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In chameleon dark energy models, local gravity constraints tend to rule out parameters in which

observable cosmological signatures can be found. We study viable chameleon potentials consistent with a

number of recent observational and experimental bounds. A novel chameleon field potential, motivated by

fðRÞ gravity, is constructed where observable cosmological signatures are present both at the background

evolution and in the growth rate of the perturbations. We study the evolution of matter density

perturbations on low redshifts for this potential and show that the growth index today �0 can have

significant dispersion on scales relevant for large scale structures. The values of �0 can be even smaller

than 0.2 with large variations of � on very low redshifts for the model parameters constrained by local

gravity tests. This gives a possibility to clearly distinguish these chameleon models from the �-cold-dark-

matter (�CDM) model in future high-precision observations.
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I. INTRODUCTION

The accelerated expansion of the Universe today is a very
important challenge faced by cosmologists [1]. For an
isotropic comoving perfect fluid, a substantially negative
pressure is required to give rise to the cosmic acceleration.
One of the simplest candidates for dark energy is the cos-
mological constantwith an equation of statewDE ¼ �1, but
we generally encounter a problem to explain its tiny energy
density consistent with observations [2].

There are alternative models of dark energy to the
cosmological constant scenario. One such model is quin-
tessence based on a minimally coupled scalar field with a
self-interacting potential [3]. In order to realize the cosmic
acceleration today, the mass of quintessence is required to
be very small (m� � 10�33 GeV). From a viewpoint of

particle physics, such a light scalar field may mediate a
long-range force with standard model particles [4]. For
example, the string dilaton can lead to the violation of
the equivalence principle through the coupling with bary-
ons [5]. In such cases we need to find some mechanism to
suppress the fifth force for the consistency with local
gravity experiments.

There are several different ways to screen the field
interaction with baryons. One is the so-called run away
dilaton scenario [6] in which the field coupling Fð�Þ with
the Ricci scalar R is assumed to approach a constant value
as the dilaton � grows in time [e.g., Fð�Þ ¼ C1 þ C2e

��

as � ! 1]. Another way is to consider a field potential
having a large mass in the region of high density where
local gravity experiments are carried out. In this case the
field does not propagate freely in the local region, while on
cosmological scales the field mass can be light enough to
be responsible for dark energy.

The latter scenario is called the chameleon mechanism
in which a density-dependent matter coupling with the
field can allow the possibility to suppress an effective
coupling between matter and the field outside a spherically
symmetric body [7,8]. The chameleon mechanism can be
applied to some scalar-tensor theories such as fðRÞ gravity
[9,10] and the Brans-Dicke theory [11]. In fðRÞ gravity, for
example, there have been a number of viable dark energy
models [12] that can satisfy both cosmological and local
gravity constraints. For such models the potential of an
effective scalar degree of freedom (called ‘‘scalaron’’ [13])
in the Einstein frame is designed to have a large mass in the
region of high density. Even with a strong coupling

between the scalaron and the baryons (Q ¼ �1=
ffiffiffi
6

p
), the

chameleon mechanism allows the fðRÞ models to be con-
sistent with local gravity constraints.
The chameleon models are a kind of coupled quintes-

sencemodels [14] defined in the Einstein frame [7,8].While
the gravitational action is described by the usual Einstein-
Hilbert action, nonrelativistic matter components are
coupled to the Einstein frame metric multiplied by some
conformal factor which depends on a scalar (chameleon)
field. This is how the gravitational force felt by matter is
modified. While there have been many studies for experi-
mental and observational aspects of the chameleon models
[15–38], it is not clear which chameleon potentials are
viable if the same field is to be responsible for dark energy.
In this paper we identify a number of chameleon poten-

tials that can be consistent with dark energy as well as local
gravity experiments. We then constrain the viable model
parameter space by using the recent experimental and
observational bounds—such as the 2006 Eöt-Wash experi-
ment [39], the lunar laser ranging experiment [40], and the
WMAP constraint on the time variation of particle masses
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[41]. This can actually rule out some of the chameleon
potentials with natural model parameters for the matter-
coupling Q of the order of unity.

In order to distinguish the viable chameleon dark energy
models from the �CDM model, it is crucial to study both
the modifications in the evolution of the background cos-
mology and the modified evolution of the cosmological
density perturbations. For the former, we shall consider
the evolution of the so-called statefinders introduced in
Refs. [42,43] and show that these parameters can exhibit a
peculiar behavior different from those in the�CDMmodel.

On the other hand, the growth ‘‘index’’ � of matter
perturbations �m defined through d ln�m=d lna ¼ ð��

mÞ�,
where a is a scale factor and��

m is the density parameter of
nonrelativistic matter, is an important quantity that allows
us to discriminate between different dark energy models
and interest in this quantity was revived in the context of
dark energy models [44,45].

Its main importance for the study of dark energy models
stems from the fact that for�CDM the quantity � is known
to be nearly constant with respect to the redshift z; i.e.,
��CDM ¼ �0 � 0:02z to exquisite accuracy [46], with�0 �
�ðz ¼ 0Þ � 0:555 [44]. As emphasized in Ref. [46], large
variations of � on low redshifts could signal that we are
dealing with a dark energy model outside general relativity.
This was indeed found for some scalar-tensor dark energy
models [47] and fðRÞmodels [48–50]. Such large variations
can also occur in models where dark energy interacts with
matter [51,52]. This is exactly the case in chameleon mod-
els, which we investigate in this paper, because of the direct
coupling between the chameleon field � and all dustlike
matter. This direct coupling is however not confined to the
dark sector as in standard coupled quintessence.

An additional important point is the possible appearance
of a scale dependence or dispersion in �. Hence the be-
havior of � on low redshifts can be both time-dependent
and scale-dependent [53–55]. This dispersion can also be
present in the models investigated here. Using the obser-
vations of large scale structure and weak lensing surveys,
one can hope to detect such peculiar behaviors of � (see,
e.g., Ref. [56]). If this is the case this would signal that the
gravitational law may be modified on scales relevant to
large scale structures [45,54,55,57–62].

In this paper we study the evolution of � as well as its
dispersion, its dependence on the wave numbers of pertur-
bations. We shall show that some of the chameleon models
investigated here can be clearly distinguished from�CDM
through the behavior of � exhibiting both large variations
and significant dispersion, with the possibility to obtain
small values of � today as low as �0 & 0:2.

II. CHAMELEON COSMOLOGY

A. Background equations

In this section we review the basic background
evolution of chameleon cosmology. We consider the

chameleon theory described by the following action
[7,8,63]:

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
R

16�G
� 1

2
g��@��@��� Vð�Þ

�
þ Sm½�m;A

2ð�Þg���; (1)

where g is the determinant of the (Einstein frame) metric
g��, R is the Ricci scalar, G is the bare gravitational

constant, � is a scalar field with a potential Vð�Þ, and
Sm is the matter action with matter fields �m. At low
redshifts it is sufficient to consider only nonrelativistic
matter (cold dark matter and baryons), but for a general
dynamical analysis including high redshifts radiation must
be included.
We assume that nonrelativistic matter is universally

coupled to the (Jordan frame) metric A2ð�Þg��, the

Einstein frame metric g�� multiplied by a field-dependent

(conformal) factor A2ð�Þ. This direct coupling to the field
� is how the gravitational interaction is modified. We can

generalize this to arbitrary functions AðiÞð�Þ for each mat-
ter component �i, but in this work we will take the same
function Að�Þ for all components. We write the function
Að�Þ in the form

Að�Þ ¼ eQ�=Mpl ; (2)

where Mpl ¼ 1=
ffiffiffiffiffiffiffiffiffiffi
8�G

p
is the reduced Planck mass and Q

describes the strength of the coupling between the field �
and nonrelativistic matter. In the following we shall con-
sider the case in which Q is constant. In fact, the constant
coupling arises for Brans-Dicke theory by a conformal
transformation to the Einstein frame [8,11]. Even when
jQj is of the order of unity, it is possible to make the
effective coupling between the field and matter small
through the chameleon mechanism.
Let us consider the scalar field � together with non-

relativistic matter (density ��
m) and radiation (density �r)

in a spatially flat Friedmann-Lemaı̂tre-Robertson-Walker
space-time with a time-dependent scale factor aðtÞ and a
metric

ds2 ¼ g��dx
�dx� ¼ �dt2 þ a2ðtÞdx2: (3)

The corresponding background equations are given by

3H2 ¼ ð�� þ ��
m þ �rÞ=M2

pl; (4)

€�þ 3H _�þ V;� ¼ �Q��
m=Mpl; (5)

_� �
m þ 3H��

m ¼ Q��
m

_�=Mpl; (6)

_� r þ 4H�r ¼ 0; (7)

where �� � _�2=2þ Vð�Þ, V;� � dV=d�, and a dot rep-

resents a derivative with respect to cosmic time t. The
quantity ��

m is the energy density of nonrelativistic matter
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in the Einstein frame and we have kept the star to avoid any

confusion. Integration of Eq. (6) gives the solution ��
m /

a�3eQ�=Mpl . We define the conserved matter density:

�m � e�Q�=Mpl��
m; (8)

which satisfies the standard continuity equation, _�m þ
3H�m ¼ 0. Then the field equation (5) can be written in
the form

€�þ 3H _�þ Veff;� ¼ 0; (9)

where Veff is the effective potential defined by

Veff � Vð�Þ þ eQ�=Mpl�m: (10)

We emphasize that it is the Einstein frame which is the
physical frame. Because of the coupling between the field
and matter, particle masses do evolve with time in our
model.

We consider runaway positive potentials Vð�Þ in the
region �> 0, which monotonically decrease and have a
positive mass squared, i.e., V;� < 0 and V;�� > 0. We also

demand the following conditions:

lim
�!0

��������V;�

V

��������¼ 1; lim
�!1

V;�

V
¼ 0: (11)

The former is required to have a large mass in the region of
high density, whereas we need the latter condition to
realize the late-time cosmic acceleration in the region of
low density. At� ¼ 0 the potential approaches either1 or
a finite positive value V0. In the limit � ! 1 we have
either V ! 0 or V ! V1, where V1 is a nonzero positive
constant. If Q> 0 the effective potential Veffð�Þ has a
minimum at the field value �mð>0Þ satisfying the condi-
tion Veff;�ð�mÞ ¼ 0, i.e.,

V;�ð�mÞ þQð�m=MplÞeQ�m=Mpl ¼ 0: (12)

If the potential satisfies the conditions V;� > 0 and

V;�� > 0 in the region �< 0, there exists a minimum at

� ¼ �mð<0Þ provided that Q< 0. In fact this situation
arises in the context of fðRÞ dark energy models [9,10].
Since the analysis in the latter is equivalent to that in the
former, we shall focus on the case Q> 0 and V;� < 0 in

the following discussion.

B. Dynamical system

In order to discuss cosmological dynamics, it is conve-
nient to introduce the following dimensionless variables:

x1 �
_�ffiffiffi

6
p

HMpl

; x2 �
ffiffiffiffi
V

p
ffiffiffi
3

p
HMpl

; x3 �
ffiffiffiffiffi
�r

pffiffiffi
3

p
HMpl

:

(13)

Equation (4) expresses the constraint existing between
these variables, i.e.,

��
m � ��

m

3H2M2
pl

¼ 1��� ��r; (14)

where

�� � x21 þ x22; �r � x23: (15)

Taking the time derivative of Eq. (4) and making use of
Eqs. (5)–(7), it is straightforward to derive the following
equation:

H0

H
¼ � 1

2
ð3þ 3x21 � 3x22 þ x23Þ; (16)

where a prime represents a derivative with respect to N �
lna. A useful quantity is the effective equation of state

weff ¼ �1� 2

3

H0

H
¼ x21 � x22 þ

x23
3
: (17)

We also introduce the field equation of state w�, as

w� �
_�2=2� Vð�Þ
_�2=2þ Vð�Þ ¼

x21 � x22
x21 þ x22

: (18)

Using Eqs. (4)–(7), we obtain the following equations:

x01 ¼ �3x1 þ
ffiffiffi
6

p
2

�x22 � x1
H0

H

�
ffiffiffi
6

p
2

Qð1� x21 � x22 � x23Þ; (19)

x02 ¼ �
ffiffiffi
6

p
2

�x1x2 � x2
H0

H
; (20)

x03 ¼ �2x3 � x3
H0

H
; (21)

�0 ¼ � ffiffiffi
6

p
�2ð�� 1Þx1; (22)

where

� � �MplV;�

V
; � � VV;��

V2
;�

: (23)

From the conditions (11) it follows that the quantity
� decreases from 1 to 0 as � grows from 0 to 1. Since
x1 > 0 in Eq. (22), the condition �0 < 0 translates into

� ¼ VV;��

V2
;�

> 1: (24)

Chameleon potentials shallower than the exponential po-
tential (� ¼ 1) can satisfy this condition.
Once the field settles down at the minimum of the

effective potential (10), we have

x1 ’ 0; x2 ’
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Q

�
��

m

s
; (25)

which gives w� ’ �1 from Eq. (18). As the matter density

��
m decreases, the field evolves slowly along the instanta-
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neous minima characterized by (25). We require that � �
Q ¼ Oð1Þ during radiation and deep matter eras for con-
sistency with local gravity constraints in the region of high
density. For the dynamical system (19)–(22) there is an-
other fixed point called the ‘‘�-matter-dominated era
(�MDE)’’ [14] where �� ¼ weff ¼ 2Q2=3. However,

since we are considering the case in which Q is of the
order of unity, the effective equation of state weff is too
large to be compatible with observations. Only when
Q<Oð0:1Þ the �MDE can be responsible for the matter
era [14].

When the chameleon is slow-rolling along the minimum,
we obtain the following relation from Eqs. (15) and (25):

�

Q
’ ��

m

��

: (26)

While � � Q during the radiation and matter eras, � be-
comes the same order as Q around the present epoch. The
field potential is the dominant contribution on the right-
hand side of Eq. (4) today, so that

Vð�0Þ ’ 3H2
0M

2
pl ’ �c; (27)

where the subscript ‘‘0’’ represents present values and
�c ’ 10�29 g=cm3 is the critical density today.

III. CHAMELEON MECHANISM

In this section we review the chameleon mechanism as a
way to escape local gravity constraints. In addition to the
cosmological constraints discussed in the previous section,
this will enable us to restrict the forms of chameleon
potentials.

Let us consider a spherically symmetric space-time in
the weak gravitational background with the neglect of the
backreaction of metric perturbations. As in the previous
section we consider the case in which couplings Qi are the
same for each matter component (Qi ¼ Q), i.e., in which
the function Að�Þ is given by Eq. (2). Varying the action
(1) with respect to � in the Minkowski background, we
obtain the field equation

d2�

dr2
þ 2

r

d�

dr
¼ dVeff

d�
; (28)

where r is the distance from the center of symmetry and
Veff is defined in Eq. (10).

Assuming that a spherically symmetric object (radius rc
and mass Mc) has a constant density �m ¼ �A with a
homogeneous density �m ¼ �B outside the body, the ef-
fective potential has two minima at � ¼ �A and � ¼ �B

satisfying the conditions

V;�ð�AÞ þQð�A=MplÞeQ�A=Mpl ¼ 0; (29)

V;�ð�BÞ þQð�B=MplÞeQ�B=Mpl ¼ 0: (30)

Since Q�A=Mpl � 1 and Q�B=Mpl � 1 for viable field

potentials in the regions of high density, the conserved
matter density �m is practically indistinguishable from
the matter density ��

m in the Einstein frame.
The field profile inside and outside the body can be

found analytically. Originally this was derived in
Refs. [7,8] under the assumption that the field is frozen
around� ¼ �A in the region 0< r < r1, where r1ð<rcÞ is
the distance at which the field begins to evolve. It is
possible, even without this assumption, to derive analytic
solutions by considering boundary conditions at the center
of the body [26].
We consider the case in which the mass squared

m2
B � ðd2Veff=d�

2Þð�BÞ outside the body satisfies the con-
dition mBrc � 1, so that the mB-dependent terms can be
negligible when we match solutions at r ¼ rc. The result-
ing field profile outside the body (r > rc) is given by [26]

�ðrÞ ¼ �B � Qeff

4�Mpl

Mc

r
; (31)

where the effective coupling Qeff between the field and
matter is

Qeff ¼ Q

�
1� r31

r3c
þ 3

r1
rc

1

ðmArcÞ2

�
�
mAr1ðemAr1 þ e�mAr1Þ

emAr1 � e�mAr1
� 1

��
: (32)

The mass mA is defined by m2
A � ðd2Veff=d�

2Þð�AÞ.
The distance r1 is determined by the conditionm2

A½�ðr1Þ �
�A� ¼ Q�A, which translates into

�B ��A þQ�Aðr21 � r2cÞ=ð2MplÞ

¼ 6QMpl�c

ðmArcÞ2
mAr1ðemAr1 þ e�mAr1Þ

emAr1 � e�mAr1
; (33)

where �c ¼ Mc=ð8�rcÞ ¼ �Ar
2
c=ð6M2

plÞ is the gravita-

tional potential at the surface of the body.
The fifth force exerting on a test particle of a unit mass

and a coupling Q is given by F ¼ �Qr�=Mpl. Using Eq.

(31), the amplitude of the fifth force in the region r > rc is

F ¼ 2jQQeffjGMc

r2
: (34)

As long as jQeff j � 1, it is possible to make the fifth force
suppressed relative to the gravitational force GMc=r

2.
From Eq. (32) the effective coupling Qeff can be
made much smaller than Q provided that the conditions
�rc � rc � r1 � rc and mArc � 1 are satisfied. Hence
we require that the body has a thin shell and that the field is
heavy inside the body for the chameleon mechanism to
work.
When the body has a thin shell (�rc � rc), one can

expand Eq. (33) in terms of the small parameters �rc=rc
and 1=ðmArcÞ. This leads to
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	th � �B ��A

6QMpl�c

’ �rc
rc

þ 1

mArc
; (35)

where 	th is called the thin-shell parameter. As long as
mArc � ð�rc=rcÞ�1, this recovers the relation 	th ’
�rc=rc [7,8]. The effective coupling (32) is approximately
given by

Qeff ’ 3Q	th: (36)

If 	th is much smaller than 1 then one hasQeff � Q, so that
the models can be consistent with local gravity constraints.

As an example, let us consider the experimental bound
that comes from the solar system tests of the equivalence
principle, namely, the lunar laser ranging (LLR) experi-
ment, using the free-fall acceleration of the Moon (aMoon)
and the Earth (a	) toward the Sun (mass M
) [8,10,26].
The experimental bound on the difference of two acceler-
ations is given by

2jaMoon � a	j
ðaMoon þ a	Þ

< 10�13: (37)

Under the conditions that the Earth, the Sun, and the
Moon have thin shells, the field profiles outside the bodies
are given as in Eq. (31) with the replacement of corre-
sponding quantities. The acceleration induced by a fifth
force with the field profile �ðrÞ and the effective coupling
Qeff is a

fifth ¼ jQeffr�ðrÞ=Mplj. Using the thin-shell pa-

rameter 	th;	 for the Earth, the accelerations a	 and aMoon

are [8]

a	 ’ GM

r2

�
1þ 18Q2	2th;	

�	
�


�
; (38)

aMoon ’ GM

r2

�
1þ 18Q2	2th;	

�2	
�
�Moon

�
; (39)

where �
 ’ 2:1� 10�6, �	 ’ 7:0� 10�10, and �Moon ’
3:1� 10�11 are the gravitational potentials of Sun, Earth,
and Moon, respectively. Then the condition (37) reads

	th;	 <
8:8� 10�7

Q
: (40)

Using the value �	 ’ 7:0� 10�10, the bound (40) trans-
lates into

�B;	 & 10�15Mpl; (41)

where we used the condition �B;	 � �A;	. For the Earth

one has �A ’ 5 g=cm3 (mean density of the Earth) �
�B ’ 10�24 g=cm3 (dark matter/baryon density in our gal-
axy), so that the condition �B;	 � �A;	 is satisfied.

In Sec. IV we constrain viable chameleon potentials by
employing the condition (41) together with the cosmologi-
cal condition we discussed in Sec. II. In Sec. V we restrict
the allowed model parameter space further by using a

number of recent local gravity and observational
constraints.

IV. VIABLE CHAMELEON POTENTIALS

We now discuss the forms of viable field potentials that
can be in principle consistent with both local gravity and
cosmological constraints. Let us consider the potential

Vð�Þ ¼ M4fð�Þ; (42)

where M is a mass scale and fð�Þ is a dimensionless
function in terms of �.
The local gravity constraint coming from the LLR ex-

periment is given by Eq. (41), where�B;	 is determined by

solving

jMplf;�ð�B;	Þj ’ Q�B=M
4: (43)

Here we take �B ’ 10�24 g=cm3 for the homogeneous
density outside the Earth. Once the form of fð�Þ is speci-
fied, the constraint on the model parameter, e.g.,M, can be
derived.
From the cosmological constraint (26), �=Q is of the

order of 1 today. Then it follows that

jMplf;�ð�0Þj ’ Qfð�0Þ ’ Q�c=M
4; (44)

where we used Eq. (27).
We also require the condition (24), i.e.,

� ¼ ff;��

f2;�
> 1; (45)

for all positive values of�. We shall proceed to find viable
potentials satisfying the conditions (41) and (43)–(45).
From Eqs. (43) and (44) we obtain

f;�ð�B;	Þ
f;�ð�0Þ ’ �B

�c

’ 105: (46)

Let us consider the inverse-power-law potential Vð�Þ ¼
M4þn��n (n > 0), i.e.,

fð�Þ ¼ ðM=�Þn: (47)

Since � ¼ ðnþ 1Þ=n > 1, the condition (45) is automati-
cally satisfied. The cosmological constraint (44) gives

�0 ’ nMpl=Q: (48)

From Eq. (46) we find the relation between �0 and �B;	:

�0 ’ 105=ðnþ1Þ�B;	: (49)

Using the LLR bound (41), it follows that

�0 & 10�5ð3nþ2Þ=ðnþ1ÞMpl: (50)

This is incompatible with the cosmological constraint (48)
for n � 1 and Q ¼ Oð1Þ. Hence the inverse-power-law
potential is not viable.
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A. Inverse-power-law potential þ constant

The reason why the inverse-power-law potential does
not work is that the field value today required for cosmic
acceleration is of the order of Mpl, while the local gravity

constraint demands a much smaller value. This problem
can be circumvented by taking into account a constant term
to the inverse-power-law potential. Let us then consider the
potential Vð�Þ ¼ M4½1þ�ðM=�Þn� (n > 0), i.e.,

fð�Þ ¼ 1þ�ðM=�Þn; (51)

where � is a positive constant. The rescaling of the mass
term M always allows us to normalize the constant to be
unity in Eq. (51). For this potential the quantity � reads

� ¼ nþ 1

n

�
1þ 1

�

�
�

M

�
n
�
; (52)

which satisfies the condition �> 1. In the region
�ðM=�Þn � 1 we have that � ’ ðnþ 1Þ=n, which recov-
ers the case of the inverse-power-law potential. Meanwhile,
in the region �ðM=�Þn � 1, one has � � 1. The
latter property comes from the fact that the potential be-
comes shallower as the field� increases. This modification
of the potential allows a possibility that the model can be
consistent with both cosmological and local gravity
constraints.

The addition of a constant term to the inverse-power-law
potential does not affect the condition (46), which means
that the resulting bounds (49) and (50) are not subject to
change. On the other hand, the cosmological constraint
(48) is modified. Let us consider the case where the con-
dition �ðM=�0Þn � 1 is satisfied today, i.e., fð�0Þ ’ 1.
From Eq. (44) it follows that

M ’ �1=4
c ’ 10�12 GeV; (53)

and

�0 ’
�
n�

Mn

Mn
pl

�
1=ðnþ1Þ

Mpl ’ ð10�30nn�Þ1=ðnþ1ÞMpl: (54)

Hence the field value �0 today can be much smaller than
the Planck mass, unlike the inverse-power-law potential.
From Eqs. (50) and (54) we get the constraint

� & 1015n�10=n: (55)

If n ¼ 1, for example, one has� & 105. For larger n the
bound on � becomes even weaker. We note that the

condition �ðM=�Þn < 1 is satisfied for �=Mpl *

10�10=n�15=n1=n. This shows that even the field value
such as �B;	 ¼ 10�15Mpl satisfies the condition

�ðM=�B;	Þn < 1. Thus the term �ðM=�Þn is smaller

than 1 for the field values we are interested in (�B;	 &
� & �0).

A large range of experimental bounds for this model has
been derived in the literature (see Refs. [8,17,20,24]). For
Q ¼ n ¼ 1, it was found in Ref. [20] that the model is

ruled out by the Eöt-Wash experiment unless � & 10�5.
This applies for general n: to obtain a viable model forQ of
the order of unity one must impose a fine-tuning n � 1 or
� � 1.
The potentials, which have only one mass scale equiva-

lent to the dark energy scale, are usually strongly con-
strained by the Eöt-Wash experiment. We shall look into
this issue in more detail in Sec. V.

B. Construction of viable chameleon
potentials relevant to dark energy

The discussion given above shows that a function fð�Þ
that monotonically decreases without a constant term
has difficulty satisfying both cosmological and local
gravity constraints. This is associated with the fact that
for any power-law form of fð�Þ the condition
jMplf;�ð�0Þ=fð�0Þj ’ 1 leads to the overall scaling of

the function fð�0Þ itself, giving �0 of the order of Mpl.

The dominance of a constant term in fð�0Þ changes this
situation, which allows a much smaller value of�0 relative
to Mpl.

Another example similar to Vð�Þ ¼ M4½1þ�ðM=�Þn�
is the potential [15]

Vð�Þ ¼ M4 exp½�ðM=�Þn�; (56)

where �> 0 and n > 0. For this model the quantity

� ¼ 1þ nþ 1

n

1

�

�
�

M

�
n

(57)

is larger than 1. In the asymptotic regimes characterized by
�ðM=�Þn � 1 and �ðM=�Þn � 1 we have � ’ 1 and
� � 1, respectively. When �ðM=�Þn � 1 the function
fð�Þ ¼ exp½�ðM=�Þn� can be approximated as fð�Þ ’
1þ�ðM=�Þn, which corresponds to Eq. (51). In this
case the constraints on the model parameters are the
same as those given in Eqs. (53)–(55).
There is another class of potentials that behaves as

Vð�Þ ’ M4½1��ð�=MÞn� (�> 0, 0< n< 1) in the re-
gion �ð�=MÞn � 1. In fact this asymptotic form corre-
sponds to the potential that appears in fðRÞ dark energy
models. While the potential is finite at� ¼ 0 the derivative
jV;�j diverges as � ! 0 for 0< n< 1, so that the first of

the condition (11) is satisfied. In order to keep the potential
positive we need some modification of V in the region
�ð�=MÞn > 1.
In scalar-tensor theory it was shown in Ref. [11] that the

Jordan frame potential of the formUð�Þ ¼ M4½1��ð1�
e�2Q�=MplÞn� (0<�< 1, 0< n< 1) can satisfy both cos-
mological and local gravity constraints. In this case the

potential Vð�Þ in the Einstein frame is given by Vð�Þ ¼
e4Q�=MplUð�Þ, which possesses a de Sitter minimum due to
the presence of the conformal factor. Cosmologically the
solutions finally approach the de Sitter fixed point, so that
the late-time cosmic acceleration can be realized.
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Now we would like to consider a runaway positive
potential in the Einstein frame. One example is

Vð�Þ ¼ M4½1��ð1� e��=MplÞn�; (58)

where 0<�< 1 and 0< n< 1. This potential behaves as
Vð�Þ ’ M4½1��ð�=MplÞn� for � � Mpl and ap-

proaches Vð�Þ ! M4ð1��Þ in the limit � � Mpl (see

Fig. 1). For the potential (58) we obtain

�� 1 ¼ 1� nx��ð1� xÞn
n�xð1� xÞn ; x � e��=Mpl : (59)

One can easily show that the right-hand side is positive
under the conditions 0<�< 1, 0< n< 1, so that �> 1.
In both limits � ! 0 and � ! 1 one has � ! þ1. Since
� has aminimum at a finite field value, the condition� � 1
is not necessarily satisfied today [unlike the potential (56)].

Unless � is very close to 1 the potential energy today is
roughly of the order of M4, i.e., fð�0Þ � 1. From Eq. (44)
it then follows that

n�ð1� x0Þn�1x0 ’ Q; (60)

where x0 � e��0=Mpl . If �0 � Mpl, we have that

�0=Mpl ’ ðn�Þ1=ð1�nÞ. From Eq. (43) we obtain

n�ð1� xBÞn�1xB ’ 105Q; (61)

where xB � e��B=Mpl . Under the condition �B � Mpl we

have �B=Mpl ’ ð10�5n�=QÞ1=ð1�nÞ from Eq. (61). Then

the LLR bound (41) corresponds to

n � 1010–15n < Q=�: (62)

When � ¼ 0:5 and � ¼ 0:05 with Q ¼ 1, the constraint
(62) gives n * 0:63 and n * 0:56, respectively.

C. Statefinder analysis

The statefinder diagnostics introduced in Refs. [42,43]
can be a useful tool to distinguish dark energy models from
the �CDM model. The statefinder parameters are defined
by

r ¼ a
:::

aH3
; s ¼ r� 1

3ðq� 1=2Þ ; (63)

where q � � €a=ðaH2Þ is the deceleration parameter.
Defining h � H2, it follows that

q ¼ �1� h0

2h
; r ¼ 1þ h00

2h
þ 3h0

2h
; (64)

where a prime represents a derivative with respect to
N ¼ lna.
In the radiation dominated epoch we have h / e�4N ,

which gives ðr; sÞ ’ ð3; 4=3Þ. During the matter era r ap-
proaches 1, whereas s blows up from positive to negative
because of the divergence of the denominator in s (i.e.,
q ¼ 1=2). For the chameleon potentials (56) and (58) the
solutions finally approach the de Sitter fixed point charac-
terized by ðr; sÞ ¼ ð1; 0Þ. Around the de Sitter point the
solutions evolve along the instantaneous minima charac-

terized by ðx1; x2; x3Þ ¼ ð�= ffiffiffi
6

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2=6

p
; 0Þ with h / V.

Using Eq. (22) as well, one has h0=h ’ ��2 and h00=h ’
ð2�� 1Þ�4. Then the statefinder diagnostics around the
de Sitter point can be estimated as

r ’ 1þ
�
�� 1

2

�
�4 � 3

2
�2; (65)

s ’ � ð2�� 1Þ�4 � 3�2

3ð3� �2Þ : (66)

Since � finally approaches 0, Eq. (22) implies that
��3 ! 0 asymptotically. For the potential in which
� � 1 holds today it can happen that ��4 � �2, which
gives r ’ 1þ ��4 > 1 and s ’ �2��4=½3ð3� �2Þ�< 0
around the present epoch. In the upper panel of Fig. 2
we plot the evolution of the variables r and s for the
potential (56) in the redshift regime �1< z � 1=a�
1< 10. The statefinders evolve toward the de Sitter
point characterized by ðr; sÞ ¼ ð1; 0Þ from the regime
r > 1 and s < 0. This behavior is different from quin-
tessence with the power-law potential Vð�Þ ¼ M4þn��n

(n > 0) in which the statefinders are confined in the
region r < 1 and s > 0 [42,43].
The potential (58) allows the possibility that � is not

much larger than 1 even at the present epoch. In the regime
�2 � 1 we then have r ’ 1� 3�2=2< 1 and s ’ �2=3>
0. In fact we have numerically confirmed that the solutions

0 1 2 3 4
0.2

0.4

0.6

0.8

1.0

MPl

V
M

4

FIG. 1 (color online). The potential (58) versus the field � for
� ¼ 0:7 and n ¼ 0:7. The potential has a finite value V ¼ M4 at
� ¼ 0, but its derivatives diverge (jV;�j ! 1 and V;�� ! 1) as

� ! 0.
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enter this regime by today (see the lower panel of Fig. 2).
Finally they approach the de Sitter point from the regime
r < 1 and s > 0. Hence one can distinguish between cha-
meleon potentials from the evolution of statefinders.

V. LOCAL GRAVITY CONSTRAINTS ON
CHAMELEON POTENTIALS

In this section we discuss a number of local gravity
constraints on the chameleon potentials (56) and (58) in
details. Together with the LLR bound (41) we use the
constraint coming from 2006 Eöt-Wash experiments [39]
as well as the WMAP bound on the variation of the field-
dependent mass.

A. The WMAP constraint on the
variation of the particle mass

Because of the conformal coupling of the field � to
matter, any particle will acquire a �-dependent mass:

mð�Þ ¼ m0e
Q�=Mpl ; (67)

where m0 is a constant.
The WMAP data constrain any variation in mð�Þ,

between now and the epoch of recombination to be &
5% at 2
 ( & 23% at 4
) [41]. We then require that���������mð�Þ

m

��������¼ jeQð�0��recÞ=Mpl � 1j & 0:05; (68)

where �rec is the field value at the recombination epoch. If
we assume that the chameleon follows the minimum since
recombination then �0 � �rec, and the field in the cos-
mological background today must satisfy

Q�0=Mpl & 0:05: (69)

This provides a constraint on the couplingQ and the model
parameters of chameleon potentials.
Note that the WMAP constraint is not a local gravity

constraint. Nevertheless, it provides strong constraints on
the potential (58) with natural parameters and is therefore
considered in this section.

B. Constraints from the 2006 Eöt-Wash experiment

The 2006 Eöt-Wash experiment [39] searched for devia-
tions from the 1=r2 force law of gravity. The experiment
used two parallel plates, the detector and attractor, which
are separated by a (smallest) distance d ¼ 55�m. The
plates have holes of different sizes bored into them, and
the attractor is rotating with an angular velocity !. The
rotation of the attractor gives rise to a torque on the detector,
and the setup of the experiment is such that this torque
vanishes for any force that falls off as 1=r2. In between
the plates there is a ds ¼ 10�m BeCu sheet, which is for
shielding the detector from electrostatic forces.
The chameleon force between two parallel plates

(see, e.g., Ref. [24]) usually falls off faster than 1=r2,
implying a strong signature on the experiment. However,
if the matter coupling is strong enough, the electrostatic
shield will itself develop a thin shell. When this happens,
the effect of this shield is not only to shield electrostatic
forces, but also to shield the chameleon force on the
detector. This suppression is approximately given by a
factor expð�msdsÞ, where ms is the mass inside the elec-
trostatic shield. Hence the experiment cannot detect
strongly coupled chameleons.
The behavior of chameleons in the Eöt-Wash experi-

ment has been explained in Refs. [20,27,38]. We calculate
the Eöt-Wash constraints on our models numerically based
on the prescription presented in Ref. [27].

z 10

z 5

z 1

2.5 2.0 1.5 1.0 0.5 0.0

1.000

1.002

1.004

1.006

1.008

s

r

z 10

z 0.999

z 0

0.05 0.00 0.05 0.10 0.15

0.5

0.6

0.7

0.8

0.9

1.0

s

r

FIG. 2 (color online). (Top) Evolution of the statefinders r and
s for the potential (56) with n ¼ 1, Q ¼ 1, and � ¼ 1. The
solutions approach the de Sitter point at ðr; sÞ ¼ ð1; 0Þ from
the region r > 1 and s < 0. (Bottom) Evolution of statefinders
for the potential (58) with n ¼ 0:7, Q ¼ 1, and � ¼ 0:7. In this
case the solutions approach the de Sitter point from the region
r < 1 and s > 0.
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C. Combined local gravity constraints

1. Potential Vð�Þ ¼ M4 exp½�ðM=�Þn�
Let us first consider the inverse-power-law potential (56)

with n > 0. From Eq. (12) the field value �m at the
minimum of the effective potential Veff satisfies�

M

�m

�
nþ1 ¼ Q

�n

M

Mpl

�me
Q�m=Mpl

Vð�mÞ : (70)

In this model the field is in the regimeM � �m � Mpl for

the density �m we are interested in. Since Vð�mÞ can be
approximated as Vð�mÞ ’ M4, it follows that

�m

M
’
�
Q

�n

M

Mpl

�m

M4

��1=ðnþ1Þ
: (71)

Using the LLR bound (41) with the homogeneous den-
sity �m ’ 10�24 g=cm3 in our galaxy, we obtain the con-
straint

n � 1010–15n < Q=�: (72)

The WMAP bound (69) gives

Q<
Mpl

M

�
0:05nþ1

�n

�ð0Þ
m

M4

�
1=n

; (73)

where �ð0Þ
m is the matter density today, with �ð0Þ

m =M4 �
��ð0Þ

m =�ð0Þ
� � 1=3. Since Mpl=M � 1030, this condition is

well satisfied for Q, n, � of the order of unity.
For the Eöt-Wash experiment, the chameleon torque on

the detector was found numerically to be larger than the
experimental bound whenQ, n,� are of the order of unity.
Providing the electrostatic shield with a thin shell, we
require that n � 1, Q � 1, or � � 1 to satisfy the ex-
perimental bound.

In Fig. 3 we plot the region constrained by the bounds
(72) and (73), and the Eöt-Wash experiment for � ¼ 1.
This shows that only the large coupling region withQ � 1
can be allowed for n of the order of unity. A viable model
can also be constructed by taking values of�much smaller
than 1. Note that the WMAP bound (73) is satisfied for the
parameter regime shown in Fig. 3.

2. Potential Vð�Þ ¼ M4½1��ð1� e��=MplÞn�
Let us proceed to another potential (58) with 0< n< 1.

In the regions of high density where local gravity experi-
ments are carried out, we have� � Mpl and hence Vð�Þ ’
M4½1��ð�=MplÞn�. In this regime the effective potential

Veff has a minimum at

�m ¼
�
Q

�n

�m

M4

�
1=ðn�1Þ

Mpl: (74)

Recall that the LLR bound was already derived in
Eq. (62), which is the same as the constraint (72) of the
previous potential.
Assuming that the chameleon is at the minimum of its

effective potential in the cosmological background today,
the WMAP bound (69) translates into

Q * 0:05ð60n�Þ1=n; (75)

where we have used �ð0Þ
m =M4 � 1=3 in Eq. (74). However,

a full numerical simulation of the background evolution
shows that this is not always the case. For a large range of
parameters the chameleon has started to lag behind the
minimum, which again leads to a weaker constraint.
The Eöt-Wash experiment provides the strongest con-

straints when Q is of the order of unity for the potentials
(51) and (56). This is not the case for the potential (58),
because the electrostatic shield used in the experiment
develops a thin shell.
The mass inside the electrostatic shield is given by

m2
s ’ nð1� nÞ�

�
Q�s

�nM4

�ð2�nÞ=ð1�nÞ M4

M2
pl

: (76)

Using �s ’ 10 g=cm3 and ds ’ 10�m we have

msds ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð1� nÞ�

q �
Q

�n

�ð2�nÞ=ð1�nÞ
10ð6�35nÞ=ð1�nÞ: (77)

Taking Q and � to be of the order of unity, we find
msds � 1 as long as n * 0:2. The suppression of the
chameleon torque due to the presence of the electrostatic
shield makes the chameleon invisible in the experiment.
In Figs. 4 and 5 we plot the allowed regions constrai-

ned by the bounds (62) and (75), and the Eöt-Wash

FIG. 3 (color online). The combined local gravity constraints
on the potential (56) with � ¼ 1 in the ðn;QÞ plane. The shaded
region corresponds to the allowed parameter space. The natural
values of Q and n of the order of unity are excluded.
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experiments, for � ¼ 0:5 and � ¼ 0:05, respectively.
When � ¼ 0:5 the WMAP constraint gives the tightest
bound for Q * 0:2, and the parameter space Q & 1 is
viable for n * 0:7. If we decrease the values of � down
to 0.05, then the WMAP bound is well satisfied for the
parameter space shown in Fig. 5. Instead, the LLR experi-
ment provides the tightest bound in such cases. When
� ¼ 0:05, the region with 0:1 & Q & 10 and n * 0:6
can be allowed. The coupling Q as well as the parameter
n are not severely constrained for the potential (58).

VI. LINEAR GROWTH OF MATTER
PERTURBATIONS

We now turn our attention to cosmological perturbations
in chameleon cosmology. It is well-known that matter
perturbations allow us to discriminate between dark energy
models where the gravitational interaction is modified on
cosmic scales. We first review the general formalism and
derive the equation for linear matter perturbations. We also
introduce important quantities like the critical scale �c

below which modifications of gravity are felt and the
growth index �ðz; kÞ, a powerful discriminative quantity
for the study of the modified evolution of matter perturba-
tions as was explained in the introduction.
As we have seen in Sec. V, local gravity constraints

impose very strong boundaries on the potential (56), forc-
ing its parameters to take unnatural values. Moreover, for
viable choices of parameters, we have verified that the
linear perturbations behave in a manner similar to the
�CDM model, as �c is much smaller than the cosmic
scales we are interested in. On the other hand we have
shown that the model parameters of the potential (58)
are not severely constrained. In Sec. VI B we will show
that the potential (58) gives rise to some very interesting
observational signatures.

A. General formalism for cosmological perturbations

We consider scalar metric perturbations �, B, c , and �
around a flat Friedmann-Lemaı̂tre-Robertson-Walker
background. The line element describing such a perturbed
Universe is given by [64]

ds2 ¼ �ð1þ 2�Þdt2 � 2aB;idtdx
i

þ aðtÞ2½ð1þ 2c Þ�ij þ 2�;i;j�dxidxj: (78)

We decompose the field � into the background and inho-

mogeneous parts: �ðt; xÞ ¼ ~�ðtÞ þ ��ðt; xÞ. The energy-

momentum tensors TðmÞ
�� of nonrelativistic matter can be

decomposed as

T0ðmÞ
0 ¼ �ð��

m þ ���
mÞ; T0ðmÞ

i ¼ ���
mv;i; (79)

where v is the peculiar velocity potential of nonrelativistic
matter. In the following, when we express background
quantities, we drop the tilde for simplicity.
Let us consider the evolution of matter perturbations,

�m � ���
m=�

�
m in the comoving gauge (v ¼ 0). The quan-

tity �m corresponds to the gauge-invariant quantity intro-
duced in Refs. [64–66] when expressed in the comoving
gauge. In the Fourier space the first-order perturbation
equations are given by [67,68]

� ¼ �Q��=Mpl; (80)

_���
m þ 3H���

m � ��
mð�� 3H�Þ

�Qð��
m

_��þ ���
m

_�Þ=Mpl ¼ 0; (81)

FIG. 5 (color online). The combined local gravity constraints
on the potential (58) with � ¼ 0:05. The allowed parameter
space is determined by the LLR bound. The WMAP constraint is
satisfied for the whole parameter space in the figure.

FIG. 4 (color online). The combined local gravity constraints
on the potential (58) with � ¼ 0:5 in the ðn;QÞ plane. In this
case the allowed parameter space (shaded region in the figure) is
determined by the WMAP constraint and the LLR constraint.

RADOUANE GANNOUJI et al. PHYSICAL REVIEW D 82, 124006 (2010)

124006-10



€��þ3H _��þ
�
V;��þk2

a2

�
��þ2�V;�

� _�ð _��3H�þ�ÞþQð2���
mþ���

mÞ=Mpl¼0; (82)

_�þ 2H�þ 3 _H�� k2

a2
�

� 1

2M2
pl

ð���
m � 4� _�2 þ 4 _� _���2V;���Þ ¼ 0; (83)

where k is a comoving wave number and � � 3ðH��
_c Þ þ ðk2=aÞðBþ a _�Þ. From Eq. (81) it follows that

� ¼ _�m �Qð _��þ 3H��Þ=Mpl; (84)

where we have used Eq. (80). Plugging Eq. (84) into
Eqs. (82) and (83), we obtain

€��þ
�
3H þ 2Q

_�

Mpl

�
_��

þ
�
m2

� þ k2

a2
� 2Q

V;�

Mpl

� 2Q2 �
�
m

M2
pl

�
��

þ Q

Mpl

��
m�m � _� _�m ¼ 0; (85)

€�m þ
�
2H �Q

_�

Mpl

�
_�m � ��

m�m

2M2
pl

ð1� 2Q2Þ

þ
�
V;�

M2
pl

þ Q

Mpl

�
m2

� þ 2k2

a2
� 6H2 � 6 _H � 2 _�2

M2
pl

� 2Q
V;�

Mpl

� 2Q2 �
�
m

M2
pl

��
��þ 1

Mpl

�
�
2Q2

_�

Mpl

� 2 _�

Mpl

� 2QH

�
_�� ¼ 0; (86)

where m2
� ¼ V;�� is the mass squared of the chameleon

field.
As long as the field � evolves slowly (‘‘adiabatically’’)

along the instantaneous minima of the effective potential
Veff , one can employ the quasistatic approximation on
subhorizon scales (k � aH) [65,66,69]. This corresponds
to the approximation under which the dominant terms
in Eqs. (85) and (86) are those including k2=a2, m�, and

�m, i.e., �
m2

� þ k2

a2

�
�� ’ � Q

Mpl

��
m�m; (87)

€�m þ 2H _�m � ��
m�m

2M2
pl

ð1� 2Q2Þ

þ Q

Mpl

�
m2

� þ 2k2

a2

�
�� ’ 0; (88)

where we have also used the approximation _�=Mpl � H.

Combining these equations, it follows that

€�m þ 2H _�m � 4�Geff�
�
m�m ’ 0; (89)

where the effective gravitational coupling is given by

Geff ¼ G

�
1þ 2Q2 k2=a2

m2
� þ k2=a2

�
: (90)

An analogous modified equation was found in
Refs. [11,66,70], the crucial point being to elucidate the
physical significance ofGeff . We can understand the physi-
cal content of the modification of gravity by looking at
the corresponding gravitational potential in real space.
The gravitational potential (per unit mass) is of the type
VðrÞ ¼ �ðG=rÞð1þ 2Q2e�m�rÞ [71].
When we solve the full system of perturbations (86), we

can, for some of our models, get a small discrepancy
compared to (89). This can result in a non-negligible
difference of up to around 5% in the numerical calculation
of the growth rate of matter perturbations. This arises
mainly because the field � does not move exactly along
the minimum of the effective potential but is instead lag-
ging a little behind it.
We see that in chameleon models Geff is a scale-

dependent as well as a time-dependent quantity. Clearly
the scale-dependent driving force in Eq. (90) induces in
turn a scale dependence in the growth of matter perturba-
tions with two asymptotic regimes, i.e.,

Geff ¼ Gð1þ 2Q2Þ k=a � m� or � � �c (91)

Geff ¼ G k=a � m� or � � �c; (92)

where we have introduced the physical wavelength � ¼
ð2�=kÞa. We have in particular �0 ¼ 2�=k today (a ¼ 1).
The characteristic (physical) scale �c is defined by

�c ¼ 2�=m�: (93)

On scales � � �c matter perturbations do not feel the fifth
force during their growth. On the contrary, on scales much
smaller than �c they do feel its presence. During the matter
dominance (��

m ’ 1) the solutions to Eq. (89) are given by

�m / a½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ24ð1þ2Q2Þ

p
�1�=4 � � �c; (94)

�m / a � � �c: (95)

Hence, in the regime � � �c, the growth rate gets larger
than that in standard general relativity.
As mentioned earlier, a powerful way to describe the

growth of perturbations is by introducing the function
�ðk; zÞ defined as follows:

f ¼ ��
mðzÞ�ðk;zÞ; (96)

where
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f ¼ d ln�m

d lna
: (97)

Remember the definition �m � ���
m=�

�
m. The quantity �

can be time-dependent and also scale-dependent. It is
known that a large class of dark energy models inside
general relativity yields a quasiconstant � with values
close to that of the �CDM model, � � 0:55 [45,46].
Therefore any significant deviation from this behavior
would give rise to a characteristic signature for our cha-
meleon models. Since 0<��

mðzÞ< 1, smaller � implies a
larger growth rate of matter perturbations.

As we have seen before, the chameleon mechanism is
devised so that in high-density environments the mass of
the scalar field is large relative to its value in low-density
ones. During the cosmological evolution, the mass of the
field will follow this behavior, which means that �c will
move from small to large values. In other words, Geff will
evolve from the regime (92) to the regime (91). This
transition is scale-dependent, which is an important feature
of the growth of matter perturbations in chameleon [and
fðRÞ] models.

We consider the evolution of matter perturbations for the
wave numbers

0:01h Mpc�1 & k & 0:2h Mpc�1; (98)

where h describes the uncertainty of the Hubble parameter
H0 today, i.e. H0 ¼ 100h km sec�1 Mpc�1. The scales
(98) range from the upper limit of observable scales in
the linear regime of perturbations to the mildly nonlinear
regime (in which the linear approximation is still
reasonable).

Depending on the value of �c today (denoted as �c;0) and

on its recent evolution, three possibilities can actually
arise: (i) The model is hardly distinguishable from
�CDM. (ii) The model is distinguishable from �CDM
but shows no dispersion, i.e., no scale dependence. In
this case low values of �0 will also yield large slopes �

0
0 �

ðd�=dzÞðz ¼ 0Þ, much larger than in �CDM. (iii) The
model is distinguishable from �CDM and shows some
dispersion altogether. These three cases can be character-
ized using the quantity �0 � �ðz ¼ 0Þ. This classification
is analogous to what was done for some viable fðRÞmodels
[54] and it can be defined as follows:

(i) The region in parameter space for which �0 > 0:53
for all the scales described by (98). In this region �0

0

is small and � is nearly constant.
The region where �0 is degenerate, i.e., assumes the
same value for all the scales, with a value smaller
than 0.5. In this region �0

0 is large and there is a

significant variation of �.
(ii) The region where �0 shows some dispersion, i.e., a

scale dependence. For low �0, �
0
0 is large and we

have significant changes of �.
Models in the regions (ii) and (iii) can be clearly dis-

criminated from �CDM. Some examples are shown in

Figs. 6 and 7. We investigate below in more detail the
appearance of these characteristic signatures.

B. Observational signatures in the
growth of matter perturbations

The main question when looking at linear perturbations
in chameleon models is the order of magnitude of the scale
�c. If the chameleon mass m� is large such that �c is less

than the order of the galactic size, matter perturbations on
the scales relevant to large scale structures do not feel the
chameleon’s presence. This is actually the case for the
inverse-power exponential potential (56) with model pa-
rameters bounded by observational and local gravity con-
straints. Therefore, we will concentrate the analysis of the
perturbations on the potential (58).
In the regime �=Mpl � 1 one can employ the approxi-

mation Vð�Þ ’ M4½1��ð�=MplÞn�. In fact this approxi-

mation is valid for most of the cosmological evolution by
today. Then we obtain the field mass at the minimum of the
effective potential Veffð�Þ:

m� ’ 2�

�c;0

e�ð3ð2�nÞ=2ð1�nÞÞN; (99)

where �c;0 is the critical length today, given by

�c;0 ¼ 2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�nð1� nÞp Mpl

M2

�
Q

�n

�ð0Þ
m

M4

��ð2�nÞ=½2ð1�nÞ�
: (100)

Using the relation �ð0Þ
DE ¼ 3M2

plH
2
0�

ð0Þ
DE ’ M4, we find that

�c;0 is at most of the order of H�1
0 . If Q ¼ 1, n ¼ 0:6,

FIG. 6. The evolution of the growth index �ðzÞ versus the
redshift z in the model (58) with n ¼ 0:8, � ¼ 0:5, and Q ¼
1=

ffiffiffi
6

p
for four different values of k. For these parameters, the

model passes local gravity constraints. In this case the field is
lagging behind the minimum, which means that the approxi-
mated equation (89) provides the results slightly different from
this plot (by around 4% in the value of �0).
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� ¼ 0:05, and �ð0Þ
DE ¼ 0:72, for example, �c;0 � 0:4H�1

0 .

For the modes deep inside the Hubble radius today (�0 �
H�1

0 ) the perturbations are affected by the modification of

gravity.
Plugging Eq. (99) into Eq. (90), the effective gravita-

tional coupling can be expressed in the form

Geff ¼ G

�
1þ 2Q2

1þ e�AðN�NcÞ

�
; (101)

where

A ¼ 4� n

1� n
; (102)

Nc ¼ 2ð1� nÞ
4� n

ln

�
�0

�c;0

�
: (103)

Here A and Nc are the parameters describing, respectively,
the steepness of transition from the inferior to the superior
asymptote and the position of the half-amplitude value of
the function [i.e., Geff ¼ Gð1þQ2Þ].

The first interesting point to remark is that the steepness
of transition depends exclusively on the value of n, with a
step function as a limit when n ! 1 and a slower transition
for n ! 0. Nonetheless, it must be remembered that this is
so in the variable N. When converting back to the redshift
z, the logarithm scale introduces a distortion, which means
that the earlier a scale starts its transition, the slower this
transition will be. In this sense, there is a scale dependence
to the steepness of the transition, even if it does not appear
explicitly in Eq. (102).

If we want to get a better feel for the epoch of the
transition, we can define the redshift zc ¼ e�Nc � 1.
From Eq. (103) it follows that

zc ¼
�
�c;0

�0

�
2ð1�nÞ=ð4�nÞ � 1: (104)

As expected, the transition redshift is scale-dependent,
with higher values for the smaller scales. Moreover,
zc ! 0 for all scales when n ! 1. Since this is also the
limit at which the transition becomes a step function, we
have thus an indication that a transition that happens very
close to the present will necessarily be very steep. Another
remark is that the transition happens in the past (zc > 0) for
the scales �0 smaller than �c;0. Thus �c;0 is a good indica-

tion of the scale around which there will be a dispersion, as
it marks the scale that will be exactly in the middle of the
transition today.
If we write zc explicitly in terms of the parameters and

constants of the model, we obtain

zc¼
�ð�nÞ1=ð1�nÞ

1�n

k2M2
pl

M4

�
Q
�ð0Þ
m

M4

��ð2�nÞ=ð1�nÞ�ð1�nÞ=ð4�nÞ�1:

(105)

This shows that zc gets larger with increasing � (as the
deviation from the �CDM model is more significant) and/
or decreasing Q. Although the transition occurs earlier for
a weaker coupling Q, we need to take into account the fact
that the growth rate in the regime z < zc is smaller for a
weaker coupling.
Let us proceed to the numerical analysis of the growth of

perturbations. In Fig. 6 we plot the evolution of the growth

indices � for Q ¼ 1=
ffiffiffi
6

p
, n ¼ 0:8, and � ¼ 0:5 for a

number of different wave numbers within the range speci-
fied by Eq. (98). Note that these parameters satisfy the
local gravity constraints discussed in Sec. V (see Fig. 4). At
the present epoch these modes are in the regime (ii), with
very similar growth indices today (�0 ’ 0:46). As esti-
mated by Eq. (105) the transition redshift zc is larger
than the order of 1 for k * 0:05h Mpc�1, e.g., zc ¼ 2:3
for k ¼ 0:1h Mpc�1. The degenerate behavior similar to
that shown in Fig. 6 has also been found in some fðRÞ
models [48,54]. Numerically we have verified that values
of �0 in this case are slightly higher than those expected in
the asymptotic regime (� � �c). This discrepancy comes
from the fact that the chameleon field is lagging behind the
minimum of the potential for this choice of parameters. As
a result, we need to solve the full perturbation equations
(85) and (86) instead of the approximated equation (89).
Our numerical results show that there can be a discrepancy
of up to a few percent in the growth rate calculated with the
two different methods.
Another choice of parameters, which are compatible

with local gravity constraints, is made in Fig. 7, where
we see the evolution of the growth indices � for Q ¼ 1,

FIG. 7. The evolution of � versus the redshift z in the model
(58) with n ¼ 0:7, � ¼ 0:05, and Q ¼ 1 for four different
values of k. In this case the model passes local gravity con-
straints, too. Contrary to Fig. 6 we have a significant dispersion
of �, depending on the wave numbers k.
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n ¼ 0:7, and� ¼ 0:05. The behavior of the growth indices
is very different from the one shown in Fig. 6. Clearly this
corresponds to the regime (iii), in which �0 is dispersed
with respect to the wave numbers k. The reason for the
dispersion is that the transition to the regime � � �c

occurs on lower redshifts than in the case shown in Fig. 6.
In Fig. 8 we illustrate three different regimes in the

ðn;�Þ plane for the couplings Q ¼ 1=
ffiffiffi
6

p
and Q ¼ 1. For

the model parameters close to ðn;�Þ ¼ ð1; 0Þ, the pertur-
bations behave similarly to those in the�CDMmodel [i.e.,
in the region (i)]. Figure 8 shows that the limits imposed by
the constraints derived in Sec. V, although strong, allow the

large parameter space for the existence of an enhanced
growth of matter perturbations and for the presence of the
dispersion of �0. Finally we note that the large variation of
� in the regime z & 1 seen in Figs. 6 and 7 will also enable
us to distinguish the chameleon models from the �CDM
model.

VII. SUMMARYAND CONCLUSIONS

In this paper we have studied observational signatures of
a chameleon scalar field coupled to nonrelativistic matter.
If the chameleon field is responsible for the late-time
cosmic acceleration, the field potentials need to be consis-
tent with the small energy scale of dark energy as well as
local gravity constraints. We showed that the inverse-
power potential cannot satisfy both cosmological and local
gravity constraints. In general, we require that the chame-
leon potentials are of the form Vð�Þ ¼ M4½1þ fð�Þ�,
where the function fð�Þ is smaller than 1 today and M
is a mass that corresponds to the dark energy scale
(M 10�12 GeV).
The potential Vð�Þ ¼ M4 exp½�ðM=�Þn� is one of

those viable candidates. However, we showed that the
allowed model parameter space is tightly constrained by
the 2006 Eöt-Wash experiment. As we see in Fig. 3, the
natural parameters with n and Q of the order of unity are
excluded for � ¼ 1. Unless we choose unnatural values of
� smaller than 10�5, this potential is incompatible with
local gravity constraints for fn;Qg ¼ Oð1Þ.
On the other hand, the chameleon potential Vð�Þ ¼

M4½1��ð1� e��=MplÞn�, which has the asymptotic
form Vð�Þ ’ M4½1��ð�=MplÞn� in the regime � �
Mpl, can be consistent with a number of local gravity

experiments as well as cosmological constraints. In fact
this case covers the viable potentials of fðRÞ dark energy
models in the Einstein frame. The allowed parameter
regions in the ðn;QÞ plane are illustrated in Figs. 4 and 5
for� ¼ 0:5 and� ¼ 0:05. This potential is viable for n >
0:6 and for the coupling Q of the order of unity.
In order to distinguish the chameleon models from the

�CDM model at the background level, we discussed the
evolution of the statefinders ðr; sÞ defined in Eq. (63).
Unlike the �CDM model in which r and s are constant
(r ¼ 1, s ¼ 0) the statefinders exhibit a peculiar evolution,

as plotted in Fig. 2. For the potential Vð�Þ ¼ M4½1�
�ð1� e��=MplÞn� we found that r < 1 and s > 0 around
the present epoch, but the solutions approach the de Sitter
point ðr; sÞ ¼ ð1; 0Þ in future. The upcoming observations
of SN Ia may discriminate such an evolution from other
dark energy models.
We have also studied the growth of matter perturbations

for the chameleon potential Vð�Þ ¼ M4½1��ð1�
e��=MplÞn�. The presence of a fifth force between the field
and nonrelativistic matter (dark matter/baryons) modifies
the equation of matter perturbations, provided that the field

FIG. 8 (color online). The regions (i), (ii), and (iii) in the ðn;�Þ
space for Q ¼ 1=

ffiffiffi
6

p
(top) and for Q ¼ 1 (bottom). In the

region (i) all the modes have �0 > 0:53. In region (ii) �0 is
degenerate with the value smaller than 0.5, and (iii) shows the
regime where �0 is dispersed. It is clear that, for both choices of
Q, there are viable choices of parameters in which the deviation
from the �CDM model is present.
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mass m� is smaller than the physical wave number k=a, or

� < �c. Cosmologically the field is heavy in the past (i.e.,
for large density), but the mass m� decreases by today

(typically of the order of H0) in order to realize the late-
time cosmic acceleration. Then the transition from the
regime k=a < m� (� > �c) to the regime k=a > m� (� <

�c) can occur at the redshift zc given in Eq. (105). For the
perturbations on smaller scales (i.e., larger k) the critical
redshift zc tends to be larger.

For the model parameters and the coupling Q bounded
by a number of experimental and cosmological constraints,
we have studied the evolution of the growth index � of
matter perturbations. Apart from the ‘‘general relativistic
regime’’ in which two parameters n and � of the potential
(58) are close to ðn;�Þ ¼ ð1; 0Þ, we found that the values of
� today exhibit either dispersion with respect to the wave
numbers k [region (iii) in Fig. 8] or no dispersion, however
with �0 smaller than 0.5 [region (ii) in Fig. 8]. Both cases
can be distinguished from the �CDM model (where
� ’ 0:55). Moreover, as seen in Figs. 6 and 7, the variation
of � on low redshifts is significant.

From observations of galaxy clustering we have not yet
obtained the accurate evolution of �. This is linked to the
fact that all probes of clustering are plagued by a bias
problem. However upcoming galaxy surveys may pin
down the matter power spectrum to exquisite accuracy,
together with a better understanding of bias. In order to

confirm or rule out models like ours, one must also address
the observability of � both as a function of z and k.
We hope that future observations will provide an exciting
possibility to detect the fifth force induced by the chame-
leon scalar field.
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