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Using the brick-wall method, we study statistical entropy for spherically symmetric black holes in

Hořava-Lifshitz gravity. In particular, a Lifshitz scalar field is considered in order to incorporate foliation-

preserving diffeomorphism, which eventually gives a modified dispersion relation. Finally, we obtain the

area law without the UV cutoff for z > 3 and discuss some of the consequences in connection with the

generalized uncertainty principle.
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I. INTRODUCTION

Recently, Hořava has put forward a renormalizable
theory of gravity when the scaling dimensions of space
and time are different, which is called Hořava-Lifshitz
(HL) gravity [1,2]. It is power-counting renormalizable
for z ¼ d and superrenormalizable for z > d, where z
and d are scaling dimension and number of spatial dimen-
sions, respectively. Subsequently, there have been exten-
sive studies of the HL gravity [3–17], such that various
black holes [5–12] and cosmological solutions [13–17]
have been intensively studied. Moreover, it has been
claimed that the nonisotropic scaling of spacetime related
to the foliation-preserving diffeomorphism (FPD) gives a
modified dispersion relation [18,19]. As for the noniso-
tropic scaling, even in a flat spacetime, it generically leads
to an intriguing dispersion relation of the form E2 �
c2½p2 þ � � � þ�zðp2Þz� ¼ m2c4, where c, m, and �z are
the speed of light, the mass of a particle, and a parameter,
respectively [19]. Of course, it can be generalized in non-
flat spacetimes. There have been some studies for modified
dispersion relations in black hole physics similar to this
dispersion relation [20,21].

On the other hand, it has been known that the entropy of
a black hole is proportional to the area of its event horizon.
For calculating the statistical entropy, the brick-wall
method suggested by ’t Hooft can be used [22], where
the cutoff parameter should be introduced to handle the
divergence near the event horizon. Since degrees of free-
dom of a field are dominant near the horizon, the brick wall
can be replaced by a thin layer or a thin spherical box [23].
By the way, the cutoff parameter located just outside the
horizon can be avoided if we consider the generalized
uncertainty principle (GUP) [24–27]. Actually, the mode

counting can be done from the horizon to the minimal
length, and it gives finite density because of the modifica-
tion of phase-space volume and the dispersion relation.
In this paper, we would like to study the statistical

entropy of spherically symmetric black holes in the HL
gravity using the (thin-layered) brick-wall method. For this
purpose, we introduce a Lifshitz scalar field rather than the
usual scalar field to incorporate the nonisotropic symmetry
of the matter sector. In this semiclassical calculation, the
resulting entropy shows that for z > 3, corresponding to
the superrenormalizable case of HL gravity, the ultraviolet
(UV) cutoff parameter can be avoided, so that a thin layer
can be located just outside the horizon, similarly to the case
of the GUP. Assuming the Bekenstein-Hawking entropy,
which is proportional to the area of the horizon, we can
naturally fix the size of the thin layer depending only on the
scaling. In Sec. II, we recapitulate the Hořava-Lifshitz
gravity and black hole solutions. In Sec. III, WKB approx-
imations with the modified dispersion relation for the
Lifshitz scalar field will be considered. In Sec. IV, the
statistical entropy will be given by counting the number
of quantum states and we will find the condition to give the
area law of entropy. In Sec. V, some issues related to the
modified dispersion relation will be presented. Finally,
some discussions will be given in Sec. VI.

II. BLACK HOLES IN HL GRAVITY

We briefly review HL gravity in a self-contained manner
and introduce black hole solutions for ð3þ 1Þ-dimensional
HL gravity. On general grounds, like the Arnowitt-Deser-
Misner (ADM) decomposition of the metric in Einstein
gravity, the ð3þ 1Þ-dimensional metric can be decom-
posed into

ds2 ¼ �N2c2dt2 þ gijðdxi þ NidtÞ
� ðdxj þ NjdtÞ; i; j ¼ 1; 2; 3; (1)
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where N and Ni are the usual lapse and shift functions. An
anisotropic scaling transformation of time t and space ~x is
given by

t ! bzt; xi ! bxi; (2)

under which gij and N are invariant, while Ni ! b1�zNi.

We have scaling dimensions given by ½t� ¼ z, ½xi� ¼ 1, and
½c� ¼ ½Ni� ¼ 1� z in units of spatial length.

The kinetic action in the Hořava-Lifshitz gravity is given
by [2]

IK ¼ 2

�2

Z
dtd3x

ffiffiffi
g

p
N½KijK

ij � �K2�; (3)

where �2 and � are a coupling related to the Newton
constant GN and an additional dimensionless coupling
constant, respectively. The extrinsic curvature is given by
Kij ¼ 1

2N ð _gij �riNj �rjNiÞ, where the overdot denotes
the derivative with respect to time t, andri is the covariant
derivative with respect to the spatial metric gij. Note that

the original kinetic part of the Einstein-Hilbert action can
be recovered when � ¼ 1 and �2 ¼ 32�GN=c

2. Moreover,
the power-counting renormalizability requires z � 3. Now,
the potential term of action is determined by the ‘‘detailed
balance condition’’ as follows [2]:

IV ¼ �2

8

Z
dtd3x

ffiffiffi
g

p
NEijGijklE

kl; (4)

where Eij comes from three-dimensional relativistic action
in the form of

Eij ¼ 1ffiffiffi
g

p �W½gij�
�gij

; (5)

and the generalized DeWitt metric Gijkl and its inverse
metric Gijkl for � � 1=3 are given by

G ijkl ¼ 1

2
ðgikgjl þ gilgjkÞ � �gijgkl; (6)

G ijkl ¼ 1

2
ðgikgjl þ gilgjkÞ � �

3�� 1
gijgkl; for � �

1

3
;

(7)

with the normalization condition of

G ijklGklmn ¼ 1

2
ð�i

m�
j
n þ �i

n�
j
mÞ: (8)

In particular, the relativistic actionW is expressed as W ¼
W1 þW2 for z ¼ 3 [2,13], where W1 and W2 are given by

W1 ¼ �
Z

d3x
ffiffiffi
g

p ðR� 2�WÞ; (9)

W2 ¼ 1

w2

Z
d3x

ffiffiffi
g

p
"ijk�m

il

�
@j�

l
km þ 2

3
�l
jn�

n
km

�
; (10)

with "ijk ¼ ffiffiffi
g

p
�ijk and �123 ¼ 1. Here, � and w2 are

coupling constants, and �W is a cosmological constant.

Let us assume that the line element of a spherically
symmetric black hole can be written in the form of

ds2 ¼ �f ~N2c2dt2 þ dr2

f
þ r2ðd�2 þ sin2�d�2Þ; (11)

where f ¼ fðrÞ and ~N ¼ ~NðrÞ. For an arbitrary � for
z ¼ 3, there are three solutions [5]. The first one is given by

f ¼ 1��Wr
2; (12)

with an arbitrary function ~N. The others for � > 1=3 are
given by

f ¼ 1��Wr
2 � 	ð ffiffiffiffiffiffiffiffiffiffiffiffi��W

p
rÞ2��

ffiffiffiffiffiffiffiffiffi
6��2

p
=ð��1Þ; (13)

~N ¼ ð ffiffiffiffiffiffiffiffiffiffiffiffi��W

p
rÞ�ð1þ3��2

ffiffiffiffiffiffiffiffiffi
6��2

p Þ=ð��1Þ; (14)

where 	 is an integration constant. On the other hand,
� ¼ 1 for z ¼ 3, the asymptotically flat solution, along
with a vanishing cosmological constant, is given by [9]

f ¼ 1þ!r2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð!2r3 þ 4!MÞ

q
; (15)

~N ¼ 1; (16)

where ! ¼ 16�2=�2, and M is an integration constant.
Moreover, in the modified Hořava-Lifshitz gravity pro-
posed in Ref. [3], the other types of spherically symmetric
solutions have been also studied [15]. In fact, we need
not consider specific forms of black hole solutions as long
as the spherical symmetric ansatz holds, since we shall
calculate the statistical entropy near the horizon without
loss of generality.

III. MODIFIED AND REDUCED
DISPERSION RELATIONS

We consider a complex scalar field ’, obeying the
modified Klein-Gordon equation implemented by FPD,
which is assumed to be

� 1

Nc
ffiffiffi
g

p @t

� ffiffiffi
g

p
Nc

Dt’

�
þ 1

Nc
ri

�
Ni

Nc
Dt’

�
� ½�0 þ�1ð�r2Þ þ � � � þ�zð�r2Þz�’ ¼ 0; (17)

where the derivative Dt is defined by Dt ¼ @t � Ni@i, the
Laplacian is given by r2 � gijrirj, and the constants �n

will be fixed later. Note that Eq. (17) may be induced from
a certain action, especially for a constant lapse function;
there appears such a consideration in Ref. [28]. Now,
applying a WKB approximation to Eq. (17) with ’ ¼
exp½iSðt; xiÞ�, we obtain a modified dispersion relation,

1

N2c2
ðpt � NipiÞ2 � ½�0 þ�1p

2 þ � � � þ�zðp2Þz� ¼ 0;

(18)

where momenta are defined by pt ¼ @tS, pi ¼ @iS, and
p2 ¼ pip

i ¼ gijpipj. In order to recover the dispersion
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relation in general relativity, we can take �0 ¼ m2c2 and
�1 ¼ 1 and assume that�n’s are very small for n � 2. For
convenience, let us define x� ¼ ðct; xiÞ, and set the
Boltzman constant to kB ¼ 1. For the spherically symmet-
ric background of Ni ¼ 0, the dispersion relation (18) can
be written as

p0p
0 þ Xz

n¼1

�nðpip
iÞn ¼ �m2c2; (19)

where p� is the conjugate momentum to x�. The constants

�n have a scaling dimension of 2n� 2. Note that Eq. (19)
can be reduced to p0p

0 þ pip
i ¼ �m2c2 for the relativis-

tic limit of z ¼ 1.

Now, we choose the constants �n as �n ¼ l2ðz�1Þ
P �nz for

n � 1 to obtain a reasonable entropy where lP is the Plank

length given by lP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏGN=c

3
p

. As a result, the dispersion
relation (19) for the scalar field with mass m can be simply
reduced to

p0p
0 þ l2ðz�1Þ

P ðpip
iÞz ¼ �m2c2: (20)

We will consider this reduced relation of the highest-
momentum case for a scalar field on a spherically sym-
metric black hole background.

IV. ENTROPY IN A REDUCED
DISPERSION RELATION

We now consider a spherically symmetric black hole
whose line element can be written as

ds2 ¼ �f ~N2c2dt2 þ dr2

f
þ r2ðd�2 þ sin2�d�2Þ; (21)

where f ¼ fðrÞ and ~N ¼ ~NðrÞ, and the horizon rH of
the black hole is defined by grrjrH ¼ fðrHÞ ¼ 0. With the

help of conjugate pairs of x� ¼ ðct; r; �; �Þ and p� ¼
ð�!=c; pr; p�; p�Þ, the dispersion relation (20) becomes

l2ðz�1Þ
P

�
fp2

r þ p2
�

r2
þ p2

�

r2sin2�

�
z ¼ !2

f ~N2c2
�m2c2: (22)

Let us consider a spherical box specified by rH þ � to
rH þ �þ �, where � plays the role of UV cutoff in the
conventional brick-wall method. It will be shown that it is
unnecessary, because the UV-divergent behavior of free
energy can be improved. Next, the number of quantum
states with energy less than ! is calculated as

nð!Þ ¼ 1

ð2�Þ3
Z

drd�d�dprdp�dp�

¼ 1

ð2�Þ3
Z

drd�d�� Vp; (23)

where Vp is the z-dimensional volume of momentum space

satisfying Eq. (22), which is explicitly

nð!Þ ¼ 2

3�lð3=zÞðz�1Þ
P

Z
dr

r2ffiffiffi
f

p
�

!2

f ~N2c2
�m2c2

�ð3=2zÞ
;

(24)

near the horizon where! is the energy of a scalar field with
the range of ! � mc2 ~N

ffiffiffi
f

p
. For z ¼ 1, it recovers the

standard form of number of the quantum states,

nð!Þ ¼ 2

3�

Z
dr

r2ffiffiffi
f

p
�

!2

f ~N2c2
�m2c2

�
3=2

: (25)

Then, the free energy is given by

FðzÞ ¼ �
Z 1

!0

d!
nð!Þ

e
! � 1
; (26)

where !0 ¼ mc2 ~N
ffiffiffi
f

p
, 
�1 is a inverse temperature

defined by 
�1 ¼ �H=ð2�cÞ, and �H ¼ 1
2 c

2 ~Nf0jrH is a

surface gravity. So, the entropy can be written as

SðzÞ ¼ 
2
@FðzÞ
@


¼ 
2
Z 1

!0

d!
!nð!Þ

4sinh2 1
2
!

: (27)

For the sake of convenience, ! is replaced by x ¼ 1
2
!.

Then, it can be written as

SðzÞ ¼
Z 1

x0

dx
xnð2x=
Þ
sinh2x

; (28)

where x0 ¼ 1
2
mc2 ~N

ffiffiffi
f

p
, which goes to zero near the

horizon. Plugging Eq. (24) into Eq. (28), the entropy
becomes

SðzÞ ¼ 2

3�

Z
dr

r2ffiffiffi
f

p
Z 1

x0

dx
xJðxÞ
sinh2x

; (29)

where

JðxÞ�

8>>><
>>>:
lð3=zÞð1�zÞ
P

�
4x2


2f ~N2c2
�m2c2

�ð3=2zÞ
; near the horizon�

4x2


2f ~N2c2
�m2c2

�
3=2

; for r� rH

:

(30)

Note that for r � rH, as expected, the integral is propor-
tional to the volume of space as long as the metric function
f approaches the nonzero constant at infinity.
On the other hand, we are concerned about the entropy

near the horizon, which is given by

SðzÞ ¼ 2

3�lð3=zÞðz�1Þ
P

Z
dr

r2

fð1þ3=zÞ=2

�
2


c ~N

�
3=z

	ðzÞ; (31)

where 	ðzÞ � R1
0 dx x1þ3=z

sinh2x
. For some z’s, we can find

	ð1Þ ¼ �4=30, 	ð2Þ 	 1:5762, 	ð3Þ ¼ �2=6, and 	ð4Þ 	
1:8766. Now, in the near horizon limit, the function fðxÞ
can be expanded as fðrÞ ¼ 2�H

~NHc
2 ðr� rHÞ þOðr� rHÞ2,

with ~NH � ~NðrHÞ, so that one can take the first-order
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approximation of �H � 0 for nonextremal black holes.
Therefore, the entropy (31) is explicitly calculated as

Sð3Þ ¼ A

4
� c

9
l2P�H

� ln
�
1þ �

�

�
; for z ¼ 3; (32)

SðzÞ ¼ A

4
� 4z	ðzÞ
3�2ðz� 3Þlð3=zÞðz�1Þ

P

�
2


c ~NH

�
3=z

�
� ~NHc

2

2�H

�½ð1=2Þþð3=2zÞ�½ð�þ �Þ½ð1=2Þ�ð3=2zÞ�

� �½ð1=2Þ�ð3=2zÞ��; for z � 3: (33)

Note that there is no continuous limit at z ¼ 3. Now, let us
define proper lengths for � and �, respectively,

�� �
Z rHþ�

rH

dr
ffiffiffiffiffiffiffi
grr

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2c2 ~NH�

�H

s
; (34)

�� �
Z rHþ�þ�

rHþ�
dr

ffiffiffiffiffiffiffi
grr

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2c2 ~NH

�H

s
ð ffiffiffiffiffiffiffiffiffiffiffiffiffi

�þ �
p � ffiffiffi

�
p Þ; (35)

where � ¼ 1
2�H ��2=ð ~NHc

2Þ and �þ � ¼ 1
2�Hð ��þ

��Þ2=ð ~NHc
2Þ. Then, the entropy can be written as

Sð3Þ ¼ A

4

1

9�l2P
ln

�
1þ

��

��

�
for z ¼ 3; (36)

SðzÞ ¼ A

4
� 2z	ðzÞ
3�½2þð3=zÞ�ðz� 3Þlð3=zÞðz�1Þ

P

� ½ð ��þ ��Þ½1�ð3=zÞ� � ��½1�ð3=zÞ�� for z � 3:

(37)

It is interesting to note that for the case of z > 3, the
entropy (37) is finite

SðzÞ ¼ A

4
� 2z	ðzÞ
3�½2þð3=zÞ�ðz� 3Þlð3=zÞðz�1Þ

P

��½1�ð3=zÞ�; (38)

even in spite of the absence of the UV cutoff, i.e., �� ! 0.
In other words, for the case of z 
 3, the UV cutoff is
necessary to get some finite results. Recovering the dimen-
sion, except the Boltzman constant kB, the entropy (38) is
written as

SðzÞ ¼ c3A

4ℏGN

� 2z	ðzÞ ��½1�ð3=zÞ�

3�½2þð3=zÞ�ðz� 3Þl½ðz�3Þ=3�
P

: (39)

Then, Eq. (39) is compatible with the Bekenstein-Hawking
entropy given by

SBH ¼ c3A

4ℏGN

; (40)

as long as we identify the size of the box as

�� ¼ lP

�
3ðz� 3Þ�½2þð3=zÞ�

2z	ðzÞ
�
z=ðz�3Þ

; (41)

for z > 3. It depends on the scale parameter z. However, it
is independent of the black hole hairs.
There are some special limits to be mentioned. As for the

marginal case of z ¼ 3, recovering dimensions, the entropy
becomes

Sð3Þ ¼ c3A

4ℏGN

� 1

9�
ln

�
1þ

��

��

�
: (42)

Note that Eq. (42) also agrees with the Bekenstein-
Hawking entropy, assuming ��= �� ¼ e9� � 1. In this case,
the UV cutoff is needed. On the other hand, for the limit of
z ¼ 1, which corresponds to the (thin-layered) brick-wall
method, the well-known cutoff parameter can be obtained,
Sð1Þ ¼ c3A=ð4ℏGNÞ � �l2P=½90
�ð�þ �Þ� [29]. In these re-

spects, excitations of the Lifshitz scalar field coupled to
the gravity contribute to the finite entropy near the horizon
limit without the UV cutoff for certain scaling parameters.

V. ENTROPY FROM (PARTIALLY) MODIFIED
DISPERSION RELATION

We are going to devote this section to clarifying some
issues related to the modified dispersion relation (19). In
the course of calculations, we have considered just the
highest power of nonisotropic exponent in the dispersion

relation for simplicity, just as �n’s are chosen as �n ¼
l2ðn�1Þ
P for n � 1. The justification for this is needed from a
general point of view, because all terms in the modified
dispersion relation may contribute to the final entropy. For
instance, the large infrared cutoff �� may require all con-
tributions of terms. To answer this question, instead of
using analytic results, we want to present some numerical
simulations in order to show howmuch the previous results
change for z ¼ 2 and z ¼ 4 when we take a partially
modified dispersion relation, which is a sort of reduced
relation.
Now, for the solvability, we take a partially modified

dispersion relation as follows:

p0p
0 þ�z=2ðpip

iÞz=2 þ�zðpip
iÞz ¼ �m2c2; (43)

where z is even. The full dispersion relation, for instance,
for the case of z ¼ 2 recovers as p0p

0 þ�1pip
i þ

�2ðpip
iÞ2 ¼ �m2c2. In spherically symmetric black holes

described by the line element (21), the dispersion relation
(43) becomes

pip
i ¼ fp2

r þ p2
�

r2
þ p2

�

r2sin2�
¼ 1

ð2�zÞ2=z

�
�
��z=2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�z=2 þ 4�z

�
!2

f ~N2c2
�m2c2

�s �
2=z

:

(44)

MYUNGSEOK EUNE AND WONTAE KIM PHYSICAL REVIEW D 82, 124048 (2010)

124048-4



Of course, for �z ¼ 0 and z ¼ 2, the number of quantum
states can be reduced to the relativistic limit

pip
i ¼ 1

�1

�
!2

f ~N2c2
�m2c2

�
: (45)

Next, from Eq. (44), the number of quantum states with
energy less than ! can be written as

nð!Þ ¼ 2

3�ð2�zÞ3=z
Z

dr
r2ffiffiffi
f

p

�
�
��z=2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

z=2 þ 4�z

�
!2

f ~N2c2
�m2c2

�s �
3=z

;

(46)

where the energy should satisfy ! � !0 � mc2 ~N
ffiffiffi
f

p
.

Substituting Eq. (46) into Eq. (28), the entropy is written as

S ¼ 2

3�ð2�zÞ3=z
Z 1

x0

dx
x

sinh2x

Z
dr

r2ffiffiffi
f

p

�
�
��z=2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

z=2 þ
16�4


2c2 ~N2f
ðx2 � x20Þ

s �
3=z

; (47)

where x and x0 are defined by x � 1
2
! and x0 ¼

1
2
mc2 ~N

ffiffiffi
f

p
. For the thin layer with the range from

rþ � to rþ �þ � near the horizon, it can be written as

S ¼ 2c

3�ð2�4Þ3=z
ffiffiffiffiffiffiffi
~NH

�H

s Z rHþ�þ�

rHþ�
dr

r2Hffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r� rH

p
Z 1

x0

dx
x

sinh2x

�
�
��z=2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

z=2 þ
8�z


2 ~NH�H

x2 � x20
r� rH

s �
3=z

: (48)

Actually, it is not easy to get analytic results, so we plot
entropies with respect to the proper lengths �� for the case of

z ¼ 2 and �� for the case of z ¼ 4, which are shown in
Figs. 1 and 2, respectively. The coefficients of momenta in

the dispersion relation (43) have been chosen as �n ¼
l2ðn�1Þ for n ¼ z and z=2 for the sake of comparison with
the results obtained in Sec. IV.
For z ¼ 2, there are largely three cases: a relativistic

limit, R2 � ð�1;�2Þ ¼ ð1; 0Þ; a highest-momentum con-
sideration, H2 � ð�1;�2Þ ¼ ð0; l2Þ; and a full considera-
tion, F2 � ð�1;�2Þ ¼ ð1; l2Þ. As shown in Fig. 1(a), much
smaller cutoffs are required compared to those of the
relativistic case for the same value of the entropy, so that
the curve for the R2 case lies far above the two curves ofH2

and F2. This fact has been discussed using a modified
dispersion, which is similar to the full dispersion relation
(F2) of z ¼ 2 [20,21]; in particular, it is interesting to see
that for the black hole entropy, the same brick wall lies at a
much smaller proper distance in the free fall time slice
compared to the conventional brick-wall cutoff. While the
conventional brick wall cuts off all modes at the same
location, they cut off all modes at the same momentum.
By the way, from Fig. 1(b), we can see that the cutoff in the
F2 case is slightly smaller than that of the H2 case. As a
result, the full consideration of the dispersion relation is
very close to the highest-momentum consideration in com-
parison with the relativistic case, even though the former
case gives a slightly smaller cutoff.
On the other hand, in order to investigate the role of

the lower-momentum contribution for z > 3, we study the
dispersion relation (43) for the specific case of z ¼ 4. The
entropy curves with respect to the proper infrared cutoff ��
are plotted in Fig. 2 for the highest power of momentum
consideration, H4 � ð�2;�4Þ ¼ ð0; l6Þ, and the full con-
sideration, F4 � ð�2;�4Þ ¼ ðl2; l6Þ, respectively. It can be
shown that in a very short distance, compared to the given
length scale of l, the entropy profiles are almost coincident,

(a) (b)

FIG. 1 (color online). The entropies can be shown as a function of the cutoff parameter �� for the case of z ¼ 2. The dotted, dashed,
and solid lines correspond to the cases of R2 ¼ ð�1;�2Þ ¼ ð1; 0Þ, H2 ¼ ð�1;�2Þ ¼ ð0; l2Þ, and F2 ¼ ð�1;�2Þ ¼ ð1; l2Þ, respectively,
where l ¼ 0:01. The variables in Eq. (48) have been simply chosen as � ¼ 0:05, rH ¼ �H ¼ 2, and ~NH ¼ m ¼ c ¼ 1. (b) The vertical
axis for the entropy in (a) has been rescaled.
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while they generate a little difference as the cutoff is getting
large. So, if �� is much smaller than l, then low-momentum
contributions can be neglected, whereas their contributions
cannot be ignored when �� and l are at the same order of
scale. It means that we have to discard the area law of the
entropy at �� 	 l. Therefore, the full modified dispersion
relation will give the smaller entropy, which is not compat-
ible with the area law. Of course, this conclusion is more or
less restrictive, sowe hope this issuewill be discussedmore
generally elsewhere.

VI. DISCUSSIONS

We have studied the statistical entropy of spherical
symmetric black holes using the brick-wall method in
HL gravity. The crucial difference from the conventional
brick-wall method is that the scalar field satisfying FPD
called Lifshitz scalar gives the area law of the finite entropy
without the UV cutoff for z > 3 corresponding to the

superrenormalizable sector of HL gravity, as long as
the length of thin wall is identified with a certain value,
depending on the scale parameter.
This result is reminiscent of the entropy calculation in

the brick-wall method using the GUP, �x�p � ℏþ �
ℏ �

ð�pÞ2, and there exists a minimal length, �xmin ¼ 2
ffiffiffiffi
�

p
[30–32]. Similar to the present modes counting between
the horizon and ��, it happens between just outside the
horizon and the minimal length �xmin without any UV
cutoff in the GUP regime. For instance, in a spherical
symmetric black hole based on the GUP, the number of
quantum states in this minimal length is obtained as

nð!Þ ¼ 2
3�

R
dr r2ð!2=f��2Þ3=2ffiffi

f
p

½1þ�ð!2=f��2Þ�3 . Following the same pro-

cedure as in the previous Sec. IV, the entropy is calculated

as S ¼ c3A
4ℏGN

� �l2P� , where � � 1
3 ½4� �ð3Þ � 25

8� � �
6�. To satisfy

the area law of entropy for this black hole, � is required to
be the same as �l2P. In comparison with HL gravity, the
thickness of the thin wall of �� can be identified with the

minimal length in the GUP �� ¼ 2
ffiffiffiffi
�

p
. Then, using Eq. (41),

it amounts to the highly superrenormalizable case of HL
gravity z 	 342. It implies that the Lifshitz scalar field
may play a role of the usual scalar field along with the
GUP, at least in the brick-wall regime. Unfortunately, it is
unclear why the scaling parameter should be so large if we
try to match the minimal length in the GUP and ��ðzÞ.
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