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Primordial magnetic fields lead to non-Gaussian signals in the cosmic microwave background (CMB)

even at the lowest order, as magnetic stresses and the temperature anisotropy they induce depend

quadratically on the magnetic field. In contrast, CMB non-Gaussianity due to inflationary scalar

perturbations arises only as a higher order effect. Apart from a compensated scalar mode, stochastic

primordial magnetic fields also produce scalar anisotropic stress that remains uncompensated till neutrino

decoupling. This gives rise to an adiabaticlike scalar perturbation mode that evolves passively thereafter

(called the passive mode). We compute the CMB reduced bispectrum (BL1L2L3
) induced by this passive

mode, sourced via the Sachs-Wolfe effect, on large angular scales. For any configuration of bispectrum,

taking a partial sum over mode-coupling terms, we find a typical value of l1ðl1 þ 1Þl3ðl3 þ 1Þbl1l2l3 �
6� 9� 10�16, for a magnetic field of B0 � 3 nG, assuming a nearly scale-invariant magnetic spectrum.

We also evaluate, in full, the bispectrum for the squeezed collinear configuration over all angular mode-

coupling terms and find l1ðl1 þ 1Þl3ðl3 þ 1Þbl1l2l3 � �1:4� 10�16. These values are more than �106

times larger than the previously calculated magnetic compensated scalar mode CMB bispectrum.

Observational limits on the bispectrum from WMAP7 data allow us to set upper limits of B0 � 2 nG

on the present value of the cosmic magnetic field of primordial origin. This is over 10 times more stringent

than earlier limits on B0 based on the compensated mode bispectrum.
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I. INTRODUCTION

The origin and evolution of large-scale magnetic fields
in the Universe is not yet clearly understood. There is
observational evidence for micro-Gauss strength magnetic
fields, ordered on kiloparsec to 10 kpc scales, in galaxies
and clusters of galaxies [1–5]. There is also evidence
for galactic scale fields at higher redshift [6,7]. There are
only tentative indications, to date, of fields not associated
with individual galaxies or clusters [8]. Further, recent
�-ray observations using Fermi/LAT data provide hints
of a detection [9] or a lower bound [10] of B� 10�16 G
on intergalactic scales. Constraints on purely cosmological
magnetic fields have also been derived from the CMB
[11–30], big bang nucleosynthesis, and polarized
radiation from extragalactic radio sources (for a review
see e.g. [31]).

It is generally accepted that the observed fields require a
seed magnetic field, possibly of primordial origin, which

are then amplified by astrophysical processes [3,4,31–34].
A strong enough seed may mainly require amplification
due to flux-freezing which arises during the collapse to
form structures [4]. On the other hand a weak seed would
require considerable dynamo action as well [3,4,32–34].
As yet no compelling theory exists for the origin of strong
primordial fields. Equally, dynamo theories are not without
their own difficulties, in particular, how large-scale dyna-
mos lead to coherent enough fields on saturation [3]. Thus
it is important to keep an open mind on the issue of the
origin of magnetic fields.
Large-scale primordial fields could have resulted from

phase transitions in the early universe, for example, during
the inflationary era [35–39]. An important way to constrain
or detect such fields is via their imprints on the cosmic
microwave background (CMB) anisotropies. Considerable
work has already been done to calculate the magnetic field
signals in the power spectrum (both temperature and
polarization) of the CMB anisotropies [13–30,40–45].
The possibility of non-Gaussian signals in the CMB tem-
perature anisotropies has drawn increased attention of late.
This possibility is particularly relevant when one considers
magnetically induced anisotropies in the CMB, for the
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following reason: In standard inflationary models, the
Gaussian statistics of the quantum fluctuations in the
inflaton field leads to Gaussian statistics for the CMB
temperature field. In such models, any non-Gaussian signal
in the temperature field arises generically due to higher
order effects [46–51].

The situation is different in the case of magnetically
induced signals. Magnetic stresses depend quadratically
on the field. Hence, even if the fields are assumed to be
Gaussian, the corresponding stresses are not. This implies
that the CMB temperature anisotropy, which these stresses
induce, do not have Gaussian statistics. Unlike the case of
CMB non-Gaussianity from inflationary perturbations, in
the case of magnetic fields, the CMB non-Gaussianity is
a leading order effect. Thus the study of CMB non-
Gaussianity has a special significance in the context of
probing and detecting primordial cosmological magnetic
fields.

Preliminary studies of such non-Gaussian signals in the
CMB induced by primordial magnetic fields have begun
[52–54], based on earlier calculations of non-Gaussianity
in the magnetic stress energy [55]. These have been limited
to the scalar mode signals on large scales and further re-
stricted to a component referred to as the compensated scalar
mode by [40].However, thework of ShawandLewis [40] has
revealed that much larger CMB anisotropies can result from
scalar perturbations sourced by the magnetic anisotropic
stresses prior to neutrino decoupling (also see [56–58]).
This mode is referred to as the passive scalar mode [40]. In
this paper we calculate the contribution to the CMB bispec-
trum from the passive scalar mode. As we show here, this
contribution greatly dominates over the contribution calcu-
lated earlier by two of us [52] (hereafter referred to as SS09),
and also calculated by [53]. The current work allows tighter
limits to be placed on primordial magnetic fields.

In the next section we describe the properties of the
primordial stochastic magnetic field and in Sec. III we
describe the perturbation induced due to the passive scalar
mode. The magnetic CMB temperature anisotropy is
described in Sec. IV and in its subsections we calculate
the three-point correlation of the scalar anisotropic stress
in two different configurations. In Sec. V we calculate the
passive mode reduced bispectrum for the different configu-
rations and in Sec. VI we use the reduced magnetic bispec-
tra to put constraints on the primordial magnetic field. Our
conclusions are summarized in Sec. VII.

II. PRIMORDIAL STOCHASTIC
MAGNETIC FIELD

We consider a stochastic magnetic field B which is a
Gaussian random field characterized and completely speci-
fied by its energy power spectrum MðkÞ. In addition we
assume the magnetic field is nonhelical.

On galactic and larger scales, any velocity induced by
Lorentz forces is generally so small that it does not lead to

appreciable distortion of the initial field [59,60]. Hence,
the magnetic field simply redshifts away as Bðx; tÞ ¼
b0ðxÞ=a2, where, b0 is the magnetic field at the present
epoch (i.e. at z ¼ 0 or a ¼ 1).
We define bðkÞ as the Fourier transform of the magnetic

field b0ðxÞ. The energy power spectrum is defined by the
relation hbiðkÞb�j ðqÞi ¼ ð2�Þ3�ðk� qÞPijðkÞMðkÞ, where
PijðkÞ ¼ ð�ij � kikj=k

2Þ is the projection operator ensur-

ing r � b0 ¼ 0. This gives hb2
0i ¼ 2

Rðdk=kÞ�2
bðkÞ, where

�2
bðkÞ ¼ k3MðkÞ=ð2�2Þ is the power per logarithmic inter-

val in k-space residing in the stochastic magnetic field.
As in [61], we assume a power-law magnetic energy

spectra, MðkÞ ¼ Akn that has a cutoff at k ¼ kc, where kc
is the Alfvén-wave damping length scale [59,60]. We fix A
by demanding that the variance of the magnetic field
smoothed over a ‘‘galactic’’ scale, kG ¼ 1 hMpc�1, (using
a sharp k-space filter) is B0. This gives (for n >�3 and for
k < kc)

�2
bðkÞ ¼

k3MðkÞ
2�2

¼ B2
0

2
ðnþ 3Þ

�
k

kG

�
3þn

: (1)

The magnetic spectral index is restricted to �3 &
n <�3=2. Blue spectral indices are strongly disfavored
by many observations like the CMB power spectra [28,29]
and especially by the gravitational wave limits of [62].

III. PASSIVE SCALAR MODE

The stress tensor (space-space part of the energy-
momentum tensor) for magnetic fields in terms of the
present-day magnetic field value b0 is

Ti
jðxÞ ¼

1

4�a4

�
1

2
b20ðxÞ�i

j � bi0ðxÞb0jðxÞ
�
: (2)

In Fourier space, the product of magnetic fields becomes a
convolution

SijðkÞ ¼
Z

biðqÞbjðk� qÞd3q; (3)

Ti
jðkÞ ¼

1

4�a4

�
1

2
S��ðkÞ�i

j � SijðkÞ
�
: (4)

This can be expressed in terms of the magnetic perturba-
tions to the energy-momentum tensor as

Ti
jðkÞ ¼ p�ð�B�

i
j þ�i

BjÞ; (5)

where �B and �Bj
i are the perturbations in the energy

density and anisotropic stress, respectively, as defined in
[40] and p� is the radiation pressure.

The magnetic stresses are nonlinear in the field but we
assume that they are always small compared to the total
energy density and pressure of the photons, baryons, etc.,
thus allowing a purely linear treatment of the perturbations.
Hence the scalar, vector, and tensor perturbations decouple
and evolve independently and here we focus on the
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anisotropic scalar perturbations �BðkÞ which are given by
applying the relevant projection operator to Ti

jðkÞ [55],
�BðkÞ ¼ �3

2ðk̂ik̂j � 1
3�ijÞ�ij

B : (6)

Note that �BðkÞ of [40] is equal to ��SðkÞ of [55].
Such an anisotropic stress term also arises due to neu-

trinos after they decouple. The net anisotropic stress tensor
acts as the source term in the scalar Einstein’s equations
that lead to the Bardeen equation for the potential. Prior to
neutrino decoupling, the only source of anisotropic stress is
the magnetic field. Once the neutrinos decouple, the an-
isotropic stress due to neutrinos also contributes but with
an opposite sign to that of the magnetic field, thus com-
pensating the contribution from the magnetic field [18].
After compensation there are two modes of perturbation
[40]. The first one, called the passive mode is an adiabatic-
like mode but has non-Gaussian statistics. It grows loga-
rithmically in amplitude between the epochs of magnetic
field generation and neutrino decoupling but then evolves
passively after neutrino decoupling. This behavior has also
been confirmed in [57] in the context of deriving the
magnetic Sachs-Wolfe effect for a causally generated pri-
mordial magnetic field. The second, more well-studied
perturbation [23–26], is called the compensated mode.

The final curvature perturbation due to the passive mode
is given by Eq. 86 of Shaw and Lewis [40],

� ¼ �ð�BÞ � 1

3
R��B

�
ln

�
��
�B

�
þ

�
5

8R�

� 1

��
(7)

in the conformal Newtonian gauge. The evolution of the
curvature perturbation has also been discussed (in synchro-
nous gauge) in [56] for the case of an extra source of
anisotropic stress cancelling the neutrino anisotropic stress.
The role of anisotropic stresses on CMB has also been
discussed by [63]. Here R� � 0:4 is the fractional contri-
bution of neutrino energy density towards the total energy
density of the relativistic component. The fractional con-
tribution of radiation energy density is R� ¼ 1� R� � 0:6.

The �ð�BÞ term represents all primordial contributions to
the curvature perturbation. The log term shows the growth
in the curvature between the epochs of magnetic field
generation �B and neutrino decoupling ��. In the
radiation-dominated era the conformal time � is inversely
proportional to the temperature T so that ��=�B ¼ TB=T�.
The term lnðTB=T�Þ is always bigger than 10 for the range
of choices of �B corresponding to the temperature range
from TB � 1014 GeV of the inflationary epoch to TB �
103 GeV of the electroweak epoch. Hence, we can neglect
the ðð5=8R�Þ � 1Þ term with less than 5% error. After
neutrino decoupling, the anisotropic stress �B is compen-
sated and there is a remnant adiabatic mode with amplitude
given by [40],

� ’ � 1

3
R��B ln

�
��
�B

�
: (8)

This so-called passive mode evolves passively like an
adiabatic perturbation but the statistics of �B are non-
Gaussian unlike the standard inflationary adiabatic mode.
Also, unlike the compensated mode, the passive mode
amplitude depends logarithmically on the epoch of mag-
netic field generation. Therefore, limits on the primordial
magnetic field strength arising from this passive mode will
be somewhat sensitive to the assumed model and epoch of
magnetic field generation.

IV. MAGNETIC CMB ANISOTROPYAND
THREE-POINT CORRELATION

We consider the CMB temperature anisotropies that are
sourced by the scalar passive mode. On large angular
scales the important contribution is via the magnetically
induced Sachs-Wolfe effect

�T

T
ðnÞ ¼ 1

3
�ðx0 � nD�Þ ¼ 1

5
�ðx0 � nD�Þ; (9)

where the second equality is from, for example, Eq. (10.42)
of [64]. The unit vector n gives the direction of observation
and D� is the (angular diameter) distance to the surface of
last scatter. Then employing Eq. (8) we get

�T

T
ðnÞ ’ � 1

15
R� ln

�
��
�B

�
�Bðx0 � nD�Þ

’ Rp�Bðx0 � nD�Þ; (10)

where we define

R p ¼ � 1

15
R� ln

�
��
�B

�
: (11)

In SS09 we had calculated the bispectrum due to the
compensated scalar mode for which �T=T ¼ ðR�=20Þ�B

[65]. Equation (10) for the passive scalar mode leads to a
�T=T which is larger by a factor A ¼ ð4=3Þ lnð��=�BÞ�
ð�B=�BÞ. Assuming that the fractional perturbations �B

and�B are of the same order, we getA of order 50 for �B
corresponding to TB � 1014 GeV. As we will see below
for the magnetic spectra we consider, this alone leads to an
enhanced passive scalar mode contribution to the bispec-
trum of order A3 � 105 and thus stronger limits on the
primordial magnetic field by a factor A0:5. We assume
instantaneous recombination which is a good approxima-
tion for large angular scales. There could also be additional
integrated Sachs-Wolfe contributions to �T=TðnÞ.
The magnetic Sachs-Wolfe contribution to �T=T has

also been estimated by Bonvin and Caprini [57], although
in a different context and with different approximations.
They obtain a log term in their Eq. (6.11) which is very
similar in magnitude to our estimate here in Eq. (10). This
can be seen after taking into account their definition of�B

which is a factor of R�=3 times the �B defined here.
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The CMB temperature fluctuation in a direction ðnÞ at
the observer can be expanded in terms of the spherical
harmonics to give

�TðnÞ
T

¼ X
lm

almYlmðnÞ; (12)

where, for the passive scalar mode,

alm ¼ 4�ð�iÞl
Z d3k

ð2�Þ3 Rp�BðkÞjlðkD�ÞY�
lmðk̂Þ: (13)

Here �BðkÞ is the Fourier transform of �BðxÞ.
The non-Gaussianity in the CMB temperature anisot-

ropy can be evaluated by calculating its 3-point correlation
function (in harmonic space), called the bispectrum,
Bm1m2m3

l1l2l3
. We assume that the magnetic perturbations are

uncorrelated with the primary (inflationary) perturbations
in the CMB.

In terms of the alm’s the CMB bispectrum is given by

Bm1m2m3

l1l2l3
¼ hal1m1

al2m2
al3m3

i: (14)

From Eq. (13) we can express Bm1m2m3

l1l2l3
as

B
m1m2m3

l1l2l3
¼ R3

p

Z �Y3
i¼1

ð�iÞli d
3ki

2�2
jliðkiD�ÞY�

limi
ðk̂iÞ

�
�123;

(15)

with �123 defined as

�123 ¼ h�̂Bðk1Þ�̂Bðk2Þ�̂Bðk3Þi: (16)

The function �123 is the three-point correlation of �̂BðkÞ
and involves a 6-point correlation function of the magnetic
fields. Using Wick’s theorem it can be written as a function
of magnetic spectra in an analogous manner to [55] and
Eq. (7) of SS09, �123 ¼ �ðk1 þ k2 þ k3Þc 123, where

c 123 ¼ 1

ð4�p�Þ3
Z

d3sMðjk1 þ sjÞMðsÞMðjs� k3jÞ

� ðF�B�B�B
Þ; (17)

where F�B�B�B
is the angular component of the three-

point correlation �123 of the scalar anisotropic stress�BðkÞ
in mode-coupling integral c 123.

A. Three-point correlation of scalar
anisotropic stress

This angular componentF�B�B�B
is given by a 58-term

expression in [55] derived by applying relevant projection
operators to extract the scalar part of the full bispectrum
i.e. the six-point correlation of the magnetic fields. In this
particular case, the operator is given by Aijklmn ¼
ð�1Þ3Qijðk3ÞQklðk1ÞQmnðk2Þ where QabðkÞ � �ab�
ð3=2ÞPabðkÞ and PabðkÞ ¼ �ab � k̂ak̂b is the projection
operator. We present the full angular component (in our
notation we have absorbed a factor of 8 multiplying F
in [55] into our definition of F�B�B�B

):

F �B�B�B
¼ X6

n¼0

F n
�B�B�B

(18)

with

F 0
�B�B�B

¼ �9;

F 1
�B�B�B

¼ 0;

F 2
�B�B�B

¼ ð ��2 þ ��2 þ �	2 þ 9ð
213 þ 
223 þ 
212Þ þ 3ð�2
3 þ �2

1 þ �2
2 þ �2

3 þ �2
1 þ �2

2 þ �2
3 þ �2

1 þ �2
2ÞÞ;

F 3
�B�B�B

¼ �3ð �	ð�3�3 þ �1�1 þ �2�2 þ 1
3
�� ��Þ þ ��ð�3�3 þ �1�1 þ �2�2Þ þ ��ð�3�3 þ �1�1 þ �2�2Þ

þ 3
13ð�3�1 þ �3�1 þ �3�1Þ þ 3
23ð�3�2 þ �3�2 þ �3�2Þ þ 3
12ð�1�2 þ �1�2 þ �1�2Þ
þ 9
13
23
12Þ;

F 4
�B�B�B

¼ 3ð �� �	�3�3 þ �� �	�1�1 þ �� ���2�2 þ 3ð �	
13�3�1 þ ��
23�3�2 þ ��
12�1�2Þ
þ 3ð�3�3ð�1�1 þ �2�2Þ þ �1�1ð�3�3 þ �2�2Þ þ �2�2ð�3�3 þ �1�1ÞÞ
þ 9ð
13
23�1�2 þ 
13
12�3�2 þ 
23
12�3�1ÞÞ;

F 5
�B�B�B

¼ �9ð �	�3�3�1�1 þ ���3�3�2�2 þ ���1�1�2�2 þ 3ð
13�3�1�2�2 þ 
23�3�1�1�2

þ 
12�3�3�1�2ÞÞ;
F 6

�B�B�B
¼ 27�3�3�1�1�2�2; (19)
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where

�� ¼ ðbs � dk3 � sÞ; �� ¼ ðbs � dk1 þ sÞ;
�	 ¼ ð dk3 � s � dk1 þ sÞ; (20)

where the hat on a vector denotes its unit vector. Also,

�a ¼ k̂a � s; �a ¼ k̂a � dk3 � s;

�a ¼ k̂a � dk1 þ s; (21)

and


ab ¼ k̂a � k̂b; (22)

where our angle definitions are consistent with [55] and
slightly different to SS09.

For simplicity, we evaluate this F�B�B�B
expression to

find the bispectrum in the following two cases below. We
expect that the magnitude of the bispectrum will be of
similar order for a general case.

Case I.—Consider any bispectrum configuration but
include only the s-independent terms (constant for any
particular configuration) in the F�B�B�B

expression.

Then the s integral in Eq. (17) is performed without
reference to any particular bispectrum configuration.

Case II.—The squeezed collinear configuration where
we calculate fully the mode-coupling integral over all
angular terms in the F�B�B�B

expression.

B. Case I: Evaluation with s-independent
terms in F�B�B�B

The s-independent terms include 
12, 
23, 
13 that are
constant for a given ðk1; k2; k3Þ configuration. For each
configuration considered, we calculate the sum of the
five s-independent terms in Eq. (19) for F�B�B�B

F I
�B�B�B

¼ �9þ 9ð
212 þ 
223 þ 
213Þ � 27ð
13
12
23Þ:
(23)

We give in Table I the values of m ¼ F I
�B�B�B

ðk1; k2; k3Þ
for specific configurations ðk1; k2; k3Þ. Note thatm happens
to vanish exactly for the local isosceles configuration.
Hence the Case I mode-coupling integral reduces to

c 123 ¼ m

ð4�p�Þ3
I ¼ 33m

ð4��0Þ3
I ; (24)

where �0 is the present-day energy density of radiation and

I ¼
Z

d3sMðjk1 þ sjÞMðsÞMðjs� k3jÞ

¼ 2�A3
Z 1

�1
d	

Z 1

0
dssnþ2ðs2 þ k21 þ 2sk1�Þðn=2Þ

� ðs2 þ k23 � 2sk3	Þðn=2Þ; (25)

where � ¼ k̂1 � ŝ and 	 ¼ k̂3 � ŝ.

We perform the mode-coupling integral using the tech-
nique discussed in [16,17,61]. As m vanishes for the local
isosceles configuration, c 123 is zero for this configuration.
For the equilateral and squeezed collinear configurations
we split the s integral into two subranges 0< s < k1 � k3
and s > k1 � k3 We then approximate the integrands by
assuming s � k1 � k3 and s 	 k1 � k3 for the respective
subranges. For the midpoint collinear configuration we
split the s integral into two subranges 0< s < k1 and s >
2k1 � k3 while neglecting the very small contribution
from the middle subrange k1 < s < 2k1 � k3. Again, we
approximate the integrands by assuming s � k1 and s 	
2k1 � k3 for the respective subranges. To derive numerical
estimates of the bispectrum and magnetic field strengths
we will focus on nearly scale-invariant spectra (which can
be produced by an acausal mechanism like inflation), i.e.
n ! �3, which yield

I ’ 4�A3

�
k2nþ3
1 kn3
nþ 3

� k3nþ3
3

3nþ 3

�
’ 4�A3 k

2nþ3
1 kn3
nþ 3

: (26)

The latter equation is obtained in the limit n ! �3
where we can neglect the terms with ð3nþ 3Þ�1 compared
to ðnþ 3Þ�1. Hence the mode-coupling integral for
Case I—taking only s-independent angular part—is

c 123 ¼ ð4Þ4m�7

k6G
ðnþ 3Þ2

�
k1
kG

�
2nþ3

�
k3
kG

�
n
V6
A: (27)

Here we have defined VA, the Alfvén velocity in the
radiation-dominated era as [60]

VA ¼ B0

ð16��0=3Þ1=2
� 3:8� 10�4B�9; (28)

with B�9 � ðB0=10
�9GaussÞ.

C. Case II: Squeezed collinear configuration—all
angular terms

For Case II—We take the squeezed collinear bispectrum

configuration as k1 � k3 and k2 � k1, k3 and k̂1 ¼ k̂2 ¼
�k̂3. One wavevector (k2) is negligibly small compared to

TABLE I. The sum of s-independent terms m ¼ F I
�B�B�B

in
four different configurations ðk1; k2; k3Þ for evaluating the Case I
bispectrum.

Configuration ðk1;k2;k3Þ ð
12; 
23; 
13Þ m

Local k1 � k3 ð0; 0;�1Þ 0

Isosceles k2 � k1, k3
Equilateral k1 � k2 � k3 ð12 ; 12 ; 12Þ �5:625
Ssqueezed k1 � k3 ð1;�1;�1Þ �8 a

Collinear k2 � k1, k3
k̂1 ¼ k̂2 ¼ �k̂3

Midpoint k1 � k2 � k3
2 ð1;�1;�1Þ �9

Collinear k̂1 ¼ k̂2 ¼ �k̂3

aFor the squeezed collinear configuration case, F I
�B�B�B

picks
up another term �	2 � 1.
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the other two which are also in exactly opposite directions
and of a similar magnitude. This affords considerable
simplification and reduction of the angular terms given
by Eq. (19) in doing the mode-coupling integral. Using
k3 � �k1 we see that

�� ¼ ðbs � dk3 � sÞ � ðbs � d�k1 � sÞ
� �ðbs � dk1 þ sÞ � � ��; (29)

�	 ¼ ð dk3 � s � dk1 þ sÞ � ð d�k1 � s � dk1 þ sÞ
� �ð dk1 þ s � dk1 þ sÞ � �1; (30)

�1 ¼ �2 ¼ ��3 ¼ � ¼ � ¼ �	; (31)

�1 ¼ �2 ¼ ��3 ¼ �; (32)

�1 ¼ �2 ¼ ��3 ¼ �; (33)


12 ¼ 1; 
23 ¼ 
13 ¼ �1: (34)

These relations substituted into Eq. (19) reduce the 58
terms to a 10-term angular expression for the squeezed
collinear configuration

F�B�B�B
¼ �8þ ��2 þ 9ð	2 þ 2�2Þ þ 6	 ���

þ 3 ��2�2 � 9�2ð3	2 þ �2Þ � 18	 ���3

þ 27	2�4: (35)

We again perform the mode-coupling as discussed above
and split the s integral into two subranges 0< s < k1 � k3
and s > k1 � k3. Once again we approximate the inte-
grands by assuming s � k1 � k3 and s 	 k1 � k3 for
the respective subranges to give

c 123 ¼ 1

ð4�p�Þ3
I ¼

�
3

4��0

�
3
I ; (36)

where

I ¼
Z

d3sMðjk1 þ sjÞMðsÞMðjs� k3jÞ½�8þ ��2

þ 9ð	2 þ 2�2Þ þ 6	 ���þ 3 ��2�2 � 9�2ð3	2 þ �2Þ
� 18	 ���3 þ 27	2�4
: (37)

Performing the integrals for all the terms, with n ! �3,
we find that there is considerable though incomplete can-
cellation between the 10 terms

I ’ 2�A3 k
2nþ3
1 kn3
nþ 3

�
�16þ 2

3
þ 6þ 36þ 4þ 2� 18

� 18� 12þ 18

�
’ 2�A3 k

2nþ3
1 kn3
nþ 3

�
8

3

�
: (38)

We draw attention to how the full evaluation gives a result
for c 123 that is of opposite sign and one-sixth magnitude

(8=3) of the value if we only consider the constant term
(� 16) for this squeezed collinear configuration. The sign
of the mode-coupling integral is important as the bispec-
trum is not a positive-definite quantity (unlike the power
spectrum) and the observed limits on the bispectrum may
also be asymmetric about zero. Then the Case II—
squeezed collinear mode-coupling integral is

c 123 ¼
�
8

3

�
2ð4Þ3 �

7

k6G
ðnþ 3Þ2

�
k1
kG

�
2nþ3

�
k3
kG

�
n
V6
A: (39)

As the n dependence of c 123 is identical for both Case I
and Case II we can write

c 123 ¼ K
�
2ð4Þ3 �

7

k6G
ðnþ 3Þ2

�
k1
kG

�
2nþ3

�
k3
kG

�
n
V6
A

�
; (40)

where

K ¼
�
2m Case I
8
3 Case II:

(41)

V. PASSIVE SCALAR CMB BISPECTRUM

Using Eq. (40) in Eq. (15) we can evaluate the CMB
bispectrum for the passive scalar mode for both Case I
and II. The algebraic steps are the same as those for the
compensated scalar mode in SS09. We express the delta
function present in �123 in its integral form �ðkÞ ¼
ð1=ð2�Þ3ÞR d3x expðik � xÞ, use the spherical wave expan-
sion of the exponential terms, substitute it into Eq. (15),
and integrate over the angular parts of ðk1; k2; k3; xÞ. This
algebra is also very similar to that in the calculation of the
primordial bispectrum [49]. Then it becomes possible to
write the bispectrum B

m1m2m3

l1l2l3
, in terms of a reduced bis-

pectrum bl1l2l3 (also referred to as the Komatsu-Spergel

estimator [47]) as

Bm1m2m3

l1l2l3
¼ Gl1l2l3

m1m2m3
bl1l2l3 ; (42)

where

bl1l2l3 ¼
�Rp

�2

�
3 Z

x2dx
Y3
i¼1

Z
k2i dkijliðkixÞjliðkiD�Þc 123;

(43)

and we have introduced the Gaunt integral

G l1l2l3
m1m2m3

¼
Z

d�Yl1m1
Yl2m2

Yl3m3
: (44)

We substitute Eq. (40) into Eq. (43) for the reduced
bispectrum. The integrals over k2 can be immediately
done using the spherical Bessel function closure relationZ

k22dk2jl2ðk2xÞjl2ðk2D�Þ ¼ ð�=2x2Þ�ðx�D�Þ; (45)

and the delta function makes the x-integral trivial. We are
then left with integrals over k1 and k3 given by
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bl1l2l3 ¼ K
�Rp

�2

�
3 �

2
½2ð4Þ3�7ðnþ 3Þ2V6

A:


�
�Z dk3

k3
j2l3ðk3D�Þ

�
k3
kG

�
nþ3

�

�
�Z dk1

k1
j2l1ðk1D�Þ

�
k1
kG

�
2ðnþ3Þ�

: (46)

The k3 and k1 integrals are similar in form to the usual
Sachs-Wolfe term (for power-law magnetic spectra) and
can be evaluated analytically for any n (Eq. 6.574.2 of [66])
in terms of gamma functions. For n ! �3 we have

bl1l2l3 ¼ K
�Rp

�2

�
3 �

2
½2ð4Þ3�7ðnþ 3Þ2V6

A:


� 1

2l3ðl3 þ 1Þ
1

2l1ðl1 þ 1Þ (47)

or

l1ðl1 þ 1Þl3ðl3 þ 1Þbl1l2l3 ¼ KRp
3

�
�

2

�
2ð4Þ3ðnþ 3Þ2V6

A;

(48)

where a factor of 1=ðD�kGÞ3ðnþ3Þ that also appears has been
approximated to unity for the case n ! �3 of a scale-
invariant magnetic field index.

For Case I—The bispectrum considering only constant
angular terms

l1ðl1 þ 1Þl3ðl3 þ 1Þbl1l2l3 � ð�1:35� 10�16Þ
�
3m

4

�

�
�
nþ 3

0:2

�
2
�
B�9

3

�
6
; (49)

where we have used TB � 1014 GeV corresponding to a
possible inflationary epoch for magnetic field generation.
This evaluates in different configurations to

l1ðl1 þ 1Þl3ðl3 þ 1Þbl1l2l3 �

ð10�16Þ
�
nþ 3

0:2

�
2
�
B�9

3

�
6 �

8>>>>>><
>>>>>>:

0 local isosceles

5:7 equilateral

8:1 squeezed collinear

9:2 midpoint collinear

9>>>>>>=
>>>>>>;
:

(50)

We see that the constant-term only evaluation gives a
bispectrum of order 6� 9� 10�16 independent of the
exact configuration. The exception is the local isosceles
case (where the constant-term sum happens to vanish) but
if a full evaluation over all angular terms is done, it yields a
nonzero bispectrum.

For Case II—The squeezed collinear bispectrum con-
sidering all angular terms

l1ðl1 þ 1Þl3ðl3 þ 1Þbl1l2l3 � ð�1:35� 10�16Þ
�
nþ 3

0:2

�
2

�
�
B�9

3

�
6
: (51)

The full evaluation of all angular terms for the squeezed
collinear case produces two important changes (compared
to squeezed collinear in Case I evaluation): the sign of the
bispectrum has changed to negative (angular terms in
mode-coupling contribute with different signs and change
the total sign) and its value had diminished by factor of 6.
Note that the values of the reduced bispectrum given by

Eqs. (50) and (51) are �106 times larger than the values
obtained for the compensated scalar mode in SS09. This is
essentially due to the large value of A3 as discussed in
Sec. IV.
A numerical evaluation of the mode-coupling integral

involves an integrable singularity at s ¼ k3 and s ¼ �k1.
The singularity is integrable (even without a large-scale
cutoff) provided we consider the mode-coupling integral
over s together with the k1 and k3 integrals. We defer this
numerical investigation for later work and proceed with
our analytic results.

VI. CONSTRAINT ON PRIMORDIAL
MAGNETIC FIELD

In order to put constraints on the primordial magnetic
field, we compare our magnetic reduced bispectrum with
the reduced bispectrum that arises from nonlinear terms in
the gravitational potential. These have a value given by

l1ðl1 þ 1Þl3ðl3 þ 1Þbl1l2l3 � 4� 10�18fNL (52)

characterized by fNL ([50]).
The reduced bispectrum for the magnetic compensated

scalar mode [52,53] was a factor of a few times 104 smaller
than the standard inflationary signal (for models with
fNL � 1). However, we find that the magnitude of the
corresponding reduced bispectrum for the magnetic pas-
sive scalar mode, calculated above, is �30 times larger
(Case II) or even up to�200 times larger (Case I) than the
inflationary signal. Both these magnetic bispectra values
are for field strength of 3 nG and n ¼ �2:8, close to the
scale-invariant spectrum.
Conversely, we can put upper limits on the primordial

magnetic field by equating the magnetic bispectrum to the
observed upper limit for the inflationary bispectrum. This is
evaluated using the latest WMAP7 limits (95% C.L.)
on non-Gaussianity in the observed CMB [67], �10<
flocNL < 74, taking the appropriate side of these limits for the
different signs of bispectrum. Sincewe have considered only
the Sachs-Wolfe contribution tomagnetic field-induced tem-
perature anisotropies, ourmagnetic bispectrawill be accurate
only on large scales. However, the fNL we are using for
comparison to data comes from WMAP data that has a
maximum multipole of l� 750 and therefore the bispectra

PRIMORDIAL MAGNETIC FIELD LIMITS FROM COSMIC . . . PHYSICAL REVIEW D 82, 123006 (2010)

123006-7



comparison is not exact. Yet our B0 limits are expected to be

fairly robust as B0 depends very weakly (B0 / f1=6NL ) on fNL
as also discussed in SS09. We obtain the following upper
limits for the magnetic field in different cases:

Case I: For any bispectrum configuration considering
only s-independent terms

B0 < 3 nG: (53)

For individual configurations the magnetic field limits are
equilateral (2.7 nG), squeezed collinear (2.5 nG), and
midpoint collinear (2.5 nG), all for TB � 1014 GeV corre-
sponding to the inflationary epoch and using flocNL < 74.

Case II: For the squeezed collinear bispectrum configu-
ration, including all angular terms, we obtain an upper limit

B0 < 2 nG; (54)

where this magnetic field limit value (2.4 nG) is derived
using TB � 1014 GeV and�10< flocNL.

It is currently unclear what would be an appropriate
epoch to adopt for the generation of a large-scale primordial
cosmic magnetic field [31,35–39]. We recall that via the
logarithmic factor in Eq. (8), there is a weak dependence of
B0 on �B, the magnetic field generation epoch. We find a
2–4 nG variation in the B0 upper limit when �B is varied
between the inflationary and electroweak epochs (using
TB � 1014 ! 103 GeV), taken as the earliest and latest
possible epochs of magnetic field generation. However, as
the electroweak transition is not expected to give a scale-
invariant magnetic field spectrum, we caution that the
choice of electroweak epoch may be too late to generate a
field with n ! �3. Hence, the variation in the magnetic
field upper limit quoted above may be an overestimate.

VII. CONCLUSION

We have calculated here the CMB bispectrum, on large
angular scales, due to the passive scalar mode. This mode
is sourced by the magnetic scalar anisotropic stress before
neutrino decoupling. The CMB bispectrum due to the
passive scalar mode is more than 2 orders of magnitude

larger than the bispectrum due to the primary inflation-
induced scalar mode, for fNL � 1 and B0 � 3 nG. It is also
a factor of 106 times greater than that previously calculated
for the compensated scalar mode [52,53]. This is the first
calculation of a type of magnetic contribution to CMB
bispectrum that can clearly dominate over the primary
bispectrum at large scales. In the CMB power spectrum,
by contrast, the passive scalar mode signal is highly sub-
dominant to the inflationary signal [40]. Our work thus
shows that the magnetically induced signals, being intrinsi-
cally non-Gaussian, could be more easily distinguished
from the primary CMB anisotropies, when one considers
the bispectrum rather than the power spectrum.
Using the WMAP7 limits for fNL we have placed an

upper limit on the strength of the primordial magnetic field
B0 < 2 nG which is more than an order of magnitude
stronger than the limit from the compensated scalar
mode (35 nG) obtained in SS09. The passive mode limit
is only weakly (logarithmically) dependent on the epoch of
magnetic field generation �B. We note that for scale-
invariant magnetic spectra n ! �3, the bispectrum and
the derived magnetic field limit are independent of both the
assumed cosmological model as well as our choice of
smoothing scale kG for the stochastic magnetic field B0.
The primordial magnetic field limit is expected to

improve if the integrated Sachs-Wolfe effect and full
scalar anisotropies are taken into account. We also
expect stronger constraints to follow from the tensor and
vector mode bispectra that dominate at low and high l,
respectively. Better observational limits on CMB non-
Gaussianity from PLANCK data are expected to further
tighten primordial magnetic field limits.
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