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We investigate a Friedmann universe filled with a tachyon scalar field, which behaved as dustlike matter

in the past, while it is able to accelerate the expansion rate of the Universe at late times. The comparison

with type Ia supernovae (SNIa) data allows for evolutions driving the Universe into a Big Brake. Some of

the evolutions leading to a Big Brake exhibit a large variation of the equation of state parameter at low

redshifts, which is potentially observable with future data, though hardly detectable with present SNIa

data. The soft Big Brake singularity occurs at finite values of the scale factor, vanishing energy density and

Hubble parameter, but diverging deceleration and infinite pressure. We show that the geodesics can be

continued through the Big Brake and that our model universe will recollapse eventually in a Big Crunch.

Although the time to the Big Brake strongly depends on the present values of the tachyonic field and of its

time derivative, the time from the Big Brake to the Big Crunch represents a kind of invariant time scale for

all field parameters allowed by SNIa.
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I. INTRODUCTION

Dark energy (DE) models aim to explain the accelerated
expansion rate of the Universe at late times. This phenome-
non was originally discovered using supernovae Ia (SNIa)
data [1] and has since then been confirmed by many other
observations (see e.g. [2] and references therein). Still, the
nature of dark energy, and the precise physical mechanism
producing the accelerated expansion remains to date an
outstanding mystery for cosmologists and for theoretical
physicists.

The �CDM model, based on a cosmological constant
and cold dark matter, appears to be in good agreement with
most of the present observational data on large cosmologi-
cal scales. However, this model has well-known theoretical
problems [3] and it also encounters difficulties in explain-
ing some of the data on the scales of structures and even on
very large scales, like peculiar flows (see e.g. [4]).

Alternatives to the �CDM model are dark energy mod-
els with a time varying equation of state (EoS) parameterw
[3], and these are not yet excluded by data. In this context,
many scalar field models have been considered, either
minimally coupled with a standard kinetic term, or more
complicated ones, e.g. Dirac-Born-Infeld (DBI) models
with kinetic terms involving a square root [5]. Interest in
DBI type models was revived in the framework of string
theory, where the respective scalar fields are called tachy-
ons [6,7]. These models are possible dark energy candi-
dates, as they can be interpreted as perfect fluids with a
sufficiently negative pressure in order to produce the late-
time accelerated expansion.

There is a large arbitrariness in the choice of the poten-
tial for tachyonic cosmological models. In Ref [8] (to be
referred henceforth as I) a specific tachyon potential, con-
taining trigonometric functions, was considered. This
model turns out to be surprisingly rich, in that it admits a
large variety of cosmological evolutions depending on the
choice of initial conditions. Thus, in I two interesting
properties were found. First, for positive values of the
model parameter k, the sign of the pressure can change
during evolution. Second, while under certain initial con-
ditions the Universe will expand indefinitely towards a de
Sitter attractor, under different initial conditions, after a
long period of accelerated expansion the pressure becomes
positive and the acceleration turns into deceleration.
Accordingly, the tachyon field will drive the Universe
towards a new type of cosmological singularity, the Big
Brake, characterized by a sudden stop of the cosmic ex-
pansion. At this singularity, the Universe has a finite size, a
vanishing Hubble parameter and an infinite negative ac-
celeration. In contrast to this dynamical picture, similar
evolutions were analyzed earlier from a purely kinematical
standpoint and named sudden future singularities [9]. As
already stressed earlier for some tachyon models [7], the
addition of dust is a nontrivial problem, as is the behavior
of the model at the level of perturbations. So our model
cannot be viewed yet as a fully viable cosmological sce-
nario but rather as a toy model that could lead to a viable
one after suitable improvements. In a recent paper [10] (to
be referred henceforth as II) we have confronted our
tachyon cosmological model with SNIa data [11] (see
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also [12]). The strategy was the following: for fixed values
of the model parameter k, we scanned the pairs of present
values of the tachyon field and of its time derivative (points
in phase space) and we propagated them backwards in
time, comparing the corresponding luminosity distance—
redshift curves with the observational data from SNIa.
Then, those pairs of values which appeared to be compat-
ible with the data were chosen as initial conditions for the
future cosmological evolution. Though the constraints im-
posed by the data were severe, both evolutions took place:
one very similar to �CDM and ending in an exponential
(de Sitter) expansion; another with a tachyonic crossing
where the pressure turns positive from negative, ending in a
Big Brake. It was found that a larger value of the model
parameter k enhances the probability to evolve into a Big
Brake. For a set of initial conditions favored by the SNIa
data, we have also computed in II the time to the tachyonic
crossing, and the Big Brake, respectively. These time
scales were found to be comparable with the present age
of the Universe.

The purpose of the present paper is twofold. First, we
propose to shed more light on the evolution of the tachyon
field in the distant and in the more recent past; and second,
to explore in detail what happens when the Universe
reaches the Big Brake. As this singularity is a soft one,
with only the second derivative of the scale factor diverg-
ing, it is expected that it may be possible for geodesic
observers to cross the singularity. Indeed, the traversability
of a rather generic class of sudden future singularities by
causal geodesics was put in evidence in [13]. Strings can
also pass through [14].

In Sec. II we consider the late-time evolution of the
tachyon field, its energy density �, pressure p and EoS
parameter (barotropic index) w defined as p � w�. In
particular, we investigate whether some observable signa-
ture today may point towards a Big Brake singularity in the
future.

In Sec. III we discuss the Big Brake singularity, both in
terms of curvature characteristics and by analyzing the
geodesic deviation equation. In Sec. IV we discuss what
happens to the tachyon universe after the Big Brake.
Finally, we summarize our results with some comments
in the Concluding Remarks.

II. TACHYON SCALAR FIELD COSMOLOGY

First, we briefly give the basic equations of tachyon
cosmology. The Lagrangian of a tachyon field is

L ¼ �VðTÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g��T;�T;�

q
; (1)

where VðTÞ is some suitable tachyon potential. A homoge-
neous tachyon field TðtÞ in a Friedmann-Lemaı̂tre-
Robertson-Walker (FLRW) universe with metric

ds2 ¼ �dt2 þ a2ðtÞ½dr2 þ r2ðd�2 þ sin2�d’2Þ�; (2)

can be thought of as an ideal (isotropic) comoving perfect
fluid with energy density � given by

� ¼ VðTÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� _T2

p ; (3)

and pressure p given by

p ¼ �VðTÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� _T2

p
; (4)

where a dot denotes the derivative with respect to cosmic
time t. The Friedmann equation is then

H2 ¼ 8�G

3

VðTÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� _T2

p ; (5)

while the equation of motion for the tachyon field T reads

_s

1� s2
þ 3Hsþ V;T

V
¼ 0; (6)

where

s � _T: (7)

Here we consider the following potential [8]:

VðTÞ ¼ �

sin2½32
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1þ kÞp

T�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð1þ kÞcos2

�
3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1þ kÞp

T

�s
; (8)

where k and � are free model parameters.
From the present values T0 and s0 of the phase space

variables T and of its time derivative s ¼ _T we found
convenient in II to introduce the parameters y0 and x0
(denoted w0 in II) defined as

y0 ¼ cos

�
3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1þ kÞ

p
T0

�
; (9)

x0 ¼ 1

1þ s20
: (10)

The Hubble parameterH as a function of the redshift z is
expressed as

H2ðzÞ ¼ H2
0�T;0

�ðzÞ
�0

; (11)

with �T;0 � �0

�;cr0
, which can be computed in principle as

follows:

�ðzÞ
�0

¼ exp

�
3
Z z

0
dz0

1þ wðz0Þ
1þ z0

�
; (12)

where w ¼ p
� can be obtained from (3) and (4).

As mentioned in the Introduction, we consider here
a model containing only the tachyon field T. Hence,
with respect to the expansion rate, the EoS parameter
w of T should be compared to what is usually called
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weff � wDE�DE, for a universe filled with a dark energy
component and dustlike matter. In particular, for �CDM
we have weff ¼ ���.

Finally, it is instructive to write down the second
Friedmann equation:

€a

a
¼ � 4�G

3
ð�þ 3pÞ: (13)

The Big Brake corresponds to vanishing energy density �
and infinite (positive) pressure p. Hence _a ¼ 0 from (5)
while €a ¼ �1 from (13) at the Big Brake (whence the
name). It is reached for finite time and finite value of the
scale factor.

A. Evolution of the system

We consider the evolution of the trajectories of the
model compatible with the supernovae data [11] at
the 1-� level. To this purpose we first display in Fig. 1
the behavior of the distance modulus and of the luminosity
distance as functions of redshift z, for 4 different models,
all of them fitting within 1-� accuracy the data (actually,
the curves have the best fits in their respective model
classes). We recall that the distance modulus � is defined
as

� ¼ 5log10
dLðzÞ
Mpc

þ 25; (14)

where dLðzÞ is the luminosity distance which, for a flat
Friedmann universe, is given by (c ¼ 1),

dLðzÞ ¼ ð1þ zÞ
Z z

0

dz�

Hðz�Þ : (15)

For these specific evolutions we also show the normal-
ized dimensionless energy density �

�cr;0
, pressure p

�cr;0
¼

w �
�cr;0

and EoS parameter w (being weff for the �CDM

model) as function of the redshift (both in the past and in
the future) in Figs. 2 and 3.
Four curves appear on each graph in Figs. 1–3. The black

curves refer to the�CDMmodel (with value of��;0 taken

from WMAP analysis [15]). The dark matter component
evolves here as ð1þ zÞ3. The other three curves are for the
toy model containing only the tachyon field. The three
curves differ in the model parameter k, and in the initial
data x0, y0. All three curves pass close to the local mini-
mum of the respective 1-� domains selected by type Ia
supernovae. They are characterized by the model parame-
ter k ¼ �0:4 (blue) and k ¼ 0:4, respectively. For the
latter we have picked up both types of allowed evolutions,
one going into de Sitter (green), the other ending in a
Big Brake (red). Note also that nowadays we have w0 �
wðz ¼ 0Þ 2 ½�0:8;�0:6� in all the evolutions displayed.
These values are similar to �CDM where weff;0 ¼
���;0 � �0:74. As expected from viable cosmological

evolutions, the parameter w approaches zero in the past,
corresponding to dustlike behavior at early times. For all
parameters, the pressure remains very slightly negative for
the whole positive z range plotted, thus w stays below zero
(although it gets very close to it). Under the assumption
that this behavior is unchanged when dust is added, we
expect to have a model where dark energy (here the
tachyon field) remains non-negligible in the early stages
of the Universe, with �T remaining roughly constant
(actually slightly increasing) during the matter era before
it would start dominating at late times. A similar behavior
can also be achieved in some scalar-tensor DE models, see
e.g. [16].
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FIG. 1 (color online). The distance modulus (left panel) and dimensionless version (with c ¼ 1) of the luminosity distance (right
panel) in recent cosmological times. The models shown here are �CDM (black); the tachyonic model with k ¼ �0:4 evolving into de
Sitter (dS, blue); tachyonic models with k ¼ 0:4 evolving into de Sitter (green) and into a Big Brake (BB, red). The curves are all in
very good agreement with the SNIa data, as they pass close to the local minimum of the (respective regions of the) 1-� domains
selected by supernovae (see Figs. 2 and 3 of II.)
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B. Observable signature of the Big Brake?

Though the Big Brake is a singularity taking place in the
future, it is interesting to investigate whether models lead-
ing to a Big Brake exhibit some signature in our presentday
Universe. As one can see from Fig. 4, this is indeed the case
for some of the universes with a Big Brake in the future

which have a characteristic behavior of the EoS parameter

w in our past: a ‘‘dip’’ at low redshifts. This happens when

the Big Brake is not too far in the future, in other words

when the final redshift is substantially larger than �1. It is

then interesting to investigate whether such a behavior can

be detected. Actually large variations of w at low redshifts
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FIG. 3 (color online). The evolution of the EoS parameter w (weff for the �CDM model) in the recent past and in the future is shown
for the same four models, at late times from z ¼ 2:5 to z ¼ �1 (left panel); and in the distant past from z ¼ 100 on (right panel). It is
seen that the tachyon field behaves essentially as dustlike matter at high redshifts.
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FIG. 2 (color online). The evolution in the recent past of the Universe and in the future of the normalized energy density �
�cr;0

(left
panel) and of the normalized pressure p

�cr;0
(right panel) is shown for four models. One of the models leads to a Big Brake singularity in

the future while the other three models shown tend asymptotically to a de Sitter space.
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can easily hide in luminosity distance curves. Therefore,
we expect that it is very difficult to observe this peculiar
behavior with present SNIa data. Let us consider why this
is the case in more details.

In our model we have only one component, the tachyon
field, so what we call here w is actually what should be
called weff when more fluids are present. However, it
would be easy to extend our analysis to the case when a
dustlike component is also present. The EoS parameter w
has a minimum at some small redshift zmin with zmin � 0:2
in the most favorable cases. In principle this can be tested
and it is straightforward to derive the following equality:

ð1þ zminÞ d lnfdz

��������zmin

¼ �1; (16)

as well as the inequalities

ð1þ zÞ d lnf
dz

<�1 z < zmin (17)

ð1þ zÞ d lnf
dz

>�1 z > zmin; (18)

where the quantity f is easily expressed in terms of the
luminosity distance, viz.

f ¼ �2
d

dz

�
ln

�
dL

1þ z

�0�
; (19)

a prime standing for the derivative with respect to z.
Hence it is seen that the (in)equalities (16)–(18) imply a

condition on the third derivative of the luminosity distance
dL! It is clear that even small uncertainties on dLðzÞ can
lead to large uncertainties on its derivatives thereby render-
ing the (in)equalities (16)–(18), ineffective. In addition, as
we have to apply these conditions on low redshifts, these

involve third order contributions in z to dLðzÞ which are
inevitably small. Obviously, observational uncertainties
are presently too high in order to make use of (16)–(18)
with existing SNIa data.
Still, we have tried to see whether a standard �2 analysis

making use only of SNIa data in the range 0 � z � zmin

could differentiate models with and without dip. This
means that we assume a priori that the model with the
dip at zmin is the correct one and that we investigate
whether a simple statistical analysis of this relevant part
of the data could hint at its presence. As could be expected,
even in this case we find no statistical evidence for the
detection of a dip with the present SNIa data. Note that
even the Constitution dataset [17] contains only 147 SN
data at redshifts z � 0:2. Though more refined statistical
tools should clearly be used (see e.g. [18]), it is quite
obvious that the present data do not allow for an unambig-
uous detection. Note that in some models a characteristic
smoother variation of w can take place on a larger range of
redshifts (see e.g. [19]) which should be easier to detect.
Models involving a very large variation of w at extremely
low redshifts z 	 1 were considered in [20] and it was
found that they could escape all high precision measure-
ments. In our case, variations, though not as large, are
located at higher redshifts. We conjecture that future
SNIa surveys, like e.g. the Large Synoptic Survey
Telescope (LSST) and Wide Field InfraRed Survey
Telescope (WFIRST) containing many more supernovae
and reducing significantly the systematic and statistical
errors could allow for such a detection. Future surveys
like Euclid involving weak-lensing are also promising in
this respect. We believe this could be an interesting scien-
tific goal for these surveys, especially if peculiar models
with a large variation of their EoS parameter at low, but not
too low, redshifts, like some of our Big Brake models with
a dip, are in good agreement with observations and are
theoretically motivated candidates.

III. THE BIG BRAKE SINGULARITY

A. Curvature

The 3-spaces with t ¼ const have vanishing Riemann
curvature

ð3ÞRabcd ¼ 0: (20)

The 4-dimensional Riemann curvature tensor has therefore
but few nonvanishing independent components:

Rtrtr ¼ � €aa; Rt’t’ ¼ Rt�t�sin
2� ¼ � €aar2sin2�;

Rr’r’ ¼ Rr�r�sin
2� ¼ _a2a2r2sin2�;

R�’�’ ¼ _a2a2r4sin2�; (21)

and the corresponding components arising from symmetry.
Remarkably, all components which diverge at the Big
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FIG. 4 (color online). The evolution of the EoS parameter w in
the recent past and in the future for model parameters leading to
a Big Brake and in the 1-� domain of supernova data. All
evolutions have a dip (when, as z decreases, the decrease in w
turns into an increase), some of them already in the recent past.
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Brake are of the type Rtata. Therefore, the singularity arises
in the mixed spatiotemporal components.

B. Geodesic deviation

The geodesic deviation equation along the integral
curves of u ¼ @=@t (which are geodesics with affine pa-
rameter t) is

_u a ¼ �Ra
cbd�

bucud; (22)

where �b is the deviation vector separating neighboring
geodesics, chosen to satisfy �bub ¼ 0. In the coordinate
system (2) we obtain

_u a ¼ �Ra
tbt�

b / €a; (23)

which at the Big Brake diverges as-1. Therefore, when
approaching the Big Brake, the tidal forces manifest them-
selves as an infinite braking force stopping the further
increase of the separation of geodesics. This can be also
seen from the behavior of the velocity

va ¼ ubrb�
a / H; (24)

which at the Big Brake vanishes. Immediately after, the
negative acceleration will cause the geodesics to approach
each other. Therefore a contraction phase will follow:
everything that has reached the Big Brake will bounce
back.

We conclude the section with the remark that despite the
singularity of the geometry (the second derivative €a of the
scale factor diverges at t ¼ tBB), its soft character ( _a stays
regular) assures that a continuation of the evolution is still
possible in the following sense. We indeed need to know €a
to follow the evolution of the spacetime but we only need to
know _a to follow the evolution of free particles. This means
that despite not being able to continue the evolution of the
geometry in a direct way, we can univocally continue the
individual world lines of freely falling test particles (geo-
desics), each of these being perfectly regular at t ¼ tBB.
The singularity is not experienced by any individual freely
falling particle, but makes itself felt only through the equa-
tion of geodesic deviation, which at t ¼ tBB indicates that
the expansion of the geodesic congruence turns negative
from positive.

Once the particles have gone through the Big Brake, we
can again start to evolve the geometry itself, thus following
the further evolution of the Universe beyond the singular-
ity. As will be shown in the following section, the ta-
chyonic universe will evolve along similar trajectories to
those starting from a Big Bang, but in the opposite direc-
tion (with s ! �s), arriving therefore into a Big Crunch.

IV. FROM THE BIG BRAKE TO THE BIG CRUNCH

A. How the Universe crosses the Big Brake singularity

To understand how the crossing of the Big Brake singu-
larity takes place, and what is going on after the crossing, it

is convenient to refer to the phase portrait of the model at
some positive value of the parameter k. This portrait was
drawn in Paper I and we reproduce it here, see Fig. 5. The
accessible phase space of the model consists of a rectangle
ðT3 � T � T4;�1 � s � 1Þ and four stripes. The values

T3 ¼ 2

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ kÞ�p arccos

1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ k

p ;

T4 ¼ 2

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ kÞ�p

�
�� arccos

1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ k

p
�

(25)

are those for which the potential (8) vanishes. Inside the
rectangle the dynamics of the system is described by the
Lagrangian (1) with the potential (8), while in the strips
the Lagrangian is given by

L ¼ WðTÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g��T;�T;� � 1

q
; (26)

with the potential

WðTÞ ¼ �

sin2
�
3
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1þ kÞp

T

�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ kÞcos2

�
3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1þ kÞ

p
T

�
� 1

s
: (27)

Consider a trajectory entering the left lower strip
through the point Q’ having coordinates (T ¼ T3,
s ¼ �1). The analysis of the equations of motion, carried
out in Paper I, has shown that the Universe encounters a
Big Brake (BB) singularity after a finite time. This singu-
larity is characterized by some value of the tachyon field
TBB, of the time tBB and of the value of the cosmological
radius aBB. These values are found numerically up to
normalization, as was done in II.
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FIG. 5 (color online). Phase portrait evolution for k > 0 (k ¼
0:44).
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The equation of motion (6) for the expanding universe in
the left lower strip can be written as

_s ¼ 3sðs2 � 1Þ ffiffiffiffi
�

p

sin
3

ffiffiffiffiffiffiffiffiffiffiffiffi
�ð1þkÞ

p
T

2

0
@ðkþ 1Þcos2 3

ffiffiffiffiffiffiffiffiffiffiffiffi
�ð1þkÞ

p
T

2 � 1

s2 � 1

1
A

1=4

� 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1þ kÞp ðs2 � 1Þ

2
cot

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1þ kÞp

T

2

� ðkþ 1Þcos2 3
ffiffiffiffiffiffiffiffiffiffiffiffi
�ð1þkÞ

p
T

2 þ ðk� 1Þ
ðkþ 1Þcos2 3

ffiffiffiffiffiffiffiffiffiffiffiffi
�ð1þkÞ

p
T

2 � 1
:

(28)

From the analysis of this equation we find that, approach-
ing the Big Brake singularity in the lower left strip of the
phase diagram, the tachyon field T, its time derivative s,
the cosmological radius a, its time derivative _a and the
Hubble variable H behave, respectively, as

T ¼ TBB þ
�

4

3WðTBBÞ
�
1=3ðtBB � tÞ1=3; (29)

s ¼ �
�

4

81WðTBBÞ
�
1=3ðtBB � tÞ�2=3; (30)

a ¼ aBB � 3

4
aBB

�
9W2ðTBBÞ

2

�
1=3ðtBB � tÞ4=3; (31)

_a ¼ aBB

�
9W2ðTBBÞ

2

�
1=3ðtBB � tÞ1=3; (32)

H ¼
�
9W2ðTBBÞ

2

�
1=3ðtBB � tÞ1=3: (33)

To arrive to formulas (29)–(33) we have used the following
strategy. Assume that in the neighborhood of the Big Brake
singularity the tachyon field behaves as

T ¼ TBB þ AðtBB � tÞ	; (34)

where A and 	 are some real parameters to be determined.
Then, s behaves as

s ¼ �	AðtBB � tÞ	�1; (35)

while its time derivative is

_s ¼ 	ð	� 1ÞAðtBB � tÞ	�2: (36)

A simple calculation shows that the first ‘‘friction’’ term,
proportional to the Hubble variable in the right-hand side
of Eq. (28), has the behavior

s5=2 � ðtBB � tÞ5ð	�1Þ=2; (37)

which is stronger than the corresponding behavior of the
second potential term in the right-hand side of Eq. (28)
which is

s2 � ðtBB � tÞ2ð	�1Þ: (38)

This means that the term _s in the left-hind side of Eq. (28)
should have the same asymptotic as the friction term in the
right-hand side of the same equation and, hence

	� 2 ¼ 5

2
ð	� 1Þ; (39)

which gives immediately

	 ¼ 1

3
: (40)

Comparing the coefficients of the leading terms in Eq. (28)
we find that

A ¼
�

4

3WðTBBÞ
�
: (41)

Thus, we arrive at Eq. (29). Equation (30) follows right
away. Using the Friedmann equation we obtain the value of
the Hubble parameter (Eq. (33)), which, in turn, gives
formulas (31) and (32) for the cosmological radius and
for its time derivative.
The expressions (29)–(33) can be continued in the re-

gion where t > tBB, which amounts to crossing the Big
Brake singularity. Only the expression for s is singular
at t ¼ tBB, but this singularity is integrable and not
dangerous.
Upon reaching the Big Brake, it is impossible for the

system to stop there because the infinite deceleration even-
tually leads to the decrease of the scale factor. This is
because after the Big Brake crossing the time derivative
of the cosmological radius (32) and of the Hubble variable
(33) change their signs. The expansion is then followed by
a contraction.
Corresponding to given initial conditions, we can find

numerically the values of TBB, tBB and aBB (see Paper II).
Then, in order to see what happens after the Big Brake
crossing, we can choose as initial conditions for the ‘‘after-
Big-Brake-contraction phase’’ some value t ¼ tBB þ " and
the corresponding expressions for T, s, H, a and _a follow-
ing from relations (29)–(33), and integrate numerically the
equations of motion, thus arriving eventually to a Big
Crunch singularity.

B. What is going on after the Big Brake crossing?

After the Big Brake crossing the Universe has a negative
value of the variable s, less than �1. This means that its
evolution should end in a finite period of time. Remember
that the Universe is now squeezing. The equation of motion
for s then looks as follows:
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_s ¼ � 3sðs2 � 1Þ ffiffiffiffi
�

p

sin
3

ffiffiffiffiffiffiffiffiffiffiffiffi
�ð1þkÞ

p
T

2

0
@ðkþ 1Þcos2 3

ffiffiffiffiffiffiffiffiffiffiffiffi
�ð1þkÞ

p
T

2 � 1

s2 � 1

1
A

1=4

� 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1þ kÞp ðs2 � 1Þ

2
cot

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1þ kÞp

T

2

� ðkþ 1Þcos2 3
ffiffiffiffiffiffiffiffiffiffiffiffi
�ð1þkÞ

p
T

2 þ ðk� 1Þ
ðkþ 1Þcos2 3

ffiffiffiffiffiffiffiffiffiffiffiffi
�ð1þkÞ

p
T

2 � 1
: (42)

In principle, the evolution of the Universe can either end
at the vertical line T ¼ 0 at some value of s or at the
horizontal line s ¼ �1 at some value of T. One can find
the corresponding points on the phase diagram by direct
analysis of the system of equations of motion. However,
such an analysis is rather cumbersome. Thus, it is conve-
nient to use some results of the analysis of the trajectories
for the expanding universe given in Paper I. Begin by
writing down the equation for the trajectories describing
the expanding universe in the phase space ðT; sÞ, eliminat-
ing the time parameter t:

ds

dT
¼ � 3ð1� s2Þ ffiffiffiffi

�
p

sin
3

ffiffiffiffiffiffiffiffiffiffiffiffi
�ð1þkÞ

p
T

2

0
@1� ðkþ 1Þcos2 3

ffiffiffiffiffiffiffiffiffiffiffiffi
�ð1þkÞ

p
T

2

1� s2

1
A

1=4

þ� 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1þ kÞp

2

1� s2

s
cot

0
@3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1þ kÞp

T

2

1
A

� ðkþ 1Þcos2 3
ffiffiffiffiffiffiffiffiffiffiffiffi
�ð1þkÞ

p
T

2 þ ðk� 1Þ
1� ðkþ 1Þcos2 3

ffiffiffiffiffiffiffiffiffiffiffiffi
�ð1þkÞ

p
T

2

: (43)

This equation is valid in both the rectangle of the phase
diagram and in the strips. In I we have considered it in the
upper left strip and saw there that the trajectories of
the phase diagram can have their beginning only in

the points ðT ¼ 0; s ¼
ffiffiffiffiffiffiffi
kþ1
k

q
Þ, ðT ¼ 0; s ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

kþ 1
p Þ or

ðT ¼ T�; s ¼ 1Þ, 0< T� < T3. Now, it is easy to see from
Eq. (6) that the simultaneous change of sign of the Hubble
parameter _a=a and of the time derivative of the tachyon
field leaves this equation invariant. This means that the
trajectories describing the expansion from the Big Bang
singularity in the upper left strip are symmetrical reflec-
tions with respect to the axis s ¼ 0 of the trajectories
describing the contraction towards the Big Crunch singu-
larity in the lower left strip. Thus, Eq. (43) written
above describes also the trajectories of the contracting
universe in the lower left strip. In turn, this implies
that all the contracting trajectories can only end at the

points ðT ¼ 0; s ¼ �
ffiffiffiffiffiffiffi
kþ1
k

q
Þ, ðT ¼ 0; s ¼ � ffiffiffiffiffiffiffiffiffiffiffiffi

kþ 1
p Þ or

ðT ¼ T�; s ¼ �1Þ, 0< T� < T3.
We are now in a position to analyze the behavior of all

these trajectories, describing the contracting universe, us-
ing the results obtained for the corresponding trajectories,

born in the left upper strip, describing the expanding uni-
verse. First, all the contracting trajectories encountering
the Big Crunch singularity at the point ðT ¼ T�; s ¼ �1Þ,
where 0< T� < T3 and the unique trajectory ending in the

point ðT ¼ 0; s ¼ � ffiffiffiffiffiffiffiffiffiffiffiffi
kþ 1

p Þ enter the lower left strip
from the rectangle of the phase diagram through the corner
ðT ¼ T3; s ¼ �1Þ without arriving from the Big Brake
singularity (indeed, they originate from the repelling de
Sitter node). These trajectories are the time-reversed of the
corresponding expanding trajectories, having their origin
at the points ðT ¼ T�; s ¼ þ1Þ and of the unique trajectory
originating at the point ðT ¼ 0; s ¼ þ ffiffiffiffiffiffiffiffiffiffiffiffi

kþ 1
p Þ, which en-

ter into the rectangle through the point P (see Fig. 5) and
which do not undergo any change of the expansion regime.
Thus, the only point where the trajectories coming

from the crossing of the Big Brake singularity can end to

is ðT ¼ 0; s ¼ �
ffiffiffiffiffiffiffi
kþ1
k

q
Þ. Now recall (see Paper I) that the

trajectories born at ðT ¼ 0; s ¼
ffiffiffiffiffiffiffi
kþ1
k

q
Þ behave at the begin-

ning of their evolution as

s �
ffiffiffiffiffiffiffiffiffiffiffiffi
kþ 1

k

s
þDTð2ð1�kÞÞ=ð1þkÞ; (44)

where the parameter D can take any real value. Among
these, those with a sufficiently large positive value of D,
say, Dsep <D grow without limit and do not achieve a

maximal value of the variable s. Instead, they approach
asymptotically to the vertical line T ¼ TBB, s ! þ1, thus
encountering a Big Brake shortly after the Big Bang (such
a possibility was overlooked in I). Instead, the trajectories,
for which D<Dsep achieve some maximal value of the

variable s after which they turn down and enter the rect-
angle of the phase diagram through P. Such trajectories
were described in detail in Paper I. The trajectory charac-
terized by the critical value of the parameter D ¼ Dsep

plays the role of separatrix between these two sets of the
evolutions.
The trajectories approaching the Big Crunch at the point

ðT ¼ 0; s ¼ �
ffiffiffiffiffiffiffi
kþ1
k

q
Þ behave as

s � �
ffiffiffiffiffiffiffiffiffiffiffiffi
kþ 1

k

s
�DTð2ð1�kÞÞ=ð1þkÞ: (45)

Those with D>Dsep are the evolutions which underwent

the Big Brake crossing in the left lower strip.
It is interesting to study the properties of the special

cosmological evolution mentioned above (D ¼ Dsep)

which separates in the upper left strip the subset of trajec-
tories attaining a maximum value of s and then entering the
rectangle at point P from the subset of those trajectories for
which s is not bounded above and which encounter the Big
Brake already in the left upper strip. This separatrix is
composed by two branches, one in the upper left strip
and a symmetrical one in the lower left strip both having
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the vertical line T ¼ T3 as asymptote. It encounters the Big
Brake singularity at T3 at some time moment t ¼ tBB. Now,
analyzing Eq. (28) for this trajectory, we find that in the left
neighborhood of t ¼ tBB the dynamical variables behave as
follows:

T ¼ T3 � A0ðtBB � tÞ2=7; (46)

s ¼ 2

7
A0ðtBB � tÞ�5=7; (47)

H ¼
0
@147

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�kðkþ 1Þp
4A0

1
A

1=4

ðtBB � tÞ3=7; (48)

where

A0 ¼
�
49

12

�
1=6

��5=12ð1þ kÞ�5=12k1=4: (49)

The analysis leading to these formulas is analogous to the
one which led us to formulas (29)–(33).
If we continue (46)–(49) beyond t ¼ tBB we see that

the expansion turns into a contraction, the tachyon field
T starting to decrease, while its time derivative jumps at
t ¼ tBB from an infinite positive value to an infinite nega-
tive one. Thus, at t > tBB the Universe finds itself in the
lower left strip. It leaves the Big Brake along the asymp-
totic line T ¼ T3, s ¼ �1, and eventually attains the Big

Crunch singularity at the point ðT ¼ 0; s ¼ �
ffiffiffiffiffiffiffi
kþ1
k

q
Þ. In the

TABLE I. Key moments in the evolution of the tachyon universes for k ¼ 0:2. Columns (1) and (2) report different pairs of values of
the magnitudes y0 and x0 which are compatible with the supernovae data within 1� confidence level. Columns (3), (4), (5) and (6)
report, respectively, the times t�, tBB and tBC elapsing from the present to the tachyonic crossing, to the attainment of the Big Brake and
to the later attainment of the Big Crunch, and the time lapse between the Big Brake and the subsequent Big Crunch. (The values of t�,
tBB and tBC have been calculated assuming for the Hubble parameter the value H0 ¼ 73 km=s=Mpc.)

y0 x0 t� (109 yrs) tBB (109 yrs) tBC (109 yrs) (tBC � tBB) (10
9 yrs)

�0:90 0.635 0.334 1.042 1.412 0.198

�0:85 0.845 2.377 3.093 3.300 0.207

�0:85 0.860 2.438 3.146 3.352 0.206

�0:85 0.875 2.505 3.206 3.410 0.204

�0:80 0.890 6.237 6.927 7.135 0.206

�0:80 0.905 6.663 7.348 7.554 0.206

�0:80 0.920 7.197 7.877 8.082 0.205

TABLE II. As in Table I, for k ¼ 0:4.

y0 x0 t� (109 yrs) tBB (109 yrs) tBC (109 yrs) (tBC � tBB) (10
9 yrs)

�0:80 0.710 0.836 1.644 1.933 0.289

�0:80 0.725 0.841 1.629 1.915 0.286

�0:80 0.740 0.847 1.616 1.900 0.284

�0:75 0.815 2.153 2.952 3.247 0.295

�0:75 0.830 2.195 2.983 3.277 0.294

�0:75 0.845 2.242 3.020 3.312 0.292

�0:70 0.845 3.845 4.635 4.932 0.297

�0:70 0.860 3.964 4.746 5.043 0.297

�0:70 0.875 4.097 4.871 5.168 0.297

�0:70 0.890 4.247 5.015 5.310 0.295

�0:65 0.860 6.182 6.959 7.259 0.300

�0:65 0.875 6.473 7.243 7.540 0.297

�0:65 0.890 6.808 7.573 7.870 0.297

�0:65 0.905 7.204 7.963 8.259 0.296

�0:60 0.875 10.253 11.016 11.314 0.298

�0:60 0.890 11.108 11.866 12.163 0.297

�0:60 0.905 12.203 12.956 13.251 0.295

�0:55 0.875 19.517 20.274 20.570 0.296

�0:55 0.890 25.030 25.782 26.077 0.295
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lower left strip the separatrix separates the trajectories
exiting from the Big Brake singularity at some value
TBB < T3 from those which enter the strip from the rect-
angle, attain a minimum value of s and end in the Big
Crunch.

In summary, the expansion phase of the Universe, which
originated from a Big Bang, stops at t ¼ tBB and turns
there into a phase of contraction leading eventually to a Big
Crunch.

C. The time lapse from the Big Brake to the Big Crunch

We give here the Tables I, II, and III which, for a
selection of values of the model parameter k, report the
times elapsing from today to the tachyonic crossing, to the
attainment of the Big Brake and to the later attainment of
the Big Crunch for some trajectories which are compatible
with SNIa data within a 1-� confidence level.

As we can see, although the time to the tachyonic
crossing and to the Big Brake both depend strongly on
the initial data within the 1-� domain selected by super-
novae, the time interval between the Big Brake and the Big
Crunch do not show the same dependence. Nevertheless,
this interval exhibits a slight increase with the model
parameter k.

V. CONCLUSIONS

As shown in II there are tachyon cosmologies described
by Eqs. (1)–(13) which are compatible with the supernovae
data and which are subject to a Big Brake in the future. In
this paper we have addressed some questions about this
model: how it behaves in the distant past, whether these
model universes can produce observational signatures to-
day and whether they can be continued beyond the Big
Brake singularity.

TABLE III. As in Table I, for k ¼ 0:6.

y0 x0 t� (109 yrs) tBB (109 yrs) tBC (109 yrs) (tBC � tBB) (10
9 yrs)

�0:75 0.665 0.548 1.369 1.693 0.324

�0:70 0.755 1.434 2.289 2.624 0.335

�0:70 0.770 1.451 2.289 2.623 0.334

�0:70 0.785 1.469 2.292 2.625 0.333

�0:70 0.800 1.489 2.299 2.628 0.329

�0:65 0.815 2.561 3.401 3.740 0.339

�0:65 0.830 2.614 3.443 3.782 0.339

�0:65 0.845 2.671 3.490 3.827 0.337

�0:60 0.830 3.854 4.692 5.036 0.344

�0:60 0.845 3.960 4.788 5.131 0.343

�0:60 0.860 4.077 4.897 5.237 0.340

�0:60 0.875 4.206 5.018 5.359 0.341

�0:55 0.845 5.510 6.336 6.682 0.346

�0:55 0.860 5.711 6.530 6.875 0.345

�0:55 0.875 5.937 6.749 7.091 0.342

�0:55 0.890 6.194 6.999 7.339 0.340

�0:50 0.845 7.460 8.281 8.629 0.348

�0:50 0.860 7.803 8.617 8.963 0.346

�0:50 0.875 8.193 9.002 9.345 0.343

�0:50 0.890 8.645 9.447 9.790 0.343

�0:45 0.860 10.668 11.478 11.823 0.345

�0:45 0.875 11.370 12.174 12.519 0.345

�0:45 0.890 12.208 13.008 13.349 0.341

�0:45 0.905 13.237 14.033 14.373 0.340

�0:40 0.860 15.044 15.851 16.196 0.345

�0:40 0.875 16.471 17.273 17.615 0.342

�0:40 0.890 18.313 19.110 19.453 0.343

�0:40 0.905 20.838 21.631 21.972 0.341

�0:35 0.860 23.487 24.291 24.635 0.344

�0:35 0.875 27.874 28.674 29.016 0.342

�0:35 0.890 36.194 36.989 37.328 0.339

�0:30 0.845 43.469 44.276 44.621 0.345
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Having in mind the eventual construction of fully viable
models, we are comforted by the fact that the tachyonic field
has a (quasi) dustlike behavior in the past regardless of its
future evolution in the parameter range allowed by super-
novae. Present supernovae data can hardly discriminate
between the evolutions going into a de Sitter phase and
those leading to a Big Brake. However, we emphasize that
the large variation of the EoS parameter at low redshifts
occurring in some of the evolutions leading to a Big Brake
might be detectable with future high precision data.

The main result of the paper is the study of the cosmo-
logical evolutions going into a Big Brake. These evolutions
can be extended beyond the Big Brake, despite the geome-
try becoming singular, which apparently forbids such a
continuation. However, this singularity is a soft one, as
only the second derivative €a of the scale factor diverges at
t ¼ tBB, while _a does not. We need to know €a to follow the
evolution of the spacetime but we only need to know _a to
follow the evolution of free particles. This means that we
cannot continue the evolution of the geometry, but we can
univocally continue the individual world lines of freely
falling test particles (geodesics), each of these being per-
fectly regular at t ¼ tBB. The singularity is not experienced
by any individual freely falling particle, but makes itself
felt only through the equation of geodesic deviation, which
at t ¼ tBB indicates that the expansion of the geodesic
congruence turns negative from positive.

Since the geometry can be reconstructed by the knowl-
edge of each of its geodesics, the evolution of the Universe

does not stop at the Big Brake. Once the particles have
gone through the Big Brake, they will determine the ge-
ometry anew and we can start to evolve the Universe
beyond the singularity. A phase of contraction follows,
leading eventually to a Big Crunch.
We have analytically and numerically analyzed the evo-

lution of the tachyonic universe from the Big Brake to the
Big Crunch. Quite remarkably, the numerical study showed
that although the time to the tachyonic crossing and to the
Big Brake both depend strongly on the initial data chosen
from the 1-� domain selected by supernovae, the time
intervals between the Big Brake and the Big Crunch do
not exhibit the same dependence and they only slightly
depend on the model parameter k (within a factor of 2).
This seems to provide an invariant time scale for the class
of tachyonic scalar cosmologies considered, presumably
related to the fact that some information (the behavior of
the higher derivatives of the scale factor) is lost while
passing through the Big Brake.
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