.

We see here that the solutions split into two branches:
the physical self-colliding solutions of type I together with
collision-free solutions of type I, and self-colliding and
collision-free solutions of type II. The collision-free solu-
tion of type I becomes the self-colliding solution of type I
for ! ¼ !free, � ¼ �pxI. It is a limiting case when the

ball on the free trajectory just touches itself but does not
exchange anymomentum. It is thus identical to the limiting
case of physical self-colliding solutions of type I.
Similarly, for ! ¼ !free, � ¼ �pxII the ball on the free

trajectory just touches itself, now from the other side,
and it becomes the self-colliding solution of type II.

Inspecting Fig. 10, we can also conclude that for the
initial conditions with � =2 ð��maxII; �maxIÞ (where �maxI;II

are given by the maximal values of the expression (2.8) for
types I and II, respectively), there exists just one consistent
solution. It is typically a collision-free trajectory; however,
for certain values of parameters it can also be a self-
colliding solution, cf. Fig. 11(b).

For initial conditions with � 2 ð��maxII; �maxIÞ, there
are three possible solutions; typically, one collision-free
and two self-colliding. However, for the paradoxical values
of the impact parameter � 2 ð�pxI; �pxIIÞ, the collision-

free solution is superseded by a self-colliding solution,

cf. Fig. 11. In this case, we obtain two self-colliding
solutions of type I and one solution of type II; see Fig. 12.
We can conclude that the paradoxical initial conditions

are not paradoxical in any dangerous way. These initial
conditions lead to the same number of solutions as other
sufficiently close initial conditions. Only the char-
acter of solutions is different: the collision-free solution

FIG. 9. Two types of collision-free trajectories passing the time
machine to the past. (a) Trajectory of type I. For � < �pxI, time

s=v spent by the ball between the self-collision is smaller than
the time shift �t, i.e., the younger version of the ball goes
through the point of self-intersection later than the older version.
(b) Trajectory of type II. For � > �pxII, the younger version of

the ball goes through the point of intersection earlier than the
older version. FIG. 10 (color online). Physical solutions in the �-! plane.

The points on the curves represent solutions characterized by the
parameters � and !. The initial velocity u is fixed. The physical
solutions correspond to the solid curves, the spurious one to
the dashed curves. Vertical lines are collision-free solutions.
Sinusoidal curves, determined by Eqs. (2.8), represent the solu-
tion with one self-collision. The type of the solution is indicated
in a similar way as in Fig. 7.

FIG. 11 (color online). Number of solutions for given initial
conditions. The number of solutions for chosen initial parameter
� can be determined from Fig. 10 by intersecting the graph with
the horizontal line corresponding to �. The choice of the initial
velocity u can slightly modify a shape of the diagrams. Here, two
representative cases are shown. Only the part with !> 0 is
depicted—it corresponds approximately to the initial conditions
� > 0 with the ball directed to the time machine toward the
past. Clearly, the number of solutions steps from one to three,
with � becoming smaller than �maxI. In the paradoxical interval
ð�pxI; �pxIIÞ the number of solutions remains the same. Only the

character of the solutions is different: the collision-free solution
is superseded by the self-colliding solution. In the case (b), the
limiting value �maxI belongs to the paradoxical interval. For � 2
ð�maxI; �pxIIÞ there exists just one self-colliding solution.
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changes to the self-colliding solution. The number of
solutions depends on other characteristics, namely, if
� 2 ð��maxII; �maxIÞ: for a large j�j, only the collision-
free solution is admissible.

However, it should be said that the situation changes if
the angle between the wormhole mouths is smaller. For
� < �

2 , the equations for the trajectory remain the same but

the value of the angle!free is larger than
�
4 . The structure of

the solutions thus changes, as depicted in Fig. 13. Clearly,
for � 2 ð�pxI; �pxIIÞ, the collision-free trajectory is not

possible, and it is not superseded by another solution.
Moreover, for such �, there exists only one self-colliding
solution. In this case, we can indeed speak about paradoxi-
cal initial conditions, since the solutions evolved from
these conditions are really restricted. However, in the
case � < �

2 the whole discussion is more complicated,

since the particle can self-interact in a more complicated
way (there is the possibility of self-intersection between
several self-collisions, etc.). We do not have any indica-
tions that these more complicated processes could improve

the discussed behavior; however, we have not excluded it
completely [16]. In the following, we restrict again to the
larger angles, � > �

2 .

IV. MOTION OF A POINTLIKE PARTICLE

To clarify the character of solutions with paradoxical
initial conditions, in this section we describe the motion of
a pointlike particle in more detail.
The geometry of the inner trajectory is given only by the

parameter r and by the angular position of the self-collision
with respect to the wormhole—i.e., it is independent of the
scattering angle !. The geometry is such that the point of
self-collision, the point of the entry to wormhole, the point
of the departure from the wormhole, and the axis itself all
belong to a common circle, cf. Fig. 6(a). The inner particle
velocity v is given by Eq. (2.3). For the fixed point of self-
collision, one can then choose any ! 2 ð� �

2 ;
�
2Þ, which

determines � through Eq. (2.1), and calculate the initial
velocity using Eq. (2.2).
Taking into account the rotational symmetry of the

conical space between the mouths of the wormhole, we
can ignore the angular position with respect to the worm-
hole in the discussion about many features of the motion.
But, when discussing the asymptotic behavior of the in-
coming and outgoing trajectories, the angular information
must be taken into account. Namely, one has to track if the
outer trajectories pass through the wormhole. Clearly, it
must occur for the scattering angle !> �

2 , but depending

on the angle between the self-collision and wormhole, it
can happen also for smaller angles !.
However, we first describe the motion without a refer-

ence to the wormhole mouths. It can be done in the
simplest way employing the totally covering space for
our conical space. Namely, instead of the conical space
with angular coordinate ’ 2 ð� �

2 ;
�
2Þ, we use the space

without any restriction on ’, i.e., a helical surface winding
around the axis infinitely. The original conical space is then
obtained by the identification of points which differ in
coordinate ’ by an integer multiple of �.
In this covering space, the trajectory can be described as

follows. Let us assume a particle incoming along the
direction ’in ¼ 0 with the impact parameter � and the
initial velocity u. The self-collision C for such a trajectory
always happens on the circle which we call the collision
circle. It has the center S on the radial line ’ ¼ 0, it passes
through the axis, and its radius is �max, cf. Fig. 14. For � 2
ð��max; �maxÞ, the incoming trajectory intersects this cir-
cle twice, which corresponds to two possible self-colliding
solutions. The angular coordinate ’ of self-collision is
given exactly by the scattering angle !. At the point of
self-collision C, the trajectory is deflected, and it continues
toward the point C0, which can be obtained by a counter-
clockwise rotation of the point C around the axis by angle
�, cf. Fig. 14. In the covering space, C and C0 are different
points; however, in the original conical space these points

FIG. 12 (color online). Three self-colliding solutions for �
from the paradoxical interval. Unlike the pointlike case, there
is a whole interval ð�pxI; �pxIIÞ where collision-free trajectories

do not exist. As we can see from Fig. 11(a), the collision-free
trajectory is replaced by a self-colliding one. The diagram
depicts all three self-colliding solutions, two of type I (in light
and dark red) and one of type II (in blue).

FIG. 13 (color online). Solutions from paradoxical interval for
� < �

2 . In this case, the collision-free angle is !free >
�
4 . For the

impact parameter � from the corresponding paradoxical interval
� 2 ð�pxI; �pxIIÞ, we find a gap in the solution curves. For a

paradoxical �, we obtain only one self-colliding solution.
Moreover, this solution corresponds to a value of ! which is
substantially different from !free.
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are identified as the point of self-collision—of course, the
particle must pass the point of self-collision twice. Finally,
from C0 the particle continues through the covering space
in the direction which aims from the center S0 of the rotated
collision circle, cf. Fig. 14.

Notice that particles which approach the time machine
along the same direction ’ ¼ 0 [with various
� 2 ð��max; �maxÞ, thus forming congruence with
‘‘plane-wave’’ wave front] self-collide on the common
colliding circle and, in the end, leave in the directions
which point out from the common point S0, cf. Fig. 15.
In the covering space, the original plane-wave congruence
of particles scatters to the circular-wave congruence, but
the particles are phase shifted. They fly in radial directions,
but the wave front of the congruence at one moment does
not form a circle since the particles start to move in the
radial directions in various times. Indeed, the incoming
particles reach the collision circle in various times and,
therefore, their self-collisions do not occur simultaneously.

Let us mention an interesting feature of the trajectories
of the discussed congruence: all inner trajectories (between
the self-collisions) have the direction going through one
focusing point F, cf. Fig. 15. For ! 2 ð� �

2 ;
�
2Þ, they even

pass through this point. The congruence thus focuses in this

point; however, the particles do not pass the focusing point
at the same moment.
We have obtained a simple picture of the motion in the

covering space. It complicates slightly if we return to the
conical space by choosing the orientation of the wormhole
[i.e., setting mouths at the angles� �

2 þ c and �
2 þ c with

c 2 ð� �
2 ;

�
2Þ] and making the identification of points with

’ differ by an integer multiple of �. The resulting picture
depends on the values of �, c and of the impact parameter
�; some of the representative trajectories are depicted in
Fig. 16.
The typical quantity, which depends on the angular

position of the self-collision, is the total time T gained in
the wormhole during the whole scattering process. It can be
read out in the covering space from the angular coordinate

FIG. 14. Self-colliding trajectory in the totally covering space.
The particle incoming along the direction ’in ¼ 0 with the
impact parameter � is deflected at the point of self-collision
C. The point C must lie on the collision circle with the center S
on the radial line ’ ¼ 0, it passes through the axis A, and its
radius is �max. The trajectory continues toward the point C0,
which is obtained by a counterclockwise rotation of the point C
around A by angle �. In the original conical space, points C and
C0 are identified and correspond to the point of self-collision.
From C0, the trajectory continues in the direction which aims
from the center S0 of the rotated collision circle. The direction
of the inner trajectory goes through the focusing point F.
The diagram shows only a part of the totally covering
space.

S'

F

FIG. 15 (color online). Scattering of the plane-wave congru-
ence of particles in the totally covering space. Congruence of
particles coming along ’in ¼ 0 direction in ‘‘plane-wave’’ con-
figuration (i.e., aligned at an initial moment on a planar ‘‘wave
front’’ perpendicular to the direction of motion) approaches the
time machine. The particles scatter on the collision circle and
move toward the corresponding points on the rotated collision
circle. Here, they are deflected in the directions coming from the
center S0 of the rotated collision circle. The dotted curve depicts
the wave front after the scattering in the totally covering space.
The particles do not scatter on the collision circle at the same
time; however, for large final times the wave front after scatter-
ing approaches the circle. The real wave front projected back to
the conical space is drawn as dashed curves. Segments projected
from various sheets of the totally covering space gain additional
time shift thanks to the passage through the time machine.
Therefore, these parts of the wave front are larger since the
particle had more time for their motion. Inner trajectories focus
at one focusing point; for ! 2 ð� �

2 ;
�
2Þ, they pass through this

point. The diagram shows only part of the totally covering space,
given approximately by ’ 2 ð� �

2 ; 2�� �
2Þ.
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FIG. 16. Examples of the self-colliding trajectories. Diagrams show trajectories with various choices of the impact parameter �,
or, equivalently, with a different scattering angle !. The angle ! also parameterizes the position of the self-collision on the collision
circle. Diagrams (a, b, c) represent typical cases ! 2 ð0; �4Þ, ! 2 ð�2 ; �2Þ, and ! 2 ð� �

2 ;� �
2Þ, respectively. The diagram in the

first column depicts the trajectory in the totally covering space, the second column shows the trajectory in the conical space with the
wormhole centered on the direction of the incoming trajectory (c ¼ 0), and the third and the fourth columns correspond to
other orientations of the wormhole. The diagrams (d, e, f, g) depict special choices of the trajectory, namely, those with ! ¼ �

2 ,

! ¼ !free, ! ¼ �!free, and ! ¼ � �
2 , respectively, in all of them with the wormhole centered on the incoming trajectory. The

arrows indicate passages through the wormhole; however, they do not count the time shift, since the particle can travel through
the time machine in both directions. We can observe that the structure of the trajectory can change substantially with various
choices of the impact parameter and of the incoming direction with respect to the wormhole. For example, the particle can
self-collide after passing through the wormhole, both into the past and future, or it can move through the wormhole after the self-
collision.
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’out ¼ 2!þ � of the outgoing trajectory4—if it belongs
to nth copy of the wormhole in the covering space, n 2 Z,
the particle gains the time shift T ¼ �n�t:

’out 2
�
��

2
þ c þ n�;

�

2
þ c þ n�

�
) T ¼ �n�t:

(4.1)

Taking into account the restrictions on �, c , and !, the
total time shift can be �3�t � T � �t. See Fig. 16 for
examples.

The total time shift can be similarly calculated for the
collision-free trajectories. In this case, the direction of
the outgoing trajectory in the covering space is ’out ¼ �
for the trajectories passing the wormhole to the past, and
’out ¼ �� for the trajectories passing the wormhole to the
future. The condition (4.1) gives that the trajectory travel-
ing to the past, � > 0, gains the time shift T ¼ ��t for
c 2 ð� �

2 ;
3
2�� �Þ, or it can pass the wormhole twice,

T ¼ �2�t, if c 2 ð32�� �; �2Þ. Similarly, for � < 0, the

particle gains the time shift T ¼ �t for c 2 ð�� 3
2�;

�
2Þ

and T ¼ 2�t for c 2 ð� �
2 ; �� 3

2�Þ.

V. CONCLUSION

We have analyzed a simple interacting system in the
space with a nontrivial causal structure. We have assumed
the principle of self-consistency, i.e., we have required the
validity of standard local physical laws and we have
searched for consistent global solutions. In such a setting,
one can formulate the analogue of the so-called ‘‘grand-
father paradox’’ as a question of whether all natural initial
conditions lead to the globally consistent solutions of the
local physical laws. Initial conditions which do not lead to
such solutions would be paradoxical, and the system with a
nontrivial set of paradoxical initial conditions would be
logically inconsistent.

We have shown that the investigated system of finite
billiard balls in the nonrelativistic space with a time ma-
chine realized by a wormhole with a time shift is not
logically inconsistent in this sense. A naı̈ve guess can
identify potentially paradoxical initial conditions for which
the ball sent through the time machine hits itself and
inconsistently changes its own motion. The detailed analy-
sis has shown that even for such initial conditions there
exists a global solution satisfying locally all physical laws.

This result was anticipated, since it agrees with the
previous results obtained for various other systems—in
particular, for the very closely related system studied in
[13]. Our results thus endorse one of the main messages of
the study of the system with a nontrivial causal structure:
that the presence of time machines does not necessarily

imply a drastic reduction of space of the classical solutions
of the equations of motion. However, the previous results
have been obtained mainly for linear (noninteracting) sys-
tems or through a rather complicated and cumbersome
analysis of interacting systems. Therefore, the confirma-
tion for the interacting system allowing a detailed explicit
analysis is valuable.
We have also confirmed another similarly interesting

result discussed in [13]. The presence of the nontrivial
causal structure in our system has enlarged the space of
solution. We have found that for a wide class of initial
conditions (namely for j�j< �max with given u), more
than one classical evolutions exist. In addition to the
‘‘standard’’ collision-free trajectory, the particle can also
move along two different self-colliding trajectories; see
Fig. 8. The evolution of the system thus fails to be deter-
ministic, and the classical theory does not have any means
to determine which of the different evolutions would be
realized.
One can speculate that the quantum theory would be a

more complete description. It does not determine exact
trajectory of the particle—it just estimates a probability
for various possible evolutions (specified up to a quantum
uncertainty). In the classical limit, only evolutions close to
the solutions of the classical laws would have a nontrivial
probability. In systems with standard causal structure, there
is usually only one such solution. However, in our system,
one can expect that all three classical solutions would have
nontrivial probabilities and a semiclassical approximation
could give an estimate for these probabilities.
Nevertheless, one has to emphasize that it is not trivial at

all to complete this program. The status of quantum theory
in the presence of time machines is unclear. The common
formulations of the quantum theory are heavily based on
the standard notion of time, so a nontrivial causal structure
would change the theory substantially.5 It would be ex-
tremely interesting to find a modification of the quantum
mechanics for a space with time machines, but it is a hard
challenge for further work. The simplicity of our model
could give hope that such a challenge is treatable.
However, one could ask what a key ingredient is for the

existence of more solutions of the classical equations of
motion. Is it really the presence of the time machine? One
could also suspect a peculiar geometrical structure of our
conical space. The conical space breaks the uniqueness
of the classical solutions even without the time machine.

4We have chosen the incoming trajectory with ’in ¼ 0, and its
angular position with respect to the wormhole is given by the
parameter c . Alternatively, we could set c ¼ 0 and admit
’in � 0.

5As an example of possible difficulties, let us mention that one
would have to take into account the quantum space for degrees
of freedom ‘‘hidden inside’’ the time machine, i.e., the degrees of
freedom which are not encoded in the standard initial conditions.
We ignored them on the classical level—they correspond, e.g., to
a mysterious particle which appears from the wormhole, hits the
particle coming from infinity, and deflects itself back to the time
machine in such a way that it reappears from it exactly as the
introduced mysterious particle. On a quantum level, such de-
grees of freedom cannot be easily ignored or separated.
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Indeed, for given initial and final points, in the conical
space there exist more trajectories which join them. This
effect is purely geometrical and does not need a nontrivial
causal structure. However, we have identified a different
kind of uniqueness: we have found that the specification of
both the initial position and the momentum (the complete
initial conditions) admits more different evolutions, which
is certainly surprising when the local evolution is given
by standard differential equations which are generally
accepted as deterministic. Nonuniqueness appears here as
a strange result of the interplay between a local determi-
nistic evolution and a nontrivial causal structure on a
global scale for which the time machine is the key
ingredient.

Let us finally mention that further study [16] of our
system revealed that, if one takes into account a possibility
of multiple self-collisions, the situation gets even more
interesting. In this work, we have studied only the
collision-free trajectories, and the trajectories with one
self-collision. However, the incoming and outgoing trajec-

tories from the self-collision can easily self-intersect and,
for a special choice of parameters, even self-collide again.
It is possible to show that when the impact parameter �
gets smaller (with fixed u), there exist more and more
multi-self-colliding solutions. For a pointlike particle,
there exists a finite value �1

max under which there exist an
infinite number of possible evolutions for single initial
parameters � and u, cf. [16]. We leave further details to
the subsequent publication of [16].
To summarize, the studied system with a wormhole-

based time machine does not suffer from the paradoxical
initial conditions. On the contrary, it breaks the determi-
nistic character of the theory and offers more solutions for
single initial conditions.
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and by Project No. MSM0021620860. The authors also
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