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We perform numerical simulations of large scale structure evolution in an inhomogeneous Lemaı̂tre-

Tolman-Bondi (LTB) model of the Universe. We follow the gravitational collapse of a large underdense

region (a void) in an otherwise flat matter-dominated Einstein–de Sitter model. We observe how the

(background) density contrast at the center of the void grows to be of order one, and show that the density

and velocity profiles follow the exact nonlinear LTB solution to the full Einstein equations for all but the

most extreme voids. This result seems to contradict previous claims that fully relativistic codes are needed

to properly handle the nonlinear evolution of large scale structures, and that local Newtonian dynamics

with an explicit expansion term is not adequate. We also find that the (local) matter density contrast grows

with the scale factor in a way analogous to that of an open universe with a value of the matter density

�MðrÞ corresponding to the appropriate location within the void.

DOI: 10.1103/PhysRevD.82.123530 PACS numbers: 98.80.Cq

I. INTRODUCTION

Distant supernovae appear dimmer than expected in a
purely matter-dominated homogeneous and isotropic
Friedmann-Robertson-Walker (FRW) universe. The cur-
rently favored explanation of this dimming is the late
time acceleration of the Universe due to an energy compo-
nent that acts like a repulsive force. The nature of the
so-called dark energy responsible for the apparent accel-
eration is completely unknown. Observations seem to sug-
gest that it is similar to Einstein’s cosmological constant,
but there is inconclusive evidence [1]. In the meantime, our
realization that the Universe around us is far from homo-
geneous, since there are large superclusters and huge voids
across our largest galaxy catalogs [2], has triggered the
study of alternatives to this mysterious energy. Since the
end of the 1990s it has been suggested by various groups
[3,4] that an isotropic but inhomogeneous Lemaı̂tre-
Tolman-Bondi universe could also induce an apparent
dimming of the light of distant supernovae, in this case
due to local spatial gradients in the expansion rate and
matter density, rather than due to late time acceleration.
There is nothing wrong or inconsistent, apart from philo-
sophical prejudices, with the possibility that we live close
to the center of a gigaparsec-sized void. Such a supervoid
may indeed have been observed as the cosmic microwave
background (CMB) cold spot [5] and somewhat smaller
voids have been seen in the local galaxy distribution [6,7].
If a local void had the size and depth of a void responsible
for the cold spot, i.e. r0 � 2 Gpc and �M � 0:2 within a
flat Einstein–de Sitter universe, it would be consistent with
local observations [8,9], and could account for the super-
novae dimming, together with the observed baryon acous-
tic oscillations and CMB acoustic peaks, the age of the
Universe, local rate of expansion, etc. [4,10–15].

In order to make contact with large scale structure
observations of the matter distribution, large numerical
simulations are usually performed, where a very specific
initial condition is assumed for the primordial spectrum of
inhomogeneities and the evolution is done solving the
Newtonian dynamics numerically. In most cases, the mat-
ter content is just cold dark matter falling into gravitational
potential wells set in by inflation, although some simula-
tions have included also baryons as well as hot dark matter,
neutrinos, radiation, and astrophysical feedbacks.
This conceptually simple recipe yields results which are

in good agreement with the matter distribution we observe
in the sky on large scales, and can be used to constrain
our model of the Universe and determine some of the
parameters of the standard model of cosmology.
However, some have argued (see e.g. [16] and references
therein) that the late stages of gravitational collapse and
structure formation in the Universe require a fully relativ-
istic numerical description in order to capture specific
signatures of the strong nonlinear dynamics of general
relativity, and make a correct treatment of features
even with sizes comparable to the Hubble radius; see
also [17–19].
In this paper we have tested the validity of the

Newtonian approximation for structure formation in the
context of an inhomogeneous model whose fully nonlinear
dynamics can be solved exactly using the Einstein equa-
tions [3,4]. We start with an Einstein–de Sitter (EdS) model
at a high redshift, and we test it under various initial
conditions: (i) we first include just a large void of fixed
size and a small initial amplitude, and we follow the non-
linear growth of the void’s depth and size; (ii) we then add
cold dark matter (CDM) with a Gaussian random field
distribution based on inflation (ns ¼ 1 and �8 ¼ 0:9),
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with the weighted matter-baryon transfer function included
to account for the baryon acoustic oscillations (with fgas ¼
0:14 and�tot ¼ 1 consistent with WMAP-7yr), and follow
the growth of both the void and the matter power spectrum.
We have confirmed that our numerical simulations follow
the exact solution of the Lemaı̂tre-Tolman-Bondi (LTB)
background Einstein equations at all scales (radii), except
for very extreme cases, where shell crossing occurs in
models with large scale structure fluctuations (shell
crossing does not occur though if we take a pure void).
This seems to suggest that the Newtonian approximation
for gravitational collapse is perfectly valid, even for
gigaparsec-sized voids as empty as �M ¼ 0:02 at the
center at z ¼ 0, which corresponds to density contrasts
of order 1 with respect to the asymptotic EdS model. We
obtain very good matches to both the density and the
velocity profile for matter moving in such LTB back-
grounds. We also check that the nonlinear evolution gives
rise to well differentiated Hubble rates along the line of
sight and transverse directions, in perfect agreement with
the exact relativistic solutions. Moreover, we can follow
the evolution of the matter density contrast as a function of
the scale factor and find that it evolves as one would expect
for an open universe with the value of �MðrÞ correspond-
ing to the local position within the void.

II. LEMAÎTRE-TOLMAN-BONDI VOID MODELS

The Lemaı̂tre-Tolman-Bondi model describes general
spherically symmetric space-times and can be used as a
toy model for describing large voids in the Universe. The
metric is given by

ds2 ¼ �dt2 þ A02ðr; tÞdr2
1� kðrÞ þ A2ðr; tÞðd�2 þ sin2�d�2Þ;

with a spherically symmetric matter source with negligible
pressure, T�

� ¼ ��Mðr; tÞ��
0 �

0
�. Since we have different

radial and angular scale factors, we also define transverse
and longitudinal Hubble rates as HT � _A=A, and HL �
_A0=A0, where dots and primes denote @t and @r, respec-
tively. Integrating the Einstein equations for this metric one
finds the r-dependent transverse Hubble rate

H2
Tðr; tÞ
H2

0ðrÞ
¼ �MðrÞ

�
A0ðrÞ
Aðr; tÞ

�
3 þ�KðrÞ

�
A0ðrÞ
Aðr; tÞ

�
2
;

where we have fixed the gauge by setting A0ðrÞ ¼ r and
�KðrÞ ¼ 1��MðrÞ. For fixed r the above equation is
equivalent to the Friedmann equation, and has an exact
parametric solution; see Ref. [4].

In general, LTB models are uniquely specified by the
two functions H0ðrÞ and �MðrÞ, but to test them against
data we have to parametrize the functions, to reduce the
degrees of freedom to a discrete set of parameters. For
simplicity in this paper we will use the constrained Garcia-
Bellido–Haugboelle (GBH) model [4] to describe the void

profile. First of all, it uses a minimum set of parameters to
make a simple void profile, and second, we impose that the
time to big bang should be constant. We have made this
choice because models with an inhomogeneous big bang
would contain a mixture of growing and decaying modes,
and consequently the void would not disappear at high
redshift, making them incompatible with the standard big
bang scenario [20]. If we only consider constrained LTB
models, then at high redshifts and/or at large distances the
central void is reduced to an insignificant perturbation in
an otherwise homogeneous universe described by an FRW
metric, and physical results for the early universe derived
for FRW space-times still hold, even though we are con-
sidering an LTB space-time. The second condition gives a
relation between H0ðrÞ and �MðrÞ, and hence constrains
the models to one free function, and a proportionality
constant describing the overall expansion rate. Our chosen
model is thus given by [4,10]

�MðrÞ ¼ 1þ ð�in � 1Þ
�
1� tanh½ðr� r0Þ=2�r�

1þ tanh½r0=2�r�
�

H0ðrÞ ¼ H0

�
1

�KðrÞ �
�MðrÞffiffiffiffiffiffiffiffiffiffiffiffiffi
�3

KðrÞ
q sinh�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�KðrÞ
�MðrÞ

s �

where we have assumed that space is asymptotically flat,
�ð1Þ ¼ 1. The model has then only four free parameters:
the overall expansion rate H0, the underdensity at the
center of the void �in, the size of the void r0, and the
transition width of the void profile �r. For more details on
the model, see Ref. [4].

III. LINEAR PERTURBATION THEORY

We still do not have a complete linear perturbation
theory for LTB models. The main difficulty is that since
the background is inhomogeneous we cannot split the
perturbations into independent equations for the scalar,
vector, and tensor modes. In LTB models the equations
for these modes appear as coupled partial differential
equations [20,21]. In particular, the scalar modes couple
to the tensor shear modes at first order, which act as a
source for the scalar mode via the background shear.
However, in the case that the latter is small, like in the
models we have been describing in our previous works
[11], we can ignore this source and solve exactly the
perturbation equation for the scalar mode �, which in
the absence of anisotropic matter stresses is equal to the
curvature mode �. In this approximation the equation
becomes

€�ðr; tÞ þ 4HTðr; tÞ _�ðr; tÞ � 2kðrÞ
A2ðr; tÞ�ðr; tÞ ¼ 0; (1)

with the exact solution

DAVID ALONSO et al. PHYSICAL REVIEW D 82, 123530 (2010)

123530-2



�ðr; tÞ ¼ �0ðr; 0Þ2F1

�
1; 2;

7

2
; ð1���1

M ðrÞÞAðr; tÞ
r

�
: (2)

We note that, strictly speaking, this solution is only
exact when ignoring the tensor coupling, and considering
angular transverse modes, but turns out to be a very good
approximation. In that same approximation (negligible
background shear), the density contrast of matter is pro-
portional to the scalar metric perturbation,

�ðr; tÞ ¼ �0ðrÞAðr; tÞr

�ðr; tÞ
�0ðr; 0Þ ; (3)

where �0ðrÞ, up to a normalization factor, can be deter-
mined under the assumption that the small scale matter
perturbations in the early Universe decouple from the void,
giving �0ðrÞ / r=Aðr; tearlyÞ. It is this function which we

will try to compare with the simulations described in the
next section.

IV. NUMERICAL SIMULATIONS

To test the validity of N-body codes in describing
gigaparsec-sized voids, and to follow the evolution and
formation of structure in such models, we have modified
the 2LPT initial condition generator [22] to set up an
N-body simulation of a void for the GADGET2 code [23]
where the displacements and velocities of the particles are
found using second-order Lagrangian perturbation theory
[22]. Starting with a standard transfer function for the total
matter content in a flat Einstein–de Sitter model we con-
struct initial conditions for the gravitational potential in
k-space �i

k. Then we find the gravitational potential of a
void �v

k using the analytical solution, by interpolating the
density out on the particle grid, and then Fourier trans-
forming it. Now that the total potential �k ¼ �i

k þ�v
k is

known, the 2LPT code proceeds unchanged from the origi-

nal version. Once the initial conditions have been set up we
use the public domain version of the GADGET2 code in pure
tree-mode to run the simulation (see Table I for an over-
view of the simulations) [24].
It is not evident that N-body simulations can be used to

describe large scale LTB models, and therefore a signifi-
cant effort has gone into validating that indeed we repro-
duce the expected theoretical behavior. To test the code we
have used different starting redshifts (zstart ¼ 24, 49, 99,
and 199) to check explicitly that the code is started at high
enough redshifts, such that the displacements of the parti-
cles are much smaller than the interparticle distance, and
that the void can be treated as a linear perturbation, which
at first order does not interact with the small scale fluctua-
tions from the power spectrum. We have used different
resolutions (simulations S24 and H—see Table I) to test
that the cosmological large scale structure is adequately
resolved, we have tested that the void does not interact
too much with mirror images of itself by changing the
physical box size from L ¼ 2400 to L ¼ 3600 Mpc h�1

(simulations S49 andL), and we have checked that to first
order the small scale fluctuations do not backreact signifi-
cantly on the void, by running with and without matter
perturbations (simulations S49 and V ). Apart from the
numerical tests, we have simulated a representative set of
realistic void models varying the transition length �r=r0
and central underdensity�in (see Table I). The majority of
the simulations use a GBH model with �in ¼ 0:25, and
�r=r0 ¼ 0:3, but we have also run other simulations with
�in ¼ 0:125, �in ¼ 0:0625, �in ¼ 0:0208, and �r=r0 ¼
0:1 and �r=r0 ¼ 0:5.

V. ANALYSIS AND RESULTS

The results in this paper show the concordance between
the simulations and the theoretical predictions. In order to

TABLE I. Overview of the simulations. All have been performed with a void of radius r0 ¼
1100 Mpc ¼ 473 Mpch�1, and with an asymptotic Hubble parameter of h1 ¼ 0:43. The
standard box size is L ¼ 2400 Mpc h�1, and the particle mass is Mpart ¼ 2:8� 1013M�h�1

(Mpart ¼ 4:3� 1012M�h�1 for H ). Everywhere we have used a smoothing length of

56 kpc h�1 (except for H , where it has been appropriately rescaled).

Name zstart �in �r=r0 Number of particles Comments

H 24 0.25 0.3 9603 High resolution simulation

V 49 0.25 0.3 5123 Void alone

S24 24 0.25 0.3 5123 Voidþmatter

S49 49 0.25 0.3 5123 Voidþmatter

S99 99 0.25 0.3 5123 Voidþmatter

S�125 49 0.125 0.3 5123 Voidþmatter

S�063 49 0.0625 0.3 5123 Voidþmatter

S�021 199 0.0208 0.3 5123 Voidþmatter

S�01 49 0.125 0.1 5123 Voidþmatter

S�05 49 0.125 0.5 5123 Voidþmatter

L 49 0.25 0.3 7683 L ¼ 3600 Mpc h�1
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check this we use the highest resolution simulation H as
our reference model and the other simulations to test the
limits of the validity of N-body simulations for describing
LTB models. We have subjected our simulation to three
different tests, confronting the density profile, the Hubble
parameter profile (HT and HL) and the density contrast
evolution with the corresponding theoretical predictions.

A. Distances and redshifts in LTB models

GADGET2 is designed to perform simulations of FRW

universes, and one needs to associate the comoving radial
coordinates in both models. Since we have analyzed the
data from GADGET2 snapshots, that is, positions and veloc-
ities of particles are ‘‘measured’’ at constant cosmic time,
and all our observables are quantities calculated in thin
spherical shells, this identification must be done through
the proper radial distance, calculated in both cases as

dpðr; tÞ ¼ aðtÞrFRW ¼
Z rLTB

0

A0ðr; tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kðrÞp dr: (4)

When the curvature factor ð1� kðrÞÞ�1=2 is roughly 1,
which is the case in the models under study, one can
approximate

dpðr; tÞ ¼ aðtÞrFRW ’ AðrLTB; tÞ (5)

for most redshifts. Similarly, when interpreting the results,
it is important to remember that while the proper cosmo-
logical time in the two metrics can readily be identified, the
redshift at equal times are different, i.e. for tFRW ¼ tLTB the
zFRW and zLTB are different. It is important to emphasize
that since we are considering a constrained-GBH LTB
model, the time to big bang is homogenous, and thus all
times at each radial distance are the same, so each particle
in the simulation has a time given by the code tFRW ¼ tLTB.

B. Density profile

We first compare the theoretical density profile of a
GBH universe having the desired parameters with the
corresponding profile obtained from the simulation. The
density field is calculated by interpolating each particle in
the box to a grid using a second-order triangular-shaped-
cloud technique [25] (see Fig. 1); then the simulation box
is divided into different spherical bins, and we calculate
the average density in each of them thus obtaining the
density as a function of the proper distance dp [see

Eq. (4)]. Because of the presence of nonlinear inhomoge-
neities, the error in the determination of the density profile
cannot be directly obtained as the r.m.s. in each bin, and the
error bars displayed in the figures have been calculated
as the r.m.s. in the analogous V simulation without
CDM perturbations. The reference simulation H shows
an excellent agreement between theory and simulation
(see Fig. 2), except near the center of the void, where the

particle distribution is undersampled and shot noise
dominated.
In Fig. 3 we show the density profile for an extended set

of models. For most models the simulations are in excellent
concordance with the theory, though for two extremal
cases, namely, the emptiest void S�021, and the void
with the steepest transition S��01 we find significant
deviations. For S��01 the discrepancy is not severe,
and only present in the density profile. We speculate that
this could be due to under resolution of the transition
length or possibly due to the small scale perturbations

FIG. 1. The projected matter distribution at z ¼ 0 averaged
over a 175 Mpc slice centered on the void of the 9603 simulation.
Notice how, near the center of the void, not only the density is
lower, but also there is significantly less structure than outside
the void. The characteristic void size r0 ¼ 473 Mpc h�1 is
indicated by the thin circle.

FIG. 2 (color online). Comparison of the density profile of the
H simulation at different redshifts with the theoretical curves,
as a function of comoving distance rFRW ¼ ð1þ zÞdp in Mpc.
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interacting with the large scale void, given that the tran-
sition length is only �r ¼ 47:3 Mpch�1.

C. Rates of expansion

The radial velocity profile can be used to compare
against the theoretical predictions for HT and HL. The

rate of change in the proper distance _dp=dp computed

in the rest frame of the matter should match each other in
the FRW and LTB metric, if the simulations are a valid
description of the LTB model. In the LTB metric matter is
at rest, and keeps the same comoving coordinate, while in
the FRW metric there is systematic radial motion, and we
have that

d

dt
dFRWp ¼ d

dt
½armatter� ¼ dp½hvri=rþH1�; (6)

which can be directly compared to the theoretical LTB
result calculated taking the derivative of the right-hand
side of Eq. (4). hvri is calculated as the average radial
velocity vr of the particles sampled in spherical bins. In the

upper panel of Fig. 4 we see how the theoretical radial

velocities (calculated from a�1½ _dp �H1dp�) match the

data from H . We have found that _dp=dp approximate

HT very well [see Eq. (5)], possibly because the denomi-

nator in Eq. (4), ð1� kðrÞÞ�1=2, being time independent,

cancels in the ratio _dp=dp. Using this approximation in the

lower panel of Fig. 4 we compare a range of models to
theory. Again, the difference with the theoretical graph
found near dp ¼ 0 is understandable, we are shot-noise

dominated, and furthermore the matter perturbations dis-
place the center of the void slightly, while at the same time
we have a formal singularity at r ¼ 0 when calculating
hvri=r. From HT we can extract HL straightforwardly as

HL ¼
_A0

A0 ¼ HT þ A

A0 H
0
T; (7)

which is just HL ¼ HT þ rH0
T at z ¼ 0, using A0ðrÞ ¼ r.

We stress though that at z ¼ 0 this is a derived parameter,
and not independent of HTðdpÞ. We find that all but

the emptiest model S�021 match well the theoretical

FIG. 3 (color online). Density profiles for different values of
�in (top panel) and �r=r0 (lower panel) in comparison with the
corresponding theoretical profiles. All curves are plotted at
redshift z ¼ 0.

FIG. 4 (color online). The velocity profile for the simulation
H (top panel) and the HT and HL profiles for different values of
�in (lower panel). In both cases, the theoretical profiles are
shown with dotted lines. All curves are plotted at redshift z ¼ 0.
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predictions. For S�021 the velocity is consistently higher
(and the density lower) inside the void compared to theo-
retical predictions, and a density spike is building up near
the edge of the void. This could be due to the very lower
density, but it may also be a consequence of the very high
starting redshift (zstart ¼ 199), that was necessary to keep
the perturbations linear and the particle displacements
acceptable in the initial condition.

D. Density contrast

Another interesting observable to study is the evolution
of the density contrast as a function of redshift, �ðzÞ ¼
hð�ðzÞ � ��Þ= ��i. Being (random) fluctuations, we calculate
it by finding the r.m.s. of �ðzÞ in spherical bins as a function
of proper distance. The errors in the determination of �
were calculated as the standard deviation of the values of
� calculated in the 8 octants of each spherical bin. The
results for the simulation S49 can be seen in Fig. 5, where
we compare the density contrast, calculated at a fixed
comoving distance rFRW ¼ ð1þ zÞdp, as a function of

time (expressed in terms of redshift), with the predicted
one within the simplified linear perturbation theory in LTB
described by Eq. (3). We also include, for comparison,
the density contrast growth for an open universe, with
�M ¼ 0:25, and a �CDM, with �M ¼ 0:25 and �� ¼
0:75. It is interesting to note that the data agree well, within
error bars, with both the theoretical prediction in the LTB
model and in the concordance �CDM, while they differ
significantly from an open universe with the same matter
density.

In order to better understand these differences, we have
also studied the evolution of the density contrast at several
distances from the center of the void. The results are
shown in Fig. 6. Two clearly different zones can be dis-
tinguished: while the growth is proportional to ð1þ zÞ�1

for large comoving distance, i.e. �� 1 outside the void
and aFRW ¼ ð1þ zÞ�1, the growth is significantly slower
(as would occur in an open FRW universe), for small
distances.

VI. CONCLUSIONS

We have studied for the first time the nonlinear evolution
of structure formation in large-void LTB models within an
asymptotic Einstein–de Sitter universe. By initiating large
N-body simulations at high redshifts, we have been able to
follow the nonlinear gravitational collapse of matter struc-
tures in the presence of an underdense void that starts with
a density contrast of order �m � 10�3 at photon decoupling
(where the matter perturbations have �m � 10�5). We find
that using a standard N-body code, the nonlinear growth of
the void underdensity follows the exact analytical solution
of the Einstein equations, even for very deep voids with
�M ¼ 0:06 at the center, and thus with density contrasts of
order one with respect to the asymptotic EdS universe.
Moreover, the transverse and longitudinal rates of expan-
sion agree with the theoretical expectations, giving us
confidence that the simulations are tracing the full non-
linear gravitational collapse in this nonperturbative LTB
background. This is furthermore evidence that N-body
codes give a credible and precise description of the stan-
dard �CDM model, where the voids are of much lesser
size, and no general relativistic corrections are needed to
describe the large scale evolution.
We have also studied the evolution of the matter density

contrast in such a nontrivial background, and found an

FIG. 5. Density contrast evolution inside the void at comoving
distance rFRW ¼ ð1þ zÞdp ¼ 280 Mpc, for S49, in comparison

with the theoretical prediction from perturbation theory (solid
line). We also compare the LTB growth of density perturbations
with that of open CDM (dotted line) and �CDM (dashed line).
The theoretical curves were normalized to have the same slope
asymptotically in the past, as aFRW ! 0. Note that, even though
the horizontal axis reads 1=ð1þ zFRWÞ, this zFRW only deter-
mines the cosmic time t, since the density contrast was calcu-
lated at a fixed comoving distance, and not in the lightcone.

FIG. 6. Density contrast evolution at different fixed comoving
distances for S49 simulation, as a function of the FRW scale
factor, like in Fig. 5. It is easy to distinguish between the contrast
growth in a background with�� 1 at large distances and with a
lower � near the void center.
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analytical solution to the approximate equations for the
growth of perturbations in the limit of negligible back-
ground shear, and shown that the numerical and analytical
results are in good agreement. Moreover, the comparison
with open CDM and �CDM shows that the density con-
trast growth for our LTB models is very close within errors
to that of the concordance �CDM models suggested by
WMAP-7yr [1].

From our nonlinear LTB N-body simulations we can
extract predictions for observations of large scale structure,
via the two-point angular correlation function, the angular
power spectra, the growth of structure, and the density
contrast. Our models therefore give the possibility of using
both current and future observations of the large scale
structure (such as DES [26], EUCLID [27], and PAU
[28]), to constrain LTBmodels that already provide a viable
fit to current observations of the geometry of the Universe.
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