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In this paper we study how the distortion generated by a static and neutral distribution of external matter

affects a five-dimensional Schwarzschild-Tangherlini black hole. A solution representing a particular class

of such distorted black holes admits an R1 �Uð1Þ �Uð1Þ isometry group. We show that there exists a

certain duality transformation between the black hole horizon surface and the stretched singularity

surface. The space-time near the distorted black hole singularity has the same topology and Kasner

exponents as those of a five-dimensional Schwarzschild-Tangherlini black hole. We calculate the maximal

proper time of free fall of a test particle from the distorted black hole horizon to its singularity and find

that, depending on the distortion, it can be less, equal to, or greater than that of a Schwarzschild-

Tangherlini black hole of the same horizon area. This implies that due to the distortion, the singularity of a

Schwarzschild-Tangherlini black hole can come close to its horizon. A relation between the Kretschmann

scalar calculated on the horizon of a five-dimensional static, asymmetric, distorted black hole and the trace

of the square of the Ricci tensor of the horizon surface is derived.
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I. INTRODUCTION

String theories, the anti–de Sitter/conformal field theory
(AdS/CFT) correspondence [1,2], the Arkani-Hamed-
Dimopoulos-Dvali (ADD) model [3,4], and braneworld
Randall-Sundrum (RS) models [5] suggest that higher-
dimensional solutions of general relativity may have physi-
cal applications. Whether our world has extra dimensions
or not should be eventually verified by experiments. One of
such experiments is microscopic black hole production,
which may be conducted at the LHC. Such a black hole
may be created at energies of the order of�10 TeV, if our
world has extra spatial dimensions of large size (< 1 mm)
or large warping, which become accessible on such ener-
getic scales (see, e.g., [6–13]).

Possible physical applications of higher dimensions
have increased interest in higher-dimensional solutions of
general relativity. However, the Einstein equations of gen-
eral relativity, especially higher-dimensional ones, are very
complex. To solve them we have to use numerical compu-
tations, except for some idealized, highly symmetrical
cases, when construction of analytical solutions becomes
possible. For example, one such construction, correspond-
ing to a four-dimensional, static, and axisymmetric vac-
uum space-time, is due to Weyl [14]. The Weyl solution
implies a static and axisymmetric distribution of matter.
One of the Einstein equations for the space-time metric
represented in the Weyl form reduces to a linear Laplace
equation. Therefore, the superposition principle can be
applied for the construction of one of the metric functions.
Another metric function can be derived by a line integral in

terms of the first one. As a result, one can relatively easily
construct many interesting solutions, e.g., the Israel-Khan
solution representing a set of collinear Schwarzschild
black holes [15], a black hole with a toroidal horizon
[16], and a compactified black hole [17–19].
In higher-dimensional space-times we have a very rich

variety of black objects classified according to their horizon
topology, for example black holes, black strings, and black
rings (for a review see, e.g., [20]). However, an exact
analytical solution representing a black hole in a space-
timewith one large, compact extra dimension is not known.
The solution representing a black hole in a five-dimensional
space-time with one large, compact extra dimension is not
algebraically special [21]. As a result, finding such analyti-
cal solution can be a formidable problem. Analytical ap-
proximations to the black hole are given in [22–26]. Finding
a solution representing a black hole localized on a brane is
not a simple problem either. A numerical analysis suggests
that in a five-dimensional, one-brane RS model, only a
black hole whose horizon radius is smaller than the bulk
curvature can be localized on the brane [27]. Results of a
subsequent numerical analysis further suggest that such a
black hole may be unstable [28].
Both the sought black hole solutions are axisymmetric,

in the sense that they admit an SOð3Þ isometry group.
Orbits of the group are two-dimensional spheres of non-
zero curvature. As was noticed in [19], this nonzero cur-
vature is an essential problem for a construction of such
higher-dimensional axisymmetric solutions. However, one
can construct algebraically special axisymmetric solutions
in d-dimensional space-times [29]. As it was concluded in
[30], a d-dimensional, axisymmetric space-time which
admits the SOðd� 2Þ isometry group cannot be considered
as an appropriate higher-dimensional generalization of the
four-dimensional Weyl form. Instead, it was proposed in

*abdolrah@ualberta.ca
†ashoom@ualberta.ca
‡profdonpage@gmail.com

PHYSICAL REVIEW D 82, 124039 (2010)

1550-7998=2010=82(12)=124039(21) 124039-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.82.124039


[30] to consider a d-dimensional space-time which admits
the R1 �Uð1Þd�3 isometry group. Such a generalized
Weyl form allows for the construction of many interesting
black objects (see, e.g., [20,30]). However, as it was illus-
trated in [20], only four- and five-dimensional black hole
solutions can be presented in the Weyl form. Let us men-
tion that a generalization of the Weyl form to the Einstein-
Gauss-Bonnet theory in a five-dimensional space-time was
proposed in [31]. Numerical evidence that a Schwarzschild
black hole, a static black ring, and a uniform black string
can also be considered within the generalization of the
Weyl form was given in [32,33].

Having the generalized Weyl form, one may try to
construct higher-dimensional analogues of four-
dimensional Weyl solutions. For example, a construction
of multi-black-hole configurations within the generalized
five-dimensional Weyl form was discussed in the pa-
per [20]. The first configuration discussed there represents
a two-black-hole solution which is not asymptotically flat.
The second configuration is a three-black-hole solution
which is asymptotically flat but suffers from irremovable
conical singularities. In addition, the central black hole is
collinear with the other two along different symmetry axes.
The third configuration represents an infinite number of
black holes. However, it does not correspond to a five-
dimensional compactified black hole (‘‘caged’’ in the com-
pact dimension). In fact, such a black hole corresponds to a
space-time with an infinite number of collinear black holes
which admits an R1 � SOð3Þ isometry group, instead of
the R1 �Uð1Þ �Uð1Þ isometry of the five-dimensional
Weyl form. Asymptotically flat space-times which admit
an R1 �Uð1Þ �Uð1Þ isometry and correspond to five-
dimensional ‘‘collinear’’ black holes were constructed in
[34]. The corresponding background space-times have
conical singularities and are not flat by the construction.
Such space-times have more than one fixed point of the
Uð1Þ �Uð1Þ isometry group, whereas a five-dimensional
Minkowski space-time has only one such point.

Black holes interact with external matter and fields. For
example, an accretion disk around a black hole tidally
distorts its horizon. An accretion scenario of a black hole
which may be produced at the LHC is given in [10,35]. As
it is for any physical objects, properties of black holes are
mostly revealed by their interactions. To analyze a black
hole interaction is a formidable problem which requires
involved numerical computations. However, a study of
idealized, highly symmetrical analytical solutions may
provide us with an exact description of black hole non-
linear interactions with external matter and fields. Among
such solutions a black hole distorted by an external, static,
and axisymmetric distribution of matter deserves particu-
lar attention. Such a black hole was analyzed in the
papers [36–42].

External matter affects the internal structure of black
holes aswell. For example, external, asymmetric dynamical

distortion of a black hole results in chaotic and oscillatory
space-time singularity of the Belinsky-Khalantnikov-
Lifshitz type, which corresponds to shifts between different
Kasner regimes (see, e.g., [43–45]). The interior of a four-
dimensional, distorted, static, and axisymmetric, vacuum
black hole was studied in [42]. It was shown that in the
vicinity of the black hole singularity the space-time has the
same Kasner exponents as that of a Schwarzschild black
hole. However, the static and axisymmetric distortion does
change the geometry of the black hole stretched singularity
(region near a black hole singularity where the space-time
curvature is of the Planckian order,�1066 cm�2) and hori-
zon surfaces. The change is such that a certain duality
transformation between the geometry of the horizon and
the stretched singularity surfaces holds. According to that
relation, the geometry of the horizon surface uniquely
defines the geometry of the stretched singularity surface.
In addition, it was shown that such a distortion noticeably
affects the proper time of free fall from the black hole
horizon to its singularity. It is interesting to study whether
a higher-dimensional distorted black hole has similar
properties.
Another motivation to analyze the interior of a higher-

dimensional distorted black hole is related to analysis of a
topological phase transition between a nonuniform black
string, whose horizon wraps the space-time compact di-
mension, and a compactified black hole (see, e.g., [46,47]).
In such a transition the black string and black hole topo-
logical phases meet at the merger point [46,48–51]. As a
result, their near horizon geometry gets distorted. The
interior of a nonuniform six-dimensional black string was
studied in [52], where numerical evidence of a space-time
singularity approaching the black string horizon at the
merger point was presented. What happens to the corre-
sponding compactified black hole approaching the merger
point and which way it gets distorted remains an interesting
open question.
The main goal of our paper is to study a five-

dimensional, distorted, static, vacuum black hole as a
distorted Schwarzschild-Tangherlini black hole, which
can be presented in the generalized Weyl form, and to
compare its properties with those of a four-dimensional,
distorted, static, and axisymmetric, vacuum black hole. A
five-dimensional Schwarzschild-Tangherlini black hole is
a good approximation to a five-dimensional compactified
black hole if the size of the compact dimension is much
larger than the size of the black hole. Thus, the distorted
Schwarzschild-Tangherlini black hole may be also consi-
dered as a good approximation for such distorted compac-
tified black hole.
Our paper is organized as follows: In Sec. II, we con-

struct the five-dimensional Weyl solution which includes
gravitational distortion fields due to remote matter. In
Sec. III, we present the metric of a five-dimensional, static,
vacuum black hole distorted by external gravitational fields

SHOHREH ABDOLRAHIMI, ANDREYA. SHOOM, AND DON N. PAGE PHYSICAL REVIEW D 82, 124039 (2010)

124039-2



and derive the corresponding Einstein equations. A solu-
tion to the Einstein equations is derived in Sec. IV. In
Sec. V, we study the symmetry properties of the distortion
fields and present their boundary values on the black hole
horizon, singularity, and on its symmetry axes. The space-
time near the black hole horizon and singularity is ana-
lyzed in Secs. VI and VII, respectively. In Sec. VIII, we
discuss how the black hole distortion affects the maximal
proper time of free fall of a test particle moving from the
black hole horizon to its singularity. We summarize and
discuss our results in Sec. IX. Details of our calculations
are presented in the appendixes.

In this paper we use the following convention of units:
Gð5Þ ¼ c ¼ 1, the space-time signature isþ3, and the sign
conventions are that adopted in [53].

II. FIVE-DIMENSIONALWEYL SOLUTION

In this section we present a five-dimensional general-
ization of the Weyl solution in the form suitable for analy-
sis of a distorted five-dimensional vacuum black hole. To
begin with, let us briefly discuss the main properties of the
four-dimensional Weyl solution presented in the following
Weyl form:

ds2 ¼ �e2Udt2 þ e2ðV�UÞðdz2 þ d�2Þ þ �2e�2Ud�2;

(1)

where t, z 2 ð�1;1Þ, � 2 ð0;1Þ, and � 2 ½0; 2�Þ. The
metric functions U and V depend on the cylindrical coor-
dinates � and z. The Weyl solution represents a general
static and axisymmetric metric which solves the corre-
sponding vacuum Einstein equations. One of these equa-
tions reduces to the following linear equation for the metric
function U:

U;�� þ 1

�
U;� þU;zz ¼ 0; (2)

which is defined on the plane ð�; zÞ. Here and in what
follows, ð. . .Þ;a stands for the partial derivative of the ex-

pression (. . .) with respect to the coordinate xa. Equation (2)
can be viewed as a three-dimensional Laplace equation
defined in an auxiliary three-dimensional Euclidean space.
The remainingEinstein equations define themetric function
V as follows:

V;� ¼ �ðU2
;� �U2

;zÞ; (3)

V;z ¼ 2�U;�U;z: (4)

Equation (2) is the integrability condition for Eqs. (3) and
(4). If we solve Eq. (2) for the metric function U, then the
second metric function V can be derived by the following
line integral:

Vð�; zÞ ¼
Z ð�;zÞ

ð�0;z0Þ
½V;�0 ð�0; z0Þd�0 þ V;z0 ð�0; z0Þdz0�; (5)

where the integral is taken along any path connecting the
points ð�0; z0Þ and ð�; zÞ. The constant of integration is
defined by a point ð�0; z0Þ.
The four-dimensional Weyl solution admits an R1

t �
SOð2Þ ffi R1

t �U�ð1Þ isometry group. In other words, the

Weyl solution is characterized by the two orthogonal, com-
muting Killing vectors ��

ðtÞ ¼ ��
t and ��

ð�Þ ¼ ��
�, which

are generators of time translations and two-dimensional
rotations about the symmetry axis z, respectively. Note
that the metric function U together with the constant of
integration in (5) uniquely define the space-time geometry.
The d-dimensional generalization of the Weyl solution

which admits d� 2 commuting, non-null, orthogonal
Killing vector fields was presented in the papers [20,30].
Here we discuss the five-dimensional generalized Weyl
solution which is characterized by three commuting, non-
null, orthogonal Killing vector fields, one of which (��

ðtÞ ¼
��

t) is timelike, and other two (��
ð�Þ ¼ ��

� and ��
ð�Þ ¼

��
�) are spacelike. The Killing vectors are generators of

the isometry group R1
t �U�ð1Þ �U�ð1Þ. Thus, the five-

dimensional Weyl solution can be presented as follows:

ds2 ¼ �e2U1dt2 þ e2�ðdz2 þ d�2Þ
þ e2U2d�2 þ e2U3d�2; (6)

where t, z 2 ð�1;1Þ, � 2 ð0;1Þ, and �, � 2 ½0; 2�Þ.
The metric functions Ui, i ¼ 1; 2; 3, and � depend on the
coordinates � and z. Each of the functions Ui solves the
three-dimensional Laplace equation (2) with the following
constraint:

U1 þU2 þU3 ¼ ln�: (7)

If the functions Ui are known, the function � can be
derived by the line integral (5) using the following expres-
sions:

�;� ¼ ��ðU1;�U2;� þU1;�U3;� þU2;�U3;�

�U1;zU2;z �U1;zU3;z �U2;zU3;zÞ; (8)

�;z ¼ ��ðU1;�U2;z þU1;�U3;z þU2;�U3;z

þU1;zU2;� þU1;zU3;� þU2;zU3;�Þ: (9)

The structure of the five-dimensional Weyl solution can be
understood as follows: Given three solutions Ui of the
Laplace equation (2) which satisfy the constraint (7),
then norms of the Killing vectors are defined, and with
the choice of the integration constant in the line integral for
the function � the space-time geometry is constructed.
Because Eq. (2) for the metric functions Ui is linear, the
superposition principle can be applied for their
construction.
Here we shall consider a five-dimensional Weyl solution

representing a background Weyl solution defined by
~Ui and ~�, which is distorted by the external, static,

DISTORTED FIVE-DIMENSIONAL VACUUM BLACK HOLE PHYSICAL REVIEW D 82, 124039 (2010)

124039-3



axisymmetric fields defined by Ûi and �̂. The metric
functions of the corresponding space-time are

Ui ¼ ~Ui þ Ûi; � ¼ ~�þ �̂; (10)

where according to the constraint (7), we have

~U 1 þ ~U2 þ ~U3 ¼ ln�; Û1 þ Û2 þ Û3 ¼ 0: (11)

In what follows, we shall consider static distortion due to
the external gravitational fields of remote masses whose
configuration obeys the spatial symmetry of U�ð1Þ �
U�ð1Þ. Accordingly, we define

~U 1 :¼ ~Uþ ~Wþ ln�; ~U2 :¼� ~W; ~U3 :¼� ~U; (12)

~� :¼ ~V þ ~Uþ ~W; (13)

Û 1 :¼ Ûþ Ŵ; Û2 :¼ �Ŵ; Û3 :¼ �Û; (14)

�̂ :¼ V̂ þ Ûþ Ŵ: (15)

Here the distortion fields Û and V̂ define the external

gravitational fields, and V̂ defines the interaction between
the fields themselves and the background space-time.
Then, the metric (6) takes the following generalized
Weyl form1:

ds2 ¼ e2ð ~Uþ ~WþÛþŴÞ½��2dt2 þ e2ð ~VþV̂Þðdz2 þ d�2Þ�
þ e�2ð ~WþŴÞd�2 þ e�2ð ~UþÛÞd�2: (16)

The background fields ~U and ~W satisfy the three-
dimensional Laplace equation (2), and the function ~V can
be derived by the line integral (5) using the expressions

~V ;� ¼ �ð ~U2
;� þ ~W2

;� þ ~U;�
~W;� � ~U2

;z � ~W2
;z � ~U;z

~W;zÞ;
(17)

~V;z ¼ �ð2 ~U;�
~U;z þ 2 ~W;�

~W;z þ ~U;�
~W;z þ ~U;z

~W;�Þ: (18)

The distortion fields Û and Ŵ satisfy the three-dimensional

Laplace equation (2), and the function V̂ can be derived by
the line integral (5) using the expressions

V̂ ;� ¼ �ðÛ2
;� þ Ŵ2

;� þ Û;�Ŵ;� � Û2
;z � Ŵ2

;z � Û;zŴ;z

þ ~U;�Ŵ;� þ ~W;�Û;� � ~U;zŴ;z � ~W;zÛ;z

þ 2½ ~U;�Û;� þ ~W;�Ŵ;� � ~U;zÛ;z � ~W;zŴ;z�Þ;
(19)

V̂ ;z ¼ �ð2Û;�Û;z þ 2Ŵ;�Ŵ;z þ Û;�Ŵ;z þ Û;zŴ;�Þ
þ ~U;�Ŵ;z þ ~U;zŴ;� þ ~W;�Û;z þ ~W;zÛ;�

þ 2½ ~U;�Û;z þ ~U;zÛ;� þ ~W;�Ŵ;z þ ~W;zŴ;��Þ:
(20)

In the following sections we construct the metric repre-
senting a five-dimensional distorted Schwarzschild-
Tangherlini black hole and study its properties.

III. DISTORTED FIVE-DIMENSIONAL
VACUUM BLACK HOLE

A. Five-dimensional Schwarzschild-
Tangherlini black hole

A five-dimensional Schwarzschild-Tangherlini black
hole [54] is given by the following metric:

ds2 ¼ �
�
1� r2o

r2

�
dt2 þ

�
1� r2o

r2

��1
dr2 þ r2d!2

ð3Þ; (21)

where t 2 ð�1;þ1Þ, r 2 ð0;1Þ, and d!3
ð3Þ is the metric

on a three-dimensional round sphere, which can be pre-
sented in the following form:

d!2
ð3Þ ¼ d	2 þ sin2	d#2 þ sin2	sin2#d’2; (22)

where 	 , # 2 ½0; ��, and ’ 2 ½0; 2�Þ are the hyperspher-
ical coordinates. The black hole event horizon is located at
r ¼ ro, and the parameter ro is related to the black hole
mass M as follows:

r2o ¼ 8M

3�
: (23)

The space-time singularity is located at r ¼ 0.
To bring the black holemetric (21) to theWeyl form (16),

we use the Hopf coordinates 
 2 ½0; �=2� and �, � 2
½0; 2�Þ in which the metric d!3

ð3Þ reads

d!2
ð3Þ ¼ d
2 þ cos2
d�2 þ sin2
d�2: (24)

Thus,� and� are Killing coordinates. The space-time (21)
and (24) admits the following orthogonal, commuting
Killing vectors:

��
ðtÞ ¼ ��

t; ��
ð�Þ ¼ ��

�; ��
ð�Þ ¼ ��

�; (25)

where ��
ðtÞ is timelike outside the black hole horizon, and

��
ð�Þ, �

�
ð�Þ are spacelike vectors whose fixed points belong to

the orthogonal ‘‘axes’’ 
 ¼ 0 and 
 ¼ �=2, respectively.
The Hopf coordinates are illustrated in Fig. 1.

1The factor �2 in gtt is a result of the definition of the metric
functions. It can be removed by specifying their explicit form.
For example, the five-dimensional flat space-time

ds2 ¼ �dt2 þ dx2 þ dy2 þ x2d�2 þ y2d�2

can be derived from the metric (16) by taking Û ¼ Ŵ ¼ V̂ ¼ 0
and using the following metric functions:

~U ¼ � lnjxj; ~W ¼ � lnjyj; ~V ¼ ln

��������
xy

x2 þ y2

��������;
where x2 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ z2
p � z and y2 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ z2
p þ z.
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It is convenient to introduce the following coordinate
transformations:

r ¼ roffiffiffi
2

p ð�þ 1Þ1=2; � 2 ð�1;1Þ; (26)


 ¼ �=2; � 2 ½0; ��: (27)

In the new coordinates ð�; �Þ the black hole horizon and
singularity are located at � ¼ 1 and � ¼ �1, and the
black hole interior and exterior regions are defined by � 2
ð�1; 1Þ and � 2 ð1;1Þ, respectively. The metric (21) and
(24) takes the following form:

ds2 ¼ ��� 1

�þ 1
dt2 þ r2o

8
ð�þ 1Þ

�
d�2

�2 � 1
þ d�2

þ 2ð1þ cos�Þd�2 þ 2ð1� cos�Þd�2

�
: (28)

This metric can be written in the Weyl form (16) by using
the following coordinate transformations:

� ¼ r2o
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

q
sin�; z ¼ r2o

4
� cos�: (29)

It is more convenient to use ð�; �Þ coordinates instead of the
cylindrical coordinates ð�; zÞ, which describe the space-
time outside the black hole horizon and give additional
coordinate singularities in the black hole interior region if
analytically continued through the black hole horizon.

The functions ~U, ~W, and ~V in the coordinates ð�; �Þ take
the following form:

e2
~U ¼ 4

r2o
ð�þ 1Þ�1ð1� cos�Þ�1; (30)

e2
~W ¼ 4

r2o
ð�þ 1Þ�1ð1þ cos�Þ�1; (31)

e2
~V ¼ r2oð�þ 1Þ3sin2�

8ð�2 � cos2�Þ : (32)

One can check that, subject to the transformations (29),
the functions ~U and ~W satisfy the Laplace equation (2), and
the function ~V satisfies Eqs. (17) and (18).

B. Metric of a five-dimensional distorted black hole

In the previous subsection we demonstrated that the
metric of a five-dimensional Schwarzschild-Tangherlini
black hole can be written in the generalized Weyl form
(16). Here we present the metric of a five-dimensional
vacuum black hole distorted by external gravitational
fields. The fields sources are located at asymptotic infinity
and not included into the metric at finite distances. As a
result, the corresponding space-time is not asymptotically
flat.2 We consider the space-time near the black hole
regular horizon, far away from the sources. In this case,
the solution represents a local black hole in analogy with a
four-dimensional distorted vacuum black hole studied in
[36]. We focus on the study of the space-time near the
black hole horizon and its interior region, � 2 ð�1; 1Þ.
The corresponding metric is

ds2 ¼ ��� 1

�þ 1
e2ðÛþŴÞdt2 þ r2o

8
ð�þ 1Þ

�
�
e2ðV̂þÛþŴÞ �

�
d�2

�2 � 1
þ d�2

�

þ 2ð1þ cos�Þe�2Ŵd�2 þ 2ð1� cos�Þe�2Ûd�2

�
:

(33)

In the absence of distortion fields Û, Ŵ, and V̂, this metric
reduces to that of the Schwarzschild-Tangherlini black
hole (28). The Laplace equation (2) and Eqs. (19) and

(20) for the distortion fields Û, Ŵ, and V̂ in the coordinates
ð�; �Þ take the following form:

ð�2 � 1ÞX̂;�� þ 2�X̂;� þ X̂;�� þ cot�X̂;� ¼ 0; (34)

where X̂ :¼ ðÛ; ŴÞ, and

FIG. 1. The Hopf coordinates ð
; �;�Þ. The fixed points of the
Killing vectors ��

ð�Þ and �
�
ð�Þ belong to the axes defined by 
 ¼ 0

and 
 ¼ �=2, respectively. The coordinate origin O is a fixed
point of the isometry group U�ð1Þ �U�ð1Þ. Planes 1, 2, and 3,

embedded into four-dimensional space, are orthogonal to each
other.

2Assuming that the external sources are localized at finite
distances rather than at infinity, the space-time can be analyti-
cally extended to achieve asymptotic flatness in the way de-
scribed in [36] for a four-dimensional distorted black hole.
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V̂;� ¼ N

�
�½ð�2 � 1ÞðÛ2

;� þ Ŵ2
;� þ Û;�Ŵ;�Þ � Û2

;� � Ŵ2
;� � Û;�Ŵ;�� þ ð�2 � 1Þ

� cot�½2Û;�Û;� þ 2Ŵ;�Ŵ;� þ Û;�Ŵ;� þ Û;�Ŵ;�� þ 3

2
�½Û;� þ Ŵ;�� � ð�2 � 1Þ cos�

2sin2�
½Û;� � Ŵ;��

þ 3

2
cot�½Û;� þ Ŵ;�� þ �

2 sin�
½Û;� � Ŵ;��

�
� 3

2
½Û;� þ Ŵ;��; (35)

V̂;� ¼ �N

�
ð�2 � 1Þ cot�½ð�2 � 1ÞðÛ2

;� þ Ŵ2
;� þ Û;�Ŵ;�Þ � Û2

;� � Ŵ2
;� � Û;�Ŵ;�� � �ð�2 � 1Þ½2Û;�Û;�

þ 2Ŵ;�Ŵ;� þ Û;�Ŵ;� þ Û;�Ŵ;�� � 3

2
�½Û;� þ Ŵ;�� þ ð�2 � 1Þ cos�

2sin2�
½Û;� � Ŵ;��

þ 3

2
ð�2 � 1Þ cot�½Û;� þ Ŵ;�� þ �ð�2 � 1Þ

2 sin�
½Û;� � Ŵ;��

�
� 3

2
½Û;� þ Ŵ;��: (36)

Here N ¼ sin2�ð�2 � cos2�Þ�1 is singular along the lines
� ¼ � cos�. However, the function V̂, which is given
explicitly in the next section, is regular along these lines.

If the distortion fields Û and Ŵ are known, the function

V̂ can be derived by the following line integral:

V̂ð�; �Þ ¼
Z ð�;�Þ

ð�0;�0Þ
½V̂;�0 ð�0; �0Þd�0 þ V̂;�0 ð�0; �0Þd�0�:

(37)

The integral can be taken along any path connecting the

points ð�0; �0Þ and ð�; �Þ. Thus, the field V̂ is defined up to
arbitrary constant of integration corresponding to the
choice of a point ð�0; �0Þ. This constant can be chosen to
eliminate conical singularities, at least along one con-
nected component of one ‘‘axis.’’

Let us note that the distortion fields Û and Ŵ define
norms of the Killing vectors ��

ð�Þ and ��
ð�Þ, respectively.

Thus, exchange between the axes � ¼ 0 and � ¼ � is
given by the following transformation:

ð�; �;�Þ ! ð�� �;�; �Þ;
½Ûð�; �Þ; Ŵð�; �Þ� ! ½Ŵð�; �Þ; Ûð�; �Þ�:

(38)

According to Eqs. (35)–(37), the distortion field V̂, and
hence the metric (33), do not change under this trans-
formation, as it has to be.

The distorted black hole horizon is defined by � ¼ 1. It
is regular, if the space-time invariants are finite on the
horizon, and there are no conical singularities along the
axes of symmetry, and thus, on the horizon. According to
the results presented in Appendix A, the Kretschmann
scalar is regular on the black hole horizon if the horizon
surface is a regular, totally geodesic surface and its surface

gravity is constant. It follows that the distortion fields Û,

Ŵ, and V̂ must be smooth on a regular horizon. The
distortion fields explicitly given in the next section satisfy
this condition.

The metric (33) has no conical singularities along the
axes � ¼ 0 and � ¼ �, if the space there is locally flat. The

no-conical-singularity condition can be formulated as fol-
lows: Let us consider a spacelike Killing vector ��

ð’Þ ¼
��

’, whose orbits are compact near the corresponding

symmetry axis defined by y ¼ y0. Let 2� be the period
of the Killing coordinate ’, and let

dl2 ¼ AðyÞd’2 þ BðyÞdy2; (39)

be a metric of a two-dimensional surface near the symme-
try axis. Then, there is no-conical-singularity correspond-
ing to the symmetry axis if the ratio of the ��

ð’Þ orbit

circumference at the vicinity of the symmetry axis to the
orbit radius, which is defined on the two-dimensional
surface, is equal to 2�, i.e.,

lim
y!y0

R
2�
0 A1=2ðyÞd’R
y
y0
B1=2ðy0Þdy0 ¼ lim

y!y0

2�jA;yðyÞj
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðyÞBðyÞp ¼ 2�: (40)

If the ratio is less than 2� we have angular deficit, and if it
is greater than 2� we have angular excess.

Assuming that the distortion fields Û and Ŵ are smooth
on the axes, the no-conical-singularity condition for the
metric (33) and for the axis � ¼ 0, where ðx; yÞ ¼ ð�; �Þ,
reads

ðV̂ þ 2Ûþ ŴÞj�¼0 ¼ 0; (41)

for the axis � ¼ �, where ðx; yÞ ¼ ð�; �Þ, it is given by

ðV̂ þ Ûþ 2ŴÞj�¼� ¼ 0: (42)

IV. SOLUTION

In this section we derive a solution representing a dis-
torted five-dimensional vacuum black hole. We start with

the Laplace equation (34) for the distortion fields Û and Ŵ.
In the cylindrical coordinates ð�; zÞ [see, Eq. (29)] the
solution is well known and has the following form:

X̂ð�; zÞ ¼ X
n�0

½Anr
n þ Bnr

�ðnþ1Þ�Pnðcos#Þ; (43)

where
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r ¼ ð�2 þ z2Þ1=2; cos# ¼ z=r; (44)

and Pnðcos#Þ are the Legendre polynomials of the first
kind. The coefficients An and Bn in the expansion (43) are
called the interior and the exterior multipole moments,
respectively (see, e.g., [55,56]). Distortion fields defined
by the exterior multipole moments Bn’s alone correspond
to asymptotically flat solutions. However, according to the
uniqueness theorem formulated in [57], a Schwarzschild-
Tangherlini black hole is the only d-dimensional
asymptotically flat static vacuum black hole which has
nondegenerate regular event horizon. Note that a combi-
nation of the distortion fields corresponding to the exterior
and the interior multipole moments makes the black hole
horizon (� ¼ 0, z 2 ½�r2o=4; r

2
o=4�) singular, because the

terms in (43) proportional to the An’s cannot cancel out the
divergency at � ¼ z ¼ 0 due to the terms proportional to
the Bn’s. Thus, to have a regular horizon we shall consider
external sources, whose distortion fields are defined by the
interior multipole moments An’s alone.

Applying the coordinate transformations (29) to expres-
sions (43) and (44) we derive

Ûð�; �Þ ¼ X
n�0

anR
nPnð� cos�=RÞ; (45)

Ŵð�; �Þ ¼ X
n�0

bnR
nPnð� cos�=RÞ; (46)

R ¼ ð�2 � sin2�Þ1=2; (47)

where the coefficients an’s and bn’s define the distortion

fields Û and Ŵ, respectively.3 We shall call these coeffi-
cients multipole moments. In a four-dimensional space-
time, a relation of the multipole moments to their relativ-
istic analogues was discussed in [59]. A general formalism,
which includes both the Thorne [60] and the Geroch-
Hansen (see, e.g., [61–64]) four-dimensional relativistic
multipole moments is presented in [65]. For a relation
between the Thorne [60] and the Geroch-Hansen relativis-
tic multipole moments, see [66,67].

By analogy with the four-dimensional case (see, e.g.,

[68,69]) the distortion field V̂ can be presented as a sum of
terms linear and quadratic in the multipole moments as
follows:

V̂ ¼ V̂1 þ V̂2; (48)

V̂1ð�; �Þ ¼ �X
n�0

3ðan=2þ bn=2ÞRnPn

� X
n�1

�
ðan þ bn=2Þ

Xn�1

l¼0

ð�� cos�ÞRlPl

þ ðan=2þ bnÞ
Xn�1

l¼0

ð�1Þn�lð�þ cos�ÞRlPl

�
; (49)

V̂2ð�; �Þ ¼
X

n;k�1

nk

nþ k
ðanak þ anbk þ bnbkÞ

� Rnþk½PnPk � Pn�1Pk�1�;
Pn � Pnð� cos�=RÞ: (50)

This form of the distortion field V̂ corresponds to a particu-
lar choice of the constant of integration defined by the initial
point ð�0; �0Þ in the line integral (37). Becausewe have two
axes, for general an and bn we cannot find such a constant
that both the no-conical-singularity conditions (41) and (42)
are satisfied simultaneously. To satisfy these conditions we
have to impose an additional constraint on the multipole
moments an’s and bn’s. Using the solution (45)–(50), the
no-conical-singularity conditions (41) and (42), and the
symmetry property of the Legendre polynomials

Pnð�xÞ ¼ ð�1ÞnPnðxÞ; (51)

we derive the following constraint on the multipole
moments an’s and bn’s:

X
n�0

ða2n � b2nÞ þ 3
X
n�0

ða2nþ1 þ b2nþ1Þ ¼ 0: (52)

In what follows, we shall refer to the constraint (52) as the
no-conical-singularity condition for the distorted black

hole. One can see that the distortion fields Û, Ŵ, and V̂
given by expressions (45)–(50) are smooth on the black hole
horizon. Thus, according to the discussion given in the
previous section, the horizon is regular, and this solution
represents a local black hole distorted by the external static
fields. For this solution the transformation (38) takes the
following form:

ð�; �;�Þ ! ð�� �;�; �Þ;
½an; bn� ! ½ð�1Þnbn; ð�1Þnan�:

(53)

An additional restriction on values of the multipole mo-
ments follows from the strong energy condition (SEC)
imposed on the external sources of the distortion fields,
which follows from the positive mass theorem in a five-
dimensional space-time proven in [70]. If these sources are
included, the Einstein equations are not vacuum. In
particular, for the metric (33) the fttg component of the
Einstein equations reads

3Using the series expansion of the Legendre polynomials (see,
e.g., [58], p. 419)

PnðxÞ ¼ 1

2n
Xbn=2c
k¼0

ð�1Þkð2n� 2kÞ!
k!ðn� kÞ!ðn� 2kÞ! x

n�2k;

where bxc is the floor function, one can show that each term
RnPnð� cos�=RÞ in the expansions (45) and (46) is real valued
and regular even when �2 	 sin2�, which makes R imaginary.
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R��
�
t�


t ¼ 8�

�
T� � T�

�

3
g�

�
��

t�

t

¼ �� 1

�þ 1
e2ðÛþŴÞð4Ûþ4ŴÞ; (54)

where T� is the energy-momentum tensor representing

the sources. If the sources satisfy SEC, the right hand side
of Eq. (54) must be non-negative. The Laplace operator 4
is a negative operator, hence, SEC implies that

Ûþ Ŵ 	 0; (55)

assuming that Ûþ Ŵ ¼ 0 at asymptotically flat infinity. In
particular, the condition (55) implies that on the black hole
horizon, on the axes � ¼ 0 and � ¼ �, we haveX

n�0

ð�1Þnðan þ bnÞ 	 0: (56)

According to the structure of the five-dimensional Weyl
solution, one has an arbitrary choice to define the distortion

fields Û and Ŵ by specifying the corresponding source
functions, which can take any real values (positive or
negative), assuming that the SEC (56) is satisfied.

To illustrate the effect of the distortion fields on the
black hole, we restrict ourselves to the lower order (up to
the quadrupole) multipole moments. Values of these mo-
ments are subject to the conditions (52) and (56),

a0 � b0 þ a2 � b2 þ 3ða1 þ b1Þ ¼ 0; (57)

a0 þ b0 � ða1 þ b1Þ þ a2 þ b2 	 0: (58)

The simplest type of distortion is due to a monopole whose
values are such that a0 ¼ b0 	 0. However, this distortion
is trivial, for it does not break the spherical symmetry of a
five-dimensional Schwarzschild-Tangherlini black hole.
The next, less trivial, distortion is due to a dipole. Taking

Û as a dipole distortion and Ŵ as a monopole distortion
and using expression (45), we derive the dipole-monopole
distortion of the form

Û ¼ a0 þ a1� cos�; Ŵ ¼ a0 þ 3a1;

2a0 þ ð3� 1Þa1 	 0:
(59)

According to the transformation (53), taking Û as a mono-

pole distortion and Ŵ as a dipole one corresponds to
exchange between the axes � ¼ 0 and � ¼ � and does
not give anything new. Finally, we consider the
quadrupole-quadrupole distortion of the form

Û ¼ Ŵ ¼ a0 þ a2
2
ð1� �2 þ ð3�2 � 1Þcos2�Þ;

a0 þ a2 	 0:
(60)

In what follows, to study the distorted black hole we shall
consider the dipole-monopole (59) and the quadrupole-
quadrupole (60) distortion fields.

V. SYMMETRIES AND BOUNDARY VALUES
OF THE DISTORTION FIELDS

The space-time (33) is symmetric under the continuous
group of isometries R1

t �U�ð1Þ �U�ð1Þ. This means that

the essential features of the space-time geometry are con-
fined to the ð�; �Þ plane of orbits, which is invariant under
the group of transformations. To study the black hole
interior, i.e., the region between the black hole horizon
and singularity, it is convenient to introduce instead of �
another coordinate c as follows:

� ¼ cosc ; c 2 ð0; �Þ: (61)

Thus, c ¼ 0 and c ¼ � define the black hole horizon and
singularity, respectively. The metric on the plane ðc ; �Þ
corresponding to the black hole interior is

d�2 ¼ r2o
8
ð1þ cosc Þe2ðV̂þÛþŴÞð�dc 2 þ d�2Þ: (62)

We see that the coordinate c is timelike. The correspond-
ing conformal diagram illustrating the geometry of the
black hole interior is presented in Fig. 2. In the diagram,
the lines c � � ¼ const are null rays propagating within
the two-dimensional plane ðc ; �Þ. Three such rays are
illustrated in Fig. 2 by arrows. One of the rays starts
at point A on the horizon, goes through the axis � ¼ �,
and terminates at the singularity, at point B.
Consider a transformation RC representing reflection of

a point on the ðc ; �Þ plane with respect to the central
point C

RC: ðc ; �Þ ! ð�� c ; �� �Þ: (63)

FIG. 2. Conformal diagram for the ðc ; �Þ plane of orbits
corresponding to the black hole interior. Arrows illustrate propa-
gation of future-directed null rays. Points A and B connected by
one of such rays are symmetric with respect to the central point
Cð�=2; �=2Þ.
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This transformation defines a map between functions de-
fined on the plane ðc ; �Þ, which has the following form:

f
 ¼ R

CðfÞ: f
ðc ; �Þ ¼ fð�� c ; �� �Þ: (64)

The coordinates of the points A and B are related by the
reflection RC. Thus, R



C is a map between functions defined

on the black hole horizon and singularity. Applying this

map to the distortion fields Û, Ŵ, and V̂, we derive

Ûð�� c ; �� �Þ ¼ Ûðc ; �Þ; (65)

Ŵð�� c ; �� �Þ ¼ Ŵðc ; �Þ; (66)

V̂1ð�� c ; �� �Þ
¼ �V̂1ðc ; �Þ � 3½Ûðc ; �Þ þ Ŵðc ; �Þ�; (67)

V̂ 2ð�� c ; �� �Þ ¼ V̂2ðc ; �Þ: (68)

We shall use these relations to define values of the dis-
tortion fields on the black hole horizon and singularity, as
well as on the symmetry axes.

To begin with let us introduce the following notations:

u0 :¼
X
n�0

a2n; u1 :¼
X
n�0

a2nþ1; (69)

w0 :¼
X
n�0

b2n; w1 :¼ �X
n�0

b2nþ1: (70)

Then the no-conical-singularity condition (52) can be
written as

u0 þ 3u1 ¼ w0 þ 3w1: (71)

In addition, we define the following functions:

u�ð�Þ :¼
X
n�0

ð�1Þnancosnð�Þ � u0; (72)

w�ð�Þ :¼
X
n�0

ð�1Þnbncosnð�Þ � w0; (73)

where � :¼ ðc ; �Þ. Thus, for the dipole-monopole distor-
tion (59) we have

u�ð�Þ ¼ �a1 cos�; u0 ¼ a0; u1 ¼ a1;

w�ð�Þ ¼ 0; w0 ¼ a0 þ 3a1; w1 ¼ 0;
(74)

and for the quadrupole-quadrupole distortion (60) we have

u�ð�Þ ¼ w�ð�Þ ¼ �a2sin
2�; u0 ¼ w0 ¼ a0 þ a2;

u1 ¼ w1 ¼ 0: (75)

Using the definitions above it is convenient to introduce
renormalized distortion fields, which do not depend on the
monopole moments a0 and b0, as follows:

U ðc ; �Þ :¼ Ûðc ; �Þ � u0 � 3u1; (76)

W ðc ; �Þ :¼ Ŵðc ; �Þ � w0 � 3w1; (77)

V ðc ; �Þ :¼ V̂ðc ; �Þ þ 3

2
½u0 þ w0 þ 3ðu1 þ w1Þ�: (78)

With the aid of the expressions above we derive values of
the renormalized distortion fields on the black hole horizon

U ð0; �Þ :¼ uþð�Þ � 3u1; (79)

W ð0; �Þ :¼ wþð�Þ � 3w1; (80)

V ð0; �Þ :¼ 4ðu1 þ w1Þ; (81)

and the singularity

U ð�; �Þ ¼ u�ð�Þ � 3u1; (82)

W ð�; �Þ ¼ w�ð�Þ � 3w1; (83)

V ð�; �Þ ¼ �3ðu�ð�Þ þ w�ð�ÞÞ þ 5ðu1 þ w1Þ; (84)

as well as on the axis � ¼ 0

U ðc ; 0Þ ¼ uþðc Þ � 3u1; (85)

W ðc ; 0Þ ¼ wþðc Þ � 3w1; (86)

V ðc ; 0Þ ¼ �2uþðc Þ � wþðc Þ þ 3ð2u1 þ w1Þ; (87)

and on the axis � ¼ �

U ðc ; �Þ ¼ u�ðc Þ � 3u1; (88)

W ðc ; �Þ ¼ w�ðc Þ � 3w1; (89)

V ðc ; �Þ ¼ �u�ðc Þ � 2w�ðc Þ þ 3ðu1 þ 2w1Þ: (90)

In what follows, we consider for convenience the di-
mensionless form of the metric dS2, which is related to the
metric ds2 as follows:

ds2 ¼ �2dS2; (91)

where

�2 ¼ 1

�2
e2ðu0�u1þw0�w1Þ (92)

is the conformal factor, and � is the surface gravity of the
distorted black hole corresponding to ��

ðtÞ ¼ ��
t,

� ¼ e�V̂

r0

���������¼1
¼ 1

r0
eð3u0þu1þ3w0þw1Þ=2: (93)

Note that the space-time (33) is not asymptotically flat, so
the surface gravity (93) is defined only up to an arbitrary
redshift factor. The dimensionless metric is given by
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dS2 ¼ ��� 1

�þ 1
e2ðUþW ÞdT2 þ 1

8
ð�þ 1Þ

�
�
e2ðVþUþW Þ

�
d�2

�2 � 1
þ d�2

�

þ 2ð1þ cos�Þe�2Wd�2 þ 2ð1� cos�Þe�2Ud�2

�
;

(94)

where the dimensionless time T is defined as follows:

T ¼ �e4ðu1þw1Þt: (95)

Using the transformation (61), one can present the metric
(94) in ðT; c ; �; �;�Þ coordinates, which are more conve-
nient for analysis of the black hole interior.

VI. SPACE-TIME NEAR THE HORIZON

A. Intrinsic curvature of the horizon surface

In this section we study geometry of the three-
dimensional distorted horizon surface of the space-time
(94), defined by T ¼ const, � ¼ 1. The metric of the
horizon surface reads

d�2þ ¼ 1

4
ðe2ðuþð�Þþwþð�Þþu1þw1Þd�2

þ 2ð1þ cos�Þe�2ðwþð�Þ�3w1Þd�2

þ 2ð1� cos�Þe�2ðuþð�Þ�3u1Þd�2Þ: (96)

Here and in what follows, the þ subscript stands for a
quantity defined on the black hole horizon surface. Using
this metric one can calculate the dimensionless area of the
black hole horizon surface,

Aþ ¼ 2�2e4ðu1þw1Þ: (97)

The dimensional area is equal to

Aþ ¼ �3Aþ ¼ 2�2r3oe
�ðu1þw1þ3u0þ3w0Þ=2: (98)

To study the geometry of a two-dimensional surface, one
can calculate its intrinsic (Gaussian) curvature invariant
and illustrate its shape by an isometric embedding of the
surface into a three-dimensional flat space; one can calcu-
late its extrinsic curvature as well. To study the geometry of
a three-dimensional hypersurface is not that simple, for
there are generally more than one curvature invariant, and
its isometric local embedding generally requires 3ð3þ
1Þ=2 ¼ 6-dimensional flat space. However, if the hyper-
surface admits a group of isometries, one can analyze its
geometry by studying the geometry of the sections of the
isometry orbits. In our case the three-dimensional hyper-
surface defined by the metric (96) admits a U�ð1Þ �U�ð1Þ
group of isometries. As a result, we have ð�; �Þ and ð�;�Þ
two-dimensional sections. For completeness, we consider
ð�;�Þ two-dimensional sections as well. Following an
analysis of the horizon surface of a five-dimensional black

hole and black ring presented in [71], we define the
Gaussian curvatures of the sections as the corresponding
Riemann tensor components of the metric (96) calculated
in an orthonormal frame,

Kþ� :¼ 8ð1� cos�Þ
sin2�

e�2ðuþð�Þþu1þ4w1ÞRþ����; (99)

Kþ� :¼ 8ð1þ cos�Þ
sin2�

e�2ðwþð�Þþw1þ4u1ÞRþ����; (100)

Kþ� :¼ 4

sin2�
e2ðuþð�Þþwþð�Þ�3u1�3w1ÞRþ����: (101)

Explicit form of these expressions is presented in
Appendix B. For a round three-dimensional sphere, which
represents the horizon surface of a five-dimensional
Schwarzschild-Tangherlini black hole, we have

Kþ� ¼ Kþ� ¼ Kþ� ¼ 1: (102)

In the case of the distortion fields Û ¼ 0, Ŵ � 0 we have

Kþ� ¼ Kþ�, and in the case of the distortion fields Û � 0,

Ŵ ¼ 0 we have Kþ� ¼ Kþ�. Components of the Ricci

tensor corresponding to a three-dimensional hypersurface
are related to the Gaussian curvatures of the sections as
follows:

R�
þ� ¼ Kþ� þ Kþ�; R�

þ� ¼ Kþ� þ Kþ�;

R�
þ� ¼ Kþ� þ Kþ�: (103)

The corresponding Ricci scalar and the trace of the square
of the Ricci tensor are

Rþ ¼ R�
þ� þR�

þ� þR�
þ�; (104)

ðRABRABÞþ ¼ ðR�
þ�Þ2 þ ðR�

þ�Þ2 þ ðR�
þ�Þ2: (105)

The Ricci scalar Rþ and the trace of the square of the
Ricci tensor, ðRABRABÞþ, of the horizon surface are natu-
ral invariant measures of its intrinsic curvature. The di-
mensional Ricci scalar and the trace of the square of the
Ricci tensor are equal to ��2Rþ and ��4ðRABRABÞþ,
respectively.
Here we calculate the Gaussian curvatures of the sec-

tions for the dipole-monopole distortion (74),

Kþ� ¼ Kþ� ¼ e�2a1ð1þcos�Þ½1þ 2a1ð1� cos�Þ�; (106)

Kþ� ¼ e�2a1ð1þcos�Þ½1� 2a1ð3þ 5 cos�Þ � 8a21sin
2��;
(107)

and for the quadrupole-quadrupole distortion (75),

Kþ� ¼ kþ; Kþ� ¼ k�;

k� ¼ e4a2sin
2�½1þ 8a2ð1� 2 cos�� 4cos2�Þ

� 48a22cos
2�sin2��; (108)
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Kþ� ¼ e4a2sin
2�½1� 8a2cos

2�� 16a22cos
2�sin2��: (109)

Using these expressions together with Eqs. (103)–(105) we
can calculate the corresponding dimensionless Ricci scalar
and the trace of the square of the Ricci tensor of the horizon
surface. For an undistorted black hole the dimensionless
Ricci scalar isRSTþ ¼ 6, and the trace of the square of the

Ricci tensor is ðRABRABÞSTþ ¼ 12. The Ricci scalar and

the trace of the square of the Ricci tensor are shown in
Figs. 3(a) and 3(b), respectively. These figures illustrate
that the intrinsic curvature of a distorted horizon surface
strongly varies over it.

B. Shape of the horizon surface

Distortion fields change the shape of the horizon surface.
To visualize the effect of the distortion fields on the horizon
surface, we consider an isometric embedding of its two-
dimensional sections into a flat three-dimensional space
with the following metric:

dl2 ¼ �dZ2 þ d}2 þ }2d’2; (110)

where � ¼ þ1 corresponds to Euclidean space, � ¼ �1
corresponds to pseudo-Euclidean space, and ðZ; }; ’Þ are
the cylindrical coordinates.

The section ð�;�Þ defined by � ¼ const represents a
two-dimensional torus whose radii are defined by the dis-
tortion fields. We shall consider the embedding of the
ð�; �Þ and ð�;�Þ two-dimensional sections, which accord-
ing to the metric (96) are parametrized in the cylindrical
coordinates as follows:

Z ¼ Zð�Þ; } ¼ }ð�Þ: (111)

The geometry induced on the section (111) is given by

dl2 ¼ ð�Z2
;� þ }2

;�Þd�2 þ }2d’2: (112)

The metric of the section ð�; �Þ defined from the metric
(96) by � ¼ const reads

d�2
þ� ¼ 1

4
ðe2ðuþð�Þþwþð�Þþu1þw1Þd�2

þ 2ð1þ cos�Þe�2ðwþð�Þ�3w1Þd�2Þ: (113)

Matching the metrics (112) and (113), we derive the em-
bedding map

’ ¼ �; }ð�Þ ¼ 1ffiffiffi
2

p ð1þ cos�Þ1=2e�wþð�Þþ3w1 ;

Zð�Þ ¼
Z �

0
Z;�0d�

0;

Z;� ¼
�
�

�
1

4
e2ðuþð�Þþwþð�Þþu1þw1Þ � }2

;�

��
1=2

: (114)

The metric of the section ð�;�Þ defined from the metric
(96) by � ¼ const reads

d�2þ� ¼ 1

4
ðe2ðuþð�Þþwþð�Þþu1þw1Þd�2

þ 2ð1� cos�Þe�2ðuþð�Þ�3u1Þd�2Þ: (115)

Matching the metrics (112) and (115), we derive the em-
bedding map

’ ¼ �; }ð�Þ ¼ 1ffiffiffi
2

p ð1� cos�Þ1=2e�uþð�Þþ3u1 ;

Zð�Þ ¼
Z �

�
Z;�0d�

0;

Z;� ¼ �
�
�

�
1

4
e2ðuþð�Þþwþð�Þþu1þw1Þ � }2

;�

��
1=2

: (116)

Rotational curves illustrating embeddings of the sec-
tions ð�; �Þ and ð�;�Þ for the dipole-monopole (74) and
the quadrupole-quadrupole (75) distortions are shown in
Figs. 4(a) and 4(b), respectively. These curves belong
to plane 1 in Fig. 1. To reconstruct the shape of the
three-dimensional horizon surface, we have to rotate these

FIG. 3. Intrinsic curvature invariants of the horizon surface. (a) Dimensionless Ricci scalar. (b) The trace of the square of the Ricci
tensor. Dipole-monopole distortion: a1 ¼ �1=5, b1 ¼ 0 (line 1), a1 ¼ 1=5, b1 ¼ 0 (line 2). Quadrupole-quadrupole distortion:
a2 ¼ b2 ¼ �1=7 (line 3), a2 ¼ b2 ¼ 1=7 (line 4). The horizontal dashed lines represent the dimensionless Ricci scalar and the trace
of the square of the Ricci tensor of a Schwarzschild-Tangherlini black hole.
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curves in planes 2 and 3 (see Fig. 1) around the axes 
 ¼
�=2 and 
 ¼ 0.

C. Metric near the horizon

The functions uþð�Þ and wþð�Þ, which specify the
geometry of the horizon surface, uniquely determine the

space-time geometry in the vicinity of the black hole

horizon. Using the expansion of the distortion fields Û,

Ŵ, and V̂ in the vicinity of the horizon [see Eqs. (C8) and
(C11) in Appendix C] and the definition of the renormal-
ized distortion fields (76)–(78), we derive an approxima-
tion for the metric (94) near the black hole horizon:

dS2þ ¼ AþdT2 þ Bþð�dc 2 þ d�2Þ þ Cþd�2 þDþd�2; (117)

Aþ ¼ 1

4
e2ðuþð�Þþwþð�Þ�3u1�3w1Þ

�
c 2 þ 1

2

�
uþ;�� þ wþ;�� þ cot�ðuþ;� þ wþ;�Þ þ 1

3

�
c 4 þOðc 6Þ

�
;

Bþ ¼ 1

4
e2ðuþð�Þþwþð�Þþu1þw1Þ

�
1þ 1

2

�
uþ;�� þ wþ;�� þ 2ðu2þ;� þ uþ;�wþ;� þ w2

þ;�Þ

� 2 cot�ðuþ;� þ wþ;�Þ � uþ;� � wþ;�

sin�
� 1

2

�
c 2 þOðc 4Þ

�
;

Cþ ¼ 1

2
ð1þ cos�Þe�2ðwþð�Þ�3w1Þ

�
1� 1

2

�
wþ;�� þ cot�wþ;� þ 1

2

�
c 2 þOðc 4Þ

�
;

Dþ ¼ 1

2
ð1� cos�Þe�2ðuþð�Þ�3u1Þ

�
1� 1

2

�
uþ;�� þ cot�uþ;� þ 1

2

�
c 2 þOðc 4Þ

�
: (118)

This approximation allows us to calculate the Kretschmann
scalar K :¼¼ ð5ÞR���

ð5ÞR���, which is a space-time
curvature invariant, at the horizon surface. In Appendix A
we demonstrate that there is a simple relation between the
Kretschmann scalar calculated on the horizon of a five-
dimensional, static, distorted black hole and the trace of
the square of the Ricci tensor of its horizon surface, which is

Kþ ¼ 6ðRABRABÞþ: (119)

This relation is valid not only for a distorted black hole
given by a five-dimensional Weyl solution, but also for an
arbitrary distorted, asymmetric, static, vacuum five-
dimensional black hole.

Consequently, according to Figs. 3 and 4, the space-time
curvature at the horizon is greater at the points where the
horizon surface is more curved.

VII. SPACE-TIME NEAR THE SINGULARITY

A. Metric near the singularity

Using the expansion of the distortion fields Û, Ŵ, and V̂
at the vicinity of the black hole singularity [see Eqs. (C8)
and (C12) in Appendix C] and the definition of the
renormalized distortion fields (76)–(78), we derive an ap-
proximation of the metric (94) near the black hole singu-
larity c� ¼ �� c ! 0:

FIG. 4. Rotational curves of the horizon surface. (a) Section ð�; �Þ. (b) Section ð�;�Þ. Dipole-monopole distortion: a1 ¼ �1=5,
b1 ¼ 0 (line 1), a1 ¼ 1=5, b1 ¼ 0 (line 2). Quadrupole-quadrupole distortion: a2 ¼ b2 ¼ �1=7 (line 3), a2 ¼ b2 ¼ 1=7 (line 4).
Regions of the sections embedded into pseudo-Euclidean space are illustrated by dashed lines. Dotted arcs of unit radius represent the
horizon surface of an undistorted black hole.
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dS2� ¼ A�dT2 þ B�ð�dc 2� þ d�2Þ þ C�d�2 þD�d�2; (120)

A� ¼ 4e2ðu�ð�Þþw�ð�Þ�3u1�3w1Þ
�

1

c 2�
þ 1

2

�
u�;�� þ w�;�� þ cot�ðu�;� þ w�;�Þ � 1

3

�
þOðc 2�Þ

�
;

B� ¼ 1

16
e�4ðu�ð�Þþw�ð�Þ�u1�w1Þ

�
c 2� �

�
u�;�� þ w�;�� � u2�;� � u�;�w�;� � w2

�;�

� 1

2
cot�ðu�;� þ w�;�Þ þ u�;� � w�;�

2 sin�
þ 1

12

�
c 4� þOðc 6�Þ

�
;

C� ¼ 1

8
ð1þ cos�Þe�2ðw�ð�Þ�3w1Þ

�
c 2� � 1

2

�
w�;�� þ cot�w�;� þ 1

6

�
c 4� þOðc 6�Þ

�
;

D� ¼ 1

8
ð1� cos�Þe�2ðu�ð�Þ�3u1Þ

�
c 2� � 1

2

�
u�;�� þ cot�u�;� þ 1

6

�
c 4� þOðc 6�Þ

�
: (121)

This approximation allows us to calculate the Kretschmann
scalar near the singularity, up to corrections that are second
order in c�:

K� � 28 � 72
c 8�

e8ðu�ð�Þþw�ð�Þ�u1�w1Þ½1þKð2Þ� c 2��;
(122)

Kð2Þ� ¼2

3

�
u�;��þw�;���4u2�;��6u�;�w�;��4w2

�;�:

�2cot�ðu�;�þw�;�Þþu�;��w�;�

sin�
þ1

2

�
: (123)

Higher order terms can be obtained by using the relations
given in Appendix C. In the absence of distortion the
Kretschmann scalar is equal to the Kretschmann scalar
of the five-dimensional Schwarzschild-Tangherlini space-
time

K ST� ¼ 28 � 72
c 8�

: (124)

B. Stretched singularity

In the absence of distortion the approximation (121)
gives the Schwarzschild-Tangherlini geometry near the
singularity

dS2� � � c 2�
16

dc 2� þ 4

c 2�
dT2 þ c 2�

4
d!2

ð3Þ: (125)

Using the transformation

c� ¼ 2
ffiffiffi
2

p
�1=2 (126)

the metric (125) can be written in the form

dS2� � �d�2 þ 1

2�
dT2 þ 2�d!2

ð3Þ: (127)

Here � is the maximal proper time of free fall to the
singularity from a point near it along the geodesic defined
by ðT; �; �;�Þ ¼ const. The proper time � is positive and

equals to 0 at the singularity.4 The metric (127) has the
Kasner exponents ð�1=2; 1=2; 1=2; 1=2Þ. It represents a
metric of a collapsing, anisotropic universe which con-
tracts in the ð�; �;�Þ directions and expands in the T
direction.
The Kretschmann scalar (124), expressed through the

proper time, has the following form:

K ST� ¼ 9

2�4
: (128)

This expression shows that a surface of constantKST� is at

the same time a surface of constant �.
A space-time in the region where its curvature is of order

of the Planckian curvature requires quantum gravity for its
description. For the Schwarzschild-Tangherlini geometry
such a region is defined by the surface whereKST� � ‘�4

Pl ,

where ‘Pl � 10�33 cm is the Planckian length, which cor-
responds to the proper time � of order of the Planckian time
�Pl � 10�44 s. Since one cannot rely on the classical de-
scription in this region, it is natural to consider its boundary
as the stretched singularity. The stretched singularity of the
five-dimensional Schwarzschild-Tangherlini space-time
has the topology R1 � S3. Its metric is a direct sum of
the metric of a line and the metric of a round three-
dimensional sphere.
What happens to the stretched singularity when a

Schwarzschild-Tangherlini black hole is distorted? To an-
swer this question we use the asymptotic form of the metric
near the singularity of the distorted black hole [see
Eq. (120)]. Let us consider a timelike geodesic defined
by ðT; �;�Þ ¼ const. For such a geodesic the maximal
proper time of free fall to the singularity from a point
near it corresponds to E ¼ L� ¼ L� ¼ L0 ¼ 0 (see

Appendix D). We shall call the corresponding geodesic

4The proper time � defined this way runs backward. One can
define another proper time �0 :¼ �o � �, where �o � �, which
runs forward and is equal to �o at the singularity. However, we
shall use the former definition, which is more convenient for our
calculations.
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‘‘radial’’. According to the calculations given in
Appendix D, the radial geodesic is uniquely determined
by the limiting value �0 of its angular parameter � at which
it ‘‘hits’’ the black hole singularity. Let us denote by � the
proper time measured along the radial geodesic backward
in time from its end point at the singularity. We can use
ð�; �0Þ as new coordinates in the vicinity of the singularity.
Using the leading order terms in expressions (D13) and
(D14), we can relate the coordinates ðc�; �Þ to the new
coordinates as follows:

c� ¼ 2
ffiffiffi
2

p
eu�ð�Þþw�ð�Þ�u1�w1�1=2; � ¼ �0: (129)

In the coordinates ð�; �0 ¼ �Þ the metric (120) takes the
following form:

dS2� � �d�2 þ 1

2�
e�4ðu1þw1ÞdT2 þ 2�e4ðu1þw1Þd�2�;

(130)

where

d�2� ¼ 1

4
ðe�2ðu�ð�Þþw�ð�Þþu1þw1Þd�2

þ 2ð1þ cos�Þe2ðu�ð�Þ�3u1Þd�2

þ 2ð1� cos�Þe2ðw�ð�Þ�3w1Þd�2Þ: (131)

The metric (130) has the same Kasner exponents as those
of (127).

The Kretschmann scalar (122) in the (�, �0 ¼ �) coor-
dinates reads

K� � 9

2�4
½1þ ~Kð2Þ

� ��; (132)

~Kð2Þ
� ¼ 16

3
e2ðu�ð�Þþw�ð�Þ�u1�w1Þ

�
u�;�� þ w�;�� � 4u2�;�

� 6u�;�w�;� � 4w2�;� � 2 cot�ðu�;� þ w�;�Þ
þ u�;� � w�;�

sin�
þ 1

2

�
: (133)

We see that the expansion (132) coincides in the leading
order with the expansion (128). Hence, in the presence of
distortion, surfaces where the Kretschmann scalar has a
constant value K� ¼ Kc are (in the leading order) sur-
faces of constant �. For �� �Pl we can neglect the higher
order terms in the expansion (132) and present the metric
on the stretched singularity defined by Kc � ‘�4

Pl as

follows:

dl2� �
�
Kc

72

�
1=4

e�4ðu1þw1ÞdT2 þ
�
72

Kc

�
1=4

e4ðu1þw1Þd�2�;

(134)

where d�2� is given by expression (131). According to the
form of this metric, the stretched singularity of a distorted
black hole has the same topology as the stretched singu-
larity of a Schwarzschild-Tangherlini black hole.

C. Geometry of the stretched singularity surface:
Duality transformation

As we found in the previous subsection, the distortion
fields do not change the topology of the stretched singu-
larity of a Schwarzschild-Tangherlini black hole; however,
they do change its geometry. To study the geometry of the
stretched singularity, we consider the geometry of its three-
dimensional hypersurface defined by T ¼ const. This sur-
face is the Killing vector ��

ðTÞ orbit surface, i.e., it is

invariant under R1
T transformations. The metric on this

surface is defined (up to the conformal factor) by d�2� [see
(131)]. We can calculate the intrinsic curvature of the
stretched singularity surface and illustrate its shape by an
isometric embedding of its two-dimensional sections, as
we did in Sec. VI for horizon surface of a distorted black
hole. However, one can notice that the metric d�2� can be
obtained from the horizon surface metric d�2þ [see (96)]
by the following duality transformation:

uþ ! �w�; u1 ! �w1; wþ ! �u�;

w1 ! �u1:
(135)

The duality transformation corresponds to the exchange
between the multipole moments [see Eqs. (69), (70), (72),
and (73)]

a2nþ1 $ b2nþ1; a2n $ �b2n: (136)

The no-conical-singularity condition (71) remains satisfied
under the transformation (136). The transformation (136)
corresponds to the exchange between the axes � ¼ 0 and
� ¼ � and the reversal of the signs of the multipole
moments [cf. (53)]:

ð�; �;�Þ ! ð�� �;�; �Þ;
½an; bn� ! ½ð�1Þnþ1bn; ð�1Þnþ1an�: (137)

Because the exchange between the axes does not change
the space-time of the distorted black hole, the transfor-
mation (137) reduces to change of signs of the multipole
moments. Thus, the stretched singularity intrinsic curva-
ture invariants can be derived from those of the horizon
surface illustrated in Fig. 3 by exchanging lines 1, 2, 3,
and 4, with lines 2, 1, 4, and 3, and changing � to �� �
in each of Figs. 3(a) and 3(b). An isometric embedding of
the stretched singularity sections can be derived from
those of the horizon surface illustrated in Fig. 4 by
exchanging lines 1, 2, 3, and 4 in Fig. 4(a) with lines 2,
1, 4, and 3 in Fig. 4(b).
According to the duality transformation, given a five-

dimensional distorted black hole, one can find another one
whose horizon surface geometry is the same as the geome-
try of the stretched singularity of the former one.
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VIII. PROPER TIME OF FREE FALL FROM THE
HORIZON TO THE SINGULARITY

So far we have studied the effect of distortion on the
black hole horizon and singularity. However, the distortion
fields affect the entire interior region of the black hole. To
illustrate this, we consider how the distortion fields change
the proper time of free fall of a test particle moving from
the horizon to the singularity.

Namely, we study how the proper time depends on the
multipole moments of the distortion fields. In our study we
consider adiabatic distortion, so that the area Aþ of the
distorted black hole horizon surface remains constant,
which is equal to the horizon surface area of an undistorted
Schwarzschild-Tangherlini black hole. We define the
proper time in units of the radius Ro corresponding to the
area Aþ [see (98)],

Ro ¼
�
Aþ
2�2

�
1=3 ¼ roe

�ðu1þw1þ3u0þ3w0Þ=6: (138)

To make our analysis simpler, we consider a test particle
moving along a timelike geodesic defined by ðt; �;�Þ ¼
const and with L0 ¼ 0 (see Appendix D). Such a radial
motion corresponds to zero angular momenta and energy
of the particle. One can show that the proper time is
maximal for such a motion. In addition, we consider free
fall from the horizon to the singularity along each of the
symmetry axes � ¼ 0 and � ¼ �. Using the metric (62) we
derive

�j�¼0 ¼ ro

2
ffiffiffi
2

p
Ro

Z �

0
ð1þ cosc Þ1=2e�uþðc Þ�u0dc ; (139)

�j�¼� ¼ ro

2
ffiffiffi
2

p
Ro

Z �

0
ð1þ cosc Þ1=2e�w�ðc Þ�w0dc : (140)

For a Schwarzschild-Tangherlini black hole the maximal
proper time of free fall along a radial timelike geodesic is
equal to 1 in units of Ro ¼ ro.

Let us now calculate the maximal proper time for the
dipole-monopole distortion (74). In this case the integrals
(139) and (140) can be evaluated exactly,

�j�¼0 ¼
ffiffiffiffi
�

p
2

ffiffiffiffiffiffiffiffiffiffiffiffi�2a1
p e2a1=3erfð ffiffiffiffiffiffiffiffiffiffiffiffi�2a1

p Þ; (141)

�j�¼� ¼ e�4a1=3: (142)

Here erfðxÞ is the error function (see, e.g., [72], p. 297).
The maximal proper time for the quadrupole-quadrupole
distortion (75) is the same for free fall along both the axes,

�j�¼0 ¼ �j�¼� ¼
Z 1

0
e�4a2ðx2�x4Þdx: (143)

The maximal proper time calculated for the black hole
distorted by the dipole-monopole and quadrupole-
quadrupole distortions is shown in Figs. 5(a)–5(c).
According to these figures, for some values of the multi-
pole moments the maximal proper time is less than, equal
to, or greater than that of a Schwarzschild-Tangherlini
black hole of the same horizon area. One can see that
due to the external distortion, the singularity of a
Schwarzschild-Tangherlini black hole can come close to
its horizon.

IX. SUMMARY OF RESULTS AND DISCUSSION

In this paper we studied a distorted, five-dimensional
vacuum black hole as a five-dimensional Schwarzschild-
Tangherlini black hole distorted by a static, neutral external
distribution of matter. We constructed the corresponding
metric which represents such a local black hole. In other
words, the distortion sources are not included into the
metric but are put at infinity. The metric is presented in
the five-dimensional Weyl form which admits the R1 �
Uð1Þ �Uð1Þ isometry group. This metric is a five-
dimensional generalization of the four-dimensional Weyl

FIG. 5. The maximal proper time � in units of Ro. (a) The maximal proper time �j�¼0 for the dipole-monopole distortion. (b) The
maximal proper time �j�¼� for the dipole-monopole distortion. (c) The maximal proper time �j�¼0 ¼ �j�¼� for the quadrupole-
quadrupole distortion.
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form representing the corresponding distorted vacuum
black hole studied before (see, e.g., [36–42]).

As a result of our study, we found that distortion fields
affect the black hole horizon and singularity. The five-
dimensional distorted black hole has the following prop-
erties, which are common with the four-dimensional one:
There is a certain duality transformation between the black
hole horizon and the stretched singularity surfaces. This
transformation implies that distortion of the horizon sur-
face uniquely defines distortion of the stretched singularity
surface. Given a five-dimensional black hole, one can
‘‘observe’’ its distorted stretched singularity surface by
observing the horizon surface of the dual distorted black
hole. The topology of the stretched singularity is the same
as that of a Schwarzschild-Tangherlini black hole.
Moreover, the Kasner exponents of the space-time region
near the singularities of the black holes are the same as
well. One may assume that these properties are the inherent
properties of the four- and five-dimensional Weyl forms,
representing such distorted black holes. Whether all or
some of these properties will remain if one changes the
Uð1Þ �Uð1Þ symmetry [for example to SOð3Þ] remains an
open question. Thus, we cannot say if a five-dimensional
compactified black hole has similar properties. However, a
four-dimensional compactified black hole indeed has prop-
erties similar to those of a four-dimensional distorted black
hole [18,42].

The analysis of the maximal proper time of free fall from
the distorted black hole horizon to its singularity along the
symmetry axes shows that the proper time can be less than,
equal to, or greater than that of a Schwarzschild-
Tangherlini black hole of the same horizon area. As a
result of external distortion, the black hole stretched sin-
gularity can approach the horizon. In particular, the black
hole stretched singularity approaches its horizon. This
scenario may suggest that the singularity of a five-
dimensional compactified black hole can approach its ho-
rizon during an infinitely slow merger transition between
the black hole and the corresponding black string.5 If so,
one cannot rely on a classical description of the transition.

In our paper we derived a relation between the
Kretschmann scalar calculated on the horizon of a five-
dimensional static, asymmetric, distorted vacuum black
hole and the trace of the square of the Ricci tensor of the
horizon surface. This relation is a generalization of a
similar relation between the Kretschmann scalar calculated
on the horizon of a four-dimensional static, asymmetric,
distorted vacuum black hole and the square of the Gaussian
curvature of its horizon surface (see [42,73]).

Our construction and analysis of a five-dimensional
distorted black hole is based on the five-dimensional

Weyl form (see Sec. II), which is adopted for the construc-
tion of five-dimensional black objects distorted by external
gravitational fields. Using this Weyl form one can study
other five-dimensional black objects, e.g., distorted black
strings and black rings. By using the corresponding
Weyl form, one can consider distorted higher-dimensional
(> five) black objects as well.

APPENDIX A: SPACE-TIME INVARIANTS

In this appendix we derive a relation between the
Kretschmann scalar K calculated on the horizon of a
five-dimensional static, asymmetric, distorted vacuum
black hole and the trace of the square of the Ricci tensor,
RABRAB, of the horizon surface. The corresponding
space-time admits the Killing vector �� ¼ ��

0, (x
0 :¼ t),

which is timelike in the domain of interest, ���� ¼ g00 :¼
�k2 < 0, and hypersurface orthogonal. The space-time
metric g�, (�;; . . . ¼ 0; . . . ; 4) can be presented in the

form

ds2 ¼ g�dx
�dx ¼ �k2dt2 þ �abðxcÞdxadxb; (A1)

where �ab, a; b; c; . . . ¼ 1; . . . ; 4, is the metric on a four-
dimensional hypersurface t ¼ const. The black hole
horizon defined by k ¼ 0 is a nondegenerate Killing hori-
zon. One can show that the vacuum Einstein equations
ð5ÞR� ¼ 0 for the metric (A1) reduce to6

Rab � k�1rarbk ¼ 0; (A2)

rarak ¼ 0; (A3)

where Rab and ra are the Ricci tensor and the covariant
derivative defined with respect to the four-dimensional
metric �ab. Equation (A3) implies that k is a harmonic
function. Thus, k can be considered in each four-
dimensional hypersurface t ¼ const. As a result, the metric
(A1) can be written in the following form:

ds2 ¼ �k2dt2 þ ��2ðk; xCÞdk2 þ hABðk; xCÞdxAdxB;
(A4)

where hAB, A; B; C; . . . ¼ 1; 2; 3, is the metric on an orient-
able three-dimensional hypersurface �k. One can show
that

�2ðk; xCÞ ¼ � 1

2
ðr��Þðr��Þ; (A5)

wherer� is the covariant derivative defined with respect to
the metric (A1). Thus, �ðk ¼ 0; xCÞ coincides with the
surface gravity of a five-dimensional vacuum black hole.

5When the ‘‘north’’ and the ‘‘south’’ poles of a four-
dimensional compactified black hole come close to each other
during an infinitely slow merger transition, its stretched singu-
larity becomes naked at the vicinity of the poles [42].

6One can derive the Einstein equations (A2) and (A3) starting
from the five-dimensional vacuum Einstein equations and using
Eqs. (A6) and (A8) adopted to the metric (A1) (for details see,
e.g., [74]).
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To present geometric quantities of the five-dimensional
space-time (A4) in terms of these corresponding to �k, we
use the following relations:

RABCD ¼ RABCD þ SADSBC � SACSBD; (A6)

RkABC ¼ ��1ðSAB;C � SAC;BÞ; (A7)

RAkkB¼��1ðhACSB
C
;kþð��1Þ;ABþ��1SACSB

CÞ; (A8)

where the first two equations are due to Gauss and Codazzi
(see, e.g., [74,75]). Here RABCD is the intrinsic curvature,
and

S AB ¼ �

2
hAB;k (A9)

is the extrinsic curvature of a hypersurface �k. The semi-
colon stands for the covariant derivative defined with
respect to the metric hAB.

Using expressions (A4) and (A9), we derive

rkrkk¼��1�;k; rArkk¼rkrAk¼��1�;A;

rArBk¼�SAB; rarak¼�ð�;kþSÞ; S�SA
A: (A10)

Applying expressions (A6)–(A10) to the Einstein
equations (A2) and (A3), we derive the following set of
equations:

�;k þ S ¼ 0; (A11)

R A
B¼�SA

B
;kþ�ð��1Þ;A;BþSSA

Bþk�1�SA
B; (A12)

�;A þ kðS;A � SA
B
;BÞ ¼ 0; (A13)

R :¼ hABRAB ¼ S2 � SABSAB þ 2k�1�S; (A14)

S ;k þ ð��1Þ;A;A þ ��1SABSAB þ k�1�;k ¼ 0: (A15)

Equations (A9), (A11), and (A12) define a complete sys-
tem for determining �, hAB, and SAB as functions of k. The
constraint equations (A13) and (A14) together with
Eq. (A15) are satisfied for any value of k.

For the static space-time (A1), the Riemann tensor
components are given by7

ð5ÞRattb ¼ �krarbk;
ð5ÞRtabc ¼ 0;

ð5ÞRabcd ¼ Rabcd:
(A16)

Thus, we arrive to the following expression for the
Kretschmann scalar of the space-time (A4):

K � ð5ÞR���
ð5ÞR���

¼ 4k�2ðrarbkÞðrarbkÞ þ 4RAkkBR
AkkB

þ 4RkABCR
kABC þ RABCDR

ABCD: (A17)

Let us present this expression in terms of three-
dimensional geometric quantities defined on �k. Using
Eq. (A6) we derive

RABCDR
ABCD

¼ RABCDRABCD þ 2RABCDðSADSBC � SACSBDÞ
þ 2ðSABSABÞ2 � 2SACSBCSADSBD: (A18)

The three-dimensional Riemann tensor components
RABCD corresponding to hAB can be presented as follows
(see, e.g., [53], p. 550):

RABCD ¼ hACRBD þ hBDRAC � hADRBC � hBCRAD

� 1

2
RðhAChBD � hADhBCÞ; (A19)

where the Ricci scalarR and the trace of the square of the
Ricci tensorRABRAB are defined on�k. Expression (A19)
implies

R ABCDRABCD ¼ 4RABRAB �R2: (A20)

Using expressions (A7), (A8), (A10), and (A17)–(A20), we
derive

K¼4k�2�2ð�2
;kþ2��2�;A�

;Aþ2SABSABÞ
�8k�1�SABðRAB�SSABþSACSB

CÞþ8RABRAB

�R2þ2S2ðRþ2SABSABÞ
�2SABSABðR�SCDSCDÞ
�8SSABð2RABþSACSB

CÞ
þ2SACSB

Cð8RABþSADSB
DÞ

þ8SAB;CðSAB;C�SAC;BÞ: (A21)

Thus, one can see that the black hole horizon k ¼ 0 is
regular if �;A ¼ 0 and SAB ¼ 0 on the horizon, i.e., the

surface gravity is constant on the horizon, and the horizon
surface, defined by k ¼ 0 and t ¼ const, is a totally geo-
desic surface which is regular, i.e., RABRAB and R are
finite on the surface.
To derive a relation between the Kretschmann scalar

calculated on the horizon and the three-dimensional geo-
metric quantities defined on the horizon surface, we use the
following series expansions:

A ¼ X
n�0

Að2nÞk2n; B ¼ X
n�0

Bð2nþ1Þk2nþ1; (A22)

where A :¼ fhAB; �;RAB;Rg and B :¼ fSAB;Sg. Here
the first term Að0Þ corresponds to the value of A calcu-
lated on the horizon. To calculate K on the horizon it
is enough to consider the first order expansion only, i.e.,

7Expressions (A16) can be derived by changing notations in
expressions (A6)–(A8) as follows: k ! t, � ! ik�1, and taking
into account that the extrinsic curvature of a four-dimensional
hypersurface t ¼ const vanishes [see Eq. (A9)].
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n ¼ 0; 1. Substituting expansions (A22) into Eqs. (A9) and
(A11)–(A15), we derive

ð�ð0ÞÞ;A ¼ 0; �ð2Þ ¼ �Rð0Þ

4�ð0Þ ; Sð1Þ
AB ¼ Rð0Þ

AB

2�ð0Þ ;

Sð1Þ ¼ hABð0ÞSð1Þ
AB ¼ Rð0Þ

2�ð0Þ ; hð2ÞAB ¼ Rð0Þ
AB

2ð�ð0ÞÞ2 :
(A23)

Substituting the corresponding expansions (A22) for n ¼
0,1 with the coefficients (A23) into Eq. (A21), we derive
the following relation between the Kretschmann scalar K
calculated on the horizon of a five-dimensional static,
asymmetric, distorted vacuum black hole and the trace of
the square of the Ricci tensor RABRAB of the horizon
surface:

Kþ ¼ 6ðRABRABÞþ: (A24)

It is interesting to note that the same relation holds for four-
dimensional static space-times. Namely, if we consider
RAB as the Ricci tensor of the two-dimensional horizon
surface of a four-dimensional static asymmetric black
hole, then the relation becomes Kþ ¼ 3R2þ (see, e.g.,
[42,73]).

APPENDIX B: GAUSSIAN CURVATURES

The Gaussian curvatures (99)–(101) corresponding to
the three-dimensional horizon surface defined by the met-
ric (96) are the following:

Kþ� ¼ N
�
1þ 4wþ;�� � 8w2

þ;� � 4uþ;�wþ;�

� 2 sin�

1þ cos�
ðuþ;� þ 3wþ;�Þ

�
; (B1)

Kþ� ¼ N
�
1þ 4uþ;�� � 8u2þ;� � 4uþ;�wþ;�

þ 2 sin�

1� cos�
ðwþ;� þ 3uþ;�Þ

�
; (B2)

Kþ� ¼ N
�
1� 4uþ;�wþ;� � 2

sin�
ðuþ;� � wþ;�Þ

þ 2 cot�ðuþ;� þ wþ;�Þ
�
; (B3)

where N ¼ e�2ðuþð�Þþwþð�Þþu1þw1Þ.

APPENDIX C: DISTORTION FIELDS Û, Ŵ, AND V̂
NEAR THE BLACK HOLE HORIZON AND

SINGULARITY

To study the behavior of the distortion fields Û, Ŵ, and

V̂ near the distorted black hole horizon and singularity, it is
convenient to use the c coordinate (see (61)). We can
expand the distortion fields given by the exact solutions
(45)–(50) of the Einstein equations near the black hole

horizon and singularity. However, to derive a simple
form of such expansions, it is easy to construct an approxi-
mate solutions to the Einstein equations (34)–(36). Using
Eq. (61), we present Eq. (34) in the following form:

Dc X̂ðc ; �Þ ¼ D�X̂ðc ; �Þ; X̂ :¼ ðÛ; ŴÞ; (C1)

where

D� :¼ @2� þ cot�@�; � :¼ ðc ; �Þ: (C2)

The black hole horizon and singularity correspond to
c ¼ 0 and c ¼ �, respectively. To consider both the
cases simultaneously we denote cþ :¼ c � 0 ¼ c and

c� :¼ �� c . According to Eq. (45), the function X̂ is an
even function of c�. Thus, near the horizon and the
singularity it has the following expansion:

X̂ðc ; �Þ ¼ X1
k¼0

Xð2kÞ
� ð�Þc 2k� : (C3)

Using the series expansion for cotc� (see, e.g., [72],
p. 75),

cotc� ¼ c�1�
�
1� X1

m¼1

C2mc
2m�
�
; (C4)

C2m ¼ ð�1Þm�122mB2m

ð2mÞ! ; jc�j<�; (C5)

where B2m are the Bernoulli numbers

B2 ¼ 1

6
; B4 ¼ � 1

30
; B6 ¼ 1

42
. . . ; (C6)

we derive

Dc�c
2k� ¼ 4k2c 2ðk�1Þ

� � 2k
X1
m¼1

C2mc
2ðkþm�1Þ
� : (C7)

Substituting expansion (C3) into Eq. (C1) and (C7), we

derive the following recurrence relations for Xð2kÞ
� ð�Þ:

Xð0Þ
� ¼x�ð�Þþx0; Xð2Þ

� ¼1

4
ðx�;��þcot�x�;�Þ; (C8)

..

.

Xð2kþ2Þ
� ¼ 1

4ðkþ 1Þ2
�
D�X

ð2kÞ
�

þ 2
Xk
m¼1

ðk�mþ 1ÞC2mX
ð2ðk�mþ1ÞÞ
�

�
;

k ¼ 0; 1; 2; . . . : (C9)

Here x� :¼ ðu�; w�Þ and x0 :¼ ðu0; w0Þ [see Eqs. (69),
(70), (72), and (73)].

The asymptotic expansion of the distortion field V̂,
which is an even function of c�, near the horizon and
the singularity, can be written in the form
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V̂ðc ; �Þ ¼ X1
k¼0

Vð2kÞ
� ð�Þc 2k� : (C10)

Substituting this expansion together with expansion (C3)

of the distortion fields Û and Ŵ into Eq. (35) [with �
replaced by c , according to (61)] we can determine the

functions Vð2kÞ
� ð�Þ. The first two of these functions are the

following:

Vð0Þ
þ ¼ � 3

2
ðu0 þ w0Þ � 1

2
ðu1 þ w1Þ;

Vð2Þ
þ ¼ 1

4
ð2u2þ;� þ uþ;�wþ;� þ w2þ;�Þ �

uþ;� � wþ;�

4 sin�

� 3

4
cot�ðuþ;� þ wþ;�Þ; (C11)

..

.

Vð0Þ� ¼ 1

2
½u1 þ w1 � 3ðu0 þ w0Þ� � 3ðu�ð�Þ þ w�ð�ÞÞ;

Vð2Þ� ¼ 1

4
ð2u2�;� þ u�;�w�;� þ w2

�;�Þ �
u�;� � w�;�

4 sin�

� 3

4
ðu�;�� þ w�;��Þ; (C12)

..

.

APPENDIX D: GEODESICS
NEAR THE SINGULARITY

For a free particle moving in a five-dimensional dis-
torted black hole interior there exist three integrals of
motion related to the Killing vectors (25), the energy

E :¼ �pT ¼ ���
ðTÞp�; (D1)

and the angular momenta

L� :¼ p� ¼ ��
ð�Þp�; L� :¼ p� ¼ ��

ð�Þp�: (D2)

which correspond to the axes � ¼ � and � ¼ 0, respec-
tively. The other five constants of motion that characterize
geodesic motion in the black hole interior are L0, the
limiting value of L ¼ ½r0 sinðc�=2Þ�2 _� at the singularity
c� ¼ 0 (with c� ¼ �� c ), and �0, t0, �0, and �0, the
limiting values of �, t, �, and �, respectively, at the
singularity. For the Schwarzschild-Tangherlini black hole
metric (21), L ¼ r2 _� is a constant of motion, but for a
distorted black hole it is not. However, it does have a finite
limiting value L0 at the singularity that may be taken to be
a characteristic value for the entire geodesic and hence a
constant of motion.

Consider an initial point with coordinates ðc�i;
�i; ti; �i; �iÞ near the singularity of the distorted black
hole (c�i  1). The proper time � to fall from this point

to the singularity depends on the location of the point and
also on the geodesic constants of motion E, L�, L�, and L0.

One can show that the maximal proper time from the point
to the singularity corresponds to E ¼ L� ¼ L� ¼ L0 ¼ 0.

We shall call the corresponding geodesic radial. For the
radial geodesic, ðt; �;�Þ ¼ const along the geodesic, so
t0 ¼ ti, �0 ¼ �i, and �0 ¼ �i. In the Schwarzschild-
Tangherlini black hole, � would also be constant for a
radial geodesic (which has L ¼ 0 all along it), so there
�0 ¼ �i, but for a distorted black hole neither L nor � is
constant, so �0 � �i, though �0 is uniquely determined by
the initial point ðc�i; �i; ti; �i; �iÞ and is actually a func-
tion only of c�i and �i for a fixed distorted black hole
metric. This radial geodesic is a geodesic of the two-
dimensional metric

d�2 ¼ B�ðd�2 � dc 2�Þ; (D3)

obtained by the dimensional reduction ðT; �;�Þ ¼ const
of the metric (120).
The Christoffel symbols for the metric (D3) are

�c�
c�c� ¼ ��

�c� ¼ �c�
�� ¼

B�;c�
2B�

;

��
c�c� ¼ ��

�� ¼ �c�
�c� ¼ B�;�

2B�
: (D4)

Thus, the geodesic equation

€x � þ ��
� _x _x� ¼ 0 (D5)

for the metric (D3) takes the following form:

2B� €c� þ B�;c�ð _c 2� þ _�2Þ þ 2B�;�
_c� _� ¼ 0; (D6)

2B� €�þ B�;�ð _c 2� þ _�2Þ þ 2B�;c�
_c� _� ¼ 0: (D7)

Here the overdot denotes the derivative with respect to the
proper time �. These equations obey the constraint

B�ð _c 2� � _�2Þ ¼ 1; (D8)

that is, the normalization condition u�u
� ¼ �1 for the

5-velocity u�.
Expansion (121) for the metric function B� near the

singularity in the leading order in c� is

B� � c 2�
16

e�4ðu�ð�Þþw�ð�Þ�u1�w1Þ: (D9)

Substituting this expression into the geodesic equations
(D6) and (D7), and the constraint (D8), we derive

c� €c� þ _c 2� þ _�2 � 4ðu�;� þ w�;�Þc� _c� _� � 0;

(D10)

c� €�� 2ðu�;� þ w�;�Þc�ð _c 2� þ _�2Þ þ 2 _c� _� � 0;

(D11)
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e�4ðu�ð�Þþw�ð�Þ�u1�w1Þc 2�ð _c 2� � _�2Þ � 16: (D12)

According to expression (D9), the order of approximation
in the geodesic equations (D10)–(D12) corresponds to the
order of approximation of the metric (120).

We use the shift freedom of the proper time � to set
� ¼ 0 at the singularity for each of the radial geodesics
approaching the singularity (see footnote 4). The point
� ¼ 0 is a singular point of Eqs. (D10)–(D12). To find an
approximate solution to the geodesic equations near the
singular point, one can apply the method of asymptotic
splittings described in [76]. A radial geodesic approaching

the singularity is uniquely determined by the limiting value
� ¼ �0 at � ¼ 0. The asymptotic expansions of c� and �
near � ¼ 0 have the following form:

c� ¼ 2
ffiffiffi
2

p
~�1=2 þ 3ffiffiffi

2
p f2;�ð�0Þ~�3=2 þOð~�5=2Þ; (D13)

� ¼ �0 þ 2f;�ð�0Þ~�þOð~�2Þ; (D14)

where ~� ¼ efð�0Þ� and fð�Þ ¼ 2ðu�ð�Þ þ w�ð�Þ � u1 �
w1Þ.
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