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We consider propagation of gravitational waves in a magnetized plasma, using the linearized Maxwell-

Vlasov equations coupled to Einstein’s equations. A set of coupled electromagnetic-gravitational wave

equations are derived that can be straightforwardly reduced to a single dispersion relation. We demon-

strate that there is a number of different resonance effects that can enhance the influence of the plasma on

the gravitational waves.

DOI: 10.1103/PhysRevD.82.124029 PACS numbers: 04.30.Nk, 52.25.Dg, 52.25.Xz

I. INTRODUCTION

The propagation of small amplitude gravitational waves
(GWs) in the presence of matter and/or electromagnetic
fields has been studied by many authors. A large variety of
different approximation schemes and basic assumptions of
the matter content are possible. In case the influence of the
GWon matter and fields is in focus, a test matter approach
can be sufficient [1–4]. When the backreaction on the GW
is of interest, a self-consistent approach is necessary [1].
The physics close to the GW source may require a
nonlinear approach [4–17], whereas a linear treatment
[3,18–21] is adequate for larger distances from the source.
Depending on the basic assumptions, the calculations
may be of relevance for cosmology [22–26], astro-
physics [4,5,13,20,27,28], or gravitational wave detectors
[2,29,30]. For many applications in cosmology and astro-
physics the relevant state of matter is the plasma state. Here
a large variety of models can be relevant, e.g. magneto-
hydrodynamic models [8,20,21,31], multifluid models
[4,7], or kinetic models [6,18,19].

In the present work we will perform a self-consistent,
linearized treatment of GW propagation in a magnetized
plasma, modeled by the Vlasov equation, as is relevant for
a collisionless system. We will here focus on the direct
contribution from matter and fields to the dispersion rela-
tion, rather than the indirect contribution from the back-
ground curvature, and thus we will consider a flat
Minkowski background. Within this context a general
dispersion relation is derived describing the linear coupling
of GWs to electromagnetic waves (EMWs). Note, how-
ever, that the division into direct and indirect contributions
contains certain complications. For a detailed discussion of
this see e.g. the Appendix in Ref. [19]. A similar effort to
ours has previously been undertaken by Ref. [18]. Here we
extend that work in a number of directions. First, we
continue the analysis a step further before going to special
cases, by solving the integrals over the azimuthal angles in
momentum space in general. Second, we keep the relativ-
istic regime in the calculation until the end stage in the
general case. Typically the contribution to the GW disper-
sion relation from matter is weak, for relevant energy

densities. However, it is also shown that numerous resonant
mechanisms exist that can increase the coupling to matter.
A list of special cases exhibiting various types of reso-
nances enhancing the influence on the GW dispersion
relation is presented. The case of resonant coupling to
high-frequency waves for GWs propagating at an arbitrary
angle has not been studied before, to the best of our knowl-
edge. Finally our results are summarized and discussed.

II. BASIC EQUATIONS

We consider the linear coupling between weak gravita-
tional waves and electromagnetic perturbations in a colli-
sionless plasma in an external magnetic field, assuming
that the wavelength of the GW is much shorter than the
characteristic radius of the background curvature (i.e. em-
ploying the high-frequency approximation). As noted by
e.g. Refs. [1,19], the deviation from the vacuum dispersion
relation of the GW has two types of contribution: direct
effects of matter, and indirect effects of matter, where the
latter comes from the background curvature. Here we will
focus only on the direct effects of matter, and hence wewill
simply take the background metric as the flat Minkowski
metric. This is motivated by the fact that we are mainly
interested in enhanced GW couplings due to various reso-
nances, which all follow from the direct effects of matter.
For a detailed discussion of the separation into direct and
indirect effects of matter, see the Appendix in Ref. [19].
In the present approach it is thus the perturbations of the
electromagnetic and material fields, contributing to the
perturbed energy-momentum tensor that are of interest.
For simplicity, the unperturbed plasma is assumed to be

static, isotropic, and homogeneous. Linearized, the
Einstein field equations take the form

hhab ¼ �2�½�Tab � 1
2�T�ab�; (1)

provided the gauge condition hab;b ¼ 0 is satisfied, which

is fulfilled only if tensorial perturbations are present. Note
that for driven gravitational perturbations, this gauge con-
dition is not necessarily fulfilled, but this is not the case of
interest here. For a detailed discussion of the (approximate)
fulfillment of the gauge condition, see e.g. Sec. IV in
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Ref. [15]. Here h � ½c�2@2t � @2z�, hab is the small devia-
tion from the Minkowski background metric, i.e. gab ¼
�ab þ hab, � � 8�G=c4, �Tab is the part of the energy-
momentum tensor containing small electromagnetic
and material field perturbations associated with the
gravitational waves and �T ¼ �Ta

a . In our notation
a; b; c; . . . ¼ 0, 1, 2, 3 and i; j; k; . . . ¼ 1, 2, 3 and the
metric has the signature ð� þþþÞ.

In vacuum, a linearized gravitational wave can be trans-
formed into the transverse and traceless gauge. Then we
have the following line element and corresponding ortho-
normal frame basis:

ds2 ¼ �c2dt2 þ ½1þ hþð�Þ�dx2 þ ½1� hþð�Þ�dy2
þ 2h�ð�Þdxdyþ dz2; (2)

e 0 � c�1@t; e1 � ð1� 1
2hþÞ@x � 1

2h�@y; (3)

e 2 � ð1þ 1
2hþÞ@y � 1

2h�@x; e3 � @z; (4)

where � � z� ct and hþ, h� � 1. Moreover, the gravi-
tational waves take this form also in the particular case
(propagation in a magnetized plasma) that we are consid-
ering. The difference to the vacuum case will be that
� ¼ z� vpht, where vph is the phase velocity of the gravi-

tational wave. Note, however, that the theory will be lim-
ited to the case of small deviation from the vacuum
dispersion relation (i.e. we will have vph � c), and to the

high-frequency approximation. From now on we will refer
to tetrad components rather than coordinate components.

We follow the approach presented in [32] for handling
gravitational effects on the electromagnetic and material
fields. Suppose an observer moves with 4-velocity ua. This
observer will measure the electric and magnetic fields
Ea � Fabu

b and Ba � 1
2 �abcF

bc, respectively, where Fab

is the electromagnetic field tensor and �abc is the volume
element on hypersurfaces orthogonal to ua. It is convenient
to introduce a 3-vector notation E � ðEiÞ ¼ ðE1; E2; E3Þ
etc. and r � ei. Note that for the spatial components we
can raise and lower indices with the Kronecker delta. From
now on we will assume that u0 ¼ c is the only nonzero
component of ua. As has been presented in e.g. Ref. [19]
the Maxwell equations contain terms coupling the electro-
magnetic field to the gravitational radiation field. Including
terms that are linear in hþ and h� [33], Maxwell’s equa-
tions are written as

r� B ¼ 1

c2
@tEþ�0ðjþ jEÞ; (5)

r�E ¼ �@tB� c�0jB; (6)

r �B ¼ �B

c"0
; (7)

r �E ¼ �c

"0
þ �E

"0
; (8)

where jE, jB, �E, and �B are effective current and charge
densities due to the GWs; see e.g. Ref. [7]. For the
particular case of linearized theory, and a background
magnetic field directed as

B 0 ¼ B0ðsin	e1 þ cos	e3Þ; (9)

the effective charge densities vanish and the effective
currents reduce to

j E ¼ B0 sin	

2�0

ð _h�e1 � _hþe2Þ; (10)

j B ¼ B0 sin	

2�0

vph

c
ð _hþe1 þ _h�e2Þ; (11)

where the dot denotes derivatives with respect to �. The
physical current and charge density are denoted j and �c,
respectively.
Next we need an evolution equation for particles with

massm and charge q. We then apply kinetic plasma theory,
representing each particle species by a distribution func-
tion f governed by the Vlasov equation. In tetrad form the
Vlasov equation reads [19]

L f ¼ 0;

where the Liouville operator is

L � @t þ ðc=p0Þpiei þ ½Fi
EM � �i

abp
apbc=p0�@pi ;

and the electromagnetic force responsible for geodesic
deviation is Fi

EM � qðEi þ �ijkpjBk=
mÞ. In vector nota-

tion the Vlasov equation reads

@tfþ p � rf


m
þ

�
q

�
Eþ p� B


m

�
�G

�
� rpf ¼ 0; (12)

where rp � ð@p1
; @p2

; @p3
Þ and 
 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ pip
i=ðmcÞ2p

. In

the absence of gravitational waves, the Vlasov equation has
the following spatially homogeneous (thermodynamical)
equilibrium solution, the Synge-Jüttner distribution, e.g.
[34],

fSJ ¼ n0�

4�ðmcÞ3K2ð�Þ e
��
; (13)

where n0 is the spatial particle number density,
� � mc2=kBT, kB is the Boltzmann constant, T the tem-
perature, and K2ð�Þ is a modified Bessel function of
second kind. The Synge-Jüttner distribution is a straight-
forward extension of a Maxwellian distribution, obtained
by replacing the classical kinetic energy with its relativistic
counterpart. However, for the remainder of this paper we
will consider a slightly more general isotropic distribution
f0 ¼ f0ðp2Þ, as a background distribution rather than the
specific case given in Eq. (13).
The gravitational force like term G has components

Gi � �i
abp

apb=
m, where �i
ab are the Ricci rotation
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coefficients. For a linearized GW propagating in the
z direction in Minkowski space this becomes

G1 ¼ 1
2ðvph � p3=
mÞ½p1

_hþ þ p2
_h��; (14)

G2 ¼ 1
2ðvph � p3=
mÞ½�p2

_hþ þ p1
_h��; (15)

G3 ¼ 1
2ð
mÞ�1½ðp2

1 � p2
2Þ _hþ þ 2p1p2

_h��; (16)

where vph is the phase velocity of the gravitational wave,

which we allow to deviate slightly from c.

III. SOLUTION OF THE VLASOV EQUATION

Next we need to solve the linearized Vlasov equation.
Dividing the magnetic field and the distribution function
into its perturbed and unperturbed parts, f ¼ f0ðp2Þ þ
f1ðpÞ exp½iðkz�!tÞ�, B ¼ B0 þB1 exp½iðkz�!tÞ), i.e.
looking for plane wave solutions induced by the GW
propagating at an angle to the constant magnetic field
B0, this reads

� i!f1 þ ip � kf1

m

þ qp� B0


m
� rpf1

¼ �½qE�G� � rpf0; (17)

where the term proportional to p�B1 of the right-hand
side has been dropped, which is valid since we limit
ourselves to an isotropic background distribution function.
In order to solve Eq. (17) we adapt cylindrical coordinates
in momentum space ðp?; �; pkÞ, with the cylinder axis

directed along the unperturbed magnetic field. In this
coordinate system Eq. (17) can be written

� i

�
!� p � k


m
�!c@�

�
f1 ¼ �½qE�G� � rpf0: (18)

where !c ¼ qB0=m is the cyclotron frequency.
Equation (18) can be solved using an expansion in the
eigenfunctions

c nð�;p?Þ ¼ 1ffiffiffiffiffiffiffi
2�

p exp½�iðn�� k?p? sin�=
m!cÞ�;
(19)

where k? ¼ k sin	. Useful properties of these eigenfunc-
tions are the orthogonality relation

Z 2�

0
c nc

�
md� ¼ �nm; (20)

where � denotes complex conjugate, and the Bessel func-
tion expansion

c mð�;p?Þ ¼
X1

n¼�1
Jn

�
k?p?

m!c

�
exp½iðn�mÞ��: (21)

Next we divide f1 ¼ fem þ fgw and use the orthogonality

property to expand fem and fgw as fem ¼ P
Wnc n and

fgw ¼ P
Gnc n, where the electromagnetically induced

perturbation Wn is

� i

�
!�pkkk


m
� n!c




�
Wn ¼

Z 2�

0
c �

nqE � rpf0d�; (22)

where kk ¼ k cos	. Dividing Wn further as Wn ¼ Wi
nEi,

Eq. (22) gives Wi
n from the components of

W n � �i4�q

ð!� pkkk

m � n!c


 Þ
@f0
@p2

VopJnð�Þ; (23)

where � ¼ k?p?=m!c and the vector operator Vop is

V op �
pk sin	þ np? cos	

�

�ip? @
@�

pk cos	� np? sin	
�

0
BB@

1
CCA: (24)

The gravitationally induced perturbation Gn can be further
divided into its two GW polarizations as Gn ¼ gþn hþ þ
g�n h� with

� i

�
!� pkkk


m
� n!c




�
gþn hþ �

Z 2�

0
c �

nG
þ � rpf0d�;

(25)

which after integration gives

gþn ¼ �!

ð!� pkkk

m � n!c


 Þ
@f0
@p2

�
ð2p2

k � p2
?Þsin2	Jnð�Þ

þ 4n

�
pkp? sin	 cos	Jnð�Þ þ p2

?ð1þ cos2	Þ

�
�
2
@2Jnð�Þ
@�2

þ Jnð�Þ
��
; (26)

and

� i

�
!� pkkk


m
� n!c




�
g�n h� �

Z 2�

0
c �

nG
� � rpf0d�

(27)

which leads to

g�n ¼ 4�i!

ð!� pkkk

m � n!c


 Þ
@f0
@p2

�
p?pk sin	

@Jnð�Þ
@�

þ n

�
p2
? cos	

�
@Jnð�Þ
@�

� Jnð�Þ
�

��
; (28)

where G ¼ Gþ þG� in Eqs. (25) and (27) has been
divided into its two polarization components, proportional
to hþ and h�, respectively, as defined from (14)–(16). The
solutions of the integrals over the azimuthal angle have
been performed using the Bessel expansion (21).

IV. THE COUPLED WAVE EQUATIONS

Next we use Maxwell’s equations and the expressions
for the perturbed distribution functions from the previous
section. Carrying out integrations over the azimuthal
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angles to find the current densities induced by the EMW
and the GW, we arrive at the wave equation for the EM
field with GW source terms

½ð!2 � k2c2Þ�ij þ kikjc2 þ i!�0

ij�Ej

¼ ðDiþ þ IiþÞhþ þ ðDi� þ Ii�Þh�; (29)

where 
ij is the standard conductivity tensor for a relativ-
istic Vlasov plasma (see e.g. Ref. [35]), Diþ;�, which is

due to the effective current densities in (11) and (10), is
given by

Diþ ¼ !kB0 sin	�
i
2; (30)

Di� ¼ �!kB0 sin	�
i
1; (31)

whereas Iiþ;� (due to the current induced by the GW-force

density) can be written in vector form as

Iþ;� ¼ X
PS

2�
Z dp?dpkp?


m

X
n

gþ;�
n V�

opJnð�Þ; (32)

where
P

PS denotes a sum over particle species. Note that
the same vector operator Vop that determined the electro-

magnetic part of the distribution function in (23) appears in
the GW source (albeit here with a conjugate).

In principle one could proceed from (29) by multiplying
with the adjoint of the electromagnetic dispersion matrix of
the left-hand side to solve for the electromagnetic field
amplitudes of the various components. Since 
ab is
Hermitian (at least to a good approximation, in case the
pole contribution associated with wave-particle interaction
processes are small), the adjoint of the matrix is built up
from the eigenvectors divided by the determinant of the
original matrix. However, due to the complex mode struc-
ture in a magnetized plasma, such a procedure would not
be very illuminating in the general case, and thus we will
wait with further simplifications of (29) until a particular
parameter regime is chosen.

Next we consider the EM sources in the wave equation
for the GW. From (1) we obtain

ð!2 � c2k2Þhþ ¼ �c2�ð�T11 � �T22Þ; (33)

ð!2 � c2k2Þh� ¼ �2c2��T12: (34)

The energy-momentum tensor has sources from the per-
turbed distribution function, due to the EM- and GW-force
density, which is found from the solution for the Vlasov
equation. Furthermore, there are sources due to the pertur-
bations of the electromagnetic field tensor. Including these
three sources, Eqs. (33) and (34) are written

ð!2 � c2k2Þhþ ¼ �c2�ðFiþEi þ 2Fhþ þHþþhþ

þH�þh� þHiþEiÞ; (35)

ð!2 � c2k2Þh� ¼ �2c2�ðFi�Ei þ Fh� þHþ�hþ

þH��h� þHi�EiÞ; (36)

where

Fiþ ¼ �4
k

�0!
B0 sin	�

i
2; (37)

Fi� ¼ 2
k

�0!
B0 sin	�

i
1; (38)

F ¼ B2
0

�0

sin2	; (39)

Hþ;�
þ ¼ X

PS

�
Z dp?dpk


m

X
n

gþ;�
n QþJnð�Þ; (40)

Hþ;�
� ¼ X

PS

i�
Z dp?dpk


m

X
n

gþ;�
n Q�Jnð�Þ; (41)

Hiþ ¼ X
PS

�
Z dp?dpk


m

X
n

Wi
nQþJnð�Þ; (42)

Hi� ¼ X
PS

i�
Z dp?dpk


m

X
n

Wi
nQ�Jnð�Þ; (43)

Qþ � p?
�
2p2

k þ p2
?cos

2	þ 4np?pk
�

sin	 cos	

�

þ 2p3
?ð1þ cos2	Þ @2

@�2
; (44)

Q� � 2pkp2
?sin

2	
@

@�
þ n

�
p3
? cos	

�
@

@�
� 1

�

�
: (45)

Equations (35) and (36) are GW wave equations with
electromagnetic source terms, which together with the
counterpart (29) constitute a closed set. Solving for hþ;�
using (35) and (36) and substituting into (29) gives a single
dispersion relation for coupled GW-EMWs propagating in
a magnetized plasma. Our coupled set has the advantage
having solved the integration over the azimuthal angle
everywhere, and allowing for a fully relativistic tempera-
ture. However, due to the complexity of the eigenmodes of
a magnetized plasma, the properties of the dispersion
relation will be very far from explicit, until specific as-
sumptions about the parameter regime are made. This will
be explored in the next section.

V. SPECIAL CASES

In principle the general result (29) combined with (35)
and (36) could be simplified further, by multiplying
(29) with the adjoint of the matrix ð!2 � k2c2Þ�ij þ
kikjc2 þ i�0!
ij, to solve for the electric field with the
gravitational terms as source terms for EM radiation.
However, in practice this would not be particularly helpful
when evaluating specific cases. This is related to the asym-
metry between the GWs and the EMWs that comes from
the necessity to use the short-wave approximation.
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Because of the short-wave approximation the influence of
the energy-momentum tensor on the GWs is limited, and
the properties of the GWs are known to a good approxi-
mation, in particular, the polarization is approximately the
same as in vacuum. This is in contrast to the EMWs, where
the wave polarization may differ a lot, depending on the
parameter regime. Further simplifications of the system
(29), (35), and (36) are preferably done after a parameter
regime is chosen, and the wave polarization of free EMWs
thereby is known.

For moderate energy density in the background state, the
modification of the GWs from the pure vacuum case is
typically quite small. Hence the case of most interest is
when the matter contribution to the GW dispersion relation
is enhanced due to some sort of resonance. The physics of
this can often be contained in only a few of the various
GW-EMW coupling terms, which can simplify the full
dispersion relation significantly. Several different possibil-
ities of this kind exist, which is best illustrated by a set of
examples.

A. Parallel propagation—GW cyclotron resonances

First we consider the case of wave propagation parallel
to the external magnetic field, i.e. we put 	 ¼ 0 in all
formulas. This leads to large simplifications, as all the
GW-source terms in the EM wave equation (29) are seen
to vanish. Inspection of Eqs. (35) and (36) then shows that
all contributions to the GW dispersion relation comes from
the perturbation of the distribution function directly in-
duced by the GW, which is encoded in the H coefficients
(40)–(43). Evaluating these coefficients for 	 ¼ 0, the
argument of the Bessel function becomes zero, and as a
consequence we find that the only terms in the sum over n
that survive are n ¼ 	2. Furthermore, from (35) and (36)
we see that the hþ and h� are coupled, such as to
make circularly polarized modes with combinations
hþ 	 ih� the natural variables. Specifically we obtain
from (35) and (36)

ð!2 � k2c2 þM	Þðhþ 	 ih�Þ ¼ 0; (46)

with

M	 ¼ ��c2k2

!

X
PS

Z p3
?dp?dpk

2mðkpk=m� 
!
 2!cÞ

�
��

!

k
� pk


m

�
@

@p?
þ p?


m

@

@pk

�
f0: (47)

The dispersion relation ð!2 � k2c2 þM	Þ ¼ 0, where the
þð�Þ stands for left- (right-) hand circular polarization,
agrees with Eqs. (24) and (25) in Ref. [19], where it has
been thoroughly studied. In the nonrelativistic limit we
also have agreement with Ref. [18]. We will not repeat a
detailed analysis of Eq. (46) here, but just point out a few of
the main features of the dispersion relation.

(i) Because of the pole contributions, obtained when the
denominators kpk=m� 
!
 2!c ¼ 0, the waves

are typically cyclotron damped. For a low (nonrela-
tivistic) temperature the damping is most pro-
nounced when ! ’ 2!c. The resonances occur for
all particle species present in the plasma, which may
be electrons, ions, or positrons. Electron and positron
contributions are identical, if we just interchange
right- and left-hand circular polarizations, whereas
naturally the ion contribution is much different, as
the ion-cyclotron time resonance is lower by orders
of magnitude.

(ii) The real part of the dispersion relation also has
relatively sharp peaks at the cyclotron resonances
for low temperatures. However, these resonances
are smoothened considerably when the temperature
is increased to approach the relativistic regime.

(iii) If we let the background distribution function de-
viate from that of thermodynamic equilibrium, it is
possible that the damping turns into wave growth,
due to the presence of free energy. The necessary
condition of this is discussed in some detail in
Sec. V of Ref. [19].

B. Perpendicular propagation—Alfvén wave resonance

For perpendicular propagation the GW coupling to
EMWs differs a lot depending on whether the plasma
motion is quasineutral or not. If the gravitational wave
frequency is much lower than the lowest cyclotron fre-
quency (normally due to ions, except for an electron-
positron plasma), the particle motion is essentially
E� B drifts to leading order for all particle species, in
which case the current (due to the polarization drift) is a
small correction term, and the excited EMWs become
(compressional) Alfvén waves. This low-frequency case
is what we will consider in this section. For a strong
magnetic field, we can expand the Bessel functions to the
lowest order approximation. Noting that compressional
Alfvén waves have only the E2 component nonzero (to
the leading approximation), and that the part originating
from the GW-distribution function does not contribute
significantly in the short Larmor radius limit, we obtain
from (29)

ð!2 � k2C2
AÞE2 ¼ !3B0hþ

k
; (48)

where CA ¼ c=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þP

PS!
2
p=!

2
c

q
is the relativistic Alfvén

velocity. From (35), again noting that the kinetic terms do
not contribute significantly in the short Larmor radius
limit, we next obtain

ð!2 � k2c2Þhþ ¼ �
kB0E2

!�0

: (49)

Combining (48) and (49) we thus obtain
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ð!2 � k2c2Þ ¼ �
B2
0

�0

!2

ð!2 � k2C2
AÞ
: (50)

Clearly the GW-EM coupling is much enhanced (by a
factor �c2=jc2 � C2

Aj) in case the relativistic Alfvén ve-
locity matches the speed of light in vacuum. Such a match-
ing occurs for strongly magnetized plasmas of modest
densities, in particular, regions around (double) pulsars
can be of interest. Applications of Alfvén wave resonances
have been considered e.g. by Refs. [16,17], where nonline-
arities also have been taken into account.

C. Oblique propagation—plasma frequency resonance

We next consider an electron-ion plasma, and let the
wave frequency ! be much higher than the ion-plasma
frequency. For propagation at an arbitrary angle 	, this
allows us to neglect the ion dynamics when the EM-wave
properties are evaluated. The specific case of excitation of
high-frequency plasma waves when the GW propagates at
an arbitrary angle to the external magnetic field has not
been considered previously, as far as we know. To obtain
simple formulas, we now focus on the low-temperature

limit, ðkBT=meÞ1=2 � !=kz and k?vt=!c � 1. From (33)
evaluated in the low-temperature limit we obtain

ð!2 � k2c2Þhþ ¼ �
sin	B0k

!�0

E2: (51)

From (29) and still considering the low-temperature limit,
we obtain

ð!2 �!2
pÞE2 ¼ !2

chþcB0sin
3	hþ: (52)

In deriving (52), we have assumed that the coupled GW-
EMW has most of its energy in the gravitational degrees of
freedom (i.e. that we consider a wave that basically is a
GW inducing EM perturbation, rather than the other way
around), which is fulfilled if

j�B2
0!

2
csin

4	=ð!2 �!2
pÞj � jð!2 �!2

pÞj: (53)

It may seem somewhat unexpected that the transverse
electric field component E2 experiences a resonance of
the same type as electrostatic and longitudinal plasma
oscillations. However, this property is a basic consequence
of the EM conductivity tensor [35]. It follows from the
coupling between the longitudinal and transverse compo-
nents of the electric field induced by the magnetic field,
together with the fact that in a (cold) magnetized plasma
for 	 � 0, high-frequency EMWs have a phase velocity
!=k ¼ c, precisely when ! ¼ !p. Combining Eqs. (51)

and (52) we obtain the dispersion relation

!2 � k2c2 ¼ �
B2
0

�0

!2
csin

4	

ð!2 �!2
pÞ
: (54)

The coupling in Eq. (54) is strong close to the resonance
!2 ’ !2

p, but as pointed out above, we cannot approach the

resonance too close while applying this dispersion relation,
due to the condition (53). Furthermore, for a given distance
from the exact resonance, the coupling strength increases
with !2

c=!
2
p. As long as ! * !ci, the omission of ion

dynamics in comparison with the electron dynamics can
be justified, and hence we can apply formula (54) until
!2

c=!
2
p is of the order ofm

2
i =m

2
e. The main limitation of the

applicability of (54) comes from the fact that it requires a
constant density over several wavelengths, to benefit from
the resonance !2 ’ !2

p. Close to suitable GW sources,

however, most plasmas are strongly inhomogeneous. This
is somewhat unfortunate, as the strong scaling with B0 in
the dispersion relation (to the fourth power) makes the
region close to astrophysical objects like pulsars and/or
magnetars the most interesting ones when it comes to
applying (54). For the interstellar medium, where the
density might be approximately constant for long dis-
tances, the typical magnitude of the external magnetic field
is normally too weak to make the GW modification
described by (54) very significant.

VI. SUMMARYAND DISCUSSION

We have derived a set of coupled wave equations for
EMWs driven by GWs and vice versa, in a magnetized
relativistic Vlasov plasma. The coupling terms contain
integrations in momentum space over various moments
of the distribution function. Although integration of the
azimuthal angles in momentum space has been carried out,
we note that the remaining integrals can only be done
numerically. Focusing on different special cases, many of
the properties of the coupled equations can be deduced
analytically, and explicit forms of the dispersion relations
can be derived governing the coupled GW-EMW propaga-
tion. Writing the GW dispersion relation as !2 � k2c2 ¼
Sð!;kÞ, we note that typically the modification from the
vacuum case can be estimated as S� c2R�2, where R is
the characteristic radius of curvature associated with the
energy density of the unperturbed plasma. However, there
are several types of resonance phenomena that can enhance
the influence of the plasma on the GW dispersion relation
far beyond this generic estimate. These includes cyclotron
resonances, Alfvén wave resonances, and plasma fre-
quency resonances. We also note that these resonances
can be strongly dependent on the GW polarization.
While resonances can affect the GW dispersion relation,
as described for three different cases in Sec. V, it is not
obvious that it is enough to have observable consequences,
due to the small value of the coupling parameter �. Let us
illustrate this with a few examples. Specifically, let us
consider the case of merging of a compact binary, where
at least one of the objects is strongly magnetized, i.e. a
pulsar or a magnetar. A GW-EMW interaction can then
reveal itself in case the arrivals of different parts of the
frequency spectrum are slightly modified, compared to
what we obtain from a pure vacuum dispersion relation.
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For a small matter contribution to the dispersion relation,
we have �tð!Þ=Tp ¼ �vgð!Þ=c, where �tð!Þ is the

modification in arrival time (compared to the pure vacuum
dispersion relation) as a function of frequency, Tp is the

propagation time in the region which contributes to the
time delay, and �vgð!Þ is the modification of the group

velocity due to the plasma interaction. For matter effects to
be visible, we estimate that �tð!Þ must be larger or com-
parable to a resolution time Tres that is of the order of the
characteristic time scale for the frequency increase, i.e.
characteristic �t * Tres �!=ðd!=dtÞ, where d!=dt is
the frequency increase rate of the binary due to the loss
of gravitational wave energy. Calculating the group veloc-
ity from Eq. (54), assuming that we are close to the plasma
resonance (i.e. j!2 �!2

pj � !2), the condition of a

detectable time delay becomes

Tres

0:01 s
&

�
B0

2� 10�5 T

�
4
�
1ðrad=sÞ2
!2 �!2

p

�
2
�

Tp

1014 s

�
: (55)

The normalization factors picked here for illustrative
purposes show that GW detection through a slowly accu-
mulated time delay which varies with the GW frequency is
not possible through the considered coupling mechanism.
While a propagation time Tp ¼ 1014 corresponding to

100� 106 ly might be possible, and the frequency mis-
match factor (measuring the deviation from precise reso-
nance !2 ¼ !2

p) and time resolution factors are not out of

the question, the trouble fulfilling the condition comes
from the magnetic field factor. Over intergalactic distances
a value B0 � 10�12 T could be possible, rather than
2� 10�5 T that we need to fulfill the detection condition
(unless all the other factors can be improved by several
orders of magnitude). Another regime of detection that
might be possible in principle is a much stronger
GW-EMW interaction, where the background energy den-
sity is very high. Naturally in such a case we cannot benefit
from a large accumulation distance. Furthermore, for

strong magnetic fields we cannot use Eq. (54), since the
condition for neglecting ion dynamics cannot be fulfilled.
Instead we consider the dispersion relation (50) applicable
for ! � !ci, and calculate the group velocity under the
condition that C2

A ’ c2, applicable for pulsar or magnetar
magnetic field strengths. Applying our detection estimate
for this regime, we obtain

Tres

0:01 s
&

�
B0

1010 T

��
1000 rad=s

!

��
Tp

10 s

�
: (56)

Here the considered normalization factor for Tres is still
reasonable, and the value for B0 is certainly possible, since
it corresponds to observed magnetar field strengths.
However, for a propagation time Tp ¼ 10 s to be appli-

cable, the magnetic field must fill a region of distance
3� 109 m with the same high field strength, which is far
too much, since the really strong field value picked in the
example is applicable only to the region closest to the
magnetar surface. Naturally we could get a favorable sub-
factor by picking a GW frequency lower than 1000 rad=s,
but unfortunately Tres is rapidly increasing in case such a
choice is made [36]. Thus it is difficult to fulfill the
detection condition also in this regime. This does not
necessarily mean that all possibilities of detectable GW-
EMW interaction have been exhausted, as the general
formulas presented in Sec. IV contain many other possi-
bilities. It should be pointed out that Ref. [10] has made the
case that the cyclotron type of resonances may be strong
enough such as to have observable consequences, although
there has been some debate over this [19]. Finally we stress
that issues of this type will need development of high
precision GW detectors [2,37] to be settled.
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