
Unitarity analysis of general Born-Infeld gravity theories
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We develop techniques of analyzing the unitarity of general Born-Infeld gravity actions in

D-dimensional spacetimes. The determinantal form of the action allows us to find a compact expression

quadratic in the metric fluctuations around constant curvature backgrounds. This is highly nontrivial since

for the Born-Infeld actions, in principle, infinitely many terms in the curvature expansion should

contribute to the quadratic action in the metric fluctuations around constant curvature backgrounds,

which would render the unitarity analysis intractable. Moreover in even dimensions, unitarity of the theory

depends only on finite number of terms built from the powers of the curvature tensor. We apply our

techniques to some four-dimensional examples.
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I. INTRODUCTION

Tree-level unitarity analysis, that is tachyon and ghost
freedom, of a generic gravity model with arbitrary powers
of the curvature tensors around a constant (nonzero) cur-
vature background is a nontrivial problem. On the other
hand, for flat backgrounds, only the quadratic terms con-
tribute to the propagators, and therefore the analysis is
rather simple. In fact, in four dimensions the only unitary
model, apart from the Einstein’s gravity, is the Rþ �R2

theory at the quadratic order. But, this model is not renor-
malizable without a �R2

�� term which, when augmented to

the action, ruins unitarity by introducing a massive ghost
mode [1].

Experience from quantum field theory dictates that at
high energies Einstein’s gravity should be replaced with a
theory that has higher powers of various curvature tensors
symbolically written in the form

I ¼
Z

d4x

�
1

�
ðR� 2�0Þ

þ X1
n¼2

anðRiem;Ric; R;rRiem; . . .Þn
�
: (1)

The main nontrivial question is how to find the correct
couplings an that yield a viable unitary theory. One might
view gravity as a low energy approximation to a micro-
scopic theory such as string theory and thus expect to find a
unitary (but not necessarily renormalizable) gravity theory
to any desired order in the curvature by perturbatively
computing an. Of course beyond quadratic order this is a
very difficult computational problem. Another approach is
the so called asymptotically safe gravity which conjectures
that the dimensionless versions of all the coupling con-
stants in (1) have a nontrivial UV fixed point and even for

infinitely many coupling constants the theory has predic-
tive power since the critical surface is finite dimensional
[2–4]. In this work, encouraged by our recent observation
in three dimensions that we briefly summarize below, we
take a different route and propose that certain Born-Infeld
(BI) type gravity actions might define unitary models to all
orders. Unitarity analysis around constant curvature back-
grounds is itself a complicated problem when many powers
of curvature tensors are involved, here we develop the
techniques of carrying out this analysis in detail and
provide two nonunitary examples in four dimensions. In
subsequent work [5], we will give more examples in three
and four dimensions that are unitary.
Let us recapitulate the three-dimensional BI gravity

action [6] and its success of reproducing the known viable
theories:

IBINMG ¼ � 4m2

�2

Z
d3x

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� det

�
g� 1

m2
G

�s

�
�
1� �

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detg
p �

; (2)

where the components of the matrix G read as G�� �
R�� � 1

2 g��R. In (2), we have referred to this model as

the BI extended new massive gravity (BINMG), since in
small curvature expansion, this model reproduces the cos-
mological Einstein-Hilbert theory at the first order, the new
massive gravity theory [7], which is unitary [8–11], at the
second order and the extended new massive gravity based
on the existence of the holographic c functions at the cubic
and fourth orders [6,12]. With the help of the techniques
we develop below, we have shown that BINMG is a unitary
theory at all orders around flat and constant curvature
vacua [5]. One of course would like to find analogs of (2)
in higher, especially in four, dimensions. To be able to do
this, one has to first establish tools for the unitarity analysis
which is the purpose of this work. In what follows, for
the sake of generality, we will keep the discussion in D
dimensions and for generic BI actions with the only

*e075555@metu.edu.tr
†sisman@metu.edu.tr
‡btekin@metu.edu.tr

PHYSICAL REVIEW D 82, 124023 (2010)

1550-7998=2010=82(12)=124023(17) 124023-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.82.124023


restriction that they reproduce the (cosmological) Einstein-
Hilbert theory at the first order.

The history of the BI-type actions is quite rich and for
the nongravitational cases a nice review was given in [13].
As for gravity, BI-type gravitational actions actually pre-
cedes a decade their counterparts in electrodynamics. It
was Eddington who first proposed that, at least in the
absence of matter, using the connection as the independent

variable, Einstein-Hilbert action can be replaced by I ¼
R
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detR��ð�Þ

q
[14]. (Note that one actually has to dig

this result out from Eddington’s book, since it is not clearly
stated in one place. But, Schrödinger, attributing to
Eddington, writes this action explicitly on page 113 of
his book [15]). More recently, Eddington’s approach (in
fact a slight modification of it) was resuscitated in [16]
(and the references therein) as an alternative to Big Bang
cosmology without an initial singularity and with
finite density. In [17], instead of Eddington’s Palatini
formulation, the metric formulation where the metric is

the only independent variable was used in the form I ¼
R
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðg�� þ �R�� þ X��Þ

q
and constraints such as

ghost freedom on BI-type gravity actions was studied.
Our work follows this line of thought and extends the
unitarity analysis to constant curvature spaces. We would
like to point out to some related works where BI-type
gravities, their cosmological and other solutions have
been studied [18–22].

The main idea of this work is to find a way to obtain the
quadratic action in the metric perturbation of a generic BI
gravity around its constant curvature vacuum, and this can
be achieved either by explicitly calculating the Oðh2��Þ
action or by finding the equivalent quadratic action in the
curvature that has the same propagator with the original
action. Once the equivalent quadratic theory is known
unitarity analysis follows with the conventional methods
described in [10]. To facilitate understanding and show
what is to be expected, let us give one of our results here.
Let A�� be an arbitrary (0, 2) tensor built from the curva-

ture tensors, then we will show that, in four dimensions, at
Oðh��Þ and Oðh2��Þ, the action

I ¼ 2

��

Z
d4x½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detðg�� þ A��Þ

q

� ð��0 þ 1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detg
p � (3)

is equivalent to the simpler action

IOðA2Þ ¼
1

��

Z
d4x

ffiffiffiffiffiffiffi�g
p �

A� 2��0 þ 1

4
A2 � 1

2
A2
��

�
;

(4)

where A is the trace of A��. Once this is done unitarity

analysis can be carried out with the known methods which
we shall not repeat in this work.

The layout of the paper is as follows: In Sec. II, second
order expansions of the relevant tensors in the metric
perturbation h�� are given. Section III is the bulk of the

paper which contains our general analysis of BI gravities
and the corresponding equivalent quadratic actions. We
also give two examples in four dimensions in this section.
Some technical details are delegated to the Appendices.

II. SECOND ORDER EXPANSIONS OF
CURVATURE TENSORS

In order to study the fluctuations of generic BI actions
around constant curvature backgrounds, we will need to
expand various tensors up to second order in the metric
perturbation h�� which is defined as

g�� � �g�� þ �h��; (5)

where we introduced a small (dimensionless) parameter �
and a background metric �g�� which is quite generic at this

stage (i.e. not necessarily constant curvature). [Taking the
risk of being pedantic, let us note that (5) is exact, and that
there of course does not exist a natural dimensionless
parameter in gravity at all scales. So, what one actually
means by (5) is that in some frame h�� is small compared

to �g�� for all points in the spacetime, and since there will

be another expansion, that is the curvature expansion, � is
introduced to keep track of the h�� orders.] Some of the

computations in this section are actually somewhat tedious
but straightforward. They could also be found in the lit-
erature, albeit somewhat scattered, and probably not in the
form we present here which proved quite handy in our
calculations that follow in the remainder of this work. The
inverse metric g�� can be found as

g�� ¼ �g�� � �h�� þ �2h��h�� þOð�3Þ: (6)

The trace of the metric perturbation is given as h ¼
�g��h��. By using these results, the second order expansion

of the Christoffel connection becomes

��
�� ¼ ���

�� þ �ð��
��ÞL � �2h��ð��

��ÞL þOð�3Þ; (7)

where ���
�� is a background metric compatible connection

�r� �g�� ¼ 0 and the linearized connection ð��
��ÞL is

defined as

ð��
��ÞL � 1

2
�g��ð �r�h�� þ �r�h�� � �r�h��Þ: (8)

The main object to consider is the Riemann tensor from
which all the other curvature tensors and scalars follow.

Hence, substitution of �
�
�� ¼ ��

�
�� þ 	�

�
�� to the Riemann

tensor R�
��
 � @��

�

� þ ��

���
�

� � � $ 
 yields

R�
��
 ¼ �R�

��
 þ �r�ð	��

�Þ � �r
ð	��

��Þ þ 	��
��	�

�

�

� 	�
�

�	�

�
��; (9)
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where 	��
�� ¼ �ð��

��ÞL � �2h��ð��
��ÞL at this order.

Therefore, the Riemann tensor becomes

R�
��
 ¼ �R�

��
 þ �ðR�
��
ÞL � �2h��ðR�

��
ÞL
� �2 �g�� �g��½ð��

��ÞLð��

�ÞL � ð��


�ÞLð��
��ÞL�

þOð�3Þ: (10)

Note that raising and lowering is done by �g��, but in the

above expression, for the sake of notational clarity, we do
not raise and lower the indices of the linearized Christoffel
connection. Here, the linearized Riemann tensor ðR�

��
ÞL
is defined as

ðR�
��
ÞL � 1

2
ð �r�

�r
h
�
� þ �r�

�r�h
�

 � �r�

�r�h
�

� �r

�r�h

�
� � �r


�r�h
�
� þ �r


�r�h��Þ: (11)

With this result, the second order expansion of the Ricci
tensor and the scalar curvature, respectively, take the
following forms:

R�
 ¼ �R�
 þ �ðR�
ÞL � �2h��ðR�
��
ÞL

� �2 �g�� �g��½ð��
��ÞLð��


�ÞL � ð��

�ÞLð��

��ÞL�
þOð�3Þ; (12)

R ¼ �Rþ �RL þ �2f �R��h��h
�
� � h�
ðR�
ÞL

� �g�
h��ðR�
��
ÞL � �g�
 �g�� �g��½ð��

��ÞLð��

�ÞL

� ð��

�ÞLð��

��ÞL�g þOð�3Þ; (13)

where the linearized Ricci tensor and the linearized scalar
curvature are defined, respectively, as

RL
�
 � 1

2ð �r�
�r
h

�
� þ �r�

�r�h
�
� �hh
� � �r


�r�hÞ; (14)

RL ¼ �g��RL
�� � �R��h��: (15)

Note again that the above formulae work for any back-
ground space including constant curvature spaces which
we shall concentrate below.

III. BI-TYPE ACTIONS AT Oðh2
��Þ

A. General analysis

A generic Born-Infeld type action which reproduces the
Einstein-Hilbert theory with a bare cosmological constant
(�0) at the first order in small curvature expansion is of the
form

I ¼ 2

��

Z
dDx½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detðg�� þ A��Þ

q

� ð��0 þ 1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detg
p �; (16)

where A�� should read as A�� ¼ �ðR�� þ � ~R��Þ þ
OðR2Þ with the definition ~R�� � R�� � 1

D g��R. The

OðR2Þ terms may involve rank (0, 2) combinations of the
Riemann and the Ricci tensors, the metric and the scalar
curvature. It could also involve the derivatives of these
tensors, but we will not explicitly consider such actions,
and we will demand parity invariance, so we do not use the
����
... tensor in the construction of A��. Of course, all

these technical restrictions can be removed and the follow-
ing discussion can be extended without much difficulty to
cover the type of actions used in [23]. Here, the dimen-
sionful parameter � with a ðmassÞ�2 dimension appears
only beyond the Einstein-Hilbert theory, and � is related to
the Newton’s constant. Note that in the Born-Infeld exten-

sion of Maxwell’s theory,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detðg�� þ bF��Þ

q
, one must

introduce a dimensionful parameter b, since Maxwell’s
theory is scale invariant, but the BI theory cannot be. On
the other hand, gravity is not scale invariant and in princi-
ple one need not introduce a new scale, one can simply use
the already existing two scales � and �0. Nevertheless,
introducing a new scale � gives more flexibility to the
theory.
To study the unitarity of (16), one should consider the

quadratic fluctuations around a critical point of the action.
Assuming that �g�� is the critical point and h�� is the

fluctuation, we should compute the Oðh2Þ terms in the
action. To do this by just pulling out the volume density,
it is convenient to write the action in the form

I ¼ 2

��

Z
dDx

ffiffiffiffiffiffiffi�g
p ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detð	�

� þ g��A��Þ
q

� ð��0 þ 1Þ�: (17)

Using the second order expansion of the inverse metric,
(6), and assuming an expansion of A�� in the metric

perturbation as

A�� � �A�� þ �Að1Þ
�� þ �2Að2Þ

�� þOð�3Þ; (18)

one has

g��A�� ¼ �g�� �A�� þ �ð �g��Að1Þ
�� � h�� �A��Þ

þ �2ð �g��Að2Þ
�� � h��Að1Þ

�� þ h�
h
�


�A��Þ: (19)

In order to find the second order action in metric perturba-
tion, let us separate the background part of g��A�� and

define �B�
� � g��A�� � �g�� �A��, whose introduction will

make the expansion more transparent. For a maximally
symmetric constant curvature background, one has �A�� �
a �g�� where a is a dimensionless constant fixed in the

theory in terms of the dimensionful parameters such as
�0, �, etc. The effective cosmological constant� will also
be fixed by the dimensionful parameters. For complicated
actions, even finding � is a nontrivial problem. The ob-
vious and the conventional method is to find the equations
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of motion and insert the maximally symmetric solution.
But, finding the equations of motion for these actions is
simply too complicated. Therefore, we will give a method
which bypasses this. Then, B�

� becomes

B
�
� ¼ ð �g��Að1Þ

�� � ah
�
�Þ þ �ð �g��Að2Þ

�� � h��Að1Þ
��

þ ah�
h
�Þ: (20)

Now, we can re-express the BI action with the help of the
B�
� tensor

I ¼ 2

��

Z
dDx

ffiffiffiffiffiffiffi�g
p f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� det½ð1þ aÞ	�

� þ �B
�
��

q

� ð��0 þ 1Þg
¼ 2

��
ð1þ aÞððD�4Þ=ð2ÞÞ Z dDx

ffiffiffiffiffiffiffi�g
p

�
�
ð1þ aÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� det

�
	
�
� þ �

ð1þ aÞB
�
�

�s

� ð1þ aÞðð4�DÞ=ð2ÞÞð��0 þ 1Þ
�
; (21)

where a � �1 which is required in order to have a well-
defined leading order: if this requirement is not put, then
the flat space limit cannot be reproduced in the limit of
vanishing cosmological constant. (For example, if one had
fixed � ¼ � 1

�0
with A�� ¼ �R��, then one would not

have a proper flat space limit.) Here, the factor ð1þ aÞ2
is left in front of the determinantal part in order not to
introduce a factors in the second order terms coming from
the expansion of the determinant. To find the second order
expansion of the action in the metric perturbation, let us
Taylor expand the determinant in terms of traces up to the
order that we shall need

½detð1þMÞ�1=2 ¼ 1þ 1
2 TrMþ 1

8ðTrMÞ2 � 1
4 TrðM2Þ

þ 1
6 TrðM3Þ � 1

8 TrðM2ÞTrM
þ 1

48ðTrMÞ3 þOðM4Þ: (22)

With this formula, the second order expansion of
ffiffiffiffiffiffiffi�g

p
becomes

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detg��

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detð �g�� þ �h��Þ

q

¼ ffiffiffiffiffiffiffi� �g
p �

1þ �

2
hþ 1

8
�2ðh2 � 2h2��Þ þOð�3Þ

�
:

(23)

Then, after using the expansions of the Lagrangian andffiffiffiffiffiffiffi�g
p

in (21) one obtains up to Oð�3Þ

I¼ 2

��
ð1þaÞððD�4Þ=ð2ÞÞZ dDx

ffiffiffiffiffiffiffi� �g
p �

½ð1þaÞ2

�ð1þaÞðð4�DÞ=ð2ÞÞð��0þ1Þ�þ�

2
½ð1þaÞB�

�

þ½ð1þaÞ2�ð1þaÞðð4�DÞ=ð2ÞÞð��0þ1Þ�h�

þ�2

8
½ðB�

�Þ2�2B�
�B�

�þ2ð1þaÞhB�
�þ½ð1þaÞ2

�ð1þaÞðð4�DÞ=ð2ÞÞð��0þ1Þ�ðh2�2h2��Þ�
�
: (24)

Oð�0Þ term just gives the value of the action for the vacuum
solution and it will not be relevant anymore. But, it gives us
some crucial information about the BI-type actions, that is
for even dimensions the value of the constant curvature is
not bounded by the action; however, for odd dimensions
a >�1 is required for the reality of the action. Now, we
would like to go back to our original tensor A��. First, we

write the Oð�Þ term in the above expression in terms of
A��. This term gives the nonlinear equation of motion for

the constant curvature background. One needs to find what
the zeroth order of B�

� is in terms of A��. This is given as

B
�
� ¼ �g��Að1Þ

�� � ahþOð�Þ: (25)

Then, the action at the first order reads

IOðhÞ ¼ ð1þ aÞððD�4Þ=ð2ÞÞ

��

Z
dDx

ffiffiffiffiffiffiffi� �g
p ½ð1þaÞð �g��Að1Þ

�� þhÞ
� ð1þaÞðð4�DÞ=ð2ÞÞð��0 þ 1Þh�: (26)

After removing possible boundary terms, taking the varia-
tion with respect to h�� or more concisely looking at the

coefficient of h�� and equating it to zero yields the source-
free nonlinear equation of motion for a constant curvature
background, namely, the equation of motion that relates �
to �0 and the other parameters of the theory. Hence, to get
the vacuum of the theory, one need not explicitly find the
equations of motion which is straightforward but quite
tedious.
Now, let us find the quadratic action in h�� in terms of

A��. The ðB�
�Þ2 � 2B

�
�B�

� þ 2ð1þ aÞhB�
� terms in (24) can

be written in terms of A�� as

ðB�
�Þ2 � 2B�

�B�
� þ 2ð1þ aÞhB�

�

¼ ð �g��Að1Þ
��Þ2 � 2Að1Þ

��A
��
ð1Þ þ h��½4aAð1Þ

��

þ 2 �g�� �g
�
Að1Þ

�
 � 2a2h�� � að2þ aÞ �g��h�: (27)

Contribution coming from the �ð1þ aÞB�
� term in (24) is

B
�
� ¼ Oð�0Þ þ �½ �g��Að2Þ

�� � h��ðAð1Þ
�� � ah��Þ�: (28)

In all together, the quadratic action in h�� in terms of A��

boils down to
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IOðh2Þ ¼ �ð1þ aÞððD�4Þ=ð2ÞÞ

��

Z
dDx

ffiffiffiffiffiffiffi� �g
p �

1

2
Að1Þ
��A

��
ð1Þ

� 1

4
ð �g��Að1Þ

��Þ2 �ð1þaÞ �g��Að2Þ
��

þ h��

�
Að1Þ
�� � 1

2
�g�� �g

�
Að1Þ
�


�

� 1

4
½1�ð1þaÞðð4�DÞ=ð2ÞÞð��0 þ 1Þ�ðh2 � 2h2��Þ

�
:

(29)

To remove a possible confusion coming from the notation,

we should note what is represented by the term Að1Þ
��A

��
ð1Þ : It

is basically Að1Þ
��A

��
ð1Þ � �g�� �g��Að1Þ

��A
ð1Þ
��, that is A��

ð1Þ does

not represent the first order of A��. If required, we show the
first order of A�� as ðA��Þð1Þ. Equation (29) is our main

formula which can be applied to any BI-type action for any
value of the constant curvature [i.e. we have not done a
small curvature expansion, that is, the formula at Oðh2Þ
takes care of all the contributions coming from all powers
of the curvature]. Let us summarize what one needs to do to
analyze the unitarity of a given BI gravity: One computes

Að1Þ
�� and Að2Þ

��, and using (26) one finds the vacuum of the
theory, and finally computes the Oðh2Þ action via (29).
Then, this action can be studied using conventional tech-
niques that were discussed in [10]. Of course, as we shall
see below with some examples, depending on the complex-
ity of A��, explicit computation of (29) could be a very

cumbersome problem in generic dimensions. But, a close
scrutiny of it reveals remarkable simplifications in even
dimensions, higher than two, and especially in four dimen-
sions. Such simplifications, in four dimensions, will pro-
vide us with another method of analyzing the unitarity of
the BI gravities, namely, the method of Hindawi et al. [24]
that leads to the construction of an equivalent quadratic
action (in curvature) whose unitarity has been already
studied by conventional methods. Let us concentrate on
D ¼ 4 first whose action is

IOðh2Þ ¼ � 1

��

Z
d4x

ffiffiffiffiffiffiffi� �g
p �

1

2
Að1Þ
��A

��
ð1Þ �

1

4
ð �g��Að1Þ

��Þ2

� ð1þ aÞ �g��Að2Þ
�� þ h��

�
Að1Þ
�� � 1

2
�g�� �g

�
Að1Þ
�


�

þ 1

4
��0ðh2 � 2h2��Þ

�
: (30)

By examining this action, one can figure out an interesting
relation between the metric perturbation expansion that led
to this action and the A�� expansion of (16). Remember

that A�� is dimensionless, so assuming proper conver-

gence, a Taylor series expansion over A�� is legitimate.

If A�� involves terms of OðR2Þ and/or any other higher

curvature terms, the A�� expansion is not simply equal to

the curvature expansion in which the expansion is over the

nondimensional quantity�R. Let us write symbolically the
expansion of (16) in A�� as

I ¼ 2

��

Z
d4x½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detðg�� þ A��Þ

q
� ð��0 þ 1Þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detg
p � � 2

��

Z
d4x

ffiffiffiffiffiffiffi�g
p �X1

n¼0

cnA
n � ð��0 þ 1Þ

¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

�
ðR� 2�0Þ þ 2

��

X1
n¼2

cnA
n

�
; (31)

where the last equality follows from our assumption that
Einstein-Hilbert action is reproduced at the lowest order.
Note that, up to n ¼ 3, this expansion can be obtained with
help of (22), and the nth order term represented with An

involves terms like An, An�2A2
��, A

n�3A
�
�A

�
�A�

�, etc. In

principle, each order in (31) contributes to the quadratic
action in the metric perturbation given in (30), but we will
see that this is not the case in four dimensions. The Oðh2Þ
contributions coming from the OðAnÞ terms where n � 2
have the form

IðnÞ
Oðh2Þ ¼

Z
d4x

ffiffiffiffiffiffiffi� �g
p

cnf �An�2½dn1Að1Þ
��A

��
ð1Þ þ dn2ð �g��Að1Þ

��Þ2�

þ �An�1½dn3Að2Þ
�� þ dn4h

��Að1Þ
�� þ dn5h �g

�
Að1Þ
�
�

þ �An½dn6h2�� þ dn7h
2�g; (32)

where �A is defined as �A�� � a �g�� as above, and the

coefficients dn are just numbers. Therefore, the Oðh2Þ
contributions coming from the OðAnÞ terms are in the
form of ½en2ðhÞan�2 þ en1ðhÞan�1 þ en0ðhÞan�. Hence,
one expects that if each order in the A�� expansion of

(16) contributes to the quadratic action in metric fluctua-
tions, then that action will be composed of the seven terms
specified in (32) with a coefficient which is a power series
in a. With this result, one can trace the contribution coming
from each order in (31) to the Oðh2Þ action (30). Let us
investigate each term in (30) in order to find which orders
in the A�� expansion contributes. The first two terms in

(30), which are quadratic in A��, have coefficients that do

not depend on a. Therefore, these two terms involve Oðh2Þ
contributions only coming from the second order terms in
the A�� expansion of (16). The coefficient of the third term

in (30) is (1þ a), so it is composed of contributions
coming from OðAÞ and OðA2Þ terms in the A�� expansion

(31). The fourth term has a coefficient which does not
depend on a, so it comes from the first order of the A��

expansion. Thus, all the Oðh2Þ contributions coming from
OðAnÞ terms with n > 2 are identically zero for four-
dimensional BI-type actions, and as we will see this curi-
ous case has a generalization to higher even dimensions.
With these observations, one can deduce the fact that in
four dimensions (30) can be obtained first by making an
expansion in A�� up to third order via (22), and then by

finding the quadratic action in metric fluctuations. In other
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words, remarkably the free theory of the following actions
are exactly the same:

I ¼ 2

��

Z
d4x½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detðg�� þ A��Þ

q

� ð��0 þ 1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detg
p �; (33)

and

IOðA2Þ ¼
2

��

Z
d4x

ffiffiffiffiffiffiffi�g
p �

1

2
g��A�� � ��0

þ 1

8
ðg��A��Þ2 � 1

4
A2
��

�
; (34)

which was obtained by expanding (33). Here, note that we
truncated the A�� expansion at the second order, but we do

not require A�� to be small. This truncation can be done

and the equality of the above two actions at the free level
can be achieved merely due to the fact that contributions of

the higher order terms in the A�� expansion to the qua-

dratic action in metric fluctuations are identically zero.
Such a remarkable cancellation in four dimensions is re-
lated to the fact that we have the square root of the
determinant of a linear combination of matrix functions
one of which is expanded around a constant curvature
space and it would not work for a generic background.
Let us verify this result by explicitly calculating the qua-
dratic action in metric fluctuations for (34). However, to be
as general as possible and to see some cancellations, let us
work inD dimensions where only measure in (34) changes
to dDx. Then, expanding each term in (34) by using (23)
and (19) with �A�� � a �g�� one has

g��A�� ¼ aDþ �ð �g��Að1Þ
�� � ahÞ þ �2ð �g��Að2Þ

��

� h��Að1Þ
�� þ ah2��Þ; (35)

and all together up to quadratic order, the action reads

IOðA2Þ ¼
1

��

Z
dDx

ffiffiffiffiffiffiffi� �g
p ��

aD� a2D

2
þ a2D2

4
���0

�
þ �

��
1þ aD

2
� a

�
�g��Að1Þ

�� þ aðD� 2Þ
2

�
1þ ðD� 4Þa

4

�
h

���0h

�
� �2

�
1

2
A
��
ð1ÞA

ð1Þ
�� � 1

4
ð �g��Að1Þ

��Þ2 �
�
1þ aD

2
� a

�
�g��Að2Þ

�� þ
�
1þ aD

2
� 2a

�
h��

�
Að1Þ
�� � 1

2
�g�� �g

�
Að1Þ
�


�

� ðD� 4Þ
8

�
aþD� 6

4
a2
�
ðh2 � 2h2��Þ þ��0

4
ðh2 � 2h2��Þ

��
: (36)

In obtaining this result, one should rewrite ðA��Þð2Þ and
ðA��Þð1Þ coming from A2

�� in (34) in terms of Að2Þ
�� and

Að1Þ
�� as

ðA��Þð2Þ ¼ ðg��g��A��Þð2Þ
¼ �g�� �g��Að2Þ

�� þ 3ah��h�� � �g��h��Að1Þ
��

� �g��h��Að1Þ
��; (37)

ðA��Þð1Þ ¼ ðg��g��A��Þð1Þ ¼ �g�� �g��Að1Þ
�� � 2ah��:

(38)

Let us now concentrate only on the Oð�2Þ terms:

IOðA2Þ
Oðh2Þ ¼� 1

��

Z
dDx

ffiffiffiffiffiffiffi� �g
p �

1

2
A��
ð1ÞA

ð1Þ
���1

4
ð �g��Að1Þ

��Þ2

�
�
1þaD

2
�a

�
�g��Að2Þ

��þ
�
1þaD

2
�2a

�
h��

�
�
Að1Þ
���1

2
�g�� �g

�
Að1Þ
�


�
�ðD�4Þ

8

�
aþðD�6Þa2

4

�

�ðh2�2h2��Þþ��0

4
ðh2�2h2��Þ

�
: (39)

In four dimensions, (39) reduces to (30) as it was promised.
In Appendix A, we give a simple example with two-
dimensional matrix functions that shows the connection
between the A�� expansion and the metric perturbation

expansion. In generic even dimensions with D ¼ 2nþ 2,
if one wants to carry out a similar analysis, then one has to
expand up to OðAnþ1Þ with n � 1. But, again we should
stress that the compact formula (29) works all the time
without recourse to such an expansion. However, depend-
ing on the complexity of A��, one can choose to use either
the expansion method or the compact expression. As for
odd dimensions, because of the nonpolynomial prefactor
ð1þ aÞððD�4Þ=ð2ÞÞ in (29), all the terms in the A�� expansion
(or the small curvature expansion) contribute. The most
efficient way to get the quadratic fluctuations for odd
dimensions is to use (29).
A similar analysis can be done for the OðhÞ action in

four dimension which is

IOðhÞ ¼ 1

��

Z
d4x

ffiffiffiffiffiffiffi� �g
p ½ð1þ aÞ �g��Að1Þ

�� þ ða� ��0Þh�:
(40)

This action involves contributions coming only from the
second order expansion of (16) in A�� just as the Oðh2Þ
action. In order to understand this behavior, let us first look
at the OðhÞ contributions coming from the OðAnÞ term for
n � 2

IðnÞOðhÞ ¼
Z

d4x
ffiffiffiffiffiffiffi� �g

p
cn½ �An�1dn1ð �g��Að1Þ

��Þ þ dn2 �A
nh�;

(41)
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where dn coefficients are just numbers. Therefore, theOðhÞ
contributions coming from the OðAnÞ terms are simply in
the form of ½en1ðhÞan�1 þ en0ðhÞan�, since �A� a. Hence,
one expects that if each order in the A�� expansion of (16)

contributes to the linear action in h��, then it will be

composed of the two terms specified in (41) with coeffi-
cients that are of the form an. With this result, one can trace
the contribution coming from each order in (31) to theOðhÞ
action (40). Let us investigate each term in (40) in order to
find which orders in the A�� expansion contribute. The first

term in (40) has a coefficient of (1þ a). Therefore, this
term involves OðhÞ contributions coming from the second
order terms in the A�� expansion of (16). The coefficient of

h in (40) is also first order in a, but this time it implies that
only the first order of A�� expansion contributes.

Therefore, the vacuum of (16) and (34) are the same.
One can verify this result explicitly from OðhÞ of the
OðA2

��Þ action which can be read from (36) as

IOðA2Þ
OðhÞ ¼ 1

��

Z
dDx

ffiffiffiffiffiffiffi� �g
p ��

1þ aD

2
� a

�
�g��Að1Þ

��

þ aðD� 2Þ
2

�
1þ ðD� 4Þa

4

�
h� ��0h

�
:

This action reduces to (40) in four dimensions. Just like
the analysis of Oðh2Þ, for generic even dimensions D ¼
2nþ 2 one has to expand (16) toOðAnþ1Þwith n � 1, then
find the vacuum of the theory. For odd dimensions, since all
the powers of An contribute, the most efficient way to find
the vacuum of the theory is to use (26).

B. An example

To apply our tools, for the sake of simplicity, let us
consider the following model which we know to be non-
unitary even around the flat space:

I ¼ 2

��

Z
d4x½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detðg�� þ �R��Þ

q

� ð��0 þ 1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detg
p �: (42)

Here, according to our results above, one expects (which
we shall verify below with several different techniques)
that the second order action in the metric perturbation h��

involves contributions only coming from the O½ð�RÞ2�
expansion:

IOðR2Þ ¼
2

��

Z
d4x

ffiffiffiffiffiffiffi�g
p �

�

2
ðR� 2�0Þ��2

4

�
R2
�� � 1

2
R2

��
:

(43)

Therefore, the O½ð�RÞ3�, O½ð�RÞ4�, and etc. terms should
vanish at Oðh2Þ. Hence, at OðhÞ and Oðh2Þ (42) and (43)
are equivalent. Let us explicitly show this by analyzing the
linearized free theory of (42) around the extremum of it by
using (30).

1. Analyzing the BI action formed by the Ricci tensor via
second order perturbations in h��

Let us define A�� � �R��. Then, �A�� ¼ ���g�� )
a � ��, where � will be determined in terms of �0.

Then, Að1Þ
�� is given as

Að1Þ
�� ¼ �RL

��; (44)

and Að2Þ
�� ¼ �Rð2Þ

�
 and referring the details to Appendix B,
we have

� �g��Rð2Þ
�� ¼ �h��

�
1

2
RL
�� � 1

4
�g��RL ��

4
�g��h

�
: (45)

First of all, let us determine the nonlinear equations of
motion for the constant curvature background which will
relate � to �0 by using (26)

IOðhÞ ¼ 1

��

Z
d4x

ffiffiffiffiffiffiffi� �g
p ½ð1þaÞð �g��Að1Þ

��þhÞ�ð��0þ1Þh�

¼ 1

��

Z
d4x

ffiffiffiffiffiffiffi� �g
p ½�ð1þ��Þ �r�ð �r�h

��� �r�hÞ
þ�ð���0Þh�: (46)

Note that this first order correction should be zero around
the extremum, therefore, after dropping the first term
which is a boundary term, one has � ¼ �0. As for the
second order action, one has (30)

IOðh2Þ ¼ � 1

��

Z
d4x

ffiffiffiffiffiffiffi� �g
p �

�2

2
RL
��R

��
L � �2

4
ðRL þ�hÞ2

� ð�þ �2�Þh��

�
1

2
RL
�� � 1

4
�g��RL ��

4
�g��h

�

þ �h��

�
RL
�� � 1

2
�g��ðRL þ�hÞ

�

þ �

4
�0ðh2 � 2h2��Þ

�
; (47)

where
R
d4x

ffiffiffiffiffiffiffi� �g
p

RL
��R

��
L is calculated in Appendix B as

Z
d4x

ffiffiffiffiffiffiffi� �g
p

R
��
L RL

��

¼ � 1

2

Z
d4x

ffiffiffiffiffiffiffi� �g
p

h��

�
ð �g��h� �r�

�r� þ��g��ÞRL

þ
�
hGL

�� � 2�

3
�g��RL

�
� 14�

3
RL
�� þ�

3
�g��RL

þ 8�2

3
h��

�
: (48)

Then, after some algebra the quadratic action reduces to
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IOðh2Þ ¼ � 1

��

Z
d4x

ffiffiffiffiffiffiffi� �g
p �

h��

��
�

2
þ 2�2�

3

�
GL

��

� �2

4

�
hGL

�� � 2�

3
�g��RL

��

� �

4
ð���0Þðh2 � 2h2��Þ

�
; (49)

where we kept the background gauge noninvariant term
(the last part) just to show an intermediate step of the
computation. Once � ¼ �0 is used, one ends up with

IOðh2Þ ¼ � 1

��

Z
d4x

ffiffiffiffiffiffiffi� �g
p

h��

��
�

2
þ 2�2�0

3

�
GL

��

� �2

4

�
hGL

�� � 2�0

3
�g��RL

��
: (50)

This action is exactly equivalent to the linearized action
one obtains from the O½ð�RÞ2� action (43). [Note that the
linearized version of (43) has been worked out in several
places [10,25], and we also reproduce it below.] The fact
that (50) has at most �2 terms show that the contributions
coming from all O½ð�RÞnþ2� vanish. We stress once again
that this is a highly nontrivial cancellation brought by the
determinantal structure of the action. It is worth to study

explicitly how this cancellation takes place at O½ð�RÞ3�
which we do now. At this order the action reads

IOðR3Þ ¼
2

��

Z
d4x

ffiffiffiffiffiffiffi�g
p �

�

2
ðR� 2�0Þ��2

4

�
R2
�� � 1

2
R2

�

þ�3

48
ð8R��R

�
�R�� � 6R2

��RþR3Þ
�
; (51)

and defining

K � R2
�� � 1

2
R2; S � 8R��R��R

�
� � 6RR2

�� þ R3;

(52)

one has

IOðR3Þ ¼
1

�

Z
d4x

ffiffiffiffiffiffiffi�g
p �

ðR� 2�0Þ � �

2
K þ �2

24
S

�
: (53)

Finding the Oðh2Þ action of this theory is a very cumber-
some problem. To somewhat simplify this, one can first
find the equations of motion then linearize the equations of
motion and then do the reverse calculus of variations
procedure to get the action. Of course in this process
boundary terms are dropped and one has to be careful
with an overall sign that can be fixed by coupling the
gravity action to matter. The equations of motion follow as

��

4
��� ¼ ��

4

�
ðR� 2�0Þ � �

2
K þ �2

24
S

�
g�� þ �

2
R�� þ �2

4

�
RR�� � 2R����R

�� �h

�
R�� � 1

2
g��R

��

þ �3

4
ð2R�

�R��R
�
� þ ½g��r�r�ðR��R�

�Þ þhðR�
�R��Þ � 2r�r�ðR�

�R�
�Þ�Þ þ �3

8
ð½2r�r�ðRR�

� Þ

� g��r�r�ðRR��Þ �hðRR��Þ� � 2RR�
�R��Þ � �3

8
½ðg��h�r�r�Þ þ R���

�
R2
�� � 1

2
R2

�
; (54)

where we defined the energy-momentum tensor as ��� �
� 2ffiffiffiffiffi�g

p 	Imatter

	g�� . Constant curvature background ( �R�� ¼
��g��) should satisfy source-free equations of motion
with the results

�K ¼ �R2
�� � 1

2
�R2 ¼ �4�2;

�S ¼ 8 �R�� �R��
�R�
� � 6 �R �R2

�� þ �R3 ¼ 0;
(55)

Then, the equations are satisfied if � ¼ �0. Now, let us
linearize (54) around its vacuum (defining T��ðhÞ �
	ð���

2 Þ) by use of the formulae in Appendix C and

	K ¼ �2�RL; 	S ¼ 0: (56)

The linearized equations of motion after using the source-
free equation of motion for constant curvature background
becomes

T��ðhÞ ¼
�
1

�
þ 4��0

3�

�
GL

�� � �

2�

�
hGL

�� � 2�0

3
�g��RL

�
;

(57)

which exactly matches the equations that result from the
matter coupled version of the action (43) as promised. This
shows explicitly that O½ð�RÞ3� terms cancel each other.
This cancellation will work for any arbitrary order beyond
this, as we will show with a different method below.

2. Another method for unitarity analysis

Hindawi et al. [24] gave another method of analyzing a
generic higher derivative gravity model by reducing it to
the equivalent quadratic theory in the sense that it has the
same free Lagrangian as the original higher derivative
theory. Here, we will review their approach and apply it
to our example (42). Before we describe their method, we
should note that unlike our method which led to the com-
pact formula (29) that works in all cases, the method of
Hindawi et al. works only when one deals with not
matrices but scalar objects or one has a finite number of
curvature terms. Keeping this caveat in mind, which will be
better understood below, when Hindawi et al. method
works, it provides a fast algorithm in getting the equivalent
quadratic action.
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To understand the essence of the Hindawi et al. method
let us consider the following simplified problem. Suppose
we have a function fðxðtÞÞ, and we would like to find the �2
order of fðxðt0 þ �ÞÞ. But, instead of doing this, we can
find a function gðxðtÞÞ ¼ a0 þ a1xðtÞ þ a2x

2ðtÞ whose sec-
ond order expansion around t0 yields the same second
order expansion of fðxðtÞÞ around the same point. After
some straightforward analysis, one can show that gðxðtÞÞ
can be obtained by expanding fðxðtÞÞ around x0 ¼ xðt0Þ up
to and including O½ðxðtÞ � x0Þ2�, since O½ðxðtÞ � x0Þ2þn�
gives �2þn corrections with n � 1. Hence, one can read the
coefficients for the correct gðxðtÞÞ to be

a0 ¼ fðx0Þ �
�
df

dx

�
x0

x0 þ 1

2

�
d2f

dx2

�
x0

x0;

a1 ¼
�
df

dx

�
x0

� x0

�
d2f

dx2

�
x0

; a2 ¼ 1

2

�
d2f

dx2

�
x0

:

(58)

Note that if one just wants the ‘‘equations of motion,’’ then
one carries out the above procedure at Oð�Þ. In this ex-
ample, f represents the Lagrangian, x any curvature tensor
or scalar, and � represents the metric perturbation h��ðxÞ.
Similarly, t0, x0 are used in analogy with the background
metric �g��, etc.

a. Cubic theory

Now, let us turn to our example (42) and to specifically
its third order expansion in curvature given in (51). In order
not to introduce the metric or its inverse during the expan-
sion around ð �R; �R�

� Þ, let us take the Lagrangian density of
(51) to be a function of R and R�

� as

fðR; R�
� Þ � �

2
ðR� 2�0Þ � �2

4

�
R�
� R�

� � 1

2
R2

�

þ �3

48
ð8R�

�R
�
�R�

� � 6R
�
� R�

�Rþ R3Þ: (59)

Expanding fðR; R�
� Þ around ð �R; �R�

� Þwith the assumption of
small fluctuations about the background yields

fðR;R�
� Þ¼fð �R; �R�

� Þþ
�
@f

@R

�
ð �R; �R�

� Þ
ðR� �RÞþ

�
@f

@R�
�

�
ð �R; �R�

� Þ

�ðR�
�� �R�

�Þþ
1

2

�
@2f

@R2

�
ð �R; �R�

� Þ
ðR� �RÞ2

þ
�

@f

@R@R�
�

�
ð �R; �R�

� Þ
ðR� �RÞðR�

�� �R�
�Þ

þ1

2

�
@2f

@R
�

@R�

�

�
ð �R; �R�

� Þ
ðR�

�� �R�
�ÞðR�


� �R�

Þ: (60)

Computing the relevant derivatives one ends up with

fðR; R�
� Þ ¼ fð �R; �R�

� Þ þ
�
�

2
þ �2

4
�Rþ �3

16
ð �R2 � 2 �R

�
� �R�

�Þ
�
ðR� �RÞ þ

�
��2

2
�R�
� þ �3

4
ð2 �R�

� �R�
� � �R�

� �RÞ
�
ðR�

� � �R�
�Þ

þ 1

2

�
�2

4
þ �3

8
�R

�
ðR� �RÞ2 þ

�
��3

4
�R�
�

�
ðR� �RÞðR�

� � �R�
�Þ þ

1

2

�
��2

2
	�
�	


� þ �3

4
ð2	�

� �R

� þ 2 �R�

�	

�

� 	�
�	


�
�RÞ
�
ðR�

� � �R�
�ÞðR�


 � �R�

Þ: (61)

For constant curvature backgrounds, the corresponding
quadratic action becomes

I¼ 2

��

Z
d4x

ffiffiffiffiffiffiffi�g
p �

�

2
ðR� 2�0Þþ�2

8
R2 ��2

4
R2
��

�
; (62)

which once again shows that the cubic term in (59) does
not contribute to the free theory. We should stress that if
one takes arbitrary coefficients instead of the ones we have
which are ð8;�6; 1Þ at the cubic order (59), then one would
get a different quadratic action that does not follow from
the A�� (in this case it is just �R��) expansion of (42).

Now, let us also obtain the source-free nonlinear equa-
tions of motion for a constant curvature background by
finding the equivalent action at OðRÞ. Similar steps lead to

fðR; R�
� Þ ¼ fð �R; �R�

� Þ þ
�
@f

@R

�
ð �R; �R�

� Þ
ðR� �RÞ

þ
�
@f

@R�
�

�
ð �R; �R�

� Þ
ðR�

� � �R�
�Þ; (63)

and to the action

I¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �ð1þ��Þ
�

�
R� 2

�0 þ��2

1þ��

�
þOðR2Þ

�
;

(64)

where we used �R�� ¼ ��g��. Then, identifying � ¼
�0þ��2

1þ�� , one obtains � ¼ �0.

b. Full nonlinear action

We mentioned above that Hindawi et al. method does
not work when one deals directly with matrices. Let us
show this with

fðR��Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðg�� þ �A��Þ

q
; (65)

and try to find df which is needed for this analysis.
Defining M�� � g�� þ �A��, one has
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df ¼ dð ffiffiffiffiffiffiffiffiffiffiffi
detM

p Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
detM

p
2

Tr½M�1dM�; (66)

where M�1dM is an ordinary matrix multiplication. Here,
the basic problem is to find M�1 which cannot be done in
exact form for a general A�� and even when A�� ¼ R��.

But, one can always expand the determinant in terms of
traces and apply the Hindawi et al. method. Even though
this is the case, for a complicated A�� the determinant will

yield many terms in generic dimensions and as we show
below even for four dimensions. Let us consider the action
(42) and use the exact formula

detM ¼ 1
24fðTrMÞ4 � 6TrðM2ÞðTrMÞ2 þ 3½TrðM2Þ�2
þ 8TrðM3ÞTrM� 6TrðM4Þg: (67)

for M ¼ 	�
� þ �R�

� , one gets

detð	�
� þ�R�

� Þ

¼ 1þ�Rþ�2

2
R2 þ�3

6
R3 þ�4

24
R4 ��2

2
R�
� R�

�

��3

2
RR�

� R�
� þ�3

3
R�
�R

�
�R�

� ��4

4
R2R�

� R�
�

þ�4

3
RR�

�R
�
�R�

� þ�4

8
R�
� R�

�R
�

R


� ��4

4
R�
�R

�

R


�R
�
�:

(68)

Defining fðR; R�
� Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð	�

� þ �R�
� Þ

p
and with the help

of (60) and the formulae in Appendix D, we have the
corresponding quadratic action as

I ¼ 2

��

Z
d4x

ffiffiffiffiffiffiffi�g
p �

�

2
ðR� 2�0Þ þ �2

8
R2 � �2

4
R2
��

�
:

(69)

Once again we have proven that the OðR2þnÞ with n � 1
terms do not contribute to the free theory for the exact BI
action (42) around its constant curvature vacuum. Note that
with the help of an equivalent action at the linear level as
we have done before,

I ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

�
ð1þ ��Þ

�
R� 2

�
�0 þ ��2

1þ ��

���
;

(70)

setting � ¼ �0þ��2

1þ�� , one has � ¼ �0. We should stress

that to get this result with the conventional method of
finding the field equations and looking for a solution of
the form �R�� ¼ ��g�� is highly cumbersome for an action

which is given as the square root of detð	�
� þ �R

�
� Þ (68).

C. Unitarity of the theory proposed by
Deser and Gibbons

While constructing the BI-type gravity actions, among
various criteria, one of the easiest to realize is the unitarity
of the model around flat space. This means when small
curvature expansion is carried out at the quadratic order
in four dimensions, one should get the unique theory
1
� ðR� 2�0Þ þ �R2 þ �ðR2 � 4R2

�� þ R2
���
Þ which is

free of ghosts. Deser and Gibbons [17] suggested that at
the quadratic order, one should get, dropping the �R2 term,
only the Einstein plus the Gauss-Bonnet combination (the
� term). We will study such actions in a separate work, but
here let us consider an example (the one suggested by
Deser and Gibbons) of these models in which one does
not have quadratic terms when expanded around small
curvature:

I ¼ 2

��

Z
d4x

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� det

�
g�� þ �R�� þ �2

2

�
R��R

�
� � 1

2
RR��

��s
� ð��0 þ 1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detg

p �
: (71)

It is easy to see that the lowest order correction to the
Einstein-Hilbert theory goes like OðR3Þ, which means
around flat space the graviton propagator is the same as
that of Einstein-Hilbert theory. (Note that for flat space to
be the vacuum, one also sets �0 ¼ 0.) But, around its
constant curvature vacuum unitarity of this model has not
been checked before, since it is a highly nontrivial compu-
tation without the tools we have developed above. To carry
out the analysis, we can find the OðA2

��Þ action which has
the same Oðh2Þ action as (71). Here, A�� ¼ �R�� þ �2

2 �
ðR��R

�
� � 1

2RR��Þ and let us stress again that OðA2
��Þ

action is not equivalent to O½ð�RÞ4� action. If one naively
does the latter expansion, one will simply get an incon-
clusive result since one would have neglected the
O½ð�RÞ4þn� corrections. But, an expansion in A�� takes

care of all the relevant terms and cancellations. Therefore,
using (22) we have

IOðA2Þ ¼
2

��

Z
d4x

ffiffiffiffiffiffiffi�g
p �

�

2
ðR� 2�0Þ þ �3

4

�
RR

�
� R�

�

� R
�
�R

�
�R�

� � 1

4
R3

��
þ �4

32

�
R
�
� R�

�R
�

R


�

� 3

2
R2R�

� R�
� þ 1

4
R4 � 2R�

�R
�
�R�


R


�

þ 2RR�
�R

�
�R�

�

��
: (72)

Now, let us just concentrate on the higher curvature terms
and define
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fðR; R�
� Þ � �3

4

�
RR

�
� R�

� � R
�
�R

�
�R�

� � 1

4
R3

�

þ �4

32

�
R�
� R�

�R
�

R


� � 3

2
R2R�

� R�
�

þ 1

4
R4 � 2R

�
�R

�
�R�


R


� þ 2RR

�
�R

�
�R�

�

�
: (73)

The first thing we should find is the correct� which can be
found by using the first order expansion (63) of fðR; R�

� Þ
around ð �R; �R�

� Þ ¼ ð4�;�	
�
� Þ. This procedure leads to the

equivalent linear action

I ¼ 2

��

Z
d4x

ffiffiffiffiffiffiffi�g
p ��

�

2
� 3�3�2

4
þ �4�3

4

�

�
�
R� 2

ð��0

2 � �3�3 þ 3�4�4

8 Þ
ð�2 � 3�3�2

4 þ �4�3

4 Þ
�
þOðR2Þ

�
; (74)

from which one can get the equation that determines �

��0 þ�þ �2�3

2
� �3�4

4
¼ 0; (75)

which has real roots, but they are not particularly illumi-
nating to display here. (One thing we can note is that even
for �0 ¼ 0, there are two real roots one of which is non-
zero with a value � � 2:59=�.) Now, we can employ the
Hindawi et al. method to get the equivalent quadratic
action using (60) and the relevant results of Appendix D:

I ¼ 2

��

Z
d4x

ffiffiffiffiffiffiffi�g
p ��

���0 � �3�3 þ 3�4�4

4

�

þ
�
�

2
þ 3�3�2

4
� �4�3

2

�
R� �3�

4

�
1� ��

2

�
R2

þ �3�

4

�
1� ��

2

�
R2
��

�
: (76)

For generic �, this theory is plagued with a massive ghost
[1,10]. Thus, the action proposed by Deser and Gibbons
[17] does not yield a unitary spin-2 theory around its
constant curvature background for any choice of the cur-
vature except the flat space. But, setting � ¼ 2

� one can get
rid of the ‘‘bad’’ R2

�� term, and hope to obtain a unitary
theory. However, this turns out to be not true, since in this
case setting � ¼ �0 which follows from (75), one ends up
with

I ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
� 1

�
ðR� 2�0Þ

�
; (77)

which has the opposite sign of the Einstein-Hilbert action.
That means as long as one has � > 0 (which we must have
for the unitary in flat space), the small fluctuations will
have negative kinetic energy and even for the tuned value
of �, (71) defines a nonunitary theory. We should note in
passing that this result does not necessarily imply negative
energy for the exact nonvacuum solutions such as black
holes of (71). We have not yet found the black hole

solutions of this action, but we can give an example in
which small fluctuations around the vacuum have negative
energy yet the exact solutions have positive energy. This
example is the Einstein-Gauss-Bonnet theory whose exact
spherically symmetric solution was given in [26] and
whose energy was computed in [25]. As discussed in the
latter work, this energy is positive, even though the line-
arized action of the Einstein-Gauss-Bonnet theory around
its constant curvature vacuum is opposite to that of
Einstein’s theory [just like (77)]. This is because the
spherically symmetric Schwarzschild-de Sitter solution
goes (say in five dimensions) as �g00 ¼ grr � 1þ m

r2
þ

�r2 unlike the usual Schwarzschild solution which goes
like�g00 ¼ grr � 1� m

r2
, the two minus signs take care of

each other.

IV. CONCLUSION

We have developed techniques of analyzing the unitarity
of Born-Infeld gravity actions around their constant curva-
ture vacua. The special determinantal form of the action
gave rise to remarkable simplifications that allow one to
write a compact expression for the free, that is Oðh2Þ,
theory. To summarize our result, let us note the following:
One needs to find the Oðh2Þ action of

L ¼ 2

��
½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detð	�

� þ �R
�
� þ �ðRiem;Ric; R; . . .Þ�� Þ

q

� ð��0 þ 1Þ� (78)

to study its tree-level unitarity. In this work what we have
done is to give a method to determine the parameters K,�,
a, b, c in the following Lagrangian whoseOðh2Þ expansion
equals that of (78)

Lequivalent ¼ 1

Kð�;�;�;�0; . . .Þ ½R� 2�ð�;�;�;�0; . . .Þ�
það�;�;�;�0; . . .ÞR2 þbð�;�;�;�0; . . .ÞR2

��

þ cð�;�;�;�0; . . .ÞR2
���


to all orders in the curvature expansion. Once this equiva-
lent quadratic Lagrangian is obtained, unitarity analysis
proceeds with the standard methods as discussed in [10].
We have also presented two examples one of which was
proposed as a unitary theory in flat space [17], but turned
out to be nonunitary in curved space according to our
computation above. The other simpler example was con-
sidered to show the details of our method.
Let us give a recipe of how one should check the tree-

level unitarity of a given Born-Infeld gravity in generic
dimensionD around its constant curvature vacuum. First to
find the effective cosmological constant �, one has to
expand the action up toOðhÞ around the constant curvature
vacuum using (26), or one should find the equivalent linear,
that is OðRÞ, action and read the cosmological constant
from it. Then, one should find the Oðh2Þ action using (29)
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or alternatively one should construct the equivalent qua-
dratic action ½OðR2Þ�. The method we have presented (29)
works just as good in odd and even dimensions. But, the
second method, as discussed in detail in the text, which
proceeds by construction of an equivalent OðRÞ and OðR2Þ
actions should be done with great care depending on the
number of dimensions and on the complexity of A��. The

original BI action cannot simply be expanded in small
curvature to get these equivalent actions via (22). What
always works, in principle, is that the determinant can be
expanded exactly in terms of traces within the square root,
then one can do the expansions (63) and (60), and use the
Hindawi et al. technique. But, the exact expansion of the
determinant in terms of traces can generate quite a large
number of terms especially for D � 4. [For example, in
(71) doing such an exact expansion is not advised to
the reader.] Therefore, to get the equivalent action one
should proceed as follows in generic even dimensionsD ¼
2nþ 2: one has to expand the BI action up toOðAnþ1Þwith
n � 1 using (22), if the resultant action is not already
quadratic in the curvature, then using (60), the equivalent
quadratic action should be constructed. For generic odd
dimensions, the best way is to use (29), but for D ¼ 3 and
for not so complicated A��, exact trace expansion can also

be employed. In this work we have laid out the details of
checking unitarity of BI gravities, in a separate work we
will provide examples of unitary models around flat and
constant curvature backgrounds [5].
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APPENDIX A: A TWO-DIMENSIONAL EXAMPLE

In order to understand why in even dimensions finite
number of terms in the A�� expansion of the BI-type

actions contribute to OðhÞ and Oðh2Þ expansions, let us
study a simple two-dimensional determinantal function

fð�; �Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det

�
1 0
0 1

� �
þ �

að�Þ bð�Þ
cð�Þ dð�Þ

� ��s
; (A1)

where � and � are two independent variables. The �, �
expansions of fð�; �Þ represent the metric perturbation
expansion and the A�� expansion, respectively, for the

BI-type actions. What we will show in this Appendix is
that fð�; �Þ and the function gð�; �Þ defined as

gð�; �Þ � 1þ 1
2�½að�Þ þ dð�Þ�; (A2)

have the same the Oð�Þ expansion around � ¼ 0 only if

�
að�Þ bð�Þ
cð�Þ dð�Þ

� ��
�¼0

¼ a0 0
0 a0

� �
; (A3)

which is the analog of the maximally symmetric constant
curvature background in the BI-type gravity. Here, the
important point about gð�; �Þ is that it is just the Oð�Þ
expansion of fð�; �Þ obtained by using (22), but note that
we exactly define gð�; �Þ in this way and do not assume
that � is small. Thus, staying at first order in � expansion
requires just the first order in �, while one naively expects
that first order in � expansion should involve each order in
�. Let us understand this in more detail by considering a
generic function �ð�; �Þ and expand it in � as a Taylor
series around � ¼ 0

�ð�;�Þ ¼�ð�¼ 0;�Þþ
�
@�

@�

�
�¼0

�þOð�2Þþ . . . ; (A4)

where ð@�@�Þ�¼0 is a function of � only. One can write the

power series expansion of ð@�@�Þ�¼0 in � by assuming

�ð�; �Þ ¼ P1
i¼0 c ið�Þ�i and expanding each c ið�Þ to the

first order in �. Then, one has

�ð�; �Þ ¼ X1
i¼0

c ið� ¼ 0Þ�i þ
�X1
i¼0

�
@c i

@�

�
�¼0

�i

�
�þ . . .

)
�
@�

@�

�
�¼0

¼ X1
i¼0

�
@c i

@�

�
�¼0

�i: (A5)

For the determinantal function fð�; �Þ, the terms ð@c i

@� Þ�¼0,

i � 2 are all zero. Let us observe this for the i ¼ 2 term
explicitly. First, one can have the Oð�2Þ expansion of
fð�; �Þ by using (22) as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det

�
1 0
0 1

� �
þ �

að�Þ bð�Þ
cð�Þ dð�Þ

� ��s

¼ 1þ 1

2
�½að�Þ þ dð�Þ� þ 1

8
�2½að�Þ þ dð�Þ�2

� 1

4
�2½a2ð�Þ þ 2bð�Þcð�Þ þ d2ð�Þ� þOð�3Þ: (A6)

Assuming

að�Þ bð�Þ
cð�Þ dð�Þ

� �
¼ a0 0

0 a0

� �
þ a1 b1

c1 d1

� �
�þOð�2Þ;

(A7)

one has
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fð�;�Þ ¼ 1þ 1
2�½ða0 þ �a1Þþ ða0 þ �d1Þ�þ 1

8�
2½ða0 þ �a1Þþ ða0 þ �d1Þ�2 � 1

4�
2½ða0 þ �a1Þ2 þ 2ð�b1Þð�c1Þ

þ ða0 þ �d1Þ2�þOð�3Þ
¼ ð1þ�a0Þþ 1

2��ða1 þ d1Þþ 1
8�

2½4a20 þ 4�a0ða1 þ d1ÞþOð�2Þ�� 1
4�

2½2a20 þ 2�a0ða1 þd1ÞþOð�2Þ�þOð�3Þ
¼ ð1þ�a0Þþ 1

2��ða1 þ d1ÞþOð�2ÞþOð�3Þ: (A8)

Thus,Oð�Þ contributions coming from the twoOð�2Þ terms
cancel each other because of the specific coefficients in
(22) and the assumption (A3). Now, let us verify our
proposal by explicitly calculating Oð�Þ expansions of
fð�; �Þ and gð�; �Þ. By using (A7) in fð�; �Þ, one obtains
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det

�
1 0
0 1

� �
þ�

a0þ�a1 �b1
�c1 a0þ�d1

� �
þOð�2Þ

�s

¼ð1þ�a0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det

�
1 0
0 1

� �
þ ��

ð1þ�a0Þ
a1 b1
c1 d1

� �
þOð�2Þ

�
;

s

(A9)

and it is possible to make theOð�Þ expansion by using (22);

fð�; �Þ ¼ ð1þ �a0Þ
�
1þ 1

2

��

ð1þ �a0Þ ða1 þ d1Þ þOð�2Þ
�

¼ ð1þ �a0Þ þ 1

2
��ða1 þ d1Þ þOð�2Þ: (A10)

Therefore, the Oð�2þnÞ, n � 1 terms in � expansion of
fð�; �Þ do not contribute to the Oð�Þ terms, only if (A3)
holds. On the other hand, theOð�Þ expansion of gð�; �Þ can
be simply found as

gð�; �Þ ¼ 1þ 1
2�½2a0 þ �ða1 þ d1Þ�

¼ ð1þ �a0Þ þ 1
2��ða1 þ d1Þ: (A11)

As a result, if one wants to consider Oð�Þ behavior of
fð�; �Þ, then one can equally work with just gð�; �Þ which
is simply equal to the Oð�Þ expansion of fð�; �Þ.

APPENDIX B: ANALYZING EINSTEIN-HILBERT
ACTION AND QUADRATIC CURVATURE

GRAVITY WITH SECOND
ORDER PERTURBATIONS

In this Appendix, second order expansions of the curva-
ture tensors are used in the well-known cases of the
Einstein-Hilbert theory, and the quadratic actions including
the Einstein-Gauss-Bonnet theory. This will help us con-
struct the followingOðh2Þ actions that frequently appear in
the computations:

Z
d4x

ffiffiffiffiffiffiffi� �g
p

Rð2Þ;
Z

d4x
ffiffiffiffiffiffiffi� �g

p
�g��Rð2Þ

��;

Z
d4x

ffiffiffiffiffiffiffi� �g
p

R��
L RL

��;
Z

d4x
ffiffiffiffiffiffiffi� �g

p ðR2
��
�Þð2Þ;

Z
d4x

ffiffiffiffiffiffiffi� �g
p

�g
� �g��ðR�
�
�Þð1ÞðR�

���Þð1Þ

(B1)

in terms of the building blocks appearing in Eq. (25) of
[25].

1. Analysis of the Einstein-Hilbert action

First, let us find the second order in metric perturbation
for Einstein-Hilbert action:

I ¼ 1

�

Z
d4x

ffiffiffiffiffiffiffi�g
p ðR� 2�0Þ; (B2)

and expanding up to third order in h�� yields

I ¼ 1

�

Z
d4x

ffiffiffiffiffiffiffi� �g
p �

1þ �

2
hþ 1

8
�2ðh2 � 2h2��Þ þOð�3Þ

�

� ½ð �R� 2�0Þ þ �RL þ �2Rð2Þ þOð�3Þ�
¼ 1

�

Z
d4x

ffiffiffiffiffiffiffi� �g
p �

ð �R� 2�0Þ þ �

�
1

2
hð �R� 2�0Þ þ RL

�

þ �2
�
1

8
ð �R� 2�0Þðh2 � 2h2��Þ þ 1

2
hRL þ Rð2Þ

�

þOð�3Þ
�
: (B3)

One can find the nonlinear equation of motion for con-
stant curvature background by investigating the first order
term in � of the above action as

IOðhÞ ¼ 1

�

Z
d4x

ffiffiffiffiffiffiffi� �g
p �

1

2
hð �R� 2�0Þ þ RL

�
; (B4)

after putting the explicit form of RL and dropping out a
boundary term one can get

IOðhÞ ¼ 1

�

Z
d4x

ffiffiffiffiffiffiffi� �g
p

hð���0Þ; (B5)

from which it follows that ð���0Þ �g�� ¼ 0 upon taking

variation with respect to h��.

One can read the second order action as

IOðh2Þ ¼
1

�

Z
d4x

ffiffiffiffiffiffiffi� �g
p �

h��

�
1

2

�
�� 1

2
�0

�
ð �g��h� 2h��Þ

þ 1

2
�g��RL

�
þ Rð2Þ

�
; (B6)

where Rð2Þ can be read from (13) as

Rð2Þ ¼ �R��h��h
�
� � h��RL

�� � �g�
h��ðR�
��
ÞL

� �g�
 �g�� �g��½ð��
��ÞLð��


�ÞL � ð��

�ÞLð��

��ÞL�:
(B7)
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Let us concentrate on
R
d4x

ffiffiffiffiffiffiffi� �g
p

Rð2Þ part of the action and
work out the integration by parts;

Z
d4x

ffiffiffiffiffiffiffi� �g
p

Rð2Þ

¼
Z

d4x
ffiffiffiffiffiffiffi� �g

p f�h2�� � h��RL
�� � �g�
h

�
�ðR�

��
ÞL
� �g�
 �g�� �g��½ð��

��ÞLð��

�ÞL � ð��


�ÞLð��
��ÞL�g:

(B8)

One can find �g�
h
�
�ðR�

��
ÞL as

�g�
h��ðR�
��
ÞL ¼ h��

�
RL
�� � 4�

3
h�� þ�

3
�g��h

�
: (B9)

By using the definition of the linearized Christoffel con-
nection in (8) and doing integration by parts, the last two
terms in

R
d4x

ffiffiffiffiffiffiffi� �g
p

Rð2Þ can be found as

Z
d4x

ffiffiffiffiffiffiffi� �g
p

�g�
 �g�� �g��ð��
��ÞLð��


�ÞL

¼
Z

d4x
ffiffiffiffiffiffiffi� �g

p �
� 1

2
h��

�
�r
 �r�h�
 þ �r
 �r�h�


� 3

2
�r�

�r�h

�
þ h��

�
4�

3
h�� � �

12
�g��h

�

þ 1

4
h�� �g��RL

�
; (B10)

Z
d4x

ffiffiffiffiffiffiffi� �g
p

�g�
 �g�� �g��ð��

�ÞLð��

��ÞL

¼
Z

d4x
ffiffiffiffiffiffiffi� �g

p �
� 1

4
h��ð3hh�� � �r
 �r�h
�

� �r
 �r�h�
Þ
�
: (B11)

Finally,
R
d4x

ffiffiffiffiffiffiffi� �g
p

Rð2Þ becomes

Z
d4x

ffiffiffiffiffiffiffi� �g
p

Rð2Þ ¼
Z

d4x
ffiffiffiffiffiffiffi� �g

p
h��

�
� 1

2
RL
�� � 1

4
�g��RL

þ�h�� ��

4
�g��h

�
; (B12)

and putting this result in (B6) yields

IOðh2Þ ¼ � 1

2�

Z
d4x

ffiffiffiffiffiffiffi� �g
p

h��

�
GL

�� þ 1

2
ð�0 ��Þð �g��h

� 2h��Þ
�
; (B13)

and since � ¼ �0 is found from equations of motion for
constant curvature background;

IOðh2Þ ¼ � 1

2�

Z
d4x

ffiffiffiffiffiffiffi� �g
p

h��GL
��: (B14)

2. Analysis of the quadratic action

Now, let us consider the quadratic actions in the form

I ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

�
ðR� 2�0Þ þ �R2 þ �R2

��

�
; (B15)

and calculate the second order action in metric perturba-
tions. Then, up to third order, the expansion of the action is

I¼
Z

d4x
ffiffiffiffiffiffiffi� �g

p ��
1

�
ð �R� 2�0Þþ� �R2 þ� �R2

��

�
þ �

�
1

2
h

�
1

�
ð �R� 2�0Þþ� �R2 þ� �R2

��

�
þ

�
1

�
RL þ 2� �RRL þ� �R��RL

��

þ�ðR��Þð1Þ �R��

��
þ �2

�
1

8
ðh2 � 2h2��Þ

�
1

�
ð �R� 2�0Þþ� �R2 þ� �R2

��

�
þ 1

2
h

�
1

�
RL þ 2� �RRL þ� �R��RL

��

þ�ðR��Þð1Þ �R��

�
þ
�
1

�
Rð2Þ þ 2� �RRð2Þ þ�R2

L þ� �R��Rð2Þ
�� þ�ðR��Þð1ÞRL

�� þ�ðR��Þð2Þ �R��

���
: (B16)

Here, note that ðR��Þð1Þ and ðR��Þð2Þ are the first and the
second order terms in the metric perturbation expansion of
R��. First of all, in order to find the nonlinear equation of
motion for constant curvature background, one needs to
study the Oð�Þ term in the above action. After using the
definitions of RL

��, RL and dropping out the boundary
terms one can get

IOðhÞ ¼ 1

�

Z
d4x

ffiffiffiffiffiffiffi� �g
p

hð���0Þ; (B17)

which yields the equation of motion � ¼ �0. Then, let us
move to the second order term in metric perturbation. After
using the result given in (B12), one can obtain
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IOðh2Þ ¼ �1

2

Z
d4x

ffiffiffiffiffiffiffi� �g
p ��

1

�
þ 8��þ 4��

�
h��GL

��

� 1

2
h2
�
1

�
ð���0Þþ 2��2

�
þ h2��

�
1

�
ð���0Þ

þ 6��2

�
þ 2�h��ð �g��

�h� �r�
�r� þ��g��ÞRL

� 2�ð��g��Rð2Þ
�� þR

��
L RL

�� þR
��
ð2Þ��g��Þ

�
: (B18)

Here, let us first handle
R
d4x

ffiffiffiffiffiffiffi� �g
p

R
��
L RL

��. Using the
definition of RL

�� and using the linearized Bianchi identity
(and also its covariant derivative) which is

�r�GL
�� ¼ 0; GL

�� � RL
�� � 1

2
�g��RL ��h��; (B19)

one can find the following result after use of integration by
parts

Z
d4x

ffiffiffiffiffiffiffi� �g
p

R
��
L RL

��

¼ � 1

2

Z
d4x

ffiffiffiffiffiffiffi� �g
p

h��

�
ð �g��h� �r�

�r� þ��g��ÞRL

þ
�
hGL

�� � 2�

3
�g��RL

�
� 14�

3
RL
�� þ�

3
�g��RL

þ 8�2

3
h��

�
: (B20)

Second, ðR��Þð2Þ is related to Rð2Þ
�� in the following way:

�g��ðR��Þð2Þ ¼ �g��ðg��g��R��Þð2Þ

¼ �g��Rð2Þ
�� � 2h��RL

�� þ 3�h2��: (B21)

The �g��Rð2Þ
�� term can be given in terms of Rð2Þ with

Rð2Þ ¼ ðg��R��Þð2Þ ¼ �g��Rð2Þ
�� � h��RL

�� þ�h2��:

(B22)

Then,
R
d4x

ffiffiffiffiffiffiffi� �g
p

�g��Rð2Þ
�� becomes

Z
d4x

ffiffiffiffiffiffiffi� �g
p

�g��Rð2Þ
�� ¼ h��

�
1

2
RL
�� � 1

4
�g��RL ��

4
�g��h

�
;

(B23)

with the help of (B12). By use of these results and the
equation of motion for constant curvature background
which is � ¼ �0 in IOðh2Þ, one can get

IOðh2Þ ¼ � 1

2

Z
d4x

ffiffiffiffiffiffiffi� �g
p

h��

��
1

�
þ 8��þ 4

3
��

�
GL

��

þ ð2�þ �Þð �g��h� �r�
�r� þ��g��ÞRL

þ �

�
hGL

�� � 2�

3
�g��RL

��
; (B24)

which is same as Eq. (25) of [25].
Finally, let us analyze the Einstein-Gauss-Bonnet theory,

I¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

�
ðR� 2�0Þþ�ðR2

��
� � 4R2
�� þR2Þ

�
;

(B25)

just to check the consistency of our construction. Here, the
only remaining part that we have not analyzed is the R2

��
�

term. First, let us use the previous result in order to obtain
the second order action in metric perturbations for the
terms other than R2

��
�:

IOðh2Þ ¼ � 1

2

Z
d4x

ffiffiffiffiffiffiffi� �g
p

h��

��
1

�
þ 8

3
��

�
GL

��

� 2�ð �g��h� �r�
�r� þ��g��ÞRL

� 4�

�
�hGL

�� � 2�

3
�g��RL

��
: (B26)

Then, up to third order, expansion of the last term becomes

I ¼ �
Z

d4x
ffiffiffiffiffiffiffi� �g

p �
�R2
��
� þ �

�
ðR2

��
�Þð1Þ þ
1

2
h �R2

��
�

�

þ �2
�
ðR2

��
�Þð2Þ þ
1

2
hðR2

��
�Þð1Þ

þ 1

8
�R2
��
�ðh2 � 2h2��Þ

��
: (B27)

First of all, it should be shown that first order part is a
boundary term such that it should not give a contribution to
equation of motion for constant curvature background:

IOðhÞ ¼
Z

d4x
ffiffiffiffiffiffiffi� �g

p �
ðR2

��
�Þð1Þ þ
1

2
h �R2

��
�

�
; (B28)

where

�R 2
��
� ¼ 8�2

3
; ðR2

��
�Þð1Þ ¼
4�

3
RL: (B29)

Then,

IOðhÞ ¼
Z

d4x
ffiffiffiffiffiffiffi� �g

p ½ð �r� �r�h�� �hhÞ�; (B30)

and since the remaining part is a boundary term, no con-
tribution comes to the constant curvature background
equation of motion from the square of the Riemann tensor.
Then, moving to the part that is second order in metric
perturbation
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IOðh2Þ ¼ �
Z

d4x
ffiffiffiffiffiffiffi� �g

p �
ðR2

��
�Þð2Þ þ
2�

3
hRL

þ�2

3
ðh2 � 2h2��Þ

�
; (B31)

where

ðR2
��
�Þð2Þ ¼ ðR�

�
�R
�
���g


�g��Þð2Þ
¼2 �R�

�
�
ðR�

�
�Þð2Þþ2 �R�
�
�

�R�
�
�
�g


�
ð2Þ

þ �g
� �g��ðR�
�
�Þð1ÞðR�

���Þð1Þ
þ2½ �R�

�
�
�ðR�

�
�Þð1Þþ �R�
�


�ðR�
���Þð1Þ�g
�ð1Þ

þ �R�
�
�

�R�
���g


�
ð1Þg

��
ð1Þ ; (B32)

Using �R���
 ¼ �
3 ð �g�� �g�
 � �g�
 �g��Þ and Rð2Þ ¼

�g�
Rð2Þ
�
 þ g�
ð1ÞR

ð1Þ
�
 þ �R�
g

�

ð2Þ ;

ðR2
��
�Þð2Þ ¼

4�

3
Rð2Þ þ �g
� �g��ðR�

�
�Þð1ÞðR�
���Þð1Þ

� 4�

3
�g��ðR�

�
�Þð1Þh
� þ 2�2

9
ðh2 � h2��Þ;

(B33)

and using (B9)

ðR2
��
�Þð2Þ ¼

4�

3
Rð2Þ � �g
� �g��ðR�

��
Þð1ÞðR�
���Þð1Þ

� 4�

3
h��RL

�� þ 14�2

9
h2�� � 2�2

9
h2: (B34)

Now, let us consider
R
d4x

ffiffiffiffiffiffiffi� �g
p ðR2

��
�Þð2Þ. TheR
d4x

ffiffiffiffiffiffiffi� �g
p

�g
� �g��ðR�
�
�Þð1ÞðR�

���Þð1Þ term can be found

as

�g�� �g��ðR�

��Þð1ÞðR


���Þð1Þ

¼ h��

�
2

�
�hGL

�� � 2�

3
�g��RL

�
þ ð �g��

�h� �r�
�r�

þ��g��ÞRL� ��

9
h��ð30RL

�� � 9 �g��RL � 32�h��

þ 2� �g��hÞ; (B35)

after a somewhat lengthy calculation where the definition
of the linearized Riemann tensor is used and the terms are
rearranged by using integration by parts. Using this result
with (B12), one get

Z
d4x

ffiffiffiffiffiffiffi� �g
p ðR2

��
�Þð2Þ

¼
Z

d4x
ffiffiffiffiffiffiffi� �g

p
h��

�
�
�
2

�
hGL

�� � 2�

3
�g��RL

�

þð �g��h� �r�
�r� þ��g��ÞRL

�
þ�

3
ð8GL

�� � 4RL
��

þ 6�h�� ���g��hÞ
�
; (B36)

and plugging it in the action:

IOðh2Þ ¼ � 1

2
�
Z

d4x
ffiffiffiffiffiffiffi� �g

p
h��

�
� 8�

3
GL

�� þ 2ð �g��h

� �r�
�r� þ��g��ÞRL þ 4ðhGL

�� � 2�

3
�g��RLÞ

�
;

(B37)

and considering this result with the part of the action
coming from �R2 and �4�R2

�� terms given in (B26),

one finds that all the � terms vanish, and the Gauss-
Bonnet term does not contribute to the equation of motion.

APPENDIX C: LINEARIZATION OF
THE OðR3Þ ACTION

The following formulae are needed for the linearization
of the O½ð�RÞ3� equations. The quadratic parts below
already appeared in [25], we reproduce them here for the
sake of completeness, the cubic parts are new.

	ðR����R
��Þ ¼ 2�

3
RL
�� þ�

3
�g��RL þ�2

3
h��;

	ðhR��Þ ¼ hRL
�� ��hh��;

	ðr�r�RÞ ¼ �r�
�r�RL;

	ðhRÞ ¼ hRL;

	ðR�
�R��R

�
� Þ ¼ 3�2RL

�� � 2�3h��;

	ðR��R
2
��Þ ¼ 4�2RL

�� þ 2�2 �g��RL;

	ðR��R
2Þ ¼ 16�2RL

�� þ 8�2 �g��RL;

	ðRR�
�R��Þ ¼ 8�2RL

�� þ�2 �g��RL � 4�3h��;

	ðr�r�R
�
� Þ ¼ 1

2
�r�

�r�RL þ 4�

3
RL
�� ��

3
�g��RL

� 4�2

3
h��;

	ðr�r�R��Þ ¼ �r�
�r�R�� �� �r�

�r�h��: (C1)

Here, last two equations can related by using linearized
Bianchi identity:

�r�GL
�� ¼ 0; GL

�� � RL
�� � 1

2
�g��RL ��h��: (C2)
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APPENDIX D: COEFFICIENTS FOR THE R� �R EXPANSION

Coefficients in the expansion of the square root of (68) are

�
@f

@R

�
ð �R; �R�

� Þ
¼ �

2ð1þ��Þ2 ð1þ 4��þ 6�2�2 þ 4�3�3Þ;
�
@f

@R�
�

�
ð �R; �R�

� Þ
¼ � �	�

�

2ð1þ��Þ2 ð��þ 3�2�2 þ 3�3�3Þ;
�
@2f

@R2

�
ð �R; �R�

� Þ
¼ �2

2ð1þ��Þ2 ð1þ 4��þ 6�2�2Þ� �2

4ð1þ��Þ6 ð1þ 4��þ 6�2�2 þ 4�3�3Þ2;
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@2f

@R
�

@R�

�

�
ð �R; �R�

� Þ
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2ð1þ��Þ2 ½ð1þ��Þ2	�
�	


� ��2�2	�
�	


� ��
�2	�

�	

�

4ð1þ��Þ6 ð��þ 3�2�2 þ 3�3�3Þ2;
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@f

@R@R�
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� Þ
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�
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�

4ð1þ��Þ6 ð1þ 4��þ 6�2�2 þ 4�3�3Þð��þ 3�2�2 þ 3�3�3Þ:

(D1)

Coefficients in the expansion of the (73) are
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