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The chemical composition of ultrahigh energy cosmic rays is a key question in particle astrophysics.

The measured composition, inferred from the elongation rates of cosmic ray showers, looks in general

very different from the initial source composition: resonant photo-disintegration in the cosmic radiation

background proceeds rapidly at the highest energies and the initial composition quickly becomes lighter

during propagation. For a statistical analysis of continuously improving cosmic ray data it is desirable to

know the secondary spectra as precisely as possible. Here, we discuss exact analytic solutions of the

evolution equation of ultrahigh energy cosmic ray nuclei. We introduce a diagrammatic formalism that

leads to a systematic analytic expansion of the exact solution in terms of second order effects of the

propagation. We show how the first order corrections of this expansion can improve the predictions of

secondary spectra in a semianalytical treatment.
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I. INTRODUCTION

The mass composition of ultrahigh energy (UHE) cos-
mic rays (CRs) remains an open question in astrophysics.
The average mass number hAi per energy can be inferred
directly in CR observatories by the measurement of the
elongation rate distribution of CR showers [1]. Presently,
the observational situation is ambiguous despite strong
experimental efforts over the years. Recent findings of
the Pierre Auger Collaboration [2] indicate a transition of
UHE CRs within the energy range 1018 eV to 4� 1019 eV
from a light (presumably proton-dominated) spectrum
towards a heavier composition [3]. In contrast, the HiRes
Collaboration [4] finds a mass composition compatible
with that of a proton-dominated spectrum [5].

Various features in the CR spectrum can also provide
indirect evidence for the origin and composition of
UHE CRs. The ankle—a hardening of the spectrum at
3� 1018 eV—could be formed naturally by the superpo-
sition of two power-law fluxes and serves as a candidate of
the transition between galactic and extragalactic cosmic
rays [6,7]. It has also been advocated that this feature could
be well reproduced by a proton-dominated power-law
spectrum, where the ankle is formed as a dip in the spec-
trum from the energy loss of protons via Bethe-Heitler pair
production [8,9]. In this case extragalactic protons could
already start to dominate the spectrum beyond the 2nd knee
which corresponds to a slight softening of the spectrum at
5� 1017 eV.

Proton dominance beyond the ankle is ultimately limited
by the Greisen-Zatspin-Kuzmin cutoff [10,11] due to reso-
nant photo-pion production in the cosmic radiation back-
ground (CRB). In fact, a suppression of the CR spectrum
at the expected energy of about 5� 1019 eV has been
detected by the Pierre Auger and HiRes collaborations at

a statistically significant level [4,12] and is consistent with
a proton dominance at these energies. However, this fea-
ture could also originate from photo-disintegration of UHE
CR nuclei in the cosmic background radiation, or from an
in situ energy cutoff of the injection spectrum of UHE CR.
To summarize, the interpretation of these experimental
findings is as yet inconclusive and even controversial.
Simple theoretical arguments, however, can motivate

a significant contribution of primary nuclei at energies
beyond 1018 eV. For the efficient acceleration of primary
CRs to these extreme energies a particle should be confined
magnetically in a suitable astrophysical environment.
Since the particle’s Larmor radius is proportional to its
rigidity, i.e. its energy per charge, we expect that the
maximal energy Emax of UHE CRs to scale with the charge
number Z of a (fully ionized) nucleus. The acceleration of
heavy nuclei like iron (Z ¼ 26) can hence proceed up to
larger energies and alleviates the fundamental limitations
of cosmic accelerators to account for the observed spec-
trum of UHE CRs [13].
Analytic1 descriptions of UHE CR propagation provide

an easily accessible means of exploring both proton
and heavy nuclei source scenarios. With the most recent
results of the Auger collaboration indicating that the com-
position continues to become heavier at energies above
3� 1019 eV, the heavy UHE CR flux component may well
arrive from very local cosmological regions. To facilitate
the future exploration of nearby UHE CR nuclei source
distributions, we here develop further the analytic descrip-
tion of UHE CR nuclei propagation put forward in

1We use the term ‘‘analytic’’ here to denote explicit analytic
solutions in closed form following [14]. There also exist many
implicit analytic solutions for the spectra of UHE CRs that
require an algorithmic treatment, e.g. [8,15,16].
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Ref. [14]. These developments take into account subdomi-
nant energy losses, ensuring that this description provides
an accurate means of obtaining the UHE CR flux over the
full energy range covered by the cosmic ray observatories.

Numerical evaluations of the UHE CR spectra are
equally viable, but can become time consuming since the
evolution has to be traced over cosmologically scales of
OðGpcÞ whereas the interaction length of nuclei is of
OðMpcÞ at the highest energies. Our analytic treatment,
instead, provides exact results up to propagation scales of
Oð100 MpcÞ, before the cosmic evolution of the radiation
background and the source emission rates become relevant.
The full propagation over cosmic distances can then be
treated semi-analytically by multiple application of the
analytic solution. Note, that the required evolution steps
are much larger than in the case of a purely numerical
solution with interaction lengths of OðMpcÞ. Hence, the
analytic approach does not only provide an alternative
method for the evaluation and cross-check of CR spectra,
but can also provide the basis of a more efficient numerical
evaluation.

We will start in Sec. II with a short recapitulation of the
compact evolution equations of UHE CR nuclei in the limit
of a spatially homogeneous distribution of isotropic CR
sources. We derive an exact analytic solution in Sec. III
that includes continuous energy losses and multinucleon
loss transitions between nuclei. In Sec. IV we introduce a
perturbative expansions of the exact analytic solution that
provides a convenient practical framework for next-to-
leading order corrections of the solution given in
Ref. [14]. We finally conclude in Sec. V.

II. PROPAGATION OF COSMIC
RAY NUCLEI

For a spatially homogeneous distribution of cosmic
sources, emitting UHE particles of type i, the comoving
number density Yi is governed by a set of (Boltzmann)
continuity equations of the form:

_Yi ¼ @EðHEYiÞ þ @EðbiYiÞ � �tot
i Yi

þX
j

Z
dEj�jiYj þLi; (1)

together with the Friedman-Lemaı̂tre equations describing
the cosmic expansion rate HðzÞ as a function of redshift z.2
The first and second terms on the right-hand side describe,
respectively, redshift and other continuous energy losses
(CEL) with rate b � dE=dt. The third and fourth terms

describe more general interactions involving particle losses
(i ! anything) with total interaction rate �tot

i , and particle
generation of the form j ! i with differential interaction
rate �ij. The last term on the right-hand side, Li, corre-

sponds to the emission rate of CRs of type i per comoving
volume.
The two main reactions of UHE CR nuclei during their

cosmic evolution are photo-disintegration [17–20] and
Bethe-Heitler pair production [21] with the CRB. In addi-
tion to the dominant contribution of the cosmic microwave
background (CMB) we also include the cosmic infrared/
optical background (CIB) from Ref. [22] in our calculation
of interaction and energy loss rates. Photo disintegration is
dominated by the giant dipole resonance (GDR) with main
branches A ! ðA� 1Þ þ N and A ! ðA� 2Þ þ 2N where
N indicates a proton or neutron [17–19]. The GDR peak in
the rest frame of the nucleus lies at about 20 MeV for one-
nucleon emission, corresponding to EA

GDR ’ A� 2�
��1
meV � 1010 GeV in the cosmic frame with photon ener-

gies � ¼ �meV meV. At energies below 10 MeV there exist
typically a number of discrete excitation levels that can
become significant for low mass nuclei. Above 30 MeV,
where the photon wavelength becomes comparable or
smaller than the size of the nucleus, the photon interacts
via substructures of the nucleus. Out of these the interac-
tion with quasideuterons is typically most dominant and
forms a plateau of the cross section up to the photo-pion
production threshold at �145 MeV. Bethe-Heitler pair
production can be treated as a continuous energy loss
process with rate bAðz; EÞ ¼ Z2bpðz; E=AÞ, where bp is

the energy loss rate of protons [21]. The (differential)
photo-disintegration rate �A!BðEÞ (�A!BðE; E0Þ) is dis-
cussed in more detail in Appendix A.
The evolution of the spectra proceeds very rapidly on

cosmic time scales and the flux of secondary nuclei, J,
looks generally quite different from the initial injection
spectrum, Jinj. The reaction network of nuclei depend in

general on a large number of stable or long-lived isotopes.
If the lifetime of an isotope is much shorter than its
photo-disintegration rate it can be effectively replaced by
its long-lived decay products in the network (1). Typically,
neutron-rich isotopes � decay to a stable or long-lived
nucleus with the same mass number. In most cases there
is only one stable nucleus per mass number below 56Fe
with the exception of the pairs 54Cr=54Fe, 46Ca=46Ti,
40Ar=40Ca and 36S=36Ar. We follow here the approach of
Puget, Stecker. and Bredekamp (PSB) [18] and consider
only a single nucleus per mass number A in the decay chain
of primary iron 56Fe. This PSB chain of nuclei linked by
one-nucleon losses is discussed in more detail in
Appendix A.
As described earlier, CR nuclei that undergo rapid photo

disintegration with CMB and CIB photons, carry a Lorentz
factor of about � ¼ 2� 1010. We can only strictly neglect
long-lived secondary isotopes from the reaction network if

2This is given by H2ðzÞ ¼ H2
0½�mð1þ zÞ3 þ���, normalized

to its value today of H0 � 70 km s�1 Mpc�1, in the usual ‘‘con-
cordance model’’ dominated by a cosmological constant with
�� � 0:7 and a (cold) matter component, �m � 0:3 [13]. The
time dependence of the redshift can be expressed via
dz ¼ �dtð1þ zÞH.
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the nucleus lifetime in the cosmic frame, ��, is much
smaller than the inverse photo-disintegration rate, which
is of the order of ð4=AÞ Mpc. This corresponds to nu-
cleon lifetimes of less than a few minutes. In general,
there is a large number of isotopes below 56Fe that are
sufficiently long-lived in the cosmic frame to take part in
the photo-disintegration process (see Appendix A).
Fortunately, a large degeneracy of intermediate isotopes
with equal mass number affects only very heavy nuclei.
The photo-disintegration of these degenerate nuclei,
dominated by collective excitations of nucleons like the
GDR, mostly depend on the mass number A. The fluxes
calculated for nuclei in the PSB chain are expected to
give a good representation of the total flux per mass
number. Note that most of the analytic formulae that we
are going to introduce in the following can be easily
generalized to the case of the full reaction network
including all isotopes.

Note, that the Boltzmann equations. (1) do not take into
account the deflection of charged CR nuclei during their
propagation through intergalactic and galactic magnetic
fields. The strength of intergalactic magnetic fields is lim-
ited to the range 10�16 G� 10�9 G [23,24] and suggested
to be ofOð10�12Þ G by simulations of large-scale structure
formation [25]. In fact, if synchrotron radiation during
propagation is negligible and the source distribution is
homogenous, Eq. (1) provides a good approximation of
the spectral evolution even for CRs having small rigidity
which suffer large deflections [26]. However, magnetic
inhomogeneities on small scales will suppress the spec-
trum of CRs with Larmor radius ‘L < ‘d where ‘d is the
characteristic distance between sources. It has been shown
that for particularly strong intergalactic magnetic fields of
strength �1 nG and coherence length of �1 Mpc, the
diffusive propagation of CR protons will start to affect
the spectrum below about 109 GeV if ‘d � 50 Mpc [27].
Depending on the diffusion regime, this can suppress the
proton flux at 108 GeV by a factor of 3 to 100. Because of
the dependence ‘L / 1=Z we expect that for heavy nuclei
diffusive propagation can in principle remain important up
to the ankle. The results of this paper are based on solutions
of Eqs. (1) and assume that the contribution of intergalactic
or galactic magnetic fields can be neglected for the calcu-
lation of the UHE CR spectrum.

III. ANALYTIC SOLUTION

The secondary nuclei produced via photo disintegration
carry approximately the same Lorentz factor as the initial
nucleus and the differential interaction rate in Eqs. (1)
can be approximated as �A!BðE; E0Þ ’ �A!BðEÞ�ðE0 �
ðB=AÞEÞ. It is hence convenient to express the energy of
a nucleus with mass number A and redshift z as Að1þ zÞE
where E denotes the energy per nucleon. Introducing the
CR density per comoving volume and nucleon energy,
NA;i � �Eið1þ zÞAYAðz; ð1þ zÞAEiÞ, and corresponding

emission rates, QA;i � Að1þ zÞ�EiLðz; Að1þ zÞEiÞ we

can rewrite Eqs. (1) in the compact form3

_NA;i ’ �CEL
A;iþ1NA;iþ1 � �CEL

A;i NA;i �
X
B<A

�ðA;iÞ!ðB;iÞNA;i

þ X
B>A

�ðB;iÞ!ðA;iÞNB;i þQA;i; (2)

where we define the rates

�CEL
A;i ¼ �ðA;iÞ!ðA;i�1Þ � bAðz; Að1þ zÞEiÞ

Að1þ zÞ�Ei

;

�ðA;iÞ!ðB;iÞ � �A!Bðz; Að1þ zÞEiÞ:
(3)

Hooper et al. [14] discussed an analytical solution of
Eqs. (2) for one-nucleon losses in the limit �CEL

A;i ¼ 0 and

QA;i ¼ 0. In fact, the solution of a more general interaction

network with generalized interaction rates �ðA;iÞ!ðB;jÞ of the
form (3) can be written

NA;iðtÞ¼
X

j�i;B�A

X
c

�Ync�1

l¼1

�cl!clþ1

�Xnc
k¼1

�
NB;jð0Þe�t�tot

ck

þ
Z t

0
dt0QB;jðt0Þe�ðt�t0Þ�tot

ck

� Ync
p¼1ð�kÞ

1

�tot
cp ��tot

ck

; (4)

where we sum over all possible production chains
c ¼ hc1; . . . ; cnci with intermediate nuclei of mass number

C in the energy bin k—denoted by the doublet
ci ¼ ðC; kÞ—and fixed end points c1 ¼ ðB; jÞ and cnc ¼ðA; iÞ. The partial width �cl!clþ1

includes nucleon-

disintegration (�ðA;iÞ!ðB;iÞ) as well as CEL (�ðA;iÞ!ðA;i�1Þ).
Proof of Eq. (4) is given in Appendix A.
We can visualize the production chains c diagrammati-

cally as paths along the configuration grid of nuclei, as
shown in Fig. 1. A horizontal link corresponds to a CEL
transition whereas a vertical link denotes photo disintegra-
tion. The color coding in Fig. 1 indicates the type of the
transition cl ! clþ1—green for CEL, red for one-nucleon
losses and red-dotted for two-nucleon losses.4 It is conve-
nient to use this graphical representation as a shorthand
notation for the terms of Eq. (4). To see this, we can write
Eq. (4) in the form

NA;iðtÞ ¼
Z 1

0
dt0

X
j�i;B�A

GðA; i; B; j; t� t0Þ½QB;jðt0Þ

þ �ðt0ÞNB;jð0Þ�; (5)

3This form of the differential equation holds for nuclei heavier
than beryllium. We can easily compensate for the process
9Be ! 4Heþ 4Heþ n of the PSB chain (see Appendix A) by
redefining N0

A;i ¼ NA;i=2 for A ¼ 2, 3, 4 and N0
A;i ¼ NA;i for

other nuclei.
4We will use later on ‘‘generalized’’ chains, where the tran-

sition cl ! clþ1 is not necessarily equal to �cl!clþ1
.
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where we define a Green’s function GðA; i; B; j; �tÞ ¼
�ð�tÞPcGðc; �tÞ as a sum over the contribution per path,

Gðc; �tÞ �
�Ync�1

l¼1

�cl!clþ1

�Xnc
k¼1

e��t�tot
ck

Ync
p¼1ð�kÞ

1

�tot
cp � �tot

ck

:

(6)

Each termGðc; �tÞ in the previous equation corresponds to
a production chain on the configuration grid. We will use
this graphical representation later for a perturbative expan-
sions of Eq. (4).

The interaction rates �A and energy loss rates bA are not
constant as the Universe expands. The adiabatic expansion
of the CMB number density (see Appendix A) results in
a redshift dependence of interaction rates and energy
loss rates as �Aðz; EÞ ¼ ð1þ zÞ3�Að0; ð1þ zÞEÞ and
bAðz; EÞ ¼ ð1þ zÞ2bAð0; ð1þ zÞEÞ, respectively. The red-
shift scaling of the CIB [22] is less trivial since it follows
the star formation rate. For the corresponding redshift
dependence of the rates we refer to the discussion of
Ref. [16]. Also, the nucleus emission rates LA are not in
general constant with time. A standard approach approx-
imates the scaling with redshift as a simple power law over
a finite redshift distance, e.g.

L Aðz; EÞ � �ðz� zminÞ�ðzmax � zÞð1þ zÞnLAð0; EÞ:
(7)

We can account for the redshift dependence of � and Q by
summing Eqs. (4) over sufficiently small redshift intervals,
in which these quantities can be regarded as constant.
Typically, intervals of �z ’ 0:01 are sufficient for this
approach.

Though the expression (4) is an exact analytical solution
of the system of differential Eqs. (2), its calculation

involves a large number of possible production chains
and becomes numerically inefficient for large configura-
tion grids.5 For instance, for one-nucleon and two-nucleon
losses the number of possible chains F�A between nuclei
with mass number A and B ¼ Aþ �A can be derived
iteratively from the identity F�Aþ2 ¼ F�A þ F�Aþ1 with
F0 ¼ F1 ¼ 1, which we recognize as the sequence of
Fibonacci numbers. Hence, the total sum over different
chains and N primary nuclei in expression (4) involves
F0 þ F1 þ . . .þ FN�1 ¼ FNþ1 � 1 number of terms,
which is a number that scales exponentially with N.
Hence, considering all transitions via one-nucleon and
two-nucleon losses between, say, proton (A ¼ 1) and iron
(A ¼ 56) becomes numerically very expensive even with-
out considering transitions via CEL.
We show in the following that the exact expression (4)

can be well approximated by the dominant production
chain through one-nucleon losses. Corrections via two-
nucleon losses and CEL can be treated perturbatively. As
means of a comparative check, we obtain results using our
analytic description, assuming a source injection spectrum
of the form

Jinj / E��e�E=Emax : (8)

These analytic results are compared against those obtained
numerically through a Runge-Kutta method [30].

IV. PERTURBATIVE APPROACH

The dominant contribution to the nucleon transitions in
the CRB comes form one-nucleon losses with transition
rate �1N

A;i. In the following we focus on perturbative correc-

tions to this dominant decay route from the contributions of
two-nucleon losses and CEL with transition rates �2N

A;i and

�CEL
A;i , respectively.

A. Two-Nucleon losses

We start with perturbative corrections from two-nucleon
losses and assume, for the moment, that �tot

A;i ¼ �1N
A;i þ �2N

A;i

and �CEL
A;i ¼ 0. For a perturbative expansion it is convenient

to rewrite Eq. (B2) as

NA;iðtÞ ¼
X
B�A

XB
C¼A

F i
ABC

� YB
D¼Aþ1

�tot
D;i

��
NB;ið0Þe�t�tot

C;i

þ
Z t

0
dt0QB;iðt0Þe�ðt�t0Þ�tot

C;i

� YB
D¼Að�CÞ

1

�tot
D;i � �tot

C;i

;

(9)

FIG. 1 (color online). A possible transition chain c between an
initial configuration (blue dot) and a final configuration (magenta
dot) including one-nucleon losses (red arrows), two-nucleon
losses (red-dotted arrows) and continuous energy loss (green
arrows). For the exact analytic solution (4) all possible transition
chains of this type are taken into account.

5In general, the numerical evaluation of expression (4) re-
quires a high computational precision. We use the publicly
available multiple precision libraries GMP [28] and MPFR [29]
for this purpose.
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with

F i
ABC � X

c

�Ync�1

l¼1

�cl!clþ1

�tot
cl

� YB
D¼Aþ1ð=2cÞ

�
1� �tot

C;i

�tot
D;i

�
: (10)

We can define a perturbative expansion of Eq. (10) in terms
of subdominant branching ratios of two-nucleon produc-
tion, �2N

C;i=�
tot
C;i. The leading order (LO) contribution,

F i;LO
ABC ¼ 1, reproduces the approximation of Ref. [14].

The next-to-leading order (NLO) contribution can be writ-
ten as

F i;NLO
ABC ¼ XB

D¼Aþ2

�2N
D;i

�tot
D;i

�
1� �tot

C;i

�tot
D�1;i

�
� XB

D¼Aþ1

�2N
D;i

�tot
D;i

: (11)

We can most easily visualize these terms by a perturba-
tive expansion of the nucleon densities,

NA;i ¼
X
n�0

NðnÞ
A;i ; (12)

where the terms NðnÞ
A;i are solutions to the set of differential

equations,

_Nð0Þ
A;i ¼ ��tot

A;iN
ð0Þ
A;i þ �tot

Aþ1;iN
ð0Þ
Aþ1;i þQA;i;

_NðnÞ
A;i ¼ ��tot

A;iN
ðnÞ
A;i þ �tot

Aþ1;iN
ðnÞ
Aþ1;i þ �2N

Aþ2;iN
ðn�1Þ
Aþ2;i

� �2N
Aþ1;iN

ðn�1Þ
Aþ1;i ; ðn > 0Þ: (13)

For the moment, we assume that the total width �tot
A;i is the

sum of one-nucleon and two-nucleon losses. This, how-
ever, can be generalized to the total photo-disintegration
rate for general nucleon losses (see Sec. IVB). As an initial

condition we define NðnÞ
A;ið0Þ ¼ 0 for n > 0 and Nð0Þ

A;ið0Þ ¼
NA;ið0Þ. Note, that with this initial condition the expansion

(12) becomes finite and hence converges trivially. Each

term NðnÞ corresponds, by construction, to the n-th order
correction of F . We can write the NLO correction explic-
itly as

Nð1Þ
A;iðtÞ¼

X
B�A

XB
C¼A

� YB
D¼Aþ1

�tot
D;i

��Z t

0
dt0ð�2N

Bþ2;iN
ð0Þ
Bþ2;iðt0Þ

��2N
Bþ1;iN

ð0Þ
Bþ1;iðt0ÞÞe�ðt�t0Þ�tot

C;i

� YB
D¼Að�CÞ

1

�tot
D;i��tot

C;i

:

(14)

Inserting the LO solution in Eq. (14) and following similar

algebraic steps as in Appendix B one can identify Nð1Þ as
the difference of contributions form paths hðA; iÞ; . . . ; ðB; iÞi
with length B� Aþ 1 and B� A, respectively, with the
single insertion of a two-nucleon loss step into the decay
chain. This is displayed diagrammatically in Fig. 2 for the
case �A ¼ 3.
Note, that we can also express Eqs. (14) as a matrix

equation of the form,

Nð1Þ
A;ið�tÞ ’

X
B�A

ðXAB;ið�tÞNB;ið0Þ þYAB;ið�tÞQB;iÞ: (15)

The matrices Xð�tÞ and Yð�tÞ are in general only slowly
changing with the redshift scaling of the background
radiation. It is hence possible to improve the NLO results
by introducing sufficiently small time intervals �z and
apply Eq. (15) repeatedly.
We show the LO and NLO results of our approach in

comparison to a numerical solution via a Runge-Kutta
method in Fig. 3. For simplicity, we assume that CEL is
absent and that source terms and interaction rates are
constant throughout the integration domain 0< z < 1.
The NLO contributions are shown for two cases. In the
case ‘‘�z ¼ 1’’ we calculate the NLO contribution directly
by Eq. (14). The case ‘‘�z ¼ 0:01’’ shows the improve-
ment of the NLO contribution by a repeated application of
Eq. (15) for the corresponding time interval—100 times in
this case. In most cases, the LO approximation is already
satisfactory [14].

FIG. 2 (color online). A graphic representation of the NLO paths contributing in the first correction Nð1Þ
A;i for �A ¼ 3 [see Eq. (14)].

The black arrows indicate transitions between configurations with total transition rate �tot
A;i ¼ �1N

A;i þ �2N
A;i and the dotted red arrows two-

nucleon transition rates �2N
A;i, respectively. Note that these types of graphs contribute with opposite sign in Eq. (14).
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B. General photo-disintegration losses

For high mass nuclei (A * 40) of the PSB chain one-
nucleon and two-nucleon losses constitute more than 90%
of the total photo-disintegration rate as can be seen in the
Table I. However, for low mass nuclei the emission of �
particles [as well as deuterons (D) and tritons (T)] can
become important. As in the previous section, we can
organize these subleading contributions via the expansion
(12). For instance, the additional contribution from �
particle loss can be introduced at NLO (n > 0) as

_NðnÞ
A;i¼��tot

A;iN
ðnÞ
A;iþ�tot

Aþ1;iN
ðnÞ
Aþ1;iþ�2N

Aþ2;iN
ðn�1Þ
Aþ2;i

��2N
Aþ1;iN

ðn�1Þ
Aþ1;iþ��

Aþ4;iN
ðn�2Þ
Aþ4;i���

Aþ1;iN
ðn�2Þ
Aþ1;i ; (16)

where we now have to include � emission in the definition
of the total rate, �tot

A;i ¼ �1N
A;i þ �2N

A;i þ ��
A;i. The treatment of

these additional photo-disintegration channels is com-
pletely analogous to the case of two-nucleon losses.

C. Continuous energy losses

We next consider the contribution of CEL to the solution
(4). In this case we have to include all possible paths in
Eq. (4) that allow for both, variation of energy and mass
number as the one shown in the left panel of Fig. 1. Similar
to the discussion of two-nucleon losses, the number of
possible paths becomes very large. For the remainder of
this section we consider only one-nucleon photo-
disintegration losses together with CEL and, hence, �tot

A;i ¼
�1N
A;i þ �CEL

A;i . Despite this simplification there are still

ð�Aþ�iÞ!=ð�AÞ!=ð�iÞ! different paths in total between
the two configurations ðA; iÞ and ðAþ �A; iþ �iÞ. This
becomes computationally very expensive for long produc-
tion chains, as we already observed for the introduction of
two-nucleon losses.
We can account for CEL transitions as effective source

terms in the differential Eqs. (2). This turns out to be an
efficient way for determining the resulting spectra. As
before, we can use the perturbative expansion (12) of the

FIG. 3 (color online). The solution (9) at LO and up to NLO [Eq. (14)] for one-nucleon (1N) and two-nucleon (2N) losses. To aid the
comparison between the results, we ignore the evolution of the nucleon emission rates and interaction rates with redshift and sum over
redshift steps �z ¼ 0:01. We compare the LO and NLO analytic results to a numerical solution via a Runge-Kutta method [30].
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TABLE I. The nuclei of the Puget-Stecker-Bredekamp chain [18] and the relative contribution of inclusive channels to the total
photo-disintegration cross section in the CMB and CIB calculated by TALYS [20]. We assume and E�2 spectrum of the nuclei and
integrate over nucleon energies 1017eV<E=A < 1021eV. Channels with contribution less than 1% are omitted in the table.

Nucleus ð�; nÞ ð�; pÞ ð�; npÞ ð�; 2nÞ ð�; 2pÞ ð�;�Þ ð�; n�Þ ð�; p�Þ ð�; 2�Þ ð�;DÞ ð�; TÞ (�, 3He) Total

56Fe 0.74 0.12 0.02 0.05 . . . 0.02 . . . . . . . . . . . . . . . . . . 0.95
55Mn 0.80 0.04 0.01 0.09 . . . . . . . . . . . . . . . . . . . . . . . . 0.95
54Cr 0.74 0.01 0.01 0.18 . . . 0.01 . . . . . . . . . . . . . . . . . . 0.95
53Cr 0.86 0.03 0.02 0.07 . . . . . . . . . . . . . . . . . . . . . . . . 0.97
52Cr 0.74 0.11 0.01 0.07 . . . 0.02 . . . . . . . . . . . . . . . . . . 0.96
51V 0.79 0.01 . . . 0.16 . . . . . . . . . . . . . . . . . . . . . . . . 0.96
50Ti 0.79 0.01 . . . 0.16 . . . . . . . . . . . . . . . . . . . . . . . . 0.96
49Ti 0.84 0.03 0.02 0.08 . . . . . . . . . . . . . . . . . . . . . . . . 0.97
48Ti 0.74 0.11 0.02 0.07 . . . 0.02 . . . . . . . . . . . . . . . . . . 0.95
47Ti 0.81 0.07 0.05 0.02 . . . 0.01 . . . . . . . . . . . . . . . . . . 0.97
46Ti 0.35 0.46 0.03 0.02 0.03 0.06 . . . . . . . . . . . . . . . . . . 0.96
45Sc 0.55 0.27 0.09 0.03 . . . 0.02 . . . . . . . . . . . . . . . . . . 0.96
44Ca 0.73 0.04 0.01 0.15 . . . 0.02 . . . . . . . . . . . . . . . . . . 0.95
43Ca 0.74 0.06 0.03 0.08 . . . 0.03 0.04 . . . . . . . . . . . . . . . 0.97
42Ca 0.37 0.29 0.03 0.07 0.01 0.19 0.01 . . . . . . . . . . . . . . . 0.96
41Ca 0.28 0.41 0.13 . . . 0.01 0.11 0.01 . . . . . . . . . . . . . . . 0.97
40Ca 0.02 0.66 0.02 . . . 0.17 0.09 . . . 0.01 . . . . . . . . . . . . 0.97
39K 0.08 0.65 0.10 . . . 0.01 0.10 . . . 0.03 . . . . . . . . . . . . 0.98
38Ar 0.46 0.21 0.04 0.05 0.01 0.17 0.01 . . . . . . . . . . . . . . . 0.94
37Cl 0.65 0.11 0.04 0.09 . . . 0.05 0.01 . . . . . . . . . . . . . . . 0.95
36S 0.68 0.01 0.01 0.23 . . . 0.02 0.01 . . . . . . . . . . . . . . . 0.96
35Cl 0.12 0.58 0.11 . . . . . . 0.13 . . . 0.02 . . . . . . . . . . . . 0.97
34S 0.60 0.13 0.03 0.08 . . . 0.09 0.01 . . . . . . . . . . . . . . . 0.95
33S 0.44 0.23 0.10 . . . . . . 0.13 0.06 . . . . . . 0.01 . . . . . . 0.97
32S 0.05 0.63 0.04 . . . 0.10 0.14 . . . 0.01 . . . . . . . . . . . . 0.97
31P 0.24 0.49 0.13 . . . . . . 0.07 . . . 0.01 . . . 0.01 . . . . . . 0.96
30Si 0.69 0.04 0.02 0.17 . . . 0.03 0.01 . . . . . . . . . . . . . . . 0.96
29Si 0.65 0.15 0.08 . . . . . . 0.06 0.02 . . . . . . 0.01 . . . . . . 0.97
28Si 0.10 0.55 0.04 . . . 0.06 0.16 . . . 0.01 . . . . . . . . . . . . 0.93
27Al 0.22 0.44 0.15 0.01 . . . 0.10 . . . 0.01 . . . 0.01 . . . . . . 0.94
26Mg 0.68 0.04 0.01 0.17 . . . 0.03 0.01 . . . . . . . . . . . . . . . 0.95
25Mg 0.64 0.08 0.08 . . . . . . 0.10 0.06 . . . . . . 0.01 . . . . . . 0.97
24Mg 0.08 0.53 0.03 . . . 0.03 0.25 . . . . . . 0.02 . . . . . . . . . 0.96
23Na 0.27 0.40 0.10 0.01 . . . 0.15 0.01 . . . 0.02 0.01 . . . . . . 0.96
22Ne 0.65 0.02 0.01 0.17 . . . 0.06 0.03 . . . . . . . . . . . . . . . 0.95
21Ne 0.49 0.05 0.04 . . . . . . 0.21 0.16 . . . 0.01 0.01 . . . . . . 0.96
20Ne 0.02 0.22 0.02 . . . . . . 0.49 0.03 0.06 0.11 0.01 . . . . . . 0.96
19F 0.27 0.12 0.07 0.01 . . . 0.35 0.08 0.01 . . . 0.01 0.01 . . . 0.93
18O 0.50 . . . . . . 0.28 . . . 0.09 0.06 . . . . . . . . . . . . . . . 0.94
17O 0.46 . . . 0.05 0.01 . . . 0.24 0.19 . . . . . . 0.01 . . . . . . 0.97
16O 0.09 0.29 0.03 . . . . . . 0.36 . . . 0.01 0.11 0.02 . . . . . . 0.92
15N 0.38 0.10 0.15 0.02 . . . 0.22 . . . . . . . . . 0.02 0.02 . . . 0.92
14N 0.15 0.31 0.24 . . . . . . 0.10 0.01 0.01 0.01 0.07 . . . . . . 0.91
13C 0.51 0.01 0.03 0.01 . . . 0.29 0.13 . . . . . . . . . . . . . . . 0.97
12C 0.11 0.21 0.01 . . . . . . 0.57 0.01 0.02 . . . 0.01 . . . . . . 0.94
11B 0.21 0.05 0.04 0.01 . . . 0.32 0.10 . . . - . . . 0.05 0.11 . . . 0.89
10B 0.14 0.21 0.03 . . . . . . 0.38 - 0.01 . . . 0.17 0.01 0.01 0.96

ANALYTIC SOLUTIONS OF ULTRAHIGH ENERGY COSMIC . . . PHYSICAL REVIEW D 82, 123005 (2010)

123005-7



nucleon densities, where the terms NðnÞ
A;i are now solutions

to the set of differential equations,

_Nð0Þ
A;i ¼ ��tot

A;iN
ð0Þ
A;i þ �tot

Aþ1;iN
ð0Þ
Aþ1;i þQA;i;

_NðnÞ
A;i ¼ ��tot

A;iN
ðnÞ
A;i þ �tot

Aþ1;iN
ðnÞ
Aþ1;i þ �CEL

A;iþ1N
ðn�1Þ
A;iþ1

� �CEL
Aþ1;iN

ðn�1Þ
Aþ1;i ; ðn > 0Þ: (17)

Here, the total width �tot
A;i ¼ �1N

A;i þ �CEL
A;i is now for the sum

of one-nucleon and CEL, though in general it would
receive contributions from all exclusive channels. Note

that with the initial condition NðnÞ
A;ið0Þ ¼ 0 for n > 0 the

expansion (12) of NA;i is finite if a finite set of energy bins

and nuclei is considered, A � Amax and i � imax. More
specifically, the expansion of NA;i only includes nonzero

terms NðnÞ
A;i for n � ðAmax þ imaxÞ � ðAþ iÞ.

The first termNð0Þ
A;i in the expansion ofNA;i is our familiar

solution for the one-nucleon loss case (9) where the partial

width is replaced by the total width. The second term Nð1Þ

can be evaluated explicitly by an insertion of Nð0Þ,

Nð1Þ
A;iðtÞ¼

X
B�A

XB
C¼A

� YB
D¼Aþ1

�tot
D;i

��Z t

0
dt0ð�CEL

B;iþ1N
ð0Þ
B;iþ1ðt0Þ

��CEL
Bþ1;iN

ð0Þ
Bþ1;iðt0ÞÞe�ðt�t0Þ�tot

C;i

� YB
D¼Að�CÞ

1

�tot
D;i��tot

C;i

:

(18)

After some algebraic manipulations one can identify

Nð1Þ as the difference of contributions form paths
hðA; iÞ; . . . ; ðB; iþ 1Þi and hðA; iÞ; . . . ; ðB; iÞi with the single
insertion of CEL step into the decay chain. This is indi-
cated diagrammatically in Fig. 4 for the case �A ¼ 3.

Note that the NLO correction for CEL only introduces
transitions between the energy bins i and iþ 1. Hence,
the NLO solution (18) can not be considered as a small

correction to the full solution if the contribution from
CEL becomes large, �t�CEL

A;i * 1. However, in analogy

to the case of two-nucleon losses we can write the NLO
contribution as a matrix equation

Nð1Þ
A;ið�tÞ ’

X
B�A

ðXAB;ið�tÞNB;ið0Þ þYAB;ið�tÞQB;i

þV AB;ið�tÞNB;iþ1ð0Þ þW AB;ið�tÞQB;iþ1Þ:
(19)

If we consider sufficiently small time intervals �t such that
�t�CEL

A;i � 1 we can approximate the exact solution by a

repeated application of Eq. (19). The transition matrices
Xð�tÞ, Yð�tÞ,V ð�tÞ andW ð�tÞ are only slowly chang-
ing with the scaling of the background radiation. It is hence
only necessary to re-evaluate these matrices on large time-
scales; typically�z ’ 0:01 is sufficient for the propagation
of heavy nuclei. Thus, results obtained by the application
of this procedure should be considered semi-analytic.
Figure 5 shows the results of the LO and NLO energy

flux spectra compared with results obtained using a Runge-
Kutta method. For simplicity, we again consider constant
source terms and interaction rates and assume that two-
nucleon losses are absent. The repeated application of
Eq. (19) reproduces the numerical solution well. For heavy
nuclei (and hence ‘‘short’’ transitions from primary iron) or
large energies E=A > 1010 GeV the LO contribution is
already an excellent approximation. The full NLO correc-
tion including two-nucleon loss and redshift evolution of
the sources and interaction rates is then shown in Fig. 6.

D. Secondary proton and helium spectra

Finally, we discuss an expansion of the spectrum of
primary and secondary protons6 and helium. This case is

FIG. 4 (color online). A graphic representation of the NLO paths contributing in the first correction Nð1Þ
A;i for �A ¼ 3 [see Eq. (18)].

The black arrows indicate transitions between configurations with total transition rate �tot
A;i ¼ �1N

A;i þ �CEL
A;i and the green arrows

transitions with CEL rate �CEL
A;i , respectively. Note that these types of graphs contribute with opposite sign in Eq. (18).

6We do not distinguish between protons and neutrons in the
following, assuming a prompt decay of secondary neutrons.
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slightly different from the propagation of heavy nuclei,
since there are additional contributions from the channels
ð�;NÞ, ð�; 2NÞ, ð�;�Þ, ð�;N�Þ and ð�; 2�Þ. Secondary
nucleon production follows the differential equation

_N 1;i ’ �CEL
1;iþ1N1;iþ1 � �CEL

1;i N1;i þ
X
A�2

�eff;N
A;i NA;i þQ1;i;

(20)

where the effective nucleon production rate �eff;N
A;i from

transitions ðA; iÞ ! ð1; iÞ is defined as

�eff;N
A;i � �1N

A;i þ 2�2N
A;i þ �N�

A;i þ �A2�
1N
2;i

þ �A3�
2N
3;i ðþ�A6�

N�
6;i Þ; (21)

with �AB ¼ 1 if A ¼ B and zero otherwise.7 Note, that the
last term in (21) is assumed absent in the PSB chain. Photo-

hadronic interactions of the protons with the CMB and CIB
can be determined using the Monte Carlo package SOPHIA

[31]. Here, we approximate photo-pion interactions of the
protons as a continuous energy loss process in addition to
Bethe-Heitler pair production. The differential Eq. (20) is
of the same form as Eq. (2) and we can hencewrite its exact
solution in the form (4).
With the expansion (9) we can write the set of evolution

equations as

_Nð0Þ
1;i ’ ��CEL

1;i Nð0Þ
1;i þ �CEL

1;iþ1N
ð0Þ
1;iþ1 þ

X
A�2

�eff
A;iN

ð0Þ
A;i þQ1;i;

_NðnÞ
1;i ’ ��CEL

1;i NðnÞ
1;i þ �CEL

1;iþ1N
ðnÞ
1;iþ1

þ X
A�2

�eff
A;iN

ðnÞ
A;i ; ðn > 0Þ: (22)

In contrast to the case of nuclei, we cannot treat CEL of the
protons as a second order effect. Nevertheless, with the set
of differential Eqs. (22) and the boundary condition

FIG. 5 (color online). Comparison of the terms in expression (9) up to NLO with the numerical solution via a Runge-Kutta method
including one-nucleon (1N) and CEL. To aid the comparison between the results, we ignore the evolution of the nucleon emission rates
and interaction rates with redshift and sum over redshift steps �z ¼ 0:01.

7For N0
A;i ¼ NA;i=2 for A ¼ 2, 3, 4 we redefine �eff0

A;i ¼ 2�eff
A;i.
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Nð0Þ
1;i ð0Þ ¼ N1;ið0Þ and NðnÞ

1;i ð0Þ ¼ 0 for n > 0 the expansion

(9) is finite since the expansion of NA;i is finite. Explicitly,

we can write the n-th order contribution as

NðnÞ
1;i ðtÞ ¼

X
B�2

X
j�i

� Yj
k¼iþ1

�CEL
1;k

�

� Xj
k¼i

�Z t

0
dt0ð�eff

B;jN
ðnÞ
B;jðt0ÞÞe�ðt�t0Þ�CEL

1;k

�

� Yj
l¼ið�kÞ

1

�CEL
1;l � �CEL

1;k

: (23)

Again, these contributions to the proton spectra can be
expressed via diagrams indicated in Fig. 7. By definition,

the term NðnÞ
1;i depend on all possible n-th order production

chains of intermediate nuclei ðB; jÞ, that are indicated as
the boxes in the top right corner of the diagrams.

FIG. 7 (color online). An example of an n-th order production

path contributing to NðnÞ
1;i including the effective nucleon pro-

duction rate �eff
B;j (blue arrow). The box in the top right corners

indicate the complete sum over all possible n-th order contribu-
tions ‘‘

PðnÞ’’ to the production chain of the nucleon ðB; jÞ with
B � 2 and j � i. The red arrows indicate the CEL contribution
for protons, including energy loss by Bethe-Heitler pair produc-
tion and photo-pion production.

FIG. 6 (color online). The full NLO correction for two-nucleon and continuous energy losses in comparison with the numerical
solution. For this result we took into account source evolution and redshift effects, assuming that the nucleon emission rates scale as
ð1þ zÞ3 and sum over redshift steps �z ¼ 0:01.
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Similarly, the emission of � particles in the channels
ð�;�Þ, ð�; 2�Þ and ð�;N�Þ rate can be described by the
differential equation

_N 4;i ’ �CEL
4;iþ1N4;iþ1 � �CEL

4;i N4;i � ð�1N
4;i þ �2N

4;i ÞN4;i

þ X
A�2

�eff;�
A;i NA;i þQ4;i; (24)

with an effective production rate

�eff;�
A;i � ��

A;i þ �N�
A;i þ 2�2�

A;i þ �A12�
2�
12;i

þ �A9�
N�
9;i ðþ�A8�

�
8;iÞ: (25)

Again, the last term in (25) is absent in the PSB chain
considered in our calculation. In principle, we can treat
these contributions analogously to the case of the protons.
However, the relative contribution from � particle emis-
sion is only small if we consider heavy primary nuclei like
56Fe and can be neglected in this case.

The sum over diagrams of the type shown in Fig. 7
involve a large number of intermediate configurations
ðB; jÞ and the calculation can become time-consuming.
For a more efficient calculation of the proton spectra we
can utilize the total conservation of nucleons per energy
bin within sufficiently small time-steps with �t�CEL

1;i � 1.

In this case the flux can be well approximated as

N1;ið�tÞ ’ N1;ið0Þ þ �tQ1;i

þ �t½�CEL
1;iþ1N1;iþ1ð0Þ � �CEL

1;i N1;ið0Þ�
þ X

A�2

A½NA;ið0Þ þ �tQA;i � NA;ið�tÞ�: (26)

With this approximation, and using the NLO contribution
of the exclusive channels ð�;NÞ, ð�; 2NÞ, ð�;�Þ, ð�;N�Þ

and ð�; 2�Þ as well as CEL for the spectra of nuclei, we
show in the left panel of Fig. 8 the average mass number
hAi in comparison with the analytic result. The right panel
of Fig. 8 shows the total energy flux of nuclei for the NLO
analytic solution compared to the numerical result. For
these results, time steps of �z ¼ 10�4 have been used in
order for the proton contribution to the total flux to be
calculated with the necessary accuracy. The LO approxi-
mation is already in excellent approximation to the data of
CR observatories considering the large systematic and
statistical uncertainties of the CR spectra and the average
mass composition. All spectral features of the quantities
and their overall scale are well reproduced by the LO
contribution. Improvements to the LO result, however,
are made by the NLO contributions, whose results leave
only a very mild discrepancy with the Runge-Kutta results
at energies below 109:5 GeV.

V. CONCLUSIONS

In this work we have developed further an analytic
solution for the fluxes of UHE CR nuclei from extragalac-
tic sources. We have shown that in most cases the spectra
are well approximated by the analytic solution already
given in Ref. [14], which dealt with the dominant energy
loss channel of single nucleon transitions between nuclei.
We have here expanded on this approach through the
introduction of NLO corrections from two-nucleon and
CEL. The introduction of these terms was shown to further
improve the accuracy of the analytic description. In order
for these results to take into account the slow variation of
interaction and emission rates with redshift as well as CEL
we incorporated our result into a semi-analytic framework.
The semi-analytic results obtained were found to be in

FIG. 8 (color online). Left: The average mass number from a pure-iron E�2 flux with Emax ¼ 1022 eV and source evolution
parameters n ¼ 3 and zmax ¼ 1. We show the full numerical solution in comparison with the LO and NLO analytic equation including
the exclusive channels ð�;NÞ, ð�; 2NÞ, ð�;�Þ, ð�;N�Þ and ð�; 2�Þ as well as CEL. Right: The total energy flux for the same parameters
plotted against recent Auger measurements [2]. The LO results are in good agreement with those shown in Fig. 4 of [14].
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excellent agreement with results obtained through a purely
numerical Runge-Kutta approach.

The prospects of determining the nature of extragalactic
UHE CRs and their sources in the near future are promis-
ing. Ongoing direct hybrid measurements of UHE CRs
by the Auger collaboration continue, with the opportunity
now existing for an independent verification of these re-
sults by other hybrid experiments such as the Telescope
Array [32]. These measurements allow the possibility for a
coherent picture of the UHE CR flux, composition, and
arrival direction anisotropy to emerge. Present and ongoing
indirectmeasurements of the secondary particles produced
by UHE CRs during their acceleration and propagation are
also capable of constraining the UHE CR composition and
their sources. For instance, the simultaneous emission of
neutrinos arising from proton-proton and/or proton-photon
interactions in extragalactic protons sources can serve as a
test of low energy crossover scenarios [8] of extragalactic
protons [16,33]. Photo-pion interactions by extragalactic
protons in the CMB, i.e. the process responsible for
their Greisen-Zatspin-Kuzmin cutoff, give rise to a flux
of cosmogenic neutrinos [34–36] and photons [37]. The
accompanying output into secondary electrons and posi-
trons, in particular, from Bethe-Heitler pair production,
feeds into electromagnetic cascades in the cosmic back-
ground radiation and intergalactic magnetic fields [38].
This leads to the accumulation of � rays at GeV-TeV
energies. The observed extragalactic diffuse �-ray flux
thus provides a constraint on the total energy injected
into such cascades over the Universe’s entire history [39].

The methods provided in this paper offer a general tool
with which theoretical results may be easily obtained and
compared to both these direct and indirect UHE CR mea-
surements. As example cases, the application of the general
methods developed here to proton propagation provide the
opportunity to further develop the method applied in [40].
Second, an analytic determination of the photon fraction
produced through UHE CR nuclei propagation is antici-
pated to also be obtainable using this treatment. Through
the simplicity of our approach, the speed with which it may
be implemented, and the intuitive understanding it intro-
duces, our analytic method is anticipated to be of great
benefit as a tool for future UHE CR investigations.
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We thank J. Salvadó for his help on a numerical evalu-
ation of the cosmic ray spectra via a Runge-Kutta method.
M.A. acknowledges support by the Research Foundation
of SUNY at Stony Brook.

APPENDIX A: PHOTO-DISINTEGRATION
OF NUCLEI

The most general evolution of primary and secondary
nuclei in the CRB includes all possible photo-

disintegration transitions between nuclides ðA; ZÞ compet-
ing with the decay of unstable nuclides. For simplicity, we
follow the work of PSB [17–19] and consider only one
stable isotope per mass number A in the decay chain of
56Fe as already explained in section II. This ‘‘PSB chain’’
is listed in Table I and sketched in Fig. 9.
Table I shows the relative contribution of inclusive

channels to the total photo-disintegration rate calculated
for the nuclei of the PSB chain. We use the reaction code
TALYS [20] to evaluate the cross sections for nuclei with

10 � A � 56 and assume an E�2 power-law flux of CR
nuclei. At CR energies E< 1012 GeV and large mass
numbers A * 20 photo-disintegration in the CRB can be
well approximated by one-nucleon and two-nucleon losses
between elements of the PSB chain via exclusive processes
ð�; pÞ, ð�; nÞ, ð�; 2pÞ, ð�; 2nÞ and ð�; pnÞ. For the cross
sections of light nuclei with mass numbers A ¼ 2, 3, 4 and
9 we use the parameterization of Ref. [41].
At lower mass numbers, A & 20, additional channels

involving � particle emission can become as significant
as the sum of one-nucleon and two-nucleon losses. Table I
also shows the relative importance of the exclusive chan-
nels ð�;�Þ, ð�; n�Þ, ð�; p�Þ and ð�; 2�Þ to the total photo-
disintegration budget. Resonant photo-nuclear interactions
play only a minor role in the propagation of the nuclei for
the energies of interest. We follow the approach outlined in
Ref. [41] and approximate the total interaction by the
isospin averaged N� rate as �A�ðz; EÞ ’ A�N�ðz; E=AÞ.
We also assume that the participating nucleon is removed
from the nucleus and regard this as a contribution to one-
nucleon losses.
The angle-averaged interaction rate appearing in Eq. (1)

is then defined as

�A!Bðz; EÞ ¼ 1

2

Z 1

�1
d cos�

Z
d�ð1

� � cos�Þn�ðz; �Þ�A!Bð�0Þ; (A1)

where n�ðz; �Þ is the energy distribution of isotropic back-

ground photons at redshift z and �0 ¼ ��ð1� � cos�Þ the
photon’s energy in the rest frame of the nucleus. For our
calculation we use the cosmic microwave background
and the infrared/optical background form Ref. [22]. To a
good approximation the decay products of the photo-
disintegration interaction inherit the large boost factor
of the initial nucleus and hence in the process A ! Bþ
ðA� BÞ the nucleus with mass number B has an energy
E0 ¼ ðB=AÞE. We can hence approximate the differential
cross section as

�A!BðE; E0Þ ’ �A!BðEÞ�ððB=AÞE� E0Þ (A2)

in the following. This has the correct normalization since
�A!BðEÞ �

R
dE0�A!BðE; E0Þ.

In general, the interaction rates �A!Bðz; EÞ scale with
redshift according to the redshift evolution of the radiation
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background. In the case of the CMB with adiabatically
scaling, n�ðz; �Þ ¼ ð1þ zÞ2n�ð0; �=ð1þ zÞÞ, we can de-

rive the simple relation

�A!Bðz; EiÞ ¼ ð1þ zÞ3�A!Bð0; ð1þ zÞEÞ: (A3)

For the case of the infrared/optical background [22] we
assume a redshift scaling following the star formation rate

as described in Ref. [16]. However, since the cascades of
UHE CR nuclei develop locally, the redshift dependence of
the interaction rates is only of minor importance.

APPENDIX B: PROOF OF EQUATION (4)

We will proof Eq. (4) by induction. First note, that we
can rewrite Eq. (4) as

FIG. 9 (color online). The Puget-Stecker-Bredekamp chain [18] along with stable and long-lived (� * 1min) nuclei below 56Fe.
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_N i ¼ ��tot
i Ni þ

Xn
j¼iþ1

�j!iNj þQi; (B1)

with i ¼ 1; . . . ; n with �j!i ¼ 0 for i � j and �tot
i � �tot

j

for i � j. In the following we will refer to the indices i as
knots and the pairs ði; jÞ with �i!j � 0 as links. A chain of

length nc is defined as an ascending sequence of nc knots,
c1 < c2 < . . .< cnc , that are mutually connected by links.

We want to show that the most general solution of
Eq. (B1) is of the form

NiðtÞ ¼
X
j�i

X
c

�Ync�1

l¼1

�cl!clþ1

�Xnc
k¼1

�
Njð0Þe�t�tot

ck

þ
Z t

0
dt0Qjðt0Þe�ðt�t0Þ�tot

ck

� Ync
p¼1ð�kÞ

1

�tot
cp � �tot

ck

(B2)

where the sum is over all possible chains c with c1 ¼ j and
cnc ¼ i.

Induction start: n ¼ 1. This case has the solution

N1ðtÞ ¼ N1ð0Þe�t�tot
1 þ

Z t

0
dt0Q1ðt0Þe�ðt�t0Þ�tot

1 :

This is of the form (B2), since the only chain is the trivial
one of length nc ¼ 1 with c1 ¼ 1.
Induction step: n ! nþ 1. The differential equations of

Ni with 1 � i � n are of the form (B1) and we can hence
use the solution (B2). The differential equation for Nnþ1 is

_N nþ1 ¼ ��tot
nþ1Nnþ1 þ

Xn
m¼1

�m!nþ1Nm þQnþ1: (B3)

We can write the general solution of this differential equa-
tion as

Nnþ1ðtÞ ¼
�
Nnþ1ð0Þe�t�tot

nþ1 þ
Z t

0
dt0Qnþ1ðt0Þe�ðt�t0Þ�tot

nþ1

�

þ
Z t

0
dt0e�ðt�t0Þ�tot

nþ1

Xn
m¼1

�m!nþ1Nmðt0Þ: (B4)

The first term of the previous equation corresponds to the
first term (i ¼ j ¼ nþ 1) in the sum of Eq. (B2). Inserting
the solutions (B2) in the integrand yields after integration
by parts:

Nnþ1ðtÞ ¼
�
Nnþ1ð0Þe�t�tot

nþ1 þ
Z t

0
dt0Qnþ1ðt0Þe�ðt�t0Þ�tot

nþ1

�
þ Xn

m¼1

Xm
j¼1

X
c

�Ync�1

l¼1

�cl!clþ1

�
�m!nþ1

Xnc
k¼1

� Ync
p¼1ð�kÞ

1

�tot
cp � �tot

ck

�

� 1

�tot
nþ1 � �tot

ck

��
Njð0Þe�t�tot

ck þ
Z t

0
dt0Qjðt0Þe�ðt�t0Þ�tot

ck

�
�

�
Njð0Þe�t�tot

nþ1 þ
Z t

0
dt0Qjðt0Þe�ðt�t0Þ�tot

nþ1

��
: (B5)

The chains c in the previous sums have end-points c1 ¼ j and cnc ¼ m. Now, every chain c in the system with n knots and
endpoint cnc ¼ m corresponds unambiguously to a chain c0 in the system with nþ 1 knots with c0i ¼ ci for i � nc0 � 1 and
c0nc0 ¼ nþ 1. Hence, the double sum in Eq. (B5) over end pointsm< n and chains c can be expressed as a single sum over
chains c0 with c01 ¼ j and c0nc0 ¼ nþ 1. We arrive at the form:

Nnþ1ðtÞ ¼
�
Nnþ1ð0Þe�t�tot

nþ1 þ
Z t

0
dt0Qnþ1ðt0Þe�ðt�t0Þ�tot

nþ1

�

þ Xn
j¼1

X
c0

� Ync0�1

l¼1

�c0
l
!c0

lþ1

� Xn0c�1

k¼1

�
Njð0Þe

�t�tot

c0
k þ

Z t

0
dt0Qjðt0Þe

�ðt�t0Þ�tot

c0
k

� Ync0
p¼1ð�kÞ

1

�tot
c0p

� �tot
c0
k

� Xn
j¼1

X
c0

� Ync0�1

l¼1

�c0
l
!c0

lþ1

��
Njð0Þe�t�tot

nþ1 þ
Z t

0
dt0Qjðt0Þe�ðt�t0Þ�tot

nþ1

� Xnc0�1

k¼1

Ync0
p¼1ð�kÞ

1

�tot
c0p

� �tot
c0
k

: (B6)

As a final step we use the identity8:

Xnc0�1

k¼1

Ync0
p¼1ð�kÞ

1

�tot
c0p

� �tot
c0
k

¼ � Ync0�1

p¼1

1

�tot
c0p

� �tot
nþ1

; (B7)

to combine the last two terms in Eq. (B6) and arrive at the form (B2).

8See the appendix of Ref. [14] for a simple derivation of this expression.
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