
Equivalence of nonadiabatic fluids

W. Barreto*

Centro de Fı́sica Fundamental, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
(Received 15 September 2010; published 10 December 2010)

Here we show how an anisotropic fluid in the diffusion limit can be equivalent to an isotropic fluid in the

streaming out limit, in spherical symmetry. For a particular equation of state this equivalence is total: from

one fluid we can obtain the other and vice versa. A numerical master model is presented, based on a

generic equation of state, in which only quantitative differences are displayed between both nonadiabatic

fluids. From a deeper view, another difference between fluids is shown as an asymmetry that can be

overcome if we consider the appropriate initial-boundary conditions. Equivalence in this context can be

considered as a first order method of approximation to study dissipative fluids.
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I. INTRODUCTION

Emission of massless particles is an important process
when studying evolution of massive stars. If the fluid is
nonadiabatic two transport mechanisms are recognized as
extreme and opposite, namely, the streaming out and the
diffusion limits. In the event of gravitational collapse these
two transport regimes alternate, playing different roles
depending on the configuration and physical processes
[1–3].

It is well known that different energy-momentum ten-
sors can lead to the same spacetime [4–9]. Different kinds
of physical phenomena may take place to give rise to local
anisotropy [10]. The influence of anisotropy in self-
gravitating systems has been studied mostly under static
conditions (see [11] and references therein). In [12] a
general study of spherically symmetric dissipative aniso-
tropic fluids was reported, with emphasis on the relation-
ship between the Weyl tensor, the shear tensor, the
anisotropy of the pressure, and the density inhomogeneity.
For instance, shear viscosity can be considered as a special
case of anisotropy [13–16], with no contribution to energy
density and energy flux as heat flow. Bulk viscosity does
not change the degree of anisotropy. Electrically charged
fluids also can be seen as anisotropic fluids with no con-
tribution to heat flow [17,18].

Many years ago the equivalence between radiating per-
fect fluids and anisotropic fluids was shown [19], which
also applies under certain conditions to multicomponent
fluids [20,21]. Recently it was proposed that an anisotropic
fluid in the diffusive limit is, in some sense, the most
fundamental model [22] because it can absorb the addition
of shear viscosity, electric charge, and null fluids. In fact,
the free streaming process generates heat flow, radial pres-
sure (nonisotropically), and energy density. In conse-
quence, the resulting fluid is anisotropic.

We show here how in practice an isotropic fluid in the
streaming out limit can be equivalent to an anisotropic fluid
under a diffusion transport mechanism. We argue that an
isotropic fluid with free streaming is as fundamental as an
anisotropic fluid with heat flow. We illustrate our claim
numerically by means of a master model. To do that we use
the seminumeric method known as the postquasistatic
approach (see [23] and references therein), which fits
well for this paper’s purposes. We do not know of any
other hydro solver in numerical relativity that considers a
radiating fluid in either regime, streaming out or diffusion,
isotropic or anisotropic, in spherical symmetry.
The equivalence between nonadiabatic fluids as pre-

sented here can be used to study different situations in
the gravitational collapse with the same fluid, but this is not
always possible. The equation of state seems to be crucial
as well as the initial conditions, the exterior spacetime, and
the junction conditions. The equivalence has been used as a
method to solve the field equations, but not to extract
physics. This situation is quite similar to a massless scalar
field viewed as a fluid. The asymptotic conditions near the
center of symmetry, at the boundary surface, and near
infinity are different for the scalar field, in comparison
with a bounded source of matter [24,25].
The remaining parts of this work are organized as fol-

lows: In Sec. II, we show how a local comoving observer
can handle the equivalence between nonadiabatic fluids
and how the field equations can be recast. In Sec. III, we
give some examples using a master numerical model. In
Sec. IV, we revisit the results in the light of previous ones
and conclude with some remarks about the limits and scope
of the equivalence of nonadiabatic fluids.

II. EQUIVALENT RADIATING FLUIDS

We can clearly show at once the aforementioned equiva-
lence between nonadiabatic fluids using Bondian observers
(comoving in a locally Minkowskian spacetime) to de-
scribe how physics comes out from hydrodynamics. The
covariant energy-momentum tensor for a radiating perfect
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fluid as seen by a comoving observer with respect to a local
one with radial velocity ! is

�̂þ � ��̂ 0 0
��̂ p̂þ �̂ 0 0
0 0 p̂ 0
0 0 0 p̂

0
BBB@

1
CCCA; (1)

representing a radiating isotropic fluid of energy density �̂,
pressure p̂, and energy density �̂ traveling in the radial
direction. If we define

� ¼ �̂þ �; (2a)

q̂ ¼ �̂; (2b)

pr ¼ p̂þ �̂; (2c)

pt ¼ p̂; (2d)

the fluid can be seen as

� �q̂ 0 0
�q̂ pr 0 0
0 0 pt 0
0 0 0 pt

0
BBB@

1
CCCA; (3)

which can be interpreted as an anisotropic fluid with
effective energy density �, radial pressure pr, tangential
pressure pt, and heat flow in the radial direction q. Observe
that the degree of anisotropy is

� � pt � pr ¼ ��̂; (4)

which in turn is seen as an equation of state. As a matter of
fact, any comoving observer sees such equivalence, it does
not depend on the system of coordinates. Rotation about
the timelike two-plane [19,20,26] is not required because
such rotation is implicit in (1) and (3). It is manifest that the
covariant energy-momentum tensor is invariant.

We have to write the field equations in one limit to show
explicitly and formally how we can get the equivalence
simply by recasting them. Using Bondi’s metric in spheri-
cal form [27]

ds2 ¼ e2�
�
V

r
du2 þ 2dudr

�
� r2ðd�2 þ sin�2d�2Þ; (5)

where � ¼ �ðu; rÞ and V ¼ Vðu; rÞ. The field equations
for an isotropic fluid in the free streaming approximation
can be written as [28]

�̂þ!2p̂

1�!2
þ �̂

1þ!

1�!
¼ 1

4�rðr� 2 ~mÞ
� ½� ~m;ue

�2� þ ðr� 2 ~mÞ ~m;r=r�;
(6)

�̂�!p̂

1þ!
¼ ~m;r

4�r2
; (7)

1�!

1þ!
ð�̂þ p̂Þ ¼ 1� 2 ~m=r

2�r
�;r; (8)

p̂ ¼ � 1

4�
�;ure

�2� þ 1

8�
ð1� 2 ~m=rÞð2�;rr þ 4�2

;r

� �;r=rÞ þ 1

8�r
½3�;rð1� 2 ~m;rÞ � ~m;rr�; (9)

where a comma denotes partial differentiation with respect
to any coordinate, and the mass aspect ~m is defined by
means of

V ¼ e2�ðr� 2 ~mÞ: (10)

As expected, we can write the left-hand side of the field
equations in the following way, only rearranging terms:

S � �̂þ!2p̂

1�!2
þ �̂

1þ!

1�!
� �þ!2pr

1�!2
þ 2q̂!

1�!2
; (11)

~� � �̂�!p̂

1þ!
� ��!pr

1þ!
� q̂

1�!

1þ!
; (12)

~�þ ~p � 1�!

1þ!
ð�̂þ p̂Þ � 1�!

1þ!
ð�þ prÞ � 2q̂

1�!

1þ!
;

(13)

where ~� and ~p are the so-called effective variables. In
standard numerical relativity S and ~� are the conservative
variables, and ~p the flux variable. Now (6)–(9) are the field
equations for an anisotropic fluid in the diffusion limit with
the left-hand side formed with (11)–(13) and (2d) and the
additional equation of state (4). In this sense it is said that
an isotropic fluid in the free-streaming limit is equivalent to
an anisotropic fluid in the diffusion limit. If the fluid is
described ab initio as anisotropic in the diffusion limit and
the equation of state to take into account the degree of
anisotropy given by (4), then we get necessarily an iso-
tropic fluid with free streaming. We shall explore a generic
situation, that is, with any other equation of state. In that
case, does the equivalence between these two nonadiabatic
fluids hold?
In order to gain physical insight we write the field

equation (9) as the generalized equation for hydrostatic
support of Tolman-Oppenheimer-Volkoff [28,29]

~p ;r þ ð~pþ ~�Þ
rðr� 2 ~mÞ ¼ e�2�

�
~pþ ~�

1� 2 ~m=r

�
;u
þ 2

r
ðpt � ~pÞ:

(14)

One way to illustrate our viewpoint is by using a method
which represents the departure from equilibrium in the
gravitational collapse problem [28]. That method reported
many years ago could be used as a test bed for numerical
relativity [30]. It has been interpreted as a postquasistatic
approximation [23]. The procedure is based on the corner-
stone paper of Bondi to deal with radiating matter [27].
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For details about the method used to solve the equations,
matching conditions, and its connection with standard
numerical relativity see [23,28,30]. Here we only write
the appropriate boundary condition [31]

½pr�a ¼ q̂a; (15)

which is a consequence of the Darmois-Lichnerowicz
conditions, that is, the continuity of the first and second
differential forms:

m ¼ MðuÞ; (16)

�a ¼ 0; (17)

�
��;ue

�2� þ ð1� 2 ~m=rÞ�;r � ~m;r

2r

�
r¼a

¼ 0; (18)

where the subscript a indicates that the quantity is eval-
uated at the surface r ¼ aðuÞ, ~ma ¼ m andM corresponds
to exterior Vaidya spacetime

ds2 ¼
�
1� 2M

r

�
du2 þ 2dudr� r2ðd�2 þ sin�2d�2Þ:

(19)

Clearly in the case of free streaming the boundary condi-
tion reads

p̂ a ¼ 0: (20)

To numerically study the equivalence, we shall use a
Schwarzschild-like model with intrinsic anisotropy based
on the following generic-equation-of-state (GEoS):

� ¼ C
ð~�þ ~pÞ
ðr� 2 ~mÞ ð4�r

3 ~pþ ~mÞ; (21)

where C is a constant. This GEoS has been used in the
past for a number of physical situations which represent
phase transition, viscous and electrically charged fluids
[13,14,16,18,29,32].

III. MASTER MODEL

Here we describe a master model, which includes all
the possible configurations of interest for our purposes,
based on the models described in previous investigations
[13,28,29,31]. Following the postquasistatic protocol, we
build a Schwarzschild-like master model which corre-
sponds to an incompressible anisotropic/isotropic fluid
as the static ‘‘seed’’ interior solution. Thus, the effective
energy density and the effective pressure are

~� ¼ fðuÞ ¼ 3m

4�a3
; (22)

~p ¼ ~�

� ð1� 3!aÞ�� ð1�!aÞ�a

3ð1�!aÞ�a � ð1� 3!aÞ�
�
; (23)

where

� ¼
�
1� 2m

a

�
r

a

�
2
�
h=2

;

and

h ¼ 1� 2C:

With these effective variables and integrating (7) and (8)
we obtain

~m ¼ m

�
r

a

�
3
; (24)

� ¼ 1

2h
ln

�
ð1�!aÞ

��
3

2

�a

�
� 1

2

��
þ!a

�
: (25)

The system of equations at the surface is

_A ¼ Fð�� 1Þ; (26a)

_F ¼ 2Lþ ð1� FÞ _A
A

; (26b)

ð1� FÞ
_�

�
þ _F

F
¼ G; (26c)

where

A ¼ a

mð0Þ ; � ¼ u

mð0Þ ; M ¼ m

mð0Þ ;

F ¼ 1� 2M

A
; � ¼ 1

1�!a

;

G ¼ � 3ð1� FÞ2ð�� 1Þ
2A�

ð2�� 1Þ � 3ð1� FÞ2ð�� 1Þ
2A�

�ð3� 2�Þð1� hÞ þ 4L�

3Að2�� 1Þ ð1� ‘Þ:

The overdot denotes the total derivative with respect to �, L
is the luminosity as a function of time given in some
convenient way. Thus, the master model summarizes in
one equation, (26c), four previously reported models of
the same type (Schwarzschild-like). The whole model is
represented by the set of Eqs. (26) and allows one to control
the transport mechanism and anisotropy using only two
parameters (h and l). h ¼ 1 represents isotropy, h < 1
implies pt > pr, and h > 1 means pt < pr. On the other
hand, ‘ ¼ 1 is for the streaming out limit and ‘ ¼ 0 for the
diffusion limit. Therefore, this master model contains all
possible situations, that is, isotropy in the streaming out
limit (M1: h ¼ 1; ‘ ¼ 1); isotropy in the diffusion limit
(M2: h ¼ 1; ‘ ¼ 0); anisotropy in the streaming out
limit (M3� : h � 1; ‘ ¼ 1); anisotropy in the diffusion
limit (M4� : h � 1; ‘ ¼ 0). Equivalent models come from
the corresponding master models depending on the equa-
tion of state used, for instance, E1 comes fromM1using (4);
E2 comes from M4þ which in turn is built using (21).
In other words, equivalent models are obtained with no
additional calculations but just singling out the source
model data.
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With the following set of initial conditions we can
integrate numerically the system of equations at the surface
and go inside the distribution without restrictions:

Að0Þ ¼ 5; Fð0Þ ¼ 0:6; �ð0Þ ¼ 0:8333

with L given as a Gaussian pulse carrying away a fraction
of total initial mass ( � 1%):

L ¼ L0e
�ð���0Þ2=	2

;

where 	 ¼ 4 and �0 ¼ 5. Figure 1 displays a typical
situation in which we can see how the generic fluid behaves

depending on anisotropy and transport mechanism.
Although the behavior shown in Fig. 1 for each model
has been reported in previous investigations [13,28,29,31],
for the sake of completeness and to gain physical intuition
we summarize and explain these results here. It is clear
from Eq. (14) that anisotropy, the second term of the right-
hand side, increases (or decreases) the effective gravitation
depending on the tangential pressure and irrespective of the
transport mechanism [29]. On the other hand, a positive
heat flow always diminishes the effective gravitation irre-
spective of the anisotropy [31]. For these reasons the radius
for model M4þ (pt < pr) is smaller than that of model
M4� (pt > pr); model M1 (pt ¼ pr) is somewhere in
between. Figures 2–5 display results for model M1 and
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Figs. 6 and 7 for the equivalent model E1. Note that we get
� and pr of model E1 from �̂, p̂, and �̂ of model M1; all the
other physical variables (q, !, and pt ¼ p̂) are undistin-
guishable for these two equivalent models. Finally, making
numerical experiments we find that model M4þ behaves
at the surface like model M1 when h ¼ 1:2, which is
shown in Figs. 8–12. The equivalent model E2 is displayed
in Figs. 13 and 14. Observe how physical variables in
model E1 (Figs. 6 and 7) behave like physical variables
in model M4þ (Figs. 8 and 9) and how physical variables
in model E2 (Figs. 13 and 14) behaves like model M1
(Figs. 2 and 3). Except for the tangential pressure, the
isotropic fluid in the free streaming limit can be equivalent

to the anisotropic fluid in the diffusion limit. The GEoS
works remarkably well to illustrate the equivalence, dis-
playing only quantitative differences for models E1 and
M4þ ; E2 and M1. In this sense, the two equivalent
models E1 and E2 are qualitatively the same as M4þ and
M1, respectively. It suggests that if we impose ½pt�a ¼ 0
the performance of the GEoS will get better, but this extra
condition is out of our master model.
We want to close this section with the following com-

ment. Setting up the system we realized that for a compact
configuration, initially at rest, the fraction of radiated mass
was bounded in the diffusion approximation. Otherwise the
local radial velocity was out of the real domain. This
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situation changes radically with a greater initial velocity of
collapse or a lesser fraction of radiated mass (less than
0.01%). For the free streaming this restriction does not
exist, allowing to radiate more than 10% of the initial total
mass. This ‘‘asymmetry’’ is not in favor of general equiva-
lence but this was obviously overcome.

IV. CONCLUDING REMARKS

We have shown how radiating fluids can be equivalent,
when the interior transport mechanisms are opposite and
extreme, namely, for the free streaming and the diffusion

approximations. From the formal point of view the equiva-
lence between nonadiabatic fluids is indistinguishable
when applied to an isotropic fluid with free streaming
and to a diffusive anisotropic fluid. One can be derived
from the other. In order to show numerically this equiva-
lence, without loss of generality, we have used the post-
quasistatic approach to consider fluids leaving equilibrium.
The equivalence can be total or partial, depending on the
initial-boundary conditions and the equation of state. We
illustrate by means of a master model how an isotro-
pic fluid with free streaming can be equivalent to an
anisotropic fluid with heat flow dissipation. They are
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mathematically and physically equivalent from each other
when using the equation of state (4). In a generic situation
the equivalence depends strongly on the equation of state,
initial conditions, junction conditions, and exterior space-
time. We have used in the past the GEoS (21) to model
different physical scenarios. Viscous [16] or electrically
charged [18] fluids can be seen as anisotropic, but they are

not equivalent to isotropic fluids with free streaming or
anisotropic fluid with heat flow.
When coherent radiation is important (scalar, electro-

magnetic, or gravitational radiations) the associated fluids
induce anisotropy and heat flow but the observers are
always resting at infinity.
Within the family of fluids than can be equivalent it is

then plausible that what anisotropy gives (stiffening) heat
flow takes (softening). In fact, in this case the exterior
spacetime is the same from the geometrical point of
view. But a judicious observer realizes that, in general,
dissipation in the streaming out limit can never be as that of
heat flow. Mathematically, the reason can be easily under-
stood. In the streaming out limit the algebraic equation to
get the radial local velocity from the field equations is a
linear expression, while in the diffusion limit the analogous
equation is quadratic. In consequence the associated dis-
criminant imposes a severe restriction on the initial veloc-
ity and the fraction of total mass that can be radiated away.
We have shown that the only exception emerges when the
two equivalent fluids are linked by the particular equation
of state (4). Apparently the diffusion mechanism does not
accept static equilibrium. A complex velocity is as unac-
ceptable as a negative energy density or a superluminous
local radial velocity. Therefore, a complex velocity is not
physically reliable. Interestingly, in comoving coordinates
that asymmetry is not present anymore [33].
The fundamental character that we can ascribe to two-

fluids is out of proportion, they are simply dissipative fluids.
Physically (i) the mean free path for both limits are very
different; (ii) temperature profiles from a transport equation,
as in the Müller-Israel-Stewart theory [34–38], makes the
complete equivalence not viable at all, enhancing asymme-
try. Even so, the master fluid idea is attractive, isotropic with
free streaming or anisotropic with heat flow, to model a
number of situations; in between we can use the Eddington
factor [39]. Thus, equivalence in this context can be used as
a first approximation to study dissipative fluids.
Our argument in this paper was developed clearly thanks

to a known approach [27], to treat matter from a comoving
framewith the fluid in the local Minkowskian frame, called
Bondian [30] (usually referred as global or Eulerian). We
know that the same conclusion can arise from Misner-
Sharp’s comoving coordinates [40] (local or Lagrangian
frame). In this sense, we get an unified treatment of non-
adiabatic fluids.
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[9] J. Carot and J. Ibáñez, J. Math. Phys. (N.Y.) 26, 2282

(1985).
[10] G. Lemaitre, Ann. Soc. Sci. Bruxelles A 53, 51 (1933).
[11] L. Herrera and N. Santos, Phys. Rep. 286, 53 (1997).
[12] L. Herrera, A. Di Prisco, J. Martin, J. Ospino, N. O.

Santos, and O. Troconis, Phys. Rev. D 69, 084026 (2004).
[13] W. Barreto and S. Rojas, Astrophys. Space Sci. 193, 201

(1992).
[14] W. Barreto, Astrophys. Space Sci. 201, 191 (1993).
[15] A. Coley and B. Tupper, Classical Quantum Gravity 11,

2553 (1994).
[16] C. Peralta, L. Rosales, B. Rodrı́guez-Mueller, and W.

Barreto, Phys. Rev. D 81, 104021 (2010).
[17] W. Barreto, B. Rodrı́guez, L. Rosales, and O. Serrano,

Gen. Relativ. Gravit. 39, 23 (2006); 39, 537(E) (2007).
[18] L. Rosales, W. Barreto, B. Rodrı́guez-Mueller, and C.

Peralta, Phys. Rev. D 82, 084014 (2010).
[19] P. S. Letelier, Phys. Rev. D 22, 807 (1980).

[20] P. S. Letelier and P. S. C. Alencar, Phys. Rev. D 34, 343
(1986).

[21] J. Ponce de León, Phys. Rev. D 35, 2060 (1987).
[22] B. V. Ivanov, Int. J. Theor. Phys. 49, 1236 (2010).
[23] L. Herrera, W. Barreto, A. Di Prisco, and N.O. Santos,

Phys. Rev. D 65, 104004 (2002).
[24] W. Barreto, L. Castillo, and E. Barrios, Phys. Rev. D 80,

084007 (2009).
[25] W. Barreto, L. Castillo, and E. Barrios, Gen. Relativ.

Gravit. 42, 1845 (2010).
[26] B. V. Ivanov, arXiv:0912.2447.
[27] H. Bondi, Proc. R. Soc. A 281, 39 (1964).
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