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In 1998, Shibata and Sasaki [Phys. Rev. D 58, 104011 (1998)] presented an approximate analytical

formula for the radius of the innermost stable circular orbit (ISCO) of a neutral test particle around a

massive, rotating, and deformed source. In the present paper, we generalize this expression by including

the magnetic dipole moment. We show that our approximate analytical formula is accurate enough by

comparing it with the six-parametric exact solution calculated by Pachón et. al. [Phys. Rev. D 73, 104038

(2006)] along with the numerical data presented by Berti and Stergioulas [Mon. Not. R. Astron. Soc. 350,

1416 (2004)] for realistic neutron stars. As a main result, we find that in general, the radius at ISCO

exhibits a decreasing behavior with an increasing magnetic field. However, for magnetic fields below

100 GT the variation of the radius at ISCO is negligible and hence the nonmagnetized approximate

expression can be used. In addition, we derive approximate analytical formulas for angular velocity,

energy, and angular momentum of the test particle at ISCO.
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I. INTRODUCTION

The discovery of quasiperiodic oscillations (QPOs) with
frequencies around 1 kHz from several low-mass X-ray
binaries [1] has been increasing the interest in the detailed
theory of disk accretion onto neutron stars. Several authors
have suggested that at least some of the kHz QPOs may be
related to the Kepler frequency at the innermost stable
circular orbit (ISCO) of the accretion disk around a neutron
star (see, e.g., [1,2]). Stergioulas et al. [3] have suggested
that the frequency of the corotating orbit at ISCO in a
compact stellar remnant could be determined through
X-ray observations of low-mass X-ray binaries and it could
be used to constrain the equation of state (EOS) of ultra-
dense matter. Morsink and Stella [4] have remarked the
central role of ISCO in the relativistic precession of orbits
around neutron stars and Bulik et al. [5] have shown that
observations are consistent with the assumption that the
maximum-frequency QPOs occurs at the ISCO. The last
statement could be used to test general relativity (GR) in the
strong-field regime around accreting neutron stars, or even
to measure the stellar mass by directly comparing the high-
est frequency manifest in the X-ray flux with the relativistic
formula for the orbital frequency in the ISCO orbit [6].

On the other hand, the study of the structure and dynam-
ics of neutron stars endowed with a magnetic field in GR is
an active, interesting, and challenging theoretical issue.

The influence of a magnetic field on the properties of a
neutron star rotating at the Kepler frequency has been
shown in Ref. [7]. In Ref. [8], Broderick et al. have studied
the implications of very strong magnetic fields on the
structure of neutron stars; in particular, Cardall et al. [9]
have indicated how magnetic field affects the maximum
mass of stars. In Ref. [10], the ellipticity of the deformed
star due both to the rotation and the magnetic field is
calculated, and these two effects are compared to each
other within GR. In addition, the formulation of deforma-
tion of relativistic stars due to the magnetic stress, consid-
ering the magnetic fields as perturbations from spherical
stars, has also been studied in [11] by means of an analyti-
cal treatment assuming weak magnetic fields compared
to gravity. The quadrupole deformation of magnetized
Newtonian stars was discussed by Chandrasekhar and
Fermi [12] and Ferraro [13]. The GR approach was done
fully numerically by Bonazzola and Gourgoulhon [14] and
Bocquet et al. [15], who pointed out that deformations of
the stars induced by magnetic fields become appreciable
only for fields greater than 10 GT.
More than one decade ago, Shibata and Sasaki [16]

(hereafter S&S) computed an approximate analytical for-
mula for the radius at ISCO on massive rotating and
arbitrarily deformed sources within GR. They considered
the role of the quadrupole moment of mass in physics
related to neutron stars (this fact has also been noted by
other authors, see, for instance, [17] and references
therein), by including multipolar moments of mass up to
the 24-pole order in their calculations. A strong influence
of the magnetic field on the structure of the neutron stars
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there exists yet, as discussed above, and hence is desirable
to include also the magnetic field in an approximation as
the given by S&S. In the present paper we tackle this point
by following the procedure by S&S. Thereby, our goal is to
calculate approximate formulas for the radius, angular
velocity, energy, and angular momentum at ISCO for mas-
sive rotating and deformed sources endowed with a mag-
netic dipole. Because of the significant influence that these
parameters have for magnetized neutron stars (see, e.g.,
[15,18]), in our treatment we assume that the only non-
vanishing multipole moments of the source are the mass,
the angular momentum, the quadrupolar moment of mass,
the current octupole moment, and the magnetic dipole.

The plan of this paper is as follows: In Sec. II the general
formalism to calculate the ISCO for a neutral particle
orbiting around a massive source in GR is presented. The
procedure to compute the approximate formulas for radius,
angular velocity, energy, and angular momentum at ISCO
of a neutral test particle is shown in Sec. III. The results
along with their analysis are presented in Sec. IV. Finally,
we present the conclusions of our study.

II. ISCO AND THE MULTIPOLAR STRUCTURE

The metric describing the geometry of space-time
around a stationary and axisymmetric source, can be writ-
ten as [19]

ds2 ¼ �fðdt�!d’Þ2 þ f�1½e2�ðd�2 þ dz2Þ þ �2d’2�;
(1)

where f, �, and ! are functions of the quasicylindrical
Weyl-Lewis-Papapetrou coordinates ðt; �; z; ’Þ.. In this
paper we use geometrized units c ¼ G ¼ 1. Hence, all
the physical quantities are measured in units of length [L].

In a standard way, we use the line element (1) to find the
geodesic equations for a neutral test particle on the equa-
torial plane, which reads as follows:

dt

d�
¼ Eg’’ þ Lgt’

�2
;

d’

d�
¼ �Egt’ þ Lgtt

�2
; (2)

g��

�
d�

d�

�
2 ¼ �

�
1� E2

g’’

�2
� 2EL

gt’

�2
� L2 gtt

�2

�
;

¼ �Veffð�Þ; (3)

with gtt¼ ¼ �f, gt’ ¼ f! and g’’ ¼ �f!2 þ �2=f,

and Veffð�Þ denotes the effective potential.
Circular prograde (or corotating) orbits will occur at

radius � when Veff ¼ 0 and dVeff=d� ¼ 0, which imposes
the following conditions for the angular velocity �,
the energy E, and the angular momentum L of the test
particle:

� ¼
�gt’;� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgt’;�Þ2 � gtt;�g’’;�

q
g’’;�

; (4)

E ¼ � gtt þ gt’�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gtt � 2gt’�� g’’�

2
q ; (5)

L ¼ gt’ þ g’’�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gtt � 2gt’�� g’’�

2
q : (6)

The stability of the circular orbit is determined by the sign
of

d2Veff

d�2
¼ 1

�2

�
2�E2

d2g’’

d�2
�2EL

d2gt’

d�2
�L2d

2gtt
d�2

�
; (7)

hereby, ISCOs will occur if and only if d2Veff=d�
2 ¼ 0. It

is worth mentioning that the above formulas do not depend
on the metric function � and therefore we will leave aside
this metric function in the rest of the paper.
In order to calculate the metric functions in the electro-

vacuum case, we use the Ernst formulation [20]. Via Ernst’s
procedure, the Einstein-Maxwell equations can be refor-
mulated in terms of the complex potentials E and � as

ðReðEÞ þ j�j2Þr2E ¼ ðrE þ 2��r�Þ � rE;
ðReðEÞ þ j�j2Þr2� ¼ ðrE þ 2��r�Þ � r�: (8)

Once the potentials are known, the metric functions f and
! can be constructed by using

E ¼ f� j�j2 þ iImðEÞ; (9)

! ¼
Z 1

�
d�0 �

0

f2

�
@ImðEÞ
@z

þ 2Reð�Þ@Imð�Þ
@z

� 2 Imð�Þ @Reð�Þ
@z

�
z¼const

: (10)

For getting a more intuitive and physical approach, it is
helpful to change the potentials E and� to the potentials �
and q throughout the following definitions:

E :¼ 1� �

1þ �
; � :¼ q

1þ �
: (11)

This change elucidates the procedure because the poten-
tials � and q are related to the gravitational and electro-
magnetic moment of the source in a very direct way. In
order to calculate the multipolar moments of an asymptoti-
cally flat space-time, according to the Geroch-Hansen
definition [21,22] we use the procedure of Fodor et al.
[23] with the corrections given by Sotoriou and
Apostolatos [24]. We need to map the initial 3-metric to

a conformal one hij ! ~hij ¼ �2hij. The conformal factor

� should satisfy the following conditions: �j� ¼
~Di�j� ¼ 0 and ~Di

~Dj�j� ¼ 2hijj�, where � is the point

added to the initial manifold that represents infinity. �
transforms the complex gravitational and electromagnetic

potentials � and q into ~� ¼ ��1=2� and ~q ¼ ��1=2q
respectively. The conformal factor is given by � ¼ �r2 ¼
��2 þ �z2, and the transformation between unbarred and
barred variables reads as follows:
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�� ¼ �

�2 þ z2
; �z ¼ z

�2 þ z2
; �’ ¼ ’; (12)

which brings infinity at the origin of the axes ð ��; �zÞ ¼
ð0; 0Þ. The potentials ~� and ~q can be written in a power
series expansion of �� and �z as follows:

~� ¼ X1
i;j¼0

aij ��
i �zj; ~q ¼ X1

i;j¼0

bij ��
i �zj: (13)

Because of the analyticity of the potentials at the axis of
symmetry, aij and bij must vanish when i is odd. The

coefficients in the above power series can be calculated
by using the relations [24]

ðrþ 2Þ2arþ2;s ¼ �ðsþ 2Þðsþ 1Þar;sþ2

þ X
k;l;m;n;p;g

ðakla�mn � bklb
�
mnÞ½apgðp2 þ g2 � 4p� 5g

� 2pk� 2gl� 2Þ þ apþ2;g�2ðpþ 2Þðpþ 2� 2kÞ
þ ap�2;gþ2ðgþ 2Þðgþ 1� 2lÞ� (14)

and

ðrþ 2Þ2brþ2;s ¼ �ðsþ 2Þðsþ 1Þbr;sþ2

þ X
k;l;m;n;p;g

ðakla�mn � bklb
�
mnÞ½bpgðp2 þ g2 � 4p� 5g

� 2pk� 2gl� 2Þ þ bpþ2;g�2ðpþ 2Þðpþ 2� 2kÞ
þ bp�2;gþ2ðgþ 2Þðgþ 1� 2lÞ�; (15)

where m ¼ r� k� p, 0 � k � r, 0 � p � r� k with k
and p even, and n ¼ s� l� g, 0 � l � sþ 1, with�1 �
g � s� l. These recurrence relations could build the

whole power series of ~� and ~q from their values on the
axis of symmetry

~�ð ��¼0; �zÞ¼X1
i¼0

mi �z
i; ~qð ��¼0; �zÞ¼X1

i¼0

qi �z
i; (16)

where the coefficients in the above series expansion are
related to the values of the multipole moments of the space-
time qi � b0i and mi � a0i [23,24].

III. APPROXIMATE FORMULAS AT ISCO

Following the scheme given by S&S [16] we assume that
the only nonvanishing multipole moments are the mass

M0 ¼ M, the angular momentum M1 ¼ qM2, the mass
quadrupole M2 ¼ �Q2M

3, the current octupole moment
M3 ¼ �Q3M

4, the 24-pole M4 ¼ Q4M
5, and addition-

ally, the magnetic dipole moment M ¼ �M2, where q,
Q2,Q3,Q4, and� are dimensionless parameters. In order
to keep the approximation consistent up to Oð�4Þ, we
formally set q ! �q, Q2 ! �2Q2, Q3 ! �3Q3, Q4 !
�4Q4, and � ! �2�.
With the aim to calculate the approximate potentials (13)

as a truncated power series, we carry out the following
steps: (i)We compute the gravitational and electromagnetic
multipoles up to order 12 (using the corrected formulas
given by Sotiriou and Apostolatos [24]), as a function of
the coefficients on the symmetry axis, a0;j and b0;j. (ii) By

inverting these expressions, we then get the coefficients a0;j
and b0;j as a function of the multipoles (see the Appendix

and the note [25] at the end of the paper). (iii) Then, we use
the expressions for a0;j and b0;j along with the recurrence

relations (14) and (15), in order to calculate the coefficients
ai;j and bi;j up to Oð�4Þ. We do not present here these

quantities because of their cumbersome form, but they
are available under request to the authors.
Once we know the approximate expressions for the

complex potentials (13), it is possible to obtain the ap-
proximate expressions of the Ernst potentials E and � by
applying Eq. (11). Consequently, we compute the metric
functions f and ! (9) and (10), by expanding them in a
power series of the inverse of �:

f ¼ 1þ X11
k¼1

�
Cf;k

�

�
k þOð��12Þ; (17)

! ¼ X11
k¼1

�
C!;k

�

�
k þOð��12Þ; (18)

where Cf;k and C!;k are functions of the multipoles.

By using Eqs. (17) and (18) we can cast Eq. (7) as

X4
k¼0

�kAkð�;M; q;Q2;Q3;Q4; �Þ ¼ 0: (19)

Solving it for �, we obtain for the circumferential radius
R ¼ ffiffiffiffiffiffiffiffiffi

g’’
p

at ISCO:
RISCO

6M
¼ 1� 0:544 33q� 0:226 51q2 þ 0:179 92Q2 � 0:003 23�2 � 0:231 22q3 þ 0:263 53qQ2

� 0:053 18Q3 � 0:007 65q�2 � 0:299 81q4 þ 0:448 87q2Q2 � 0:062 60Q2
2 � 0:113 25qQ3

þ 0:015 46Q4 � 0:015 72q2�2 þ 0:003 12Q2�
2 � 0:000 04�4; (20)

and for the angular velocity, the energy and the angular momentum at ISCO:

�ISCO ¼ 1

6
ffiffiffiffiffiffiffiffi
6M

p ð1þ 0:748 60qþ 0:781 06q2 � 0:234 32Q2 þ 0:004 46�2 þ 0:983 28q3 � 0:644 92qQ2

þ 0:074 33Q3 þ 0:016 08q�2 þ 1:388 28q4 þ 0:128 13Q2
2 þ 0:250 50qQ3 � 0:021 32Q4

� 0:005 96Q2�
2 � 1:423 51q2Q2 þ 0:041 91q2�2 þ 0:000 07�4Þ; (21)
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EISCO ¼ 0:942 80� 0:032 08q� 0:029 77q2 þ 0:007 94Q2 � 0:000 10�2 � 0:034 17q3 þ 0:019 80qQ2

� 0:002 00Q3 � 0:000 35q�2 � 0:044 27q4 � 0:003 31Q2
2 � 0:006 21qQ3 þ 0:000 49Q4

þ 0:000 12Q2�
2 þ 0:040 44q2Q2 � 0:000 88q2�2 þ 0:000 01�4; (22)

LISCO

M
¼ 3:464 10� 0:942 81q� 0:444 52q2 þ 0:187 93Q2 � 0:001 95�2 � 0:395 79q3 þ 0:299 82qQ2

� 0:039 26Q3 � 0:005 19q�2 � 0:448 54q4 � 0:050 55Q2
2 � 0:092 82qQ3 þ 0:009 35Q4

þ 0:001 70Q2�
2 þ 0:495 06q2Q2 � 0:010 99q2�2 � 0:000 02�4: (23)

IV. RESULTS AND ANALYSIS

First, we verify our results in the vacuum case by using
the Kerr solution. We check our formula for the radius at
ISCO (20), by setting Q2 ¼ q2, Q3 ¼ q3, Q4 ¼ q4, and
� ¼ 0, and comparing it with the exact expression given by
Bardeen et al. [26]. Here, we find that the error forq < 0:5 is
smaller than 1%. Next, we compare our expression (20)
with the six-parametric exact solution given byPachón et al.
[27] along with the numerical data given by Berti and
Stergioulas (hereafter B&S) for selected EOS [28]. In this
case, for q < 0:3, the error still being smaller than 0.6% in
all the cases. It should be noted at this stage that despite the
mistake in Eqs. (2.24), (2.25), (B1), and (B2) of S&S (see
note [25]), the difference with our expressions (20)–(23) is
smaller than 0.1% and therefore negligible.

Now, we turn our attention to the electrovacuum
case. Starting from the following limiting statements:
(i) Magnetars lose rotational speed very quickly due to their
high magnetic field. (ii) Given their rarity, the possibility to
observe a new-born rapidly rotating magnetar is negligible.
(iii) The amount of data for observed magnetars is mini-
mum (see, for example, the catalog of the McMillan Pulsar
Group [29]) without any data for their higher-order multi-
polar structure. (iv) Theoretical studies reporting numerical
data of the multipolar structure of magnetars (cf. [15]), did
not present numerical data for the radius at ISCO nor
numerical data for higher mass-rotation multipole mo-
ments. (v) The Pachón et al. solution [27] fits very well
with the realistic numerical interior solutions for slowly
rotating neutron stars, possessing an arbitrary magnetic
dipole parameter. Let us assume that the Pachón et al. solu-
tion is a good model for realistic slowly rotating magnetars.

With the aim of testing our approximate formula (20), we
use the parameters calculated by B&S for neutron stars, with
the selected EOS AU and APRb (we refer the reader to
Ref. [28] for information about these EOS), extrapolated to
the case of a nonvanishing magnetic dipole. In order to
observe the effect of themagneticfieldon the radius, hereafter
we restrict ourselves to the use of the approximate formula
(20) in the presence of magnetic dipole � � 0, where this
approach will be labeled as ‘‘Mag’’ or in its absence � ¼ 0,
where this approach will be labeled as ‘‘non-Mag’’.

A rough estimate of the numerical solutions of the
Einstein-Maxwell equations presented by Bocquet et al.

(see Table 2 in [15]) for models of rapidly rotating magne-
tized neutron stars, suggests that the magnetic dipole M
belongs, in average, to the interval 0 to 1032 A m2, corre-
sponding to magnetic fields in the range 0 to 1012 T.
Hence, from the proportionality between M and the mag-
netic field B, the observed magnetic field for magnetars ca.
1011 T [29], should roughly correspond to a magnetic
dipole moment of about 1031 A m2. Moreover, in natural
units the magnetic dipole moment has an order of

M ¼ 10�6
ffiffiffiffiffiffiffiffiffiffi
�0G

p
c2

MS:I:; (24)

where MS:I: means the value of the magnetic dipole mea-
sured in the International System of Units (SI), which
represents a value of the magnetic dipole of M� 1 km2

for observed magnetars [see for instance the paragraph
around Eq. (20) of Ref. [27] ].
For the particular caseM ¼ 1 km2, in Fig. 1 we plot the

radii at ISCO for the six-parametric exact solution pre-
sented by Pachón et al. (Six-Parametric), the approximate
formula (20) with magnetic dipole (Mag) and the approxi-
mate formula without magnetic dipole (Non-Mag). Here,

(b)(a)
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 0  0.2  0.4  0.6  0.8

R
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C
O

q
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Non Mag.

Mag.

 13

 14
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 16
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 20

 0  0.2  0.4  0.6  0.8

q

Six-Parametric
Non Mag.
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FIG. 1 (color online). Case M ¼ 1 km2: Radius at ISCO
(henceforth measured in km) for the EOS AU sequence with a
constant rest mass corresponding to a nonrotating model of
1:578M� for prograde orbits [Fig. 1(a)]and for the EOS APRb
sequence with a constant rest mass corresponding to a sequence
that terminates at the maximum-mass nonrotating model in the
nonrotating limit of 2:672M� for prograde orbits [Fig. 1(b)]. The
difference between the Mag. and non-Mag. cases is negligible, as
depicted in the enlargements (insets).
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we use the data of B&S for EOSAU sequencewith constant
rest mass corresponding to a nonrotatingmodel of 1:578M�
[Fig. 1(a)] and the EOS APRb sequence with constant rest
mass corresponding to the maximum-mass model in the
nonrotating limit 2:672M� [Fig. 1(b)]. As can be easily
noted from the insets in Fig. 1, for the case of a dipolar
magnetic moment of 1031 A m2, the changes introduced in
the radius at ISCO by the approximate formula (20) taking
into account the magnetic dipole are negligible.

In Fig. 2we plot the radii at ISCO for the same parameters
as in Fig. 1, but using the high valueM ¼ 10 km2. For EOS
AU [Fig. 2(a)] the error for the caseqmax � 0:7 is around 4%
for the non-Mag. case, while it is just close to 1% for Mag.
For EOS APRb [Fig. 2(b)] the errors are 1% for non-Mag.
and 0.5% for Mag. Therefore, it can be concluded that for
very strong magnetic fields (10 times larger than the ones
observed for magnetars) the influence of the magnetic
field on the radius at ISCO is significantly important, pro-
ducing a decreasing tendency on the radius at ISCOwith the
increasing of the magnetic dipole strength.

Finally, just to illustrate the influence of the magnetic
dipole M on the radius at ISCO for magnetars, in Fig. 3
we plot the radii at ISCO for the six-parametric exact
solution, the magnetized approximate solution and the
nonmagnetized one. Here we set the multipole moments
in accordance with typical values for observed magnetars:
M ¼ 1:402M�, q ¼ Q2 ¼ Q3 ¼ Q4 ¼ 10�3. It can be
seen that the radius at ISCO is affected by the existence
of magnetic dipole, with an appreciable variation with
respect to the nonmagnetized case. At �� 2 (correspond-
ing to a value of the magnetic dipole of about 0:5	
1032 A m2), the errors are close to 3% for the nonmagne-
tized version and around 1% for the magnetized version.
With this examplewe intend to show that the same tendency
as discussed above holds for realistic values of magnetars.

From a mathematical point of view, the strong influence
of the magnetic dipole for � 
 1, can be explained by
taking into account that the magnetic dipole parameter �

appears into the metric functions by means of j�2j and
products of imaginary and real parts of �, so for the
dimensionless magnetic dipole parameter� its lower order
in the metric functions, and therefore in the ISCO formu-
las, is of the order�2. From a physical point of view, it is a
well-known fact that in GR the magnetic field could induce
observable effects into the space-time (see, e.g., [30] and
references therein) and therefore changes onto the dynam-
ics of nonmagnetized neutral particles orbiting around such
sources can be expected [31].

V. CONCLUDING REMARKS

In this paper, we have obtained simple approximate for-
mulas for the radius, the angular velocity, the energy and the
angular momentum of a neutral test particle at the ISCO.
These formulas correct the results obtained by Shibata and
Sasaki [16] and generalize it to the case of neutral test
particles moving on the equatorial plane around a rotating
source endowed with a magnetic dipole. In order to test the
accuracy of our approximate expressions, we first have
compared it with the radius at ISCO (calculated for non-
magnetized neutron stars) bymeans of theKerr solution, the
six-parametric exact solution given by Pachón et al. [27],
and the numerical data given by Berti and Stergioulas [28]
for some selected EOS. In all cases, our formula differs
from the numerical results by at most 0.6% in the slow-
rotation regime (i.e. for q � 0:3). As a main result, it was
found that when using realistic parameters for magnetars
(including the magnetic dipole moment of the source), the
radius at ISCO exhibits appreciable deviations with a ten-
dency to decrease away from its nonmagnetized version,
only if the magnetic field strength is higher than 100 GT.
Finally, we want to remark that theoretical models for
slowly rotating magnetars including numerical data for
the higher multipolar structure and the radius at ISCO are
desirable.
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FIG. 2 (color online). Case M ¼ 10 km2: Same EOS as in
Fig. 1. The difference between the Mag. and non-Mag. cases is
appreciably more marked.
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FIG. 3 (color online). Dependence of RISCO with � for pa-
rameters of observed magnetars. Note that when � becomes
larger the radius becomes smaller and the formula with the
magnetic dipole (labeled as Mag.) is close to the analytical
solution (labeled as Six-Parametric.)
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APPENDIX: COEFFICIENTS FOR THE ERNST
POTENTIALS ON THE SYMMETRYAXIS

The following expressions show the data on the symme-
try axis mi :¼ a0;i and qi :¼ b0;i, obtained by using the

procedure of Fodor et al. [23] with the formulas given by
Sotiriou and Apostolatos [24], in order to get a source with
the following multipole structure: Mass M0 ¼ M, angular
momentum M1 ¼ qM2, mass quadrupole M2 ¼ �Q2M

3,
current octupole moment M3 ¼ �Q3M

4, 24-pole of mass
M4 ¼ Q4M

5, and magnetic dipole moment M ¼ �M2

(all the other multipolar moments are set to zero),

a0;0¼M; a0;1¼ iM2q;a0;2¼�M3Q2; a0;3¼�iM4Q3;a0;4¼ 1

70
M5ð10q2�3�2�10Q2þ70Q4Þ;

a0;5¼�i
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[6] W. Kluźniak, P. Michelson, and R. Wagoner, Astrophys. J.
358, 538 (1990); W. Kluźniak and R.V. Wagoner,
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