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We classify all the six-derivative Lagrangians of gravity, whose traced field equations are of second or

third order, in arbitrary dimensions. In the former case, the Lagrangian in dimensions greater than six

reduces to an arbitrary linear combination of the six-dimensional Euler density and the two linearly

independent cubic Weyl invariants. In five dimensions, besides the independent cubic Weyl invariant, we

obtain an interesting cubic combination, whose field equations for static spherically symmetric spacetimes

are of second order. In the latter case, in arbitrary dimensions we obtain two combinations, which in

dimension three, are equivalent to the complete contraction of two Cotton tensors. Moreover, we also

recover all the conformal anomalies in six dimensions. Finally, we present the general static, spherically

symmetric solution for some of these Lagrangians.
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I. INTRODUCTION

Einstein’s general relativity is not only the most suc-
cessful classical theory of gravity in four dimensions, it is
also the simplest theory possessing some nice properties.
Two of the most important characteristics are general
covariance and second-order field equations. In fact, it
was shown by Lovelock that, in four dimensions, general
relativity is the unique generally covariant theory of grav-
ity (up to an addition of a cosmological constant) which
gives second-order equations of motion [1]. However, in
higher dimensions, there exist higher curvature theories,
namely, the Lovelock theories, which also give second-
order field equations. These theories are generically char-
acterized by higher curvature invariants in the action. At
each order k, the combination of higher curvature invari-
ants is unique, the integral of which on a compact manifold
of dimension 2k gives the Euler characteristic of the mani-
fold. There are also other interesting characteristics of the
Lovelock class of theories. Primarily, exact analytic black
hole solutions are known to exist [2,3] (see also [4,5], and
references therein). Black holes are widely believed to
exist in nature as a final state of a gravitational collapse.
They are also the simplest objects to study in any gravita-
tional theory. Therefore, exact black hole solutions are of
significant importance. More recently, in the context of
AdS/CFT correspondence, exact asymptotically AdS black
hole solutions in a gravity theory have been proven to be
useful in studying the holographic properties of a finite
temperature conformal field theory on the boundary [6].
Second, the Lovelock theories also admit Birkhoff’s theo-
rem, which states that any solution which has spherical,

planar, or hyperbolic symmetry must be locally isometric
to the corresponding static black hole solution [7].
Generically, the admittance of Birkhoff’s theorem suggests
the lack of spin-0 mode excitations in the linearized field
equations.
There are also other theories of gravity which admit

exact analytic black hole solutions and further admit
Birkhoff’s theorem. These theories, being outside the
Lovelock class, are generically higher-derivative theories
and consequently possess ghost degrees of freedom. One
well-known higher-derivative theory is the conformal the-
ory of gravity in four dimensions, which is obtained from
an action quadratic in the conformal Weyl tensor. The
action is thus invariant under Weyl rescalings, and the field
equations are traceless. Birkhoff’s theorem in conformal
gravity states that modulo a conformal factor the most
general spherically symmetric solution is static [8].
Considering the same action in dimensions other than
four, one loses the property of invariance under Weyl
rescalings. Even then, the theory admits exact analytic
black hole solutions with spherical, planar, or hyperbolic
symmetry, and further admits Birkhoff’s theorem [9]. Note
that, in arbitrary dimensions, though the field equations are
of fourth order, the trace of the field equations are of order
two. This can easily be seen as follows. Varying the action
gives

�I :¼
Z

�ð ffiffiffiffiffiffiffi�g
p

LÞ ¼
Z ffiffiffiffiffiffiffi�g

p
E���g

��: (1)

Now, consider infinitesimal Weyl rescalings of the metric
�g�� ¼ �g��. Under such variations, the Lagrangian will
vary as �ð2�D=2Þ ffiffiffiffiffiffiffi�g

p
L, which implies E�

� ¼ ð4�D
2 ÞL.

This shows that the trace of the field equations, being
proportional to the Lagrangian density, must be of second
order.
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Recently, a theory of massive gravity was constructed in
three dimensions [10], where the Lagrangian is a particular
combination of quadratic curvature invariants given by

K ¼ RabR
ab � 3

8R
2: (2)

Again, the theory admits exact analytic black hole solu-
tions [11]. The Lagrangian of this theory has a unique
property in three dimensions, that the field equations
have a second-order trace. So, it is natural to wonder if
there could be other theories of gravity which, although
nonrealistic, have some special properties which allow one
to obtain exact analytic black hole solutions and can serve
as toy models of gravitational theories. Specifically, it
might be useful to classify higher-derivative theories of
gravity whose traced field equations have a reduced order.

In this paper we construct the most general Lagrangian
which is a linear combination of scalars of the form

R::::R::::R::::; and r:R::::r:R::::; (3)

which are characterized by the number of derivatives of the
metric (hereafter, the degree of differentiation) n ¼ 6, such
that the trace of the field equations is of order three or less.

We will show that when the trace is restricted to be of
order two, then, in dimensions six or higher, there are only
three linearly independent possible invariants which have a
second-order trace. They are the six-dimensional Euler
density and the two linearly independent scalars con-
structed by contracting all the indices of three conformal
Weyl tensors. However, in five dimensions, we obtain a
peculiar independent invariant which can be thought of as a
cubic generalization of (2) and has been studied separately
in [12–14]. We also obtain the general static spherically
symmetric solution for some of these theories. Based on
our analysis for six-derivative theories, we present a con-
jecture classifying all the scalars of arbitrary order, which
give second-order traced field equations in various
dimensions.

When the trace is restricted to be of order three, in
arbitrary dimensions, we obtain two additional scalars.
These two scalars are not independent in dimensions three
and six. In six dimensions, they reduce to one of the
conformal anomalies.

One future direction of study is to see which of these
theories admit a Birkhoff’s theorem.

In Sec. II, for completeness we review the n ¼ 4 case.
The case n ¼ 6 is analyzed in Sec. III. In Sec. IV we focus
our attention on obtaining the general static, spherically
symmetric solution for some of the theories defined in
Sec. III in arbitrary dimensions.

II. QUADRATIC COMBINATIONS. n ¼ 4

In this section, we review how to obtain the most general
quadratic Lagrangian, having second-order traced field
equations [15,16].

The most general quadratic combination of curvature
invariants in arbitrary dimension is given by1

L Q :¼ aRabcdRabcd þ bRabRab þ cR2; (4)

where a, b, and c are arbitrary constants. The trace of the
field equations coming from this Lagrangian are

Gð2Þa
a ¼

�
4aþD

2
bþ 2ðD� 1Þc

�
raraR� 4ararbR

ab

�D� 4

2
LQ: (5)

Imposing the trace Gð2Þa
a to be of second order implies that

the coefficients a, b, and c must be chosen such that the
first two terms in (5) vanish, i.e.,

rarb

�
�4aRab þ gab

�
4aþD

2
bþ 2ðD� 1Þc

�
R

�
¼ 0:

(6)

The above equation is satisfied only if the term inside the
bracket is proportional to the Einstein tensor, which is the
most general divergenceless, symmetric, rank two tensor
linear in the curvature.2 Consequently, the coefficients in
(6) must fulfill

� 4a ¼ � and 4aþD

2
bþ 2ðD� 1Þc ¼ ��

2
: (7)

Since there are four variables ða; b; c; �Þ and two equa-
tions, there is a bi-parametric family of solutions given by

L Q ¼ ��

4
RabcdRabcd þ bRabRab þ �� bD

4ðD� 1ÞR
2: (8)

One can further factor out the four-dimensional Euler
density to write (8) in the form

L Q ¼ �N 4 þ �E4; (9)

where � ¼ b� � and � ¼ � �
4 are arbitrary constants;

N 4 is defined by

N 4 :¼ 4RabRab � D

ðD� 1ÞR
2

¼ 1

24

�
D� 2

D� 3

�
�a1b1a2b2
c1d1c2d2

ðCa1b1
c1d1Ca2b2

c2d2

� Ra1b1
c1d1Ra2b2

c2d2Þ; (10)

and E4 :¼ R2 � 4RabR
ab þ RabcdR

abcd is the Gauss-
Bonnet combination which corresponds to the four-
dimensional Euler density. Thus, we have shown that for
combinations quadratic in the curvature, the most general

1Note that the only nonquadratic term with degree of differ-
entiation 4 is hR, which is boundary term.

2Since a divergenceless vector Ja cannot be constructed lo-
cally out of the curvature, the equation raJ

a ¼ 0, with Ja :¼
rb½�4aRab þ gabð4aþ D

2 bþ 2ðD� 1ÞcÞR�, does not have any
nontrivial solution.
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Lagrangian, which has a second-order traced field equa-
tion, can be expressed as a linear combination of the four-
dimensional Euler density E4 and N 4 defined in Eq. (10).

In dimensions higher than three, one can further use the
following relation:

CabcdCabcd ¼ E4 þ
�
D� 3

D� 2

�
N 4; (11)

where Cabcd is the Weyl tensor and CabcdCabcd is the four-
dimensional conformal Weyl invariant. This means that for
dimensions higher than three, LQ in (8) can be equiva-

lently expressed as a linear combination of the four-
dimensional Weyl invariant and the Euler density.

III. LAGRANGIANS WITH n ¼ 6

In this section, we generalize the previous discussion for
Lagrangians of degree of differentiation six in arbitrary
dimensions D. We start by considering a generic combi-
nation of the 12 linearly independent [17], curvature in-
variants of degree six

L ¼ X12
i¼1

AiLi; (12)

where Ai’s are arbitrary coefficients and Li’s are given by

L1 ¼ RabcdRcdefR
ef

ab; L2 ¼ Rab
cdR

ce
bfR

df
ae;

L3 ¼ RabcdRcdbeR
e
a; L4 ¼ RRabcdRabcd;

L5 ¼ RabcdRacRbd; L6 ¼ RabRbcR
c
a;

L7 ¼ RRabRab; L8 ¼ R3;

L9 ¼ raRraR; L10 ¼ raRbcraRbc;

L11 ¼ rpRabcdrpRabcd; L12 ¼ raRbcrbRac:

(13)

Note however that when we neglect a total derviative, the
12 terms are not linearly independent, as one can write two
of the invariants in terms of the other ten in the following
way:3

L11¼2L1�4L2þ2L3�4L5þ4L6�L9þ4L10

þrarc½2RabdeRc
bde�8RabcdRbdþ8RRac

�12RabRc
bþ2gacð2RbdRbd�R2Þ�

L12¼L5�L6þ1

4
L9þrarc

�
Ra

bR
bc�RRacþ1

4
gacR2

�
:

(14)

Using the above relations, one can rewrite the Lagrangian
as a linear combination of only ten curvature invariants

with coefficients ~Ai (i ¼ 1; � � � ; 10). Extremizing the

action constructed with the Lagrangian (12) with respect
to the metric gives the field equations

G ð3Þ
ab

:¼ X10
i¼1

~AiGð3Þ
ðiÞab ¼ 0; (15)

where Gð3Þ
ðiÞab are defined, respectively, in Eqs. (B3)–(B10)

in the Appendix B. Now, requiring the trace Gð3Þa
a to be of

order three is the same as imposing trace to be proportional
to L (see Appendix A). This gives us a set of eight
equations (B14) for the 12 variables (Ai) and a parameter
u [analoguous to � in the quadratic case (7)]. Solving these
equations for arbitrary dimensions, we obtain a five-
parameter family of solutions. The details of the equations
and its solution are given in the Appendix B. This implies
that in D> 6, there are five linearly independent curvature
invariants (of degree of differentiation six) which gives rise
to third (or lower) order traced field equations. They are as
follows. First, the six-dimensional Euler density given by

E 6 :¼ 2L1 þ 8L2 þ 24L3 þ 3L4 þ 24L5 þ 16L6

� 12L7 þ L8; (16)

obviously gives second-order traced field equations.
Second, there are two independent algebraic invariants
constructed out of three Weyl tensors, namely W1 ¼
Cab

cdC
cd

efC
ef

ab and W2 ¼ CabcdC
ebcfCa

ef
d, which also

give second-order traced filed equations. These two Weyl
invariants are given in terms of the Li’s as

W1 ¼ L1 þ 12

D� 2
L3 þ 6

ðD� 1ÞðD� 2ÞL4

þ 24

ðD� 2Þ2L5 þ 16ðD� 1Þ
ðD� 2Þ3 L6

� 24ð2D� 3Þ
ðD� 1ÞðD� 2Þ3L7 þ 8ð2D� 3Þ

ðD� 1Þ2ðD� 2Þ3L8; (17)

and

W2 ¼�1

4
L1 þL2 þ 3

D� 2
L3 þ 3

2ðD� 1ÞðD� 2ÞL4

þ 3D

ðD� 2Þ2L5 þ 2ð3D� 4Þ
ðD� 2Þ3 L6

� 3ðD2 þD� 4Þ
ðD� 1ÞðD� 2Þ3L7 þ ðD2 þD� 4Þ

ðD� 1Þ2ðD� 2Þ3L8: (18)

In addition, there are two other curvature invariants � and
� listed in Eqs. (B17) and (B18), respectively, which give
third order traced field equations. However, in dimensions
D � 6, the above curvature invariants are not all linearly
independent. For example, inD ¼ 3 and 6, the invariants�

3We would like to thank Nicolas Boulanger for pointing this
out to us.
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and � are proportional to each other modulo a total de-
rivative. It is interesting to note that in six dimensions,
requiring the traced field equations to be of third order (or
less), we recover all four (1 type-A and 3 type-B) nontrivial
conformal anomalies [18–20]. In Table I below, we list all
the curvature invariants in dimensions greater than or equal
to 3, which lead to third (or less) order traced field
equations.

Returning to the set of invariants that gives second-order
traced field equations, we find that in dimensions D � 5,
they are spanned by the basis set fE6; W1; W2g up to a total
derivative. However, in D ¼ 5 this is not the case. In
particular, there exists a ‘‘special’’ linearly independent
invariant which generalizes N 4 to the cubic case. This is
realized by noting that the following relation is analogous
to Eq. (11):

4W1 þ 8W2 ¼ E6 þ
�
D� 5

D� 2

�
N 6; (19)

where

N 6 :¼�24L3�3ðDþ2Þ
ðD�1Þ L4� 24D

D�2
L5�16DðD�1Þ

ðD�2Þ2 L6

þ12ðD3�2D2þ6D�8Þ
ðD�2Þ2ðD�1Þ L7

�ðD4�3D3þ10D2þ4D�24Þ
ðD�2Þ2ðD�1Þ2 L8 (20)

is the cubic counterpart of N 4. Let us rewrite Eq. (19) in
the form

N 6 :¼ D� 2

D� 5
ð4W1 þ 8W2 � E6Þ (21)

¼ 1

23

�
D� 2

D� 5

�
�a1b1a2b2a3b3
c1d1c2d2c3d3

ðCa1b1
c1d1Ca2b2

c2d2Ca3b3
c3d3

� Ra1b1
c1d1Ra2b2

c2d2Ra3b3
c3d3Þ: (22)

The term inside the parenthesis on the right-hand side
vanishes identically in dimensions lower than five, since
for D � 5,

E 6 ¼ 4W1 þ 8W2 � 0: (23)

However, in D ¼ 5 (and greater than 5) this gives a non-
vanishing invariant as can be seen by expressing W1, W2,
and E6 in terms of fL1; � � � ; L8g, thereby obtaining the
expression (20). This implies that in D ¼ 5, the basis is

fW1ð�W2Þ;N 6g up to a total derivative. Similar results
have been found for quartic invariants (see Appendix B of
Ref. [12]) i.e., in dimensions D � 7, any invariant giving
second-order traced field equations can be expressed as a
linear combination of the eight-dimensional Euler density,
and all the linearly independent Weyl invariants; however,
in D ¼ 7 there is an additional special invariant which
completes the basis. Based on these results, we present
the following conjecture.
Conjecture: (i) In dimensions D � 2k� 1, any curva-

ture invariant of order k,4 which gives second (or less)
order traced field equations, can be expressed as a linear
combination of the 2k-dimensional Euler density, the Weyl
invariants, and a total derivative.
(ii) In dimensions D ¼ 2k� 1, any curvature invariant

of order k, which gives second-order traced field equations
can be expressed as a linear combination of the Weyl
invariants,5 a total derivative, and a special invariant which
can be obtained by evaluating

N 2k :¼ 1

2k

�
D� 2

D� 2kþ 1

�
�a1b1���akbk
c1d1���ckdk

� ðCa1b1
c1d1 � � �Cakbk

ckdk � Ra1b1
c1d1 � � �Rakbk

ckdkÞ
(24)

in D ¼ 2k� 1.
We now show thatN 2k evaluated inD ¼ 2k� 1 indeed

gives second-order traced field equations. First, consider
the following invariant of order k:

1

2k
�a1b1���akbk
c1d1���ckdk ðCa1b1

c1d1 �� �Cakbk
ckdk �Ra1b1

c1d1 � � �Rakbk
ckdkÞ:
(25)

Obviously, the above invariant vanishes in dimensions
lower than 2k. However, if one expands the Weyl tensor
in terms of the Riemann tensor, then it can be factorized by
ðD� 2kþ 1Þ. This can be seen as follows. Consider the
basis set of kth order Riemann invariants in arbitrary
dimensions. In D ¼ 2k� 1, not all elements of this set

TABLE I. Here Cabc denotes the Cotton tensor. Note that in dimension five, a new combina-
tion N 6 :¼ �24L3 � 21

4 L4 � 40L5 � 320
9 L6 þ 97

3 L7 � 31
9 L8 appears.

Ga
a D ¼ 3 D ¼ 4 D ¼ 5 D ¼ 6 D> 6

@2g ∄ W1 �W2 W1 �W2, N 6 W1, W2 W1, W2, E6

@3g CabcC
abc �, � �, � ��� �, �

4By a curvature invariant of order k, we mean a scalar con-
structed out of k curvature tensors without any derivatives acting
on them.

5Note that the number of linearly independent Weyl
invariants of order k in dimensions D ¼ 2k� 1 is one less
than that in dimensions D � 2k, due to the identity
C½a1b1

a1b1 . . .Cakbk�
akbk ¼ 0.
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are linearly independent. In fact, the basis set contains one
less invariant than in D � 2k. This is because of the
vanishing of the kth order Lovelock density. Now, after
the expanding in terms of the Riemann tensors, the term
(25) will not contain any ðRiemannÞk. So, this invariant
cannot vanish identically in D ¼ 2k� 1 unless it is fac-
torized by ðD� 2kþ 1Þ.6 Further expanding all the Weyl
tensors, one can be convinced that the dimensional depen-
dence of the coefficient of the term with k� 1 Riemann
tensors and one Ricci tensor must be ðD� 2kþ 1Þ=
ðD� 2Þ. We can now divide this factor out to get a non-
vanishing invariant in D ¼ 2k� 1. Thus, we write the kth
order generalization of N 4 by evaluating

1

2k

�
D� 2

D� 2kþ 1

�
�a1b1���akbk
c1d1���ckdk

�ðCa1b1
c1d1 � � �Cakbk

ckdk �Ra1b1
c1d1 � � �Rakbk

ckdkÞ (26)

in D ¼ 2k� 1. Note that, by construction, the trace of the
field equation arising from the above invariant is of second
order in all dimensions.

IV. EXACT SOLUTIONS

In this section, we present exact, static solutions for the
theories defined previously. For simplicity, we will first
focus on the theories having fourth order field equations,
defined by an arbitrary linear combination of the invariants
W1 and W2, defined, respectively, in Eqs. (17) and (18).
The theory defined by the combination N 6 in the Table I,
has further interesting properties in five dimensions, which
we discuss in detail in Ref. [12]. Finally, we comment on
the new three-dimensional theory shown in Table I, which
possesses third order traced field equations.

The class of metrics considered is

ds2D ¼ �FðRÞdt2 þ dR2

GðRÞ þ R2d�2
D�2;�; (27)

where d�D�2;� is the line element of a (D� 2)-

dimensional compact, orientable Euclidean manifold of
constant curvature �. For � ¼ 1, the manifold �D�2is
locally equivalent to the sphere SD�2, while for � ¼ 0, it
reduces to a locally flat manifold. Finally, for � ¼ �1, the
geometry of �D�2 is given by the quotient HD�2=�, where
� is a freely acting, discrete subgroup of OðD� 2; 1Þ.

After a coordinate transformation and a redefinition of
the arbitrary functions, the line element (27) takes the form

ds2D ¼ NðrÞ
�
�fðrÞdt2 þ dr2

fðrÞ þ r2d�2
D�2;�

�
: (28)

As shown below, this gauge choice is much more conve-
nient for our purposes.

A. C3 theories

Here we will consider Lagrangians of the form

L ¼ �W1 þ �W2: (29)

It has been proven in [21] that, for the metric (28), the two
invariantsW1 andW2 defined in (17) and (18), respectively,
are proportional. Consequently, for a particular choice of
�=�, both the LagrangianL and the field equations vanish
identically. In such a situation, anymetric within the family
(28) is a solution of the system. Hereafter, we assume that
� and � are generic.
Since, in six dimensions the gravity theories defined by

combinations of W1 and W2 are invariant under Weyl
rescalings, let us concentrate on this case first.
(i) D ¼ 6: Using Weyl rescalings, one can gauge

away the function NðrÞ in (28). Then, the solution
reduces to

ds26 ¼�
�
ar2 þbrþK� cð1þ erÞ5=2

r1=2

�
dt2

þ dr2

ar2 þ brþK� cð1þerÞ5=2
r1=2

þ r2d�2
4;�; (30)

where a, b, K, c, and e are constants, which are
related by8<

:
K ¼ �; and cðb� 2KeÞ ¼ 0

K ¼ � 1
2�; and c ¼ 0:

(31)

The Ricci scalar of this geometry diverges at
r ¼ rs1 :¼ 0, while at r ¼ rs2 :¼ �e�1, the differ-
ential scalar r�Rr�R diverges. For negative e, the

region r > rs2 must be removed from the spacetime,
since otherwise the metric is imaginary, unless c
vanishes. For vanishing c and K ¼ �, we obtain a
conformally flat solution which may possess one or
two horizons surrounding the singularity at the ori-
gin. For K ¼ ��=2, the spacetime is not confor-
mally flat and may also describe a black hole.
Let us note that, since in six dimensions the theory is
conformally invariant, any metric conformally re-
lated to (30) will be a solution of the system.

(ii) D � 6: For dimensions other than six, the situation
is different. Since the theory defined by (29) is not
invariant under local Weyl rescaling, one naively
expects the factor NðrÞ in (29) to be fixed by the
field equations. However, this is not the case, and for
arbitrary dimensions, the most general solution
within the family (28), for the theory (29) is

6This argument cannot be extended to dimensions 2k� 2,
since one obtains another identity involving the Riemann invar-
iants which is obtained by contracting the Ricci tensor with the
(k� 1)-th order Lovelock equation.
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ds2D ¼ NðrÞ
�
�ðar2 þ brþ �Þdt2 þ dr2

ar2 þ brþ �

þ r2d�2
D�2;�

�
; (32)

NðrÞ being an arbitrary function.
This can be easily seen as follows: Since in dimensions

other than six, the trace of the field equations for the theory
(29) is proportional to the Lagrangian, the invariants
W1 �W2 evaluated on a solution should vanish. For the
spacetime under consideration (28), it has been shown in
[21] that all the components of the Weyl tensor are propor-
tional to a single function X, such that the vanishing of X
implies that themetric should be conformally flat. Since the
restriction W1 ¼ W2 ¼ 0 transforms covariantly under
Weyl rescalings, it does not involve the function NðrÞ, and
the mentioned restriction reduces to X3 ¼ 0, which implies
fðrÞ ¼ ar2 þ brþ �. Then one is left with a conformally
flat space, and since the field equations explicitly contain a
Weyl tensor, they are fulfilled for any arbitrary function
NðrÞ.7 For a smooth conformal factor NðrÞ, the spacetime
(32) is conformally flat and it has been studied within the
context of conformal gravity in four dimensions in [8] for
� ¼ 1 and in Ref. [23] for arbitrary �. The three-
dimensional cousin of this metric, in which d�� is replaced

by a single compact direction d� and � is an integration
constant, can be obtained through ‘‘conformal gluing’’ of
Bañados-Teitelboim-Zanelli black holes, and it is a solution
of three-dimensional conformal gravity [24]. In [11] this
metric was obtained within the context of Bergshoeff-
Hohm-Townsend newmassive gravity [10,25] at the special
point where the two possible maximally symmetric solu-
tions of the theory coincide. In that case, � is an arbitrary
constant, the parameter b plays the role of a gravitational
hair, while a is fixed in terms of the coupling constant.

The metric (32) may possess an event and a Cauchy
horizon, depending on the zeros of gtt. It generically
possesses a curvature singularity located at r ¼ 0, and
depending on the sign of the integration constant a, it
represents an asymptotically locally (A)dS or flat space-
time for (a > 0) a < 0 or a ¼ 0, respectively. The details
of the different causal structures are given in [11].

B. The five-dimensional combination N 6

As stated in Table I, in five dimensions, there are two
linearly independent invariants whose traced field equa-
tions are of second order. Now, consider the following
linear combination as the Lagrangian

L ¼ 7
4W1 � 1

3N 6 (33)

evaluated on D ¼ 5. This is the unique cubic invariant for
which all the components of field equation, for static
spherically symmetric spacetimes, are of second order.
As shown in Ref. [12], the most general, nondegenerate

spherically symmetric solution is given by

ds2 ¼ �ðcr2=3 þ �Þdt2 þ dr2

cr2=3 þ �
þ r2d�2

�; (34)

where c is an integration constant and � ¼ 	1, and 0 is the
curvature of �3. Let us note that this spacetime is not
conformally flat (it possesses a nonvanishing Weyl tensor)
unless c ¼ 0. For positive c and � ¼ �1, the metric (34)
represents a black hole possessing an event horizon located

at located at rþ ¼ c�3=2. In this case the geometry of the
horizon is given by H3=�, where � is a freely acting
discrete subgroup of Oð3; 1Þ. The horizon hides the curva-
ture singularity located at r ¼ 0, and the asymptotic region
(r ! 1) is locally flat. Further interesting features of this
solution are discussed in [12]. It is also interesting to note
that among the class of theories considered here, this is the
only one which does not admit an (A)dS solution, in the
same way as the pure K combination of BHT new massive
gravity [10].

C. The three-dimensional case

As shown in Table I, within the family considered, the
only nontrivial theory having third order traced field equa-
tions in three dimensions can be written as CabcC

abc,
where Cabc is the Cotton tensor. In this theory, the most
general static, spherically symmetric solution is given by

ds2 ¼ NðrÞ
�
�ðar2 þ br��Þdt2 þ dr2

ar2 þ br��

þ r2d�2

�
; (35)

where a, b, and � are integration constants and NðrÞ is an
arbitrary function. For smooth NðrÞ, as mentioned above,
this metric has an event and a Cauchy horizon, depending
on the value of the parameters.
It will be interesting to study the thermodynamical

properties of the black hole within the context of AdS/CFT.

V. SUMMARY

In this work, we have classified all the six-derivative
Lagrangians of gravity for which the trace of the field
equations have a reduced order. We have seen that, in
dimensions greater or equal to six, when the trace of the
field equations from a generic Lagrangian is restricted to
order two, we obtain an arbitrary linear combination of
three linearly independent curvature invariants, namely,
the six-dimensional Euler density and the two independent
Weyl invariants. These invariants are no longer

7Note that the same argument is valid for any theory with a

Lagrangian of the form C . . .C
zfflffl}|fflffl{n

provided D � 2n. In four di-
mensions, for n ¼ 3, this solution was found in [22], where it
was mentioned that the corresponding model is the simplest one
that does not admit Schwazschild horizons.
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independent in lower dimensions due to the Schouten
identities. However, in five dimensions, there is a special
invariant N 6, which also gives field equations with
second-order trace. These invariants can be used to con-
struct interesting cubic theories of gravity that can serve as
toy models for higher-derivative theories. We have also
provided a conjecture regarding all the possible invariants
of arbitrary order which gives second-order traced field
equations in any dimensions. In addition, we have obtained
the general spherically symmetric solutions for a subclass
of such theories in arbitrary dimensions. Our analysis
shows that this is possible due to the reduced order of the
trace of the field equations. When the order of the trace is
restricted to three, we obtain two further invariants � and
� in arbitrary dimensions. These two invariants are not
globally independent in three and six dimensions. In six
dimensions, they reduce to the third type-B anomaly;8

whereas in three dimensions, they are equivalent to the
square of the cotton tensor �CabcC

abc. We have further
obtained a general spherically symmetric solution of this
theory in three dimensions.
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APPENDIX A: TRACE OF THE FIELD EQUATION

Here, we prove a general property of the trace of the field
equations for any Lagrangian of the formLðgab; Rabcd;reÞ

with a fixed degree of differentiation n. It has been shown
in [27] that the Lagrangian can always be reexpressed as

L ½gab; Rabcd;ra1Rbcde; . . . ;rða1;���;apÞRbcde�: (A1)

The field equations obtained by variation of the action with
respect to the metric take the form

� Tab ¼ @L
@gab

þ Ea
cdeR

bcde þ 2rcrdE
acdb þ 1

2
gabL;

(A2)

Ebcde ¼ @L
@Rbcde

�ra1

@L
@ra1Rbcde

þ � � �

þ ð�1Þprða1 � � � rapÞ
@L

@rða1 � � � rapÞRbcde

; (A3)

where Tab is the energy-momentum tensor of the matter
fields. Taking the trace of the field equations, we obtain

� Ta
a ¼ gab

@L
@gab

þ EabcdRabcd þD

2
Lþ tot deriv:

(A4)

Now, if the Lagrangian is of fixed n, then it can be ex-
pressed as a linear combination of terms of the form

½g::�q1½R...:�q2½r:R...:�q3 � � � ½r: � � � r:|fflfflfflffl{zfflfflfflffl}
p times

R...:�qpþ2 ; (A5)

such that

2q2 þ 3q3 þ � � � þ ðpþ 2Þqpþ2 ¼ n: (A6)

Then, under the scaling gab ! t�1gab, Rbcde !

tRbcde; . . . ;ra1 � � � rap

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{p times

Rbcde ! tra1 � � � rap

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{p times

Rbcde, the

Lagrangian scales as L ! t�q1þq2þ���þqpþ2L. However,
q1 can be expressed in terms of other qp’s as

q1 ¼ 1

2
½4q2 þ 5q3 þ � � � þ ðpþ 4Þqpþ2�

¼ 1

2
½2ðq2 þ q3 þ � � � þ qpþ2Þ þ ð2q2 þ 3q3 þ � � �

þ ðpþ 2Þqpþ2Þ� ¼ ðq2 þ q3 þ � � � þ qpþ2Þ þ n
2 :

(A7)

This implies that the Lagrangian scales as t�ðn=2ÞL. Now,
one can apply Euler’s theorem of homogenous functions to
write the following relation:

8In fact, the anomalies are called global conformal invariants.
It was first conjectured by Deser and Schwimmer [26] that any
global conformal invariant can be expressed as a linear combi-
nation of the Euler density and the local conformal invariants.
Recently, the conjecture has been proved by differential geo-
metric techniques by Alexakis [29] and cohomological tech-
niques by Boulanger [30]. For six-derivative invariants, in
arbitrary dimensions, in addition to the two independent Weyl
invariants which are purely algebraic, there is a third local
conformal invariant which involves derivative of the curvature.
Our analysis shows that this invariant does not give field equa-
tions with reduced order trace in arbitrary dimensions. However,
they coincide (equivalent up to a total derivative [26]) with our �
and � in dimensions three and six.
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�n

2
L ¼ �gab

@L
@gab

þ Rbcde

@L
@Rbcde

þra1Rbcde

@L
@ra1Rbcde

þ � � �

þ rða1 � � � rapÞRbcde

@L
@rða1 � � � rapÞRbcde

¼ gab
@L
@gab

þ Rbcde

@L
@Rbcde

þra1Rbcde

@L
@ra1Rbcde

þ � � � þ rða1 � � � rapÞRbcde

@L
@rða1 � � � rapÞRbcde

¼ gab
@L
@gab

þ EbcdeRbcde þ tot deriv: (A8)

Therefore, the trace of the field equations can be written in
the form

Ti
i ¼

n�D

2
Lþ tot deriv: (A9)

Now, suppose that the trace of the field equations, from a
Lagrangian of n ¼ 6, is of third order. Then it must be
some linear combination of the invariants L1; . . . ; L12.
According to (A9), in dimensions D � n, the Lagrangian
must be proportional to this combination up to a total
derivative. In dimensions D ¼ n, since the trace of the
field equations is a total derivative, the only way the trace
can be of at most third order is when it identically vanishes,
which is the case for conformally invariant theories.

APPENDIX B: EQUATIONS OF MOTION

In this appendix, we provide the details of the analysis
for the classification presented in Table I. The equations of
motion for each term in the general Lagrangian are listed
below [28]:

Gð3Þ
1ab ¼ 3Raq

efRb
qcdRcdef þ 6rprqðRa

qcdRb
p
cdÞ

� 1

2
gabL1; (B1)

Gð3Þ
2ab ¼ 3Rahd

gRb
prdRpgr

h � 3rprqðRp
g
q
hRa

g
b
h

� Rp
hbgRa

gqhÞ � 1

2
gabL2; (B2)

Gð3Þ
3ab ¼ RacbdR

cspqRpqs
d � Ra

qcdRcdb
hRqh

þ Rb
dqcRadc

hRqh �rprqðRahRb
qhp þ RbhRa

qhp

þ Rq
hRa

h
b
p þ Rp

hRa
q
b
h þ 1

2
ðgpqRa

hcdRbhcd

þ gabR
prcdRq

rcd � ga
pRb

rcdRq
rcd

� gb
pRa

rcdRq
rcdÞÞ �

1

2
gabL3; (B3)

Gð3Þ
4ab ¼ 2RapcdRb

pcdRþ RabR
pqcdRpqcd

þrprqð4RRa
q
b
p � ga

pgb
qRrscdRrscd

þ gpqgabR
rscdRrscdÞ � 1

2
gabL4; (B4)

Gð3Þ
5ab ¼ RacRb

fcdRfd þ 2RacbdR
cfdgRfg þrprqðRabR

pq

� Ra
pRb

q þ gpqRacbdR
cd þ gabR

pcqdRcd

� ga
pRq

cbdR
cd � gb

pRq
cadR

cdÞ � 1

2
gabL5; (B5)

Gð3Þ
6ab ¼ 3RacbdR

ecRe
d þ 3

2
rprqðgpqRa

cRbc þ gabR
epRe

q

� gb
pRqcRac � ga

pRqcRbcÞ � 1

2
gabL6; (B6)

Gð3Þ
7ab ¼ RabR

cdRcd þ 2RRcdRacbd þrprqðgabgpqRcdRcd

þ gpqRRab � ga
pgb

qRcdRcd þ gabRR
pq

� gb
pRRa

q � ga
pRRb

qÞ � 1

2
gabL7; (B7)

Gð3Þ
8ab ¼ 3R2Rab þ 3rprqðgabgpqR2 � ga

pgb
qR2Þ

� 1

2
gabL8; (B8)

Gð3Þ
9ab ¼ raRrbR� 2hRRab � 2ðgabgcd

� gacgbdÞrcrdhR� 1

2
gabL9; (B9)

Gð3Þ
10ab ¼ raR

cdrbRcd þ 2rcRa
drcRbd �h2Rab

�rcrdhRcdgab þrarchRc
b þrbrchRc

a

� 2RacbdhRcd þ 2RcðahRc
bÞ þ 2rc½Rd

crðbRaÞ
d

� RdðarcRd
bÞ � RdðbraÞRcd� � 1

2
gabL10; (B10)

Gð3Þ
11ab ¼ 2Gð3Þ

1ab � 4Gð3Þ
2ab þ 2Gð3Þ

3ab � 4Gð3Þ
5ab þ 4Gð3Þ

6ab

�Gð3Þ
9ab þ 4Gð3Þ

10ab; (B11)

Gð3Þ
12ab ¼ Gð3Þ

5ab �Gð3Þ
6ab þ

1

4
Gð3Þ

9ab: (B12)

Therefore, the trace of the full field equations can be ex-
pressed as
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AiGð3Þa
ia ¼ ð3�D=2ÞAiLi þrprq

��
6A1 þ 3A2 �D� 2

2
A3 � 4A11

�
RpabcRq

abc þ ð�3A2 � 2A3 þ ðD� 2ÞA5

þ 2ðD� 2ÞA10 þ 24A11 þ ðD� 2ÞA12ÞRabR
apbq þ

�
�2A3 � A5 þ 3ðD� 2Þ

2
A6 � 2A10 þ 16A11

� ðDþ 1ÞA12

�
Rp

aR
qa þ

�
4A4 þ A5 þ ðD� 2ÞA7 � ðD� 4ÞA10 � 12A11 �D� 8

2
A12

�
RRpq

þ
�
� 1

2
A3 þ ðD� 1ÞA4 � A11

�
gpqRabcdRabcd þ

�
A5 þ 3

2
A6 þ ðD� 1ÞA7 �D

2
A10 � 10A11

� 1

2
A12

�
gpqRabRab þ

�
A7 þ 3ðD� 1ÞA8 � A9 þD� 4

4
A10 þ 3A11 þD� 8

8
A12

�
gpqR2

þ
�
�2ðD� 1ÞA9 �D

2
A10 � 2A11 �D� 1

2
A12

�
gpqhR

�
: (B13)

Nowwe impose the trace to be proportional to the Lagrangian. This, in turn, requires the second term on the right-hand side
to vanish. To realize this, one has to choose the coefficients in such a way that the symmetric tensor quadratic in curvature
inside the operator rprq is proportional to the Gauss-Bonnet field equations. This gives us a set of 8 equations in 12
variables and one arbitrary parameter u. They are

6A1 þ 3A2 �D� 2

2
A3 � 4A11 ¼ �2u;

� 1

2
A3 þ ðD� 1ÞA4 � A11 ¼ u=2;

�3A2 � 2A3 þ ðD� 2ÞA5 þ 2ðD� 2ÞA10 þ 24A11 þ ðD� 2ÞA12 ¼ 4u;

�2A3 � A5 þ 3ðD� 2Þ
2

A6 � 2A10 þ 16A11 � ðDþ 1ÞA12 ¼ 4u;

4A4 þ A5 þ ðD� 2ÞA7 � ðD� 4ÞA10 � 12A11 �D� 8

2
A12 ¼ �2u;

A5 þ 3

2
A6 þ ðD� 1ÞA7 �D

2
A10 � 10A11 � 1

2
A12 ¼ �2u;

A7 þ 3ðD� 1ÞA8 � A9 þD� 4

4
A10 þ 3A11 þD� 8

8
A12 ¼ u=2;

�2ðD� 1ÞA9 �D

2
A10 � 2A11 �D� 1

2
A12 ¼ 0:

(B14)

The matrix of linear equations has rank 8, which implies that the general solution can be written in terms of 5 arbitrary
parameters x, y, z, u, and v. In D> 5, the solution is given as

A1 ¼ 1

12
½2ðD2 þ 5D� 10Þxþ 2ðD� 2Þ2y� 6ð3Dþ 2Þzþ ðD2 � 4Þvþ 3ðD� 2Þu�;

A2 ¼ � 1

6
½8ð2D� 3Þxþ 2ðD� 2Þ2y� 8ð2Dþ 3Þzþ ðD2 � 4Þvþ 4ðD� 1Þu�;

A3 ¼ 2ðD� 1Þx� 2z� u; A4 ¼ x; A5 ¼ �4x� ðD� 2Þyþ 8ðD� 1Þ
D� 2

z�D

2
v� 2u;

A6 ¼ 1

3

�
8x� 2y� 24

D� 2
zþ v

�
; A7 ¼ y

A8 ¼ � 1

24ðD� 1Þ2 ½8ðD� 1Þyþ 16Dz� ðD2 �Dþ 2Þv� 4ðD� 1Þu�;

A9 ¼ 1

4ðD� 1ÞðD� 2Þ ½8zþ ðD� 2Þv�; A10 ¼ � 4

D� 2
z� v; A11 ¼ z; A12 ¼ v: (B15)
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In dimensions D> 5, one can apply the following transformation:

x ! 3

2ðD� 2ÞðD� 1Þ ½2ðD� 2ÞðD� 1Þaþ 4bþ c�;

y ! � 3

ðD� 2Þ3ðD� 1Þ ½4ðD� 2Þ3ðD� 1Þaþ 8ð2D� 3Þbþ ðD2 þD� 4Þc�;
z ! d;

u ! 6ðD� 5Þa;
v ! 24e; (B16)

such that

AiLi ¼ aE6 þ bW1 þ cW2 þ d�þ e�;

where

� ¼ � 1

2
ð3Dþ 2ÞL1 þ 4

3
ð2Dþ 3ÞL2 � 2L3 þ 8ðD� 1Þ

D� 2
L5 � 8

D� 2
L6 � 2D

3ðD� 1Þ2 L8 þ 2

ðD� 2ÞðD� 1ÞL9

� 4

D� 2
L10 þ L11

¼ � 1

2
ð3D� 2ÞL1 þ 8D

3
L2 þ 4D

D� 2
L5 þ 4ðD� 4Þ

D� 2
L6 � 2D

3ðD� 1Þ2 L8 � DðD� 3Þ
ðD� 2ÞðD� 1ÞL9 þ 4ðD� 3Þ

D� 2
L10

þ total derivative; (B17)

� ¼ 2ðD2 � 4ÞL1 � 4ðD2 � 4ÞL2 � 12DL5 þ 8L6 þD2 �Dþ 2

ðD� 1Þ2 L8 þ 6

D� 1
L9 � 24L10 þ 24L12

¼ 2ðD2 � 4ÞL1 � 4ðD2 � 4ÞL2 � 12ðD� 2ÞL5 � 16L6 þD2 �Dþ 2

ðD� 1Þ2 L8 þ 6D

D� 1
L9 � 24L10 þ total derivative:

(B18)

Note that the determinant of the transformation (B16) is 2592ðD�5Þ
ðD�2Þ3ðD�1Þ . Now in D � 5, one needs to solve the system of

Eqs. (B14) for each value of D separately. The Lagrangians obtained are tabulated in Table I.
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