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A Lagrangian density is provided that allows the recovery of the Z4 evolution system from an action

principle. The resulting system is then strongly hyperbolic when supplemented by gauge conditions like

‘‘1þ log’’ or ‘‘freezing shift,’’ suitable for numerical evolution. The physical constraint Z� ¼ 0 can be

imposed just on the initial data. The corresponding canonical equations are also provided. This opens the

door to analogous results for other numerical-relativity formalisms, like BSSN (Baumgarte-Shapiro-

Shibata-Nakamura), that can be derived from Z4 by a symmetry-breaking procedure. The harmonic

formulation can be easily recovered by a slight modification of the procedure. This provides a mechanism

for deriving both the field evolution equations and the gauge conditions from the action principle, with a

view on using symplectic integrators for a constraint-preserving numerical evolution. The gauge sources

corresponding to the ‘‘puncture gauge’’ conditions are identified in this context.
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I. INTRODUCTION

The role of action principles is so crucial in theoretical
physics that its importance cannot be overemphasized. In
the case of general relativity, the standard action was pro-
posed by Hilbert since the very beginning of the theory,
although the Hamiltonian formulation had to wait for dec-
ades [1,2]. The reason for this long delay is probably related
to the complexity of the Cauchy problem for Einstein’s
equations, which becomes manifest in the 3þ 1 (space plus
time) decomposition [2]. The coordinate-gauge freedom
produces a mismatch between the number of dynamical
fields and that of true evolution equations: four of the field
equations are indeed (energy-momentum) constraints.
This rich structure opens the door to many different
approaches.

On the other hand, by the end of the past century, some
hyperbolic extensions of Einstein’s equations were devel-
oped with a view on numerical-relativity applications
[3–6]. This emergent field is now more mature: there
are two main formalisms currently used in numerical
simulations. One is BSSN (Baumgarte-Shapiro-Shibata-
Nakamura) [7,8], working at the 3þ 1 level, and the other
is the class of generalized harmonic formalisms [9–11],
working at the four-dimensional level. A unifying frame-
work is provided by the Z4 formalism [12], which allows
the recovery of the generalized harmonic one by relating
the additional vector field Z� with the harmonic ‘‘gauge

sources’’ [9]. On the other hand, it allows one to recover (a
specific version of) BSSN by a symmetry-breaking process
in the transition from the four-dimensional to the three-
dimensional formulations [13,14].

There is a growing interest in incorporating the new
hyperbolic formulations into the Lagrangian/Hamiltonian
framework. An example is the usage of the ‘‘densitized

lapse’’ [3] as a canonical variable, leading to a modification
in the standard form of the canonical evolution equations
[15]. Reciprocally, there are very recent attempts of mod-
ifying the ADM action in order to incorporate coordinate
conditions of the type used in numerical relativity [16,17],
with a view on using symplectic integrators for the time
evolution, which could ensure constraint preservation in
numerical simulations [18]. On a different context, a well-
posed evolution formalism developed from a Lagrangian
formulation could be a good starting point for quantum
gravity applications.
In this paper we derive for the first time the Z4 formalism

from an action principle by introducing a Lagrangian den-
sity which generalizes the Einstein-Hilbert one. We also
provide the corresponding Hamiltonian, via the Legendre
transformation. This is a crucial step towards the
Hamiltonian formulation of other numerical-relativity for-
malisms, like BSSN. On the other hand, we recover the
generalized harmonic formulations as usual, by relating the
additional vector field Z� with the harmonic gauge sources.

This mechanism is generalized by identifying the gauge
sources which correspond to the current numerical-
relativity coordinate conditions, as we show explicitly for
the ‘‘puncture gauge’’: the combination of the ‘‘1þ log’’
slicing and the gamma-driver conditions.

II. THE ACTION PRINCIPLE

Let us consider the generic action

S ¼
Z

d4xL (1)

with a Lagrangian density which generalizes the Einstein-
Hilbert one by including an extra four-vector Z�, namely,
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L ¼ ffiffiffi
g

p
g��½R�� þ 2r�Z�� (2)

(we restrict ourselves to the vacuum case), with the Ricci
tensor written in terms of the connection coefficients

R�� ¼ @��
�
�� � @ð��

�
�Þ� þ �

�
����

�� � �
�
����

�� (3)

(round brackets denote symmetrization).
Now let us follow the well-known Palatini approach, by

considering independent variations of the metric density
h�� ¼ ffiffiffi

g
p

g��, the connection coefficients ��
��, and the

vector Z�. From the h�� variations we get directly the

Z4 field equations [12]

R�� þr�Z� þr�Z� ¼ 0; (4)

which are currently used in many numerical-relativity
developments [14].

From the �
�
�� and the Z� variations we get a coupled set

of equations which can be decomposed in a covariant way
into the tensor equation

r�g
�� ¼ 0; (5)

which fixes the connection coefficients in terms of the
metric, and the vector condition

Z� ¼ 0: (6)

Let us note here the different role of the conditions (5) and
(6). As there are much more independent connection
coefficients than evolution equations in (4), we will con-
sider condition (5) as a constraint enforcing the metric
connection a posteriori, that is after the variation process.
In this way, we will ensure that Eq. (4) is identical to the
original Z4 equations, rather than some affine generaliza-
tion. For this reason, we will assume a metric connection
everywhere in what follows.

The case of condition (6) is different, as the Z4 Eq. (4)
actually provides evolution equations for every component
of Z�. Then, (6) is a standard primary constraint and we

have a choice among different strategies for dealing with it.
If we enforce (6) into the Z4 field Eq. (4), we get nothing
but Einstein’s equations. This is not surprising because our
Lagrangian obviously reduces to the Einstein-Hilbert one
when Z� vanishes. The problem is that the plain Einstein

field equations do not lead directly to a well-posed initial
data problem. This is why the original harmonic formula-
tion [19–21] was used instead in the context of the Cauchy
problem [22]. For the same reason, other formulations
(BSSN [7,8], generalized harmonic [9–11], Z4 [12,13])
are currently considered in numerical relativity.

We can alternatively follow a different strategy. Instead
of enforcing (6), we can deal with this condition as an
algebraic restriction to be imposed just on the initial data,
that is

Z�jt¼0 ¼ 0: (7)

In this way, we can keep the Z4 field equations which,
when supplemented with suitable coordinate conditions,
lead to a strongly hyperbolic evolution system [13,14].
The consistency of this ‘‘relaxed’’ approach requires that
the constraint (6) should be actually preserved by the Z4
field Eq. (4). In this way, the solutions obtained from initial
data verifying (6) will actually minimize the proposed
action (1).
Allowing for the conservation of the Einstein tensor,

which is granted after the metric connection enforcement,
we derive from (4) the second-order equation, linear-
homogeneous in Z

r�½r�Z� þr�Z� � ðr�Z
�Þg��� ¼ 0: (8)

It follows that the necessary and sufficient condition for the
preservation of the constraint (6) is to impose also its first
time-derivative conditions in the initial data, that is

ð@0Z�Þjt¼0 ¼ 0: (9)

Note that, allowing for (7) and the Z4 field equations, the
secondary constraints (9) amount to the standard energy
and momentum constraints, which are then to be imposed
on the initial data in addition to (7).
This relaxed treatment of the constraints (6) may look

unnatural. But it is just the reflection of a common practice
numerical relativity (‘‘free evolution’’ approach), where
four of the ten field equations (the energy-momentum
constraints) are not enforced during the evolution, being
imposed just in the initial data instead. The introduction of
the extra four-vector in the Z4 formalism actually provides
a simpler implementation of the same idea.

III. HAMILTONIAN FORMALISM

A detailed look at the Lagrangian density (2) shows that
the time derivatives of most of the variables are not present
in L. The only exceptions are the combinations

�0
�� � �0

ð��
�
�Þ� þ 2�0

ð�Z�Þ: (10)

This dynamical subset of variables can be decomposed into

f�0
ij; Zi � 1

2ð�k
ki � �0

0iÞ; Z0 � 1
2�

k
k0gði; j; k ¼ 1; 2; 3Þ: (11)

The corresponding canonical momenta are given, respec-
tively, by

fhij; 2h0i; 2h00g: (12)

The remaining quantities

f�k
��;�

0
0�g (13)

can be considered as a sort of Lagrange multipliers, in-
troducing constraints into the dynamical system, as their
time derivatives do not enter the Lagrangian (see for in-
stance Ref. [23]).
Note that our Lagrangian (2) is linear in the time

derivatives. This means that the relationship between field
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velocities and momenta cannot be inverted. The canonical
momenta corresponding to (12) and (13), vanish identically,
and the ones corresponding to (11) coincide with the metric
density components (12). This means that the Lagrangian
(2) is a singular one: the corresponding (constrained)
canonical formalism can be developed following the work
of Dirac [24].

We will rather sketch here a simpler approach, by per-
forming a limited Legendre transform, in the sense that it
will only affect the dynamical subset (11), with canonical
momenta (12). The remaining quantities will be considered
as Lagrange multipliers, for which no Legendre transfor-
mation is required. We obtain in this way the Hamiltonian
function

H ¼ �h��f@k½�k
�� � �k

�ð��
�� � 2Z�Þ�

þ ð��
�� � 2Z�Þ��

�� � ��
����

��g; (14)

where the metric densities are considered here as the
canonical momenta associated with the dynamical fields
(11).

The Hamilton equations for the fields (11) are precisely
the Z4 Eq. (4). The Hamilton equations for their momenta
(12) can be written as

@�h
�0 ¼ �h���0

��; (15)

@�h
�i ¼ �h���i

��; (16)

@0h
ij ¼ hijð��

�0 � 2Z0Þ � 2h�ði�jÞ
�0; (17)

which must be supplemented with the constraints derived
from the Lagrange multipliers subset (13). A straightfor-
ward calculation shows that the full set of Hamilton equa-
tions is still equivalent to the Z4 Eq. (4), plus the metric
connection requirement (5), plus the vanishing of Z� (6).

Indeed, allowing for (5) and (6), the subsystem (15)–(17) is
verified identically.

Note that in all our developments we have preserved
general covariance. Our action integral (1) is a true scalar
and, in spite of other alternatives, we have avoided the
addition of total divergences which could have simplified
our developments to some extent, at the price of adding
boundary terms. This means that we keep at this point the
full coordinate-gauge freedom.

This is reassuring from the theoretical point of view, but
it can be a disadvantage if one is planning to use symplectic
integrators for numerical evolution, as the required coor-
dinate conditions must be supplied from the outside of
the canonical formalism. This is why some recent works
are trying to incorporate the coordinate conditions, via
Lagrange multipliers, into the canonical framework
[16,17].

IV. GENERALIZED HARMONIC SYSTEMS

There is still another possibility, which allows a more
direct specification of a coordinate gauge at the price of
breaking the covariance of the evolution equations, which
are currently used in many numerical-relativity develop-
ments [14]. We can enforce in the Z4 Eq. (4) the following
assignment for Z�:

Z� ¼ �1
2�

�
��g�� � �1

2�
�: (18)

The vanishing of Z� will amount in this way to the

‘‘harmonic coordinates’’ condition, which can be consid-
ered then as a constraint to be imposed just in the initial
data, that is

ð��
��g��Þjt¼0 ¼ 0 (19)

(note that the extra field Z� has disappeared in the pro-

cess). The resulting field equations

R�� � @ð���Þ þ �
�
���� ¼ 0 (20)

lead, after imposing the metric connection condition (5), to
the manifestly hyperbolic second-order system

g��@2��g�� ¼ 2g��g��½@�g��@�g������������: (21)

This corresponds to the classical harmonic formulation of
general relativity [19–21], which is known to have a
well-posed Cauchy problem [22].
We have derived in this way the harmonic formalism

through the noncovariant prescription (18). The harmonic
constraint (19) is automatically preserved by the resulting
(harmonic) evolution system, provided that we also en-
force the energy-momentum constraints on the initial data.
This can be seen in a transparent way by replacing directly
(18) into the covariant constraint-evolution Eq. (8) and
then into the resulting conditions (9).
The prescription (18) can be generalized in order to

enforce other coordinate gauges that are also currently
used in numerical relativity. The simpler formulations
[9,11] correspond to the replacement

Z� ¼ �1
2ð�� þH�Þ; (22)

where the gauge sources H� are explicit functions of the
metric and/or the spacetime coordinates. More general
choices of H�, like that of Ref. [25], would require a
more elaborate treatment.
The same mechanism can be applied to coordinate

conditions derived in the 3þ 1 framework, where the
spacetime line element is decomposed as

ds2 ¼ ��2dt2 þ �ijðdxi þ �idtÞðdxj þ �jdtÞ: (23)

The spacetime slicing is given by the choice of the time
coordinate. In this context, the harmonic slicing condition
can be generalized to [13]

ð@t � �k@kÞ� ¼ �f�2trK; (24)
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whereKij ¼ ���0
ij stands for the extrinsic curvature of the

time slices. The case f ¼ 1 corresponds to the harmonic
time-coordinate choice, whereas the choice f ¼ 2=�
corresponds to the popular 1þ log time slicing.

In order to get the replacement, of the form (22), which
connects this condition with our formulation, we must
rewrite (24) in a four-dimensional form with the help of
the unit normal n� to the constant time hypersurfaces,

that is

n� ¼ ��0
�; n� ¼ ð���

0 þ ��
i �

iÞ=�: (25)

We can now decompose the four-dimensional Christoffel
symbols in terms of the standard 3þ 1 quantities (see
Table I). This provides a convenient way of translating
3þ 1 conditions like (24) in terms of four-dimensional
objects.

We can obtain in this way, after an straightforward
calculation, the gauge sources corresponding to the class
of slicing conditions (24), namely,

H0 ¼ ð1� 1=fÞ�0
��n

�n�: (26)

We will use now (22) for replacing the quantity Z0 in the
Z4 equations. Its evolution equation gets transformed in
this way into a second-order evolution equation for the
lapse function �, which governs the spacetime slicing. As
the first-order slicing condition (24) has been translated
into a specification of Z0, and allowing for (8) and (24) will
become a first integral of the second-order evolution sys-
tem, we can impose it just in the initial data together with
the energy-momentum constraints. This approach is new in
3þ 1 formalisms, but a common practice in the harmonic-
like ones.

The same technique can be used for ‘‘gamma-driver’’
shift prescriptions. A first-order reduction of the original
‘‘gamma-freezing’’ condition [26] is given by [27]

ð@t � �k@kÞ�i ¼ �~�i � 	�i; (27)

where ~�i stands here for the contraction of the three-
dimensional conformal connection, that is

~� i � �ij�rsð�jrs þ 1
3�rsjÞ: (28)

The corresponding gamma-driver gauge sources are given
by

Hi ¼
�
1� �2

�

�
�i��n

�n� þ 1

3
���ig

��

þ
�
1

3
� �2

�

�
���in

�n� � 	=�g0i: (29)

We can use again (22), this time for replacing the space
vector Zi in the Z4 equations. Its evolution equation get
transformed in this way into a second-order evolution equa-
tion for the shift components �i, which determine the time
lines. Again, the first-order gamma-driver condition (27)
becomes a first integral of the resulting (second-order) shift
evolution equation. At the same time, one gets rid of the
additional variables Zi (as we did for Z

0 with the analogous
replacement, leading to the lapse evolution equation).

V. CONCLUSIONS AND OUTLOOK

In summary, we are proposing the action (1), which
generalizes the Einstein-Hilbert one. Starting from this
action one gets directly the Z4 field equations, plus the
metric connection condition (which is to be enforced a
posteriori in our Palatini approach), plus the constraints (6)
stating the vanishing of Z�. We have shown how a suitable

treatment of these constraints allows working with the Z4
covariant evolution in the way one usually does in numeri-
cal relativity. The price to pay for this general-covariant
approach is that closing the evolution system requires a
separate coordinate-gauge specification. The challenge is
then to incorporate the evolution equations for the gauge-
related quantities (lapse and shift) into the canonical for-
malism, either via Lagrange multipliers [16,17] or by any
other means.
We have also presented an alternative strategy, based in

the gauge sources approach, which characterizes the gen-
eralized harmonic formalisms. This allows one to dispose
of the additional Z� vector field by enforcing at the same

time the required coordinate conditions by means of some
generalized gauge sources. The advantage of this second
approach, at the price of getting a noncovariant evolution
system, is that it can allow a direct use of symplectic
integrators, devised to ensure constraint preservation dur-
ing numerical evolution (see for instance Ref. [18]). We
have actually identified the gauge sources corresponding to
some standard 3þ 1 gauge conditions, like the puncture
gauge consisting of the 1þ log lapse plus the gamma-
driver shift prescriptions. The fact that these popular gauge
conditions can fit into a Lagrangian/Hamiltonian approach,
in the way we have shown, opens the door to new
numerical-relativity developments.
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