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The fðRÞ gravity models formulated in the Einstein conformal frame are equivalent to Einstein gravity

together with a minimally coupled scalar field. The scalar field couples with the matter sector and the

coupling term is given by the conformal factor. We use this interacting model to derive a necessary

condition for alleviating the coincidence problem.
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I. INTRODUCTION

There are strong observational evidences that the expan-
sion of the Universe is accelerating (see e.g. [1]). However,
the origin of this cosmic acceleration is not well under-
stood and remains as one of the main challenges of modern
cosmology. The standard explanation invokes an unknown
component, usually referred to as dark energy. It contrib-
utes to energy density of the Universe with �d ¼ 0:7,
where �d is the corresponding density parameter [2]. A
candidate for dark energy which seems to be both natural
and consistent with observations is the cosmological con-
stant [2–4]. However, in order to avoid theoretical prob-
lems [3], other scenarios have been investigated. In one of
these scenarios the matter sector remains unchanged and
the gravitational part suffers from some modifications. A
family of these modified gravity models is obtained by
replacing the Ricci scalar R in the usual Einstein-Hilbert
Lagrangian density for some function fðRÞ [5].

There are two important problems that are related to the
cosmological constant. The first problem, usually known as
the fine-tuning problem, is the large discrepancy between
observations and theoretical predictions on its value. There
have been many attempts trying to resolve this problem [3].
Most of them are based on the belief that the cosmological
constant may not have such an extremely small value at all
times and there should exist a dynamical mechanism work-
ing during evolution of the Universe which provides a
cancellation of the vacuum energy density at late times
[6]. The second problem concerns the coincidence between
the observed vacuum energy density and the current matter
density. While these two energy components evolve differ-
ently as the Universe expands, their contributions to total
energy density of the Universe in the present epoch are the
same order of magnitude. Besides the possibility that the
present epoch may be a stationary regime at which the ratio
of the two energy densities are constant, it is also quite
possible that we live in a very special epoch, a transient
epoch at which the ratio varies slowly with respect to the

expansion of the Universe. A possible solution to the
coincidence problem is to consider an interaction between
dark energy and dark matter. If such an interaction exists
the two corresponding energy densities do not scale inde-
pendently. It is shown that this can lead to a constant ratio
of energy densities when an appropriate coupling term is
applied [7,8].
In the present paper, we will consider the coincidence

problem in Einstein frame representation of fðRÞ gravity
models. In these models the dynamical variable of the
vacuum sector is the metric tensor and the corresponding
field equations are fourth order. This dynamical variable
can be replaced by a new pair which consists of a con-
formally rescaled metric and a scalar partner. Moreover, in
terms of the new set of variables the field equations are
those of general relativity. The original set of variables is
commonly called the Jordan conformal frame and the
transformed set whose dynamics is described by Einstein
field equations is called the Einstein conformal frame. The
dynamical equivalence of Jordan and Einstein conformal
frames does not generally imply that they are also physi-
cally equivalent. In fact it is shown that some physical
systems can be differently interpreted in different confor-
mal frames [9,10]. The physical status of the two confor-
mal frames is an open question which we are not going to
address here. Our motivation to work in the Einstein con-
formal frame is that in this frame there is a coupling
between the scalar degree of freedom and matter sector
induced by the conformal transformation. As previously
stated, there is a large amount of interest to realize the
coincidence problem as a consequence of an interaction
between matter systems and the dark sector. Although the
whole idea seems to be promising, the suggested interac-
tion terms are usually phenomenological and are not gen-
erated by a fundamental theory. In our case the interaction
term is given by the conformal factor. We investigate the
consequences of this interaction term and derive an ex-
pression which constrains the form of the fðRÞ function.
We will show that this constraint selects those fðRÞmodels
that allow for possible alleviation of the coincidence
problem.*y-bisabr@srttu.edu.
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II. FRAMEWORK

The action for an fðRÞ gravity theory in the Jordan frame
is given by

SJF ¼ 1

2k

Z
d4x

ffiffiffiffiffiffiffi�g
p

fðRÞ þ Smðg��; c Þ; (1)

where k � 8�G, G is the gravitational constant, g is the
determinant of g��, and Sm is the action of (dark) matter

which depends on the metric g�� and some (dark) matter

field c . Stability in the matter sector (the Dolgov-
Kawasaki instability [11]) imposes some conditions on
the functional form of fðRÞ models. These conditions
require that the first and the second derivatives of fðRÞ
function with respect to the Ricci scalar R should be
positive definite. The positivity of the first derivative
ensures that the scalar degree of freedom is not tachyonic
and positivity of the second derivative tells us that the
graviton is not a ghost.

It is well known that fðRÞ models are equivalent to a
scalar field minimally coupled to gravity with an appro-
priate potential function. In fact, we may use a new set of
variables

�g�� ¼ �g��; (2)

� ¼ 1

2�
ffiffiffi
k

p ln�; (3)

where � � df
dR ¼ f0ðRÞ and � ¼

ffiffi
1
6

q
. This is indeed a con-

formal transformation which transforms the above action
in the Jordan frame to the following action in the Einstein
frame [9,12]:

SEF ¼ 1

2

Z
d4x

ffiffiffiffiffiffiffi� �g
p �

1

k
�R� �g��r��r��� 2Vð�Þ

�

þ Smð �g��e
2�

ffiffi
k

p
�; c Þ: (4)

All indices are raised and lowered by �g�� unless stated

otherwise. In the Einstein frame, � is a minimally coupled
scalar field with a self-interacting potential which is given
by

Vð�ðRÞÞ ¼ Rf0ðRÞ � fðRÞ
2kf02ðRÞ : (5)

Note that the conformal transformation induces the cou-
pling of the scalar field � with the matter sector. The

strength of this coupling � is fixed to be
ffiffi
1
6

q
and is the

same for all types of matter fields. In the action (4), we take
�g�� and � as two independent field variables and varia-
tions of the action yield the corresponding dynamical field
equations. Variation with respect to the metric tensor �g��

leads to

�G�� ¼ kð �T�
�� þ �Tm

��Þ; (6)

where

�T �
�� ¼ r��r��� 1

2
�g��r��r��� Vð�Þ �g��; (7)

�T m
�� ¼ �2ffiffiffiffiffiffiffi� �g

p �Smð �g��; c Þ
� �g�� (8)

are stress tensors of the scalar field and the matter field
system. The trace of (6) is

r��r��þ 4Vð�Þ � �R=k ¼ �Tm; (9)

which differentially relates the trace of the matter stress
tensor �Tm ¼ �g�� �Tm

�� to �R. Variation of the action (4) with

respect to the scalar field � gives

h�� dVð�Þ
d�

¼ ��
ffiffiffi
k

p
�Tm: (10)

It is important to note that the two stress tensors �Tm
�� and

�T�
�� are not separately conserved. Instead they satisfy the

following equation:

�r � �Tm
�� ¼ � �r� �T�

�� ¼ �
ffiffiffi
k

p r�� �Tm: (11)

We apply the field equations in a spatially flat homoge-
neous and isotropic cosmology described by Friedmann-
Robertson-Walker spacetime

ds2 ¼ �dt2 þ a2ðtÞðdx2 þ dy2 þ dz2Þ; (12)

where aðtÞ is the scale factor. To do this, we take �Tm
�� and

�T�
�� as the stress tensors of a pressureless perfect fluid with

energy density ��m, and a perfect fluid with energy density

�� ¼ 1
2
_�2 þ Vð�Þ and pressure p� ¼ 1

2
_�2 � Vð�Þ,

respectively. In this case, (6) and (10) take the form1

3H2 ¼ kð�� þ �mÞ; (13)

2 _Hþ 3H2 ¼ �k!���; (14)

€�þ 3H _�þ dVð�Þ
d�

¼ ��
ffiffiffi
k

p
�m; (15)

where !� ¼ p�

��
is the equation of state parameter of the

scalar field �, and the overdot indicates differentiation
with respect to cosmic time t. The trace equation (9) and
the conservation equation (11) give, respectively,

_� 2 þ R=k� 4Vð�Þ ¼ �m; (16)

_�m þ 3H�m ¼ Q; (17)

_�� þ 3Hð!� þ 1Þ�� ¼ �Q; (18)

where

1Hereafter we will use unbarred characters in the Einstein
frame.
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Q ¼ �
ffiffiffi
k

p
_��m (19)

is the interaction term. This term vanishes only for
� ¼ const, which due to (3) happens when fðRÞ linearly
depends on R. The direction of energy transfer depends on

the sign of Q or _�. For _�> 0, the energy transfer is

from dark energy to dark matter and for _�< 0 the reverse
is true.

We emphasize that the coupling term (19) is very similar
to some phenomenological coupling terms suggested in the
literature. In fact, there are different kinds of interacting
models which have been investigated [7,8]. A particular
class of these models considers Q ¼ 	 _’� in which 	 is a
coupling constant, ’ is usually a quintessence field, and �
is the energy density of dark matter [8]. Apart from the
similarity of the latter with (19), there are also some
important differences. First, the scalar field � is not a
kind of matter field and is actually given in terms of the
function fðRÞ. Second, � is a universal coupling constant
implying that� couples with the same strength to all types
of matter fields. On the contrary, it is possible to consider	
as a nonuniversal coupling constant so that it may couple to
dark matter and baryons with different strengths [13].

Moreover, the value of � is fixed to be 1=
ffiffiffi
6

p
, while 	 is

constrained by observations [8]. We will return to this last
point later.

III. THE COINCIDENCE PROBLEM

One of the important features of the cosmological con-
stant problem is the present coincidence between dark
energy and dark matter energy densities [14]. There is a
class of models in which this observation is related to some
kind of interaction between the two components [7,8]. In
these models the two components are not separately con-
served and there is a flow of energy from dark energy to
dark matter or vice versa. In this sense, dark energy and
dark matter energy densities may have the same scaling at
late times due to the interaction, although they decrease
with the expansion of the Universe at different rates. The
important task in this context is to find a constant ratio of
dark energy to dark matter energy densities for an appro-
priate interaction term. Despite the fact that this approach
seems to be promising, there is still not a compelling form
of interaction which is introduced by a fundamental theory.
Therefore one usually uses different interaction terms and
tries to adapt them with recent observations.

In fðRÞ gravity models presented in the Einstein frame,
there is a fixed interaction between the scalar field and
matter sector. Since the form of the interaction is fixed by
the conformal transformation one can therefore search for
some appropriate forms of the function fðRÞ for which the
energy densities ratio of the two components takes a
stationary value. This is the strategy that we are going to
pursue in this section, namely, to find some conditions on

the functional form of fðRÞ that may lead to a constant
r � �m=��.

To do this, we consider the time evolution of the ratio r,

_r ¼ _�m

��

� r
_��

��

: (20)

From Eqs. (17)–(19) we obtain

_r ¼ 3Hr!� þ �
ffiffiffi
k

p
_�rðrþ 1Þ: (21)

In this relation, we can write _r in terms of the parameters r
and q. We first use (13) and (14) to replace the equation of
state parameter !� with the deceleration parameter q.

Applying

_H ¼ �ðqþ 1ÞH2: (22)

to Eq. (14) gives

!� ¼ ð2q� 1ÞH2ffiffiffi
k

p
��

: (23)

We then use (13) in the latter and substitute the result in
(21), which leads to

_r ¼ Hrð2q� 1Þðrþ 1Þ þ �
ffiffiffi
k

p
_�rðrþ 1Þ: (24)

On the other hand, we can combine the trace equation (16)
with Eqs. (5) and (13) to obtain

_� 2 ¼ 1

k

�
3H2r

rþ 1
þ 3H2ð2q� 3Þ

�
1� 2

f0

�
� 2

f

f02

�
: (25)

When we put this expression into (24), the result is an
equation that relates _r to the parameters r, q, and H. The
requirement that the Universe approach a stationary stage
in which r either becomes a constant or varies more slowly
than the scale factor leads to the following relation:

gðf0;H; rs; qÞ ¼ 0; (26)

where

gðf0;H;rs;qÞ � rsð2q� 1Þðrs þ 1Þþ�rsðrs þ 1Þ
�

3rs
rs þ 1

þ 3ð2q� 3Þ
�
1� 2

f0

�
� 2f

H2f02

�
1=2

; (27)

and rs is the value of r when it takes a stationary value. It is
now possible to use (26) to check that whether a particular
fðRÞmodel is consistent with a late-time stationary ratio of
energy densities. In general, to find such fðRÞ gravity
models one may start with a particular fðRÞ function in
the action (1) and solve the corresponding field equations
for finding the form of qðzÞ or HðzÞ. However, this ap-
proach is not efficient in view of the complexity of the field
equations. An alternative approach is to start from the best
fit parametrization qðzÞ obtained directly from data and use
this qðzÞ for a particular fðRÞ function in (26). Here we will
follow the latter approach.
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For a given redshift z0 and the parameters rsðz0Þ, qðz0Þ,
and Hðz0Þ, the relation (26) acts as a constraint on the
function fðRÞ. As an illustration, we apply this constraint
to some fðRÞ functions. Before doing this, there are some
remarks to do with respect to (26). This condition is a
consequence of _r ¼ 0 when r ¼ rs becomes stationary
at late times. At sufficiently late times characterized by
z ¼ z0, we take rs ¼ r0 and rewrite (26) as

gðf00;H0; r0; q0Þ ¼ 0; (28)

where

gðf00;H0; r0; q0Þ
� r0ð2q0 � 1Þðr0 þ 1Þ þ �r0ðr0 þ 1Þ

�
3r0

r0 þ 1

þ 3ð2q0 � 3Þ
�
1� 2

f00

�
� 2

f0
H0f

02
0

�
1=2

: (29)

Here the functions f0, f
0
0, and f

00
0 are the late-time configu-

rations of fðRÞ, f0ðRÞ, and f00ðRÞ which are obtained by
replacing R with

R ¼ 6ð1� qÞH2 (30)

at the redshift z0. Note that an fðRÞ gravity model is usually
given in terms of some parametrizations. In this sense, the
condition (26) acts actually as a constraint relating the
corresponding parameters of a particular fðRÞ gravity
model to the constants q0, r0, and H0. We use a two-
parametric reconstruction function for characterizing qðzÞ
[15,16],

qðzÞ ¼ 1

2
þ q1zþ q2

ð1þ zÞ2 : (31)

Fitting this model to the gold data set gives q1 ¼ 1:47þ1:89
�1:82

and q2 ¼ �1:46� 0:43 [16]. We also take z0 ¼ 0:25
which, with use of (31), corresponds to q0 � �0:2.

Moreover, recent observations imply that r0 � �mðz0Þ
��ðz0Þ � 3

7

[17].
Now let us first consider the model [18,19]

fðRÞ ¼ Rþ 
R0

�
R

R0

�
n
: (32)

Here R0 is taken to be of the order of H2
0 and 
, n are

constant parameters. In terms of the values attributed to
these parameters, the model (32) is divided by three cases
[19]. First, when n > 1 there is a stable matter-dominated
era which does not follow by an asymptotically accelerated
regime. In this case, n ¼ 2 corresponds to Starobinsky’s
inflation and the accelerated phase exists in the asymptotic
past rather than in the future. Second, when 0< n< 1
there is a stable matter-dominated era followed by an
accelerated phase only for 
 < 0. Finally, in the case that
n < 0 there is no accelerated and matter-dominated phases
for 
 > 0 and 
 < 0, respectively. Thus the model (32) is
cosmologically viable in the regions of the parameters
space which is given by 
 < 0 and 0< n< 1.

When we use (30) in the function gðf00;H0; r0; q0Þ, it
takes the form of an expression which relates the parame-
ters n and 
 to q0, r0, and H0. In Fig. 1 we have plotted
gðn; 
;H0; r0; q0Þ for 
 ¼ �1. This figure indicates that
the constraint (28) is satisfied only for n � 0:9 which
implies that for this value of the parameter n, the model
(32) admits a late-time stationary ratio of the energy den-
sities. Note that n � 0:9 lies in the range in which the
model is cosmologically viable.
Now we consider the model presented by Starobinsky

[20,21]

fðRÞ ¼ R� �R0

�
1�

�
1þ

�
R

R0

�
2
��m

�
; (33)

where �, m are positive constants and R0 is again of the
order of the presently observed effective cosmological
constant. Using the same procedure, we have plotted the
function gðm;�;H0; r0; q0Þ in Fig. 2. The figure shows that
there are some regions in the parameters space for which
the condition (28) is satisfied. The condition is satisfied on
the upper boundary of the surface plotted in Fig. 2 where
gðm;�;H0; r0; q0Þ ¼ 0. Thus for the corresponding values
of the parameters, the coincidence problem can be

0.70 0.75 0.80 0.85 0.90 0.95 1.00
-2

-1

0

1

2

n

g

H0

FIG. 1 (color online). The plot of gðn; 
;H0; r0; q0Þ for the
model (32) when 
 ¼ �1, q0 ¼ �0:2, and r0 ¼ 3=7. The
vertical dashed line corresponds to n ¼ 0:906.
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–0.5

0.0

g
H0

FIG. 2 (color online). The plot of gðm;�;H0; r0; q0Þ for the
model (33) when q0 ¼ �0:2 and r0 ¼ 3=7.
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addressed in the context of the model (33). For instance, as
the figure indicates the parameters space is bounded by
� � 10:5 andm � 0:04 so that form> 0:04 the parameter
� should remain near the value 10.5.

IV. CONCLUSION

In the Einstein frame representation of fðRÞ gravity
models, the scalar partner of the metric tensor interacts
with (dark) matter in such a way that the interaction term is
fixed by the conformal transformation. This means that
contributions of the scalar field and the (dark) matter
system to total energy density do not scale independently.
As a consequence, even though the two components may
start with different scalings at early times, they may have
the same scaling at sufficiently late times.

We have considered this feature as a possibility for
addressing the coincidence problem. In fact, the interaction
of dark energy and dark matter has been recently taken as a
natural guidance for alleviating the coincidence problem
by some authors. In absence of an interaction or coupling
term based on a fundamental theory, most of the current
investigations have been limited to a phenomenological
level. In our case, the interaction term, Q, is given by the
conformal transformation and can be written in terms of _R,
f0ðRÞ, and f00ðRÞ. Because of stability considerations, any
viable fðRÞ model should satisfy f0ðRÞ> 0 and f00ðRÞ> 0
[22]. Thus the direction of the energy transfer is deter-
mined by the sign of _R in a particular epoch. For instance,
in an epoch for which _R> 0, the energy transfer is from
dark energy (or the scalar field �) to dark matter while for
_R< 0 the reverse is true.

We have derived a relation giving the evolution of the
parameter r. We have found that there is a class of fðRÞ
gravity models satisfying the condition (28) for which a
late-time stationary state for r exists. As illustrations, we
have shown that the model (32) lies in this class only for
n � 0:9. The condition is also used for Starobinsky’s
model. We have shown that there is a region in the
parameters space for which the coincidence problem can
be addressed in this model. The region is characterized by
the upper border of the surface plot of Fig. 2 for which
gðm;�;H0; r0; q0Þ ¼ 0.
Finally, we point out that there is not a free parameter in

the interaction term (19) since � is fixed by conformal
transformation. In general, the interaction of the scalar
field � and the matter sector may lead to a fifth force
and violation of the equivalence principle. In fact, the
real challenge for alleviating the coincidence problem
comes from the combination of restrictions from local
gravity experiments and dynamical considerations. Thus
the question is how can a coupling term without a free
parameter be consistent with local gravity experiments.
The point is that, in our case, these experiments constrain
the corresponding parameters of a particular fðRÞ gravity
model2 rather than the coupling constant of the interaction
term. For the model (33), it is shown [24] that the most
stringent bound is m> 0:9 which comes from violation of
the equivalence principle. Combining the latter with the
bounds indicated in Fig. 2, one infers that alleviation of the
coincidence problem requires that � � 10:5.
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