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In this paper we discuss massive gravity in de Sitter space via the gravitational Higgs mechanism,

which provides a nonlinear definition thereof. The Higgs scalars are described by a nonlinear sigma

model, which includes higher derivative terms required to obtain the Fierz-Pauli mass term. Using the

aforesaid nonperturbative definition, we address the appearance of an enhanced local symmetry and a null

norm state in the linearized massive gravity in de Sitter space at the special value of the graviton mass to

the Hubble parameter ratio. By studying full nonperturbative equations of motion, we argue that there is

no enhanced symmetry in the full nonlinear theory. We then argue that in the full nonlinear theory no null

norm state is expected to arise at the aforesaid special value. This suggests that no ghost might be present

for lower graviton mass values and the full nonlinear theory might be unitary for all values of the graviton

mass and the Hubble parameter with no van Dam-Veltman-Zakharov discontinuity. We argue that this is

indeed the case by studying the full nonlinear Hamiltonian for the relevant conformal and helicity-0

longitudinal modes. In particular, we argue that no negative norm state is present in the full nonlinear

theory.
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I. INTRODUCTION AND SUMMARY

Gauge interactions are mediated by massless particles,
gauge vector bosons. Upon spontaneous breaking of gauge
symmetry, gauge bosons acquire mass via the Higgs
mechanism. Similarly, components of the massless particle
associated with general coordinate reparametrization in-
variance, the graviton, could acquire mass via the gravita-
tional Higgs mechanism [1] upon spontaneous breaking of
diffeomorphism invariance by scalar vacuum expectation
values.1 The gravitational Higgs mechanism was revisited
in the context of obtaining massive gravity directly in four
dimensions in [23–32]. A general Lorentz invariant mass
term for the graviton hMN is of the form

�M2

4
½hMNh

MN � �ðhMMÞ2�; (1)

where � is a dimensionless parameter. Unitarity requires
that the graviton mass term be of the Fierz-Pauli form with
� ¼ 1 [33]. Massive gravity in Minkowski space with
� ¼ 1 can be obtained via the gravitational Higgs mecha-
nism by including higher derivative terms in the scalar
sector and appropriately tuning the cosmological constant
against the higher derivative couplings [26].

The framework of [26] provides a ghost-free, nonlinear
and fully covariant definition of massive gravity in
Minkowski space via the gravitational Higgs mechanism
with spontaneously (as opposed to explicitly) broken dif-
feomorphisms. In this paper we discuss massive gravity in

de Sitter space via the gravitational Higgs mechanism,
which provides a nonlinear definition thereof. This is
achieved by coupling gravity to scalars, whose vacuum
expectation values result in spontaneous breaking of dif-
feomorphisms, described by a nonlinear sigma model,
which includes higher derivative terms required to obtain
the Fierz-Pauli mass term.
Using our nonperturbative definition of massive gravity

in de Sitter space, we discuss the appearance of an
enhanced local symmetry and a null norm state in the
linearized theory at the special value of the graviton mass
M to the Hubble parameter H ratio [34–38], which in
general D dimensions occurs at M2 ¼ ðD� 2ÞH2. In
particular, by studying full nonperturbative equations of
motion, we argue that there is no enhanced symmetry in the
full nonlinear theory. We then argue that in the full non-
linear theory no null norm state is expected to arise at
the aforesaid special value, which in turn suggests that
no ghost might be present for M2 < ðD� 2ÞH2 and the
theory might be unitary for all values of M and H with no
van Dam-Veltman-Zakharov (vDVZ) discontinuity
[39,40].2 We argue that this is indeed the case by studying
full nonlinear Hamiltonian for the relevant conformal and
helicity-0 longitudinal modes. In particular, we argue that
no negative norm state is present in the full nonlinear
theory.
The rest of the paper is organized as follows. In Secs. II

and III we discuss the gravitational Higgs mechanism in
the de Sitter background, which results in massive gravity
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1For earlier and subsequent related works, see, e.g., [2–22],

and references therein.

2Absence of the vDVZ discontinuity in massive gravity in
Minkowski space via the gravitational Higgs mechanism was
argued in [27].

PHYSICAL REVIEW D 82, 124001 (2010)

1550-7998=2010=82(12)=124001(11) 124001-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.82.124001


in de Sitter space with the Fierz-Pauli mass term for the
appropriately tuned cosmological constant. In Sec. IV we
discuss the enhanced local symmetry of the linearized
theory and the absence thereof in the full nonlinear theory.
In particular, we argue that the full nonlinear theory does
not admit solutions obtained by transforming the de Sitter
metric via such enhanced local symmetry transformations.
In Sec. V we study the full nonlinear Hamiltonian for the
relevant conformal and helicity-0 longitudinal modes and
argue that no ghost is present for any values of the graviton
mass and the Hubble parameter. We briefly summarize our
conclusions in Sec. VI.

II. DE SITTER SOLUTIONS

The goal of this section is to obtain massive gravity in
de Sitter space via the gravitational Higgs mechanism.
Consider the induced metric for the scalar sector

YMN ¼ ZABrM�
ArN�

B: (2)

Here M ¼ 0; . . . ; ðD� 1Þ is a space-time index, and
A ¼ 0; . . . ; ðD� 1Þ is a global index. We will choose the
scalar metric ZAB to be a conformally flat de Sitter metric

ZAB ¼ !2ð�Þ�AB; (3)

where

!ð�Þ � �

nA�
A
; (4)

� is a dimensionless coupling, and nA � ð1; 0; . . . ; 0Þ.
Also, let

Y � YMNG
MN: (5)

The following action, albeit not the most general,3 will
serve our purpose here:

SY ¼ MD�2
P

Z
dDx

ffiffiffiffiffiffiffiffi�G
p ½R� VðYÞ�; (6)

where a priori VðYÞ is a generic function of Y.
The equations of motion read

rMðV 0ðYÞZABrM�
BÞ ¼ @ lnð!Þ

@�A
YV0ðYÞ; (7)

RMN � 1
2GMNR ¼ V 0ðYÞYMN � 1

2GMNVðYÞ; (8)

where prime denotes the derivative with respect to (w.r.t.)
Y. Multiplying (7) by ZABrS�

B and contracting indices,
we can rewrite the scalar equations of motion as follows:

@M½
ffiffiffiffiffiffiffiffi�G

p
V0ðYÞGMNYNS� � 1

2

ffiffiffiffiffiffiffiffi�G
p

V 0ðYÞGMN@SYMN ¼ 0:

(9)

Since the theory possesses full diffeomorphism symmetry,
(9) and (8) are not all independent but linearly related

due to Bianchi identities. Thus, multiplying (8) by
ffiffiffiffiffiffiffiffi�G

p
,

differentiating w.r.t. rN and contracting indices we arrive
at (9).
We are interested in finding solutions of the form

�A ¼ m�A
Mx

M; (10)

GMN ¼ expð2AÞ�MN; (11)

wherem is a mass-scale parameter, and A ¼ AðnMxMÞ only
depends on the time coordinate. The scalar equations of
motion (7), or equivalently (9), then imply that

A ¼ � lnðHnMx
MÞ; (12)

where H is the constant Hubble parameter. Furthermore,
(8) implies that

RMN � 1
2GMNR ¼ �1

2GMN
~�; (13)

where

~� � VðY�Þ � 2

D
Y�V 0ðY�Þ (14)

is the cosmological constant for the de Sitter space whose
metric is given by (11), and we have

Y� ¼ D�2H2 � D�2; (15)

H2 ¼
~�

ðD� 1ÞðD� 2Þ : (16)

Thus, the solution is completely determined by the
‘‘potential’’ VðYÞ and the coupling � as Y� is a solution
of the following equation:

Y� ¼ �2

ðD� 1ÞðD� 2Þ ½DVðY�Þ � 2Y�V0ðY�Þ�: (17)

Note that, since ~� must be positive, the potential VðYÞ
cannot be completely arbitrary. Also, Y� and ~� are inde-
pendent ofm in (10), which is due to the invariance of YMN

under simultaneous global rescalings �A ! ��A.

III. MASSIVE DE SITTER GRAVITY

In this section we study linearized fluctuations in the
background given by (10) and (11). Since diffeomorphisms
are broken spontaneously, the equations of motion are

3In the de Sitter as well as Minkowski cases one can consider a
more general setup where the scalar action is constructed not just
from Y, but from YMN ,GMN , and �M0...MD�1

, see, e.g., [26,29–31].
However, a simple action containing a scalar function VðYÞ
suffices to capture all qualitative features of the gravitational
Higgs mechanism. In particular, if this function is quadratic as in
(29) the cosmological constant � must be negative in the context
of Minkowski background (but not in the de Sitter case—see
below), generically there is no restriction on �, which can be
positive, negative, or zero even in the context of the Minkowski
background, once we allow cubic and/or higher order terms in
VðYÞ, or consider nonpolynomial VðYÞ.
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invariant under the full diffeomorphism invariance. The
scalar fluctuations ’A can therefore be gauged away using
the diffeomorphisms

�’A ¼ rM�
A	M ¼ m�A

M	
M: (18)

However, once we gauge away the scalars, diffeomor-
phisms can no longer be used to gauge away any of the
graviton components hMN defined as

GMN ¼ ~GMN þ hMN; (19)

where

~GMN � expð2AÞ�MN (20)

denotes the background de Sitter metric. Moreover, wewill

use the notation h � ~GMNhMN .
After setting ’A ¼ 0, we have

YMN ¼ �2

ðnSxSÞ2
�MN ¼ �2 ~GMN; (21)

Y ¼ YMNG
MN ¼ �2H2½D� hþ . . .� ¼ Y� ��2hþ . . . ;

(22)

where the ellipses stand for higher order terms in hMN .
Because of diffeomorphism invariance, the scalar equa-

tions of motion (7) are related to (8) via Bianchi identities.
We will therefore focus on (8). Let us first rewrite it as
follows:

RMN � 1
2GMN½R� ~�� ¼ �2½ ~GMNV

0ðYÞ �GMNV
0ðY�Þ�

� 1
2GMN½VðYÞ � VðY�Þ�: (23)

Linearizing the right-hand side of this equation, we obtain

RMN � 1

2
GMN½R� ~�� ¼ M2

2
½ ~GMNh� 
hMN� þ . . . ;

(24)

where

M2 � �2V 0ðY�Þ � 2�4V 00ðY�Þ; (25)


M2 � 2�2V 0ðY�Þ: (26)

This corresponds to adding a graviton mass term of the
form

�M2

4
½
hMNh

MN � h2� (27)

to the Einstein-Hilbert action with the cosmological con-

stant ~�, and the Fierz-Pauli combination corresponds to
taking 
 ¼ 1. This occurs for a special class of potentials
with

V0ðY�Þ ¼ � 2

D
Y�V00ðY�Þ: (28)

Thus, as we see, we can obtain the Fierz-Pauli combination
of the mass term for the graviton if we tune one combina-
tion of couplings. In fact, this tuning is nothing but the
tuning of the cosmological constant—indeed, (28) relates
the cosmological constant to higher derivative couplings.
Thus, consider a simple example:

V ¼ �þ Y þ �Y2: (29)

The first term is the cosmological constant, the second term
is the kinetic term for the scalars (which can always
be normalized such that the corresponding coefficient is
1 by adjusting the coupling �), and the third term is a four-
derivative term. We then have

Y� ¼ � D

2ðDþ 2Þ�
�1; (30)

which relates the mass parameter� to the higher derivative
coupling �:

�2 ¼ Y�=D ¼ � 1

2ðDþ 2Þ�
�1; (31)

and the graviton mass is given by

M2 ¼ � 2

ðDþ 2Þ2 �
�1: (32)

Note that we must have � < 0. Moreover, we have

~� ¼ ��D2 þ 4D� 8

4ðDþ 2Þ2 ��1: (33)

Recall, however, that we have (17). This implies that

~� ¼ �ðD� 1ÞðD� 2Þ
2�2ðDþ 2Þ ��1; (34)

and the cosmological constant � needs to be tuned against
the higher derivative coupling �.
Finally, note that

~�

M2
¼ ðD� 1ÞðD� 2ÞðDþ 2Þ

4�2
: (35)

This ratio will become important in the next section.

IV. ENHANCED SYMMETRY?

In the previous section we saw that at the special value of
the cosmological constant [given by (28)] we have massive
gravity in de Sitter space with the Fierz-Pauli mass term in
the linearized approximation. However, as we will argue in
this section, there appears to be a qualitative difference
between the linearized approximation and the full non-
linear theory, at least for some values of the coupling �.
Before we do this, however, let us briefly comment on

the counting of the propagating degrees of freedom. We
started with massless gravity with DðD� 3Þ=2 propagat-
ing degrees of freedom plus D scalars. However, just as in
the case of massive gravity in Minkowski space via the

MASSIVE GRAVITY IN DE SITTER SPACE VIA THE . . . PHYSICAL REVIEW D 82, 124001 (2010)

124001-3



gravitational Higgs mechanism discussed in [26], at the
spacial value of the cosmological constant (28), due to the
presence of higher derivative terms for the scalars, the
kinetic term for scalar fluctuations reorganizes into that
of a vector boson, and we have only D� 1 propagating
scalar degrees of freedom. These D� 1 scalar degrees of
freedom are eaten by the graviton in the process of sponta-
neous breaking of diffeomorphisms, the graviton acquires
mass, and has ðDþ1ÞðD�2Þ=2ð¼DðD�3Þ=2þðD�1ÞÞ
propagating degrees of freedom.

Thus, in the gravitational Higgs mechanism massive
gravity arises as a result of spontaneous breaking of diffeo-
morphisms (as opposed to explicit breaking thereof by
simply adding a mass term for the graviton fluctuations).
In fact, the gravitational Higgs mechanism provides a non-
perturbative definition for massive gravity in the corre-
sponding background. Once we gauge away the scalars via
(18), we obtain the following action for gravity in de Sitter
background:

SG ¼ MD�2
P

Z
dDx

ffiffiffiffiffiffiffiffi�G
p ½R� ~VðGMN ~GMNÞ�; (36)

where we have defined ~Vð
Þ � Vð�2
Þ, and ~GMN is the
background de Sitter metric (11). The equations of motion
are given by

RMN � 1
2GMNR ¼ ~V 0ðGKL ~GKLÞ ~GMN � 1

2GMN
~VðGKL ~GKLÞ;

(37)

and the Bianchi identities imply that

@M½
ffiffiffiffiffiffiffiffi�G

p
~V0ðGKL ~GKLÞGMN ~GNS� � 1

2

ffiffiffiffiffiffiffiffi�G
p

~V 0ðGKL ~GKLÞ
�GMN@S ~GMN ¼ 0: (38)

Note that this condition is due to the presence of the ‘‘mass
term’’ in (36).

Let us now study linearized equations of motion. We

expand GMN ¼ ~GMN þ hMN:

hhMN þrMrNh�rMrShSN �rNrShSM

� ~GMN½hh�rSrRhSR� �H2½2hMN

þ ðD� 3Þ ~GMNh� �M2½hMN � ~GMNh� ¼ 0; (39)

where rM is the covariant derivative in the de Sitter back-

ground metric ~GMN , and h � ~GMNrMrN . Furthermore,
the condition (38) reduces to

rNhMN �rMh ¼ 0: (40)

Note that (40) follows from (39).
While the linearized equations of motion (39) are not

invariant under diffeomorphisms, at the special value of the

ratio ~�2=M2 they are invariant under the following infini-
tesimal transformations:

�hMN ¼ ðrMrN þH2 ~GMNÞ�: (41)

Indeed, (39) are invariant under (41) when

M2 ¼ ðD� 2ÞH2: (42)

The following identities are useful in deriving this result:

ðhrM �rMhÞ� ¼ ðD� 1ÞH2rM�; (43)

ðhrMrN �rMrNhÞ� ¼ 2H2ðDrMrN � ~GMNhÞ�:
(44)

In D ¼ 4 the presence of the symmetry (41) at the point
(42) was discussed in [34].
The presence of this additional local symmetry in the

linearized theory implies that at the point (42) the graviton
has ðDþ 1ÞðD� 2Þ=2� 1 propagating degrees of free-
dom, one fewer than at generic points in the parameter
space. Furthermore, the linearized theory is nonunitary for
M2 < ðD� 2ÞH2 (as the helicity-0 graviton mode has
negative norm), while for M2 > ðD� 2ÞH2 all ðDþ 1Þ�
ðD� 2Þ=2 graviton modes are propagating and have
positive norm [34–36]. Also, in the linearized theory at
M2 ¼ ðD� 2ÞH2 the graviton hMN can only couple to
traceless conserved energy-momentum tensor TMN as the
coupling to the trace part of TMN is inconsistent with the
symmetry (41).
However, here we will argue that the additional local

symmetry (41) at the point (42), which implies that the
helicity-0 graviton mode has null norm at M2 ¼
ðD� 2ÞH2 and further acquires negative norm for M2 <
ðD� 2ÞH2, is absent in the full nonlinear theory. To see
this, let us start with the de Sitter solution and transform it
via (41) with � ¼ �t, where � is a constant, i.e., � is a
linear function of time t � nSx

S only. For such �, the
transformation (41) reads

�hMN ¼ 2�

t
ðnMnN þ �MNÞ: (45)

This then implies that the so transformed metric is diagonal
and of the form

G00 ¼ ~G00; (46)

Gii ¼ ~Giið1þ 2H2�tÞ; (47)

and is equivalent to the background de Sitter metric ~GMN .
We will now argue that the full nonperturbative equations
of motion do not possess such a symmetry or such
solutions.
The following discussion can be straightforwardly gen-

eralized to general VðYÞ. However, for our purposes here it
will suffice to consider quadratic VðYÞ of the form (29).
Assuming (42), from the previous section we then have

4�2 ¼ ðD� 2ÞðDþ 2Þ; (48)

� ¼ �DðD� 4Þ
2ðDþ 2Þ �

2; (49)
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~Vð
Þ ¼� �2

2ðDþ 2Þ ½DðD� 4Þ� 2ðDþ 2Þ
 þ 
2�: (50)

Note that the cosmological constant � ¼ 0 in D ¼ 4.
For our purposes here it will suffice to first consider (38)

as opposed to the full equations of motion (37). We will
look for solutions of the form

GMN ¼ diagð ~G00; fðtÞ ~GiiÞ; (51)

where fðtÞ is a function of time t only. For such solutions,
we have

~V 0ðGMN ~GMNÞ ¼ � ðD� 1Þ�2

Dþ 2

�
f�Dþ 1

D� 1

�
; (52)

and (38) reduces to the following equation for fðtÞ:

@t

� ffiffiffiffiffiffiffiffi�G
p �

f�Dþ 1

D� 1

��
þ 1

t

ffiffiffiffiffiffiffiffi�G
p �

f�Dþ 1

D� 1

�
� ½1þ ðD� 1Þf� ¼ 0: (53)

Using the following equation

@t
ffiffiffiffiffiffiffiffi�G

p ¼ � ffiffiffiffiffiffiffiffi�G
p �

DþD� 1

2

@tf

f

�
; (54)

we then have

1

2
½ðDþ 1Þ � ðD� 3Þf�@tfþD� 1

t
fðf� 1Þ

�
�
f�Dþ 1

D� 1

�
¼ 0; (55)

or equivalently,

1

2

�
1

f
� 2

f� 1
þ 1

f� Dþ1
D�1

�
@tfþ 1

t
¼ 0; (56)

with the solution given by

ðf� 1Þ2
fjf� Dþ1

D�1 j
¼ ðtÞ2; (57)

where  is an integration constant. We therefore
have [here we are looking for solutions where 0< f <
ðDþ 1Þ=ðD� 1Þ]:

f ¼
�
1þ Dþ 1

2ðD� 1Þ ðtÞ
2 þ �t

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

D� 1

s

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðDþ 1Þ2

8ðD� 1Þ ðtÞ
2

s ��
½1þ ðtÞ2�; (58)

where � ¼ �1 and can be absorbed into the definition
of : � ! . Note that this solution is indeed bounded:
0< f < ðDþ 1Þ=ðD� 1Þ.

If we linearize (56) via f ¼ 1þ c , then we obtain the
linearized solution (47). The solution (58) is therefore the
nonperturbative counterpart of the perturbative solution

(47) with the identification  ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðD � 1Þp

H2�.

However, we will now show that the nonperturbative
solution (58) satisfies the full equations of motion (37)
only for  ¼ 0.
To see this, it will suffice to consider the trace part of

the equations of motion (37):

R ¼ 1

D� 2
½D ~Vð
Þ � 2
 ~V 0ð
Þ�; (59)

where 
 � GMN ~GMN ¼ 1þ ðD� 1Þf ¼ Dþ ðD� 1Þc .
Using (50) we then have

R ¼ H2

8
½ð4�DÞ
2 þ 2ðD� 2ÞðDþ 2Þ
 þD2ð4�DÞ�

¼ DðD� 1ÞH2

�
1þD� 1

D
c þ ðD� 1Þð4�DÞ

8D
c 2

�
:

(60)

In D ¼ 4 we have a simplification; however, we will con-
tinue to work in general D.
From the definition of the Ricci scalar, we have

R ¼ DðD� 1ÞH2

�
1þ @� lnðfÞ � 1

D
@2� lnðfÞ

þ 1

4
ð@� lnðfÞÞ2

�
; (61)

where @� � t@t. We therefore have the following equation
of motion for c ¼ f� 1:

@� lnðfÞ � 1

D
@2� lnðfÞ þ 1

4
ð@� lnðfÞÞ2

¼ D� 1

D
c þ ðD� 1Þð4�DÞ

8D
c 2: (62)

Note that (62) is exact.
Note that the linearized version of (62)

@�c � 1

D
@2�c ¼ D� 1

D
c (63)

admits solutions c ¼ 	t, where 	 is an integration con-
stant, which match such linear solutions of the linearized
version of (58). However, this does not hold beyond the
linearized level. Indeed, it is not difficult to show that (58)
does not satisfy (62) except for  ¼ 0. A simple way to see
this is to solve (62) to the second order in t and compare
this solution to (58) expanded to the same order:

Eq :ð58Þ: c 1 ¼ ~tþ 3�D

4
ð~tÞ2 þOð~tÞ3; (64)

Eq:ð62Þ: c 2 ¼ �t�D2 � 11Dþ 20

8ðD� 3Þ ð�tÞ2 þOð�tÞ3; (65)

where we have defined ~ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðD� 1Þ=2p
, and � is an

integration constant. As we see, the two solutions do not
match. Once we identify � ¼ ~, the difference between
the two solutions is given by
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c 2 � c 1 ¼ ðDþ 1ÞðD� 2Þ
8ðD� 3Þ ð~tÞ2 þOð~tÞ3: (66)

This implies that the full nonperturbative equations of
motion (37) do not admit solutions of the form (51) (except
for f � 1).

An intuitive way of seeing why the linearized theory
possesses the additional symmetry not present in the full
nonlinear theory is as follows. In the linearized theory, (38)
reduces to (40), which in turn implies that the part of the
Einstein tensor containing covariant derivatives is trace-
less. The remaining part then is traceless at the special
point (42). The tracelessness of the Einstein tensor is what
leads to the appearance of the enhanced local symmetry in
the linearized theory. Indeed, as we mentioned above, a
conserved energy-momentum tensor for matter sources is
compatible with this enhanced symmetry only if it is
traceless.

On the other hand, in the full nonlinear theory (38),
unlike (40), depends on the structure of the potential ~V,
and therefore it cannot possibly make the derivative part of
the Einstein tensor traceless as the latter intrinsically
knows nothing about the structure of ~V. Therefore, non-
perturbatively, one does not expect to have an enhanced
local symmetry that would remove a propagating degree of
freedom. Indeed, for generic potentials ~V, the action (36)
does not possess any local symmetries.

Let us quantify the previous two paragraphs. First, note
that the scalars �A [or, their fluctuations around the back-
ground (10) and (11)] constitute the matter fields in the
action (6). The energy-momentum tensor reads

TMN ¼ �2MD�2
P

ffiffiffiffi
G

p
V0ðYÞYMN; (67)

which is not traceless in the Higgs phase. Also, a nonlinear
completion of (41), before gauging away the scalars, is
given by

�GMN ¼ rMrN�þ 1

�2
YMN�; (68)

where rM is the covariant derivative in the metric GMN . In
the Higgs phase, once we gauge away the scalars, we have

�GMN ¼ rMrN�þH2 ~GMN�; (69)

where rM is the covariant derivative in the metric GMN .
However, (69) is not a symmetry of the full nonlinear
action (36).

Here the following remark is in order. In (51) we assume

thatG00 ¼ ~G00. Here we can ask if there exist more general

solutions with G00 ¼ gðtÞ ~G00 (and Gii ¼ fðtÞ ~Gii) match-
ing the perturbative solutions (46) and (47).4 For this to be
the case, we must have

g ¼ 1þOð�tÞ2: (70)

However, if the symmetry (41) is indeed present, then we
can always transform the metric such that g ¼ 1þOð�tÞ3.
Indeed, for general �ðtÞ that depends on time t only, (41)
reads

�hMN ¼ nMnN

�
@2t �þ 2

t
@t�

�
þH2½t@t�þ�� ~GMN: (71)

This implies that any Oð�tÞ2 term in g can be transformed
away by including an appropriate Oð�tÞ2 term in �. More
concretely, if g ¼ 1þ að�tÞ2 þOð�tÞ3, then the transfor-
mation (41) with � ¼ a�2=3H2 will result in g ¼
1þOð�tÞ3. Therefore, if the enhanced local symmetry

(41) were present, our assumption of G00 ¼ ~G00 would
hold.

V. IS THERE A GHOST?

In the previous section we argued that in the full
nonlinear theory there is no enhanced local symmetry at
M2 ¼ ðD� 2ÞH2. Absent such local symmetry, one
does not expect appearance of a null norm state at M2 ¼
ðD� 2ÞH2, which would make it difficult to imagine that a
negative norm state would appear for M2 < ðD� 2ÞH2.
This suggests that no ghost might be present for lower
graviton mass values and the theory might be unitary for
all values of the graviton massM and the Hubble parameter
H with no vDVZ discontinuity.5 The purpose of this sec-
tion is to argue that this is indeed the case. We will do this
by studying the full nonlinear action for the relevant
modes, which we identify next. In particular, we will argue
that no negative norm state is present for any value of the
ratio M=H.
To identify the relevant modes in the full nonlinear

theory, let us note that in the linearized theory the poten-
tially ‘‘troublesome’’ mode is the longitudinal helicity-0
mode �. However, we must also include the conformal
mode ! as there is kinetic mixing between � and !. In
fact, � and ! are not independent but are related via
Bianchi identities. Therefore, in the linearized language
one must look at the modes of the form

hMN ¼ ~GMN!þrMrN�: (72)

Furthermore, based on symmetry considerations, namely,
the SOðD� 1Þ invariance in the spatial directions,
we can focus on field configurations independent of spatial

4Based on symmetry considerations, namely, the SOðD� 1Þ
invariance in the spatial directions, the off-diagonal terms in
GMN are not relevant in this discussion.

5The related issue of causality will be relegated to future work.
The possibility of violating causality by means of superluminal
propagation of signals, which affects other models of modified
gravity, cannot be checked easily in the model at hand. Namely,
the phase velocity at low wavelengths of a linearized perturba-
tion, the speed of propagation of a signal, has no meaning in a
model where, as argued above, the linearized analysis is not
applicable, and the study of the corresponding phenomenon at
nonlinear level is beyond the scope of this article.
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coordinates. Indeed, for our purposes here we can compac-
tify the spatial coordinates on a torus TD�1 and disregard
the Kaluza-Klein modes. This way we reduce the
D-dimensional theory to a classical mechanical system,
which suffices for our purposes here. Indeed, with proper
care (see below), if there is a negative norm state in the
uncompactified theory, it will be visible in its compactified
version, and vice versa.

Let us therefore consider field configurations of the form

GMN ¼ diagðgðtÞ ~G00; fðtÞ ~GiiÞ; (73)

where gðtÞ and fðtÞ are functions of time t only. The action
(36) then reduces as follows:

SG ¼ ��
Z dt

tD
g�ð1=2Þf�ððD�1Þ=ð2ÞÞf~�gU2 þ ~Vðgþ�Þg;

(74)

where

� � MD�2
P WD�1

HD ; (75)

U � 1þ 1
2@� lnðfÞ; (76)

� � ðD� 1Þf; (77)

andWD�1 is the volume in the spatial dimensions (i.e., the
volume of TD�1). Note that g is a Lagrange multiplier. The
goal is to integrate out g and obtain the corresponding
action for f. It is then this action that we should test for
the presence of a negative norm state.
The equation of motion for g reads

~Vðgþ�Þ � 2g ~V 0ðgþ�Þ ¼ ~�gU2: (78)

The following discussion can be straightforwardly gener-
alized to general ~V. However, for our purposes here it will
suffice to consider quadratic ~V corresponding to (29). We
then have

3��2g2 þ
�
1þ 2��2�þ

~�

�2
U2

�
g

�
�
�

�2
þ�½1þ ��2��

�
¼ 0: (79)

We can therefore express g in terms of f and @� lnðfÞ:

6��2g ¼ �
�
1þ 2��2�þ

~�

�2
U2

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ 2��2�þ

~�

�2
U2

�
2 þ 12��2

�
�

�2
þ�½1þ ��2��

�vuut ; (80)

where the branch is fixed by the requirement that g � 1
when f � 1. Substituting the so expressed g into (74), we
obtain an action which is a nonlinear functional of f and
@� lnðfÞ.

For our purposes here it is more convenient to work
with the logarithmic time coordinate � and the canonical
variable q, where

� � lnðHtÞ; (81)

q � lnðfÞ þ 2�; (82)

� ¼ ðD� 1Þeq�2�; (83)

U ¼ 1
2@�q; (84)

and the action reads

SG ¼
Z

d�L

¼ ��HD�1
Z

d�g�ð1=2Þe�ððD�1Þ=ð2ÞÞq

� f~�gU2 þ ~Vðgþ�Þg; (85)

where L is the Lagrangian. This action corresponds to a
classical mechanical system with a Lagrange multiplier
g and a time-dependent potential. Upon integrating
out the Lagrange multiplier, the time dependence also

propagates into the ‘‘kinetic’’ (or, more precisely,
momentum-dependent) terms.
Next, the conjugate momentum is given by

p ¼ @L

@ð@�qÞ
¼ ��HD�1e�ððD�1Þ=ð2ÞÞq

�
1

2
g�ð1=2Þĝ ~�U2

� 1

2
g�ð3=2Þĝ ~Vðgþ�Þ þ g�ð1=2Þĝ ~V0ðgþ�Þ

þ gð1=2Þ ~�U

�
; (86)

where

ĝ � @g

@ð@�qÞ : (87)

Using (78) and (86) simplifies to

p ¼ ��HD�1e�ððD�1Þ=ð2ÞÞqgð1=2Þ ~�U; (88)

and the Hamiltonian is given by

H ¼ p@�q� L

¼ ��HD�1g�ð1=2Þe�ððD�1Þ=ð2ÞÞq½~�gU2 � ~Vðgþ�Þ�:
(89)

We can now see if this Hamiltonian is bounded from below.
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First, using (78), we have

H ¼ 2�HD�1gð1=2Þe�ððD�1Þ=ð2ÞÞq ~V 0ðgþ�Þ
¼ 2�2�HD�1gð1=2Þe�ððD�1Þ=ð2ÞÞq½1þ 2��2ðgþ�Þ�:

(90)

Using (80), we can rewrite this Hamiltonian as follows:

H ¼ 2

3
�2�HD�1gð1=2Þe�ððD�1Þ=ð2ÞÞq½X � Z�; (91)

where

X �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ 2��2�þ

~�

�2
U2

�
2 þ 12��2

�
�

�2
þ�½1þ ��2��

�vuut ; (92)

Z �
~�

�2
U2 � 4��2�� 2: (93)

The presence of a ghost would imply that the Hamiltonian
is unbounded from below for large values ofU2 (recall that
U2 contains the kinetic term). However, it is not difficult to
show that this Hamiltonian suffers from no such pathology.
Indeed, we can rewrite it as follows:

H ¼ 2

3
�2�HD�1gð1=2Þe�ððD�1Þ=ð2ÞÞq X

2 � Z2

X þ Z

¼ 2�2�HD�1gð1=2Þe�ððD�1Þ=ð2ÞÞq

� 4��� 1þ 2ð~�=�2ÞU2½1þ 2��2��
Xþ Z

; (94)

which in the large U2 limit reads

H ¼ 2�2�HD�1gð1=2Þe�ððD�1Þ=ð2ÞÞq½1þ 2��2��
þOð1=U2Þ: (95)

Furthermore, from (80) we have

6��2g ¼ X2 �Q2

X þQ

¼ 12
��þ ��2�½1þ ��2��

X þQ

¼ Oð1=U2Þ; (96)

where

Q �
~�

�2
U2 þ 2��2�þ 1: (97)

So, in the largeU2 limit the Hamiltonian actually vanishes.
Note that the above argument implicitly assumes that�

is bounded from above. This is indeed the case as gmust be
at least non-negative, which implies that

��þ ��2�½1þ ��2�� � 0; (98)

and � is bounded as follows (note that we must have
� � 0):

max

�
0;� 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4��
p
2��2

�
� � � � 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4��
p
2��2

;

(99)

and we must further have

� � 1

4�
; (100)

which together with (33) implies that we must have

~� � 3

ðDþ 2Þ2 �
�1; (101)

which is always satisfied as � < 0.
Thus, as we see, there appears to be no ghost in the full

nonlinear theory. To understand why a ghost is present in
the linearized theory, let us linearize our Hamiltonian. To
do this, we will assume that f ¼ 1þ c , where jc j 	 1,
i.e., we consider small fluctuations around the de Sitter
background. Furthermore, we also assume that j@�c j 	 1,
so we can linearize the Hamiltonian to the second order in
@�c as well as c . In fact, here we are interested in the
terms containing ð@�c Þ2. A straightforward computation
gives the following linearized Hamiltonian (the ellipses
stand for the terms not containing ð@�c Þ2):

H � ¼ �3
2�

2�HD�1e�ðD�1Þ�ð@�c Þ2 þ . . . ; (102)

i.e., this linearized Hamiltonian contains a ghost for all
values of M and H, which is absent in the full nonlinear
theory. In this regard, we discuss a simple illustrative
example in the Appendix.
Here one might find it puzzling that, all the potential

pitfalls of linearization notwithstanding, in the linearized
theory the ghost appears for all values of M and H, while
according to [34–36] a negative norm state is expected to
appear only for M2 < ðD� 2ÞH2. The difference here is
due to the parametrization of the conformal and helicity-0
longitudinal modes. We have been working with (73),
while the aforesaid result of [34–36] applies to (72). The
difference between the two is that (73) has no derivatives.
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In this regard, one might wonder if the ghost is ‘‘masked’’
by (73).6 Furthermore, one might wonder if the dimension-
ally reduced action (85) provides an adequate description.

In this regard, we have explicitly checked that if we
expand the action (85) to the quadratic order in the pa-
rametrization corresponding to (72), we obtain that there is
a null norm state atM2 ¼ ðD� 2ÞH2 and a ghost atM2 <
ðD� 2ÞH2, so the dimensionally reduced action (85) cor-
rectly reproduces the linearized results [41] in the parame-
trization corresponding to (72). In fact, what transpires is
the following. At the quadratic order, the second deriva-
tives introduced by the parametrization corresponding to
(72) can be integrated by parts to arrive at an action
containing only first derivatives of ! and �. This action
then possesses the aforesaid properties w.r.t. the appear-
ance of a null norm state and a ghost. However, we have
explicitly checked that already at the cubic level the second
derivatives introduced by the parametrization correspond-
ing to (72) cannot be integrated by parts, so the resulting
action invariably includes terms with second derivatives of
�. This is clearly problematic already at the cubic level and
suggests that the parametrization corresponding to (72)
cannot be used beyond the linearized approximation.

Indeed, according to (72) the ghost would appear for
M2 < ðD� 2ÞH2, while at M2 ¼ ðD� 2ÞH2 we would
have a null norm state, and forM2 > ðD� 2ÞH2 the theory
is unitary. The appearance of a null norm state would
signal the presence of an enhanced local symmetry at
M2 ¼ ðD� 2ÞH2. However, in Sec. IV we saw that there
is no such enhanced symmetry in the full nonlinear theory.
Therefore, in the full nonlinear theory we either have a
ghost for all values ofM andH, or the theory is unitary7 for
all values of M and H. This suggests that the ‘‘special’’
pointM2 ¼ ðD� 2ÞH2 arises in the linearized theory both
due to linearization and the parametrization (72). Indeed, a
nonlinear completion of (72) is given by

GMN ¼ ~GMNfþrMrNu; (103)

where the covariant derivative is defined w.r.t. the metric
~GMN (this choice does not affect our discussion here).
Note, however, that such a parametrization of the metric
is rather problematic in the context of the full nonlinear
theory as it introduces higher derivative terms in u, which

should therefore not be used as the canonical variable in
the full nonlinear theory. This suggests that our parametri-
zation (73) is indeed adequate.8 As we saw, in this parame-
trization there is a ghost in the linearized theory for all9

values of M and H. However, the full nonlinear theory
appears to be unitary for all values of M and H.
Before concluding, let us comment on another related

issue. In the linearized theory, a ‘‘fifth constraint’’ (in the
D ¼ 4 language), which is complementary to the Bianchi
identities, removes one degree of freedom (see, for ex-
ample, [42] for a derivation). At the special point M2 ¼
ðD� 2ÞH2, this constraint trivializes and leads to an en-
hanced symmetry which removes yet another degree of
freedom—as mentioned above, the norm of one of the
modes becomes null. At the nonlinear level, however, these
features disappear since extra momentum and position
dependent terms also contribute to the would-be constraint.
In this regard, one might worry whether a propagating
(ghostlike) ‘‘sixth mode’’ (in the D ¼ 4 language) might
also be present. However, our nonperturbative Hamiltonian
analysis appears to indicate that no ghostlike states or
instabilities are present in the full nonlinear theory.

VI. THE UPSHOT

As we argued in Sec. IV, in the full nonlinear theory
there is no enhanced local symmetry at the special point
(42). In particular, we argued that the full nonlinear theory
does not admit solutions obtained by transforming the
de Sitter metric via such enhanced local symmetry
transformations.
Absent such enhanced local symmetry at the special

point (42) in the full nonlinear theory, we do not expect
to have a null norm state and a reduction in the number of
propagating degrees of freedom. Furthermore, there is also
no reason to believe that for M2 < ðD� 2ÞH2 there is a
negative norm state in the full nonlinear theory. If so, we
can expect that, in the context of the gravitational Higgs
mechanism, where diffeomorphisms are broken spontane-
ously, there should be no van Dam-Veltman-Zakharov
[39,40] discontinuity, absence of which in the context of
massive gravity via the gravitational Higgs mechanism in
Minkowski space was argued in [27]. In fact, from our
analysis of the full nonlinear Hamiltonian for the relevant
conformal and helicity-0 longitudinal modes it indeed
appears that there is no ghost in the full nonlinear theory.
In this regard, it appears that the vacuum corresponding to
the linearized theory is just another vacuum that is un-
stable, and that the true vacuum corresponding to the full

6Consider a ghost in D dimensions: L ¼ �c@M�@M�, c < 0.
Compactify on TD�1: L ¼ c1ð@t�Þ2 (c1 � cWD�1, WD�1 being
the volume of TD�1). The Hamiltonian is not bounded from
below: H ¼ p2=4c1, where the conjugate momentum p ¼
2c1@t�. However, let q � @t�. If q is treated naively as the
canonical variable, then L ¼ c1q

2, H ¼ �c1q
2, which is

bounded from below. That is, the ghost appears to have been
masked by redefining the variables. The flaw in the argument is
that the transformation of variables is not a canonical one,
therefore, the new Hamiltonian describes a different dynamical
system.

7In this regard, note that, on general grounds, for M2 
 H2

one expects no ghost to be present.

8In fact, without giving details, let us simply mention that, one
arrives at the same conclusion by adding a Lagrange multiplier �
leading to a constraint g ¼ f�H2@2�u, which is a nonlinear
completion of (72), and which follows from the following addi-
tional term in the action: ��HD�1

R
�f�½g� f� �H2@��@�ug.

9In this regard, there is no ghost ‘‘masking’’ as a ghost does
arise in this parametrization upon linearization.

MASSIVE GRAVITY IN DE SITTER SPACE VIA THE . . . PHYSICAL REVIEW D 82, 124001 (2010)

124001-9



nonlinear theory is a different and, apparently, stable
vacuum. Here one analogy that comes to mind is ghost
condensation: An approximated version of a theory ap-
pears to have a ghost, but in the true vacuum the ghost
condenses and the theory lacks such pathologies.

The upshot is that we have presented evidence that the
gravitational Higgs mechanism may provide a nonpertur-
bative definition of massive gravity (both in Minkowski
and de Sitter backgrounds, as well as in general curved
backgrounds [43]), and it appears that massive gravity
obtained via the gravitational Higgs mechanism, on gen-
eral grounds, may be consistent since diffeomorphisms in
the gravitational Higgs mechanism are broken spontane-
ously (as opposed to explicit breaking by simply adding the
Fierz-Pauli term for the graviton). This may open a new
arena for studying infrared modified (that is, massive)
gravity in the context of cosmology with nonvanishing
cosmological constant.
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APPENDIX: SOME PITFALLS OF
LINEARIZATION

In this appendix we illustrate some pitfalls of lineariza-
tion. Namely, apparently a nonlinear theory can have a
bounded-from-below Hamiltonian, while a linearized ver-
sion thereof can have a ghost. Consider the following
simple toy Lagrangian for a single scalar field �:

L ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y2 þ 2aY þ b2

p
; (A1)

where

Y � @M�@M�; (A2)

b > 0, and a can be either positive, negative or zero. To
make sure that the square root in (A1) is well defined, let us
assume that

jaj< b: (A3)

Next, suppose we naively linearize (to the quadratic order
in� or, equivalently, the first order in Y). The so linearized
Lagrangian reads

L� ¼ cbþ ðca=bÞY þOðY2Þ; (A4)

which has a ghost for

ca > 0: (A5)

However, the full nonlinear theory does not possess a
ghost. To see this, let us first compactify the spatial direc-
tions on a (D� 1)-dimensional torus TD�1 and reduce the
theory to a classical mechanical system. The Lagrangian
now reads

L ¼ c1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 � 2aZþ b2

p
; (A6)

where c1 � cWD�1, WD�1 is the volume of TD�1, and

Z � ð@t�Þ2: (A7)

The conjugate momentum is given by

p ¼ 2c1ðZ� aÞð@t�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 � 2aZþ b2

p ; (A8)

and the Hamiltonian reads

H ¼ c1ðZ2 � b2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 � 2aZþ b2

p : (A9)

Because of (A3), the square root is well defined.
Furthermore, for c > 0 (i.e., c1 > 0) the Hamiltonian is
bounded from below regardless of the sign of a. Therefore,
there is no ghost in the full nonlinear theory, and its
appearance in the linearized version thereof is due to
linearization.
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