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The gauge structure of the four-dimensional effective theory arising from a pure SU5ðNÞ Yang-Mills

theory in five dimensions compactified on the orbifold S1=Z2 is reexamined on the basis of Becchi-Rouet-

Stora-Tyutin symmetry. In this context, the two scenarios that can arise are analyzed: if the gauge

parameters propagate in the bulk, the excited Kaluza-Klein (KK) modes are gauge fields, but they are

matter vector fields if these parameters are confined in the 3-brane. In the former case, it is shown that the

four-dimensional theory is gauge invariant only if the compactification is carried out by using curvatures

instead of gauge fields as fundamental objects. Then, it is shown that the four-dimensional theory is

governed by two types of gauge transformations, one determined by the KK zero modes of the gauge

parameters, �ð0Þa, and another by the excited KK modes, �ðnÞa. The Dirac method and the proper solution

of the master equation in the context of the field-antifield formalism are employed to show that the theory

is subject to first-class constraints. A gauge-fixing procedure to quantize the KK modes AðnÞa
� that is

covariant under the first type of gauge transformations, which embody the standard gauge transformations

of SU4ðNÞ, is introduced through gauge-fixing functions transforming in the adjoint representation of this

group. The ghost sector induced by these gauge-fixing functions is derived on the basis of the Becchi-

Rouet-Stora-Tyutin formalism. The effective quantum Lagrangian that links the interactions between light

physics (zero modes) and heavy physics (excited KK gauge modes) is presented. Concerning the radiative

corrections of the excited KK modes on the light Green’s functions, the predictive character of this

Lagrangian at the one-loop level is stressed. In the case of the gauge parameters confined to the 3-brane,

the known result in the literature is reproduced with some minor variants, although it is emphasized that

the exited KK modes are not gauge fields but matter fields that transform under the adjoint representation

of SU4ðNÞ. The Dirac method is employed to show that this theory is subject to both first- and second-

class constraints, which arise from the zero and excited KK modes, respectively.
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I. INTRODUCTION

Theories which involve more than four dimensions re-
ceived renewed interest due to developments in supergrav-
ity and superstring theories three decades ago. However,
the extra dimensions contemplated then are extremely
small, of the order of the inverse Planck scale M�1

Pl , to

be of some phenomenological interest. It was only after
the pioneering works by Antoniadis, Arkani-Hamed,
Dimopoulos, and Dvali [1–3], where large extra dimen-
sions were considered, that extra dimensions became
phenomenologically attractive. In most scenarios, our
observed three-dimensional space is a 3-brane and is em-
bedded in a higher D-dimensional spacetime, which is
known as the bulk. If the additional dimensions are small
enough, the standard model (SM) gauge and matter fields
are phenomenologically allowed to propagate in the bulk;
otherwise they are stuck to the 3-brane. Of course, if there
are extra dimensions, they must be smaller than the small-
est scale which has been currently explored by experi-
ments. So, the extra dimensions are assumed to be
suitably compactified on some manifold whose size is
sufficiently small. As a result of the compactification, those
fields that propagate in the bulk expand into a series of

states known as a Kaluza-Klein (KK) tower, with the
individual KK excitations being labeled by mode numbers.
In the last decade, the phenomenological implications of

extra dimensions on low-energy observables have been the
subject of considerable interest. However, to our knowl-
edge, the internal consistence of the gauge sector of the
four-dimensional effective theory still remains unclear.
Although some authors [4–11] have worked out Yang-
Mills theories in five dimensions [SU5ðNÞ], it is not clear
how the four-dimensional theory is governed by the
SU4ðNÞ gauge group, since there is an infinite number of
gauge parameters, namely, the tower of KK modes,

�ðnÞaðxÞ, which arise from assuming that the parameters
of SU5ðNÞ, �aðx; yÞ, propagate in the bulk. Although the

gauge transformations to which the excited AðnÞa
� ðxÞ KK

modes are subject have been in part derived [11], it is
doubtful that the Lagrangian obtained respects such a set
of gauge transformations. The only gauge symmetry that
becomes manifest is the standard one, which is character-

ized by the zero modes, �ð0ÞaðxÞ, of the five-dimensional
gauge parameters. In the context of these standard gauge
transformations (SGT), the covariant objects are easily
identified, as they arise naturally once the compactification
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and integration of the extra dimension is carried out. The

zero mode, Að0Þn
� ðxÞ, of the five-dimensional gauge field

Aa
Mðx; yÞ corresponds to the standard Yang-Mills field,

whereas the covariant objects are the usual curvature

Fð0Þa
�� ðxÞ, the excited KK modes AðnÞa

� ðxÞ, and the pseudo-

Goldstone bosons AðnÞa
5 ðxÞ, which transform in the adjoint

representation of SU4ðNÞ. However, no similar objects
have been identified for the nonstandard gauge transfor-

mations (NSGT) characterized by the �ðnÞaðxÞ parameters,
and it does not seem easy to construct them by direct
observation of the four-dimensional Lagrangian, which
even differs from one author to another. In this work, we
will show that such four-dimensional Yang-Mills theories
are indeed not invariant under the NSGT but only under
the SGT. Below, we will show that this type of four-
dimensional theory can arise from a five-dimensional the-
ory in which it is assumed that the gauge parameters are
confined to the 3-brane. In such a scenario, the excited KK

modes AðnÞa
� ðxÞ are not gauge fields, but massive vector

fields, whereas the scalar fields AðnÞa
5 ðxÞ do not correspond

to pseudo Goldstone bosons, but they are massless scalar
fields. When the gauge parameters are allowed to propa-

gate in the bulk, the excitations AðnÞa
� ðxÞ and AðnÞa

5 ðxÞ cor-
respond to gauge fields and pseudo-Goldstone bosons,
respectively. However, the four-dimensional theory is de-
scribed by a Lagrangian which differs substantially from
those given in the literature. In this work, we will derive a
four-dimensional Lagrangian which is separately invariant
under both the SGTand the NSGT. This Lagrangian will be
written out in terms of covariant objects that resemble the
standard Yang-Mills curvature. The discrepancy between
our result and the ones given in the literature comes from
theway that the integration on the fifth dimension is carried
out in the action representing the five-dimensional theory.
We will show that for the scenario with gauge parameters
propagating in the bulk, gauge invariance under the NSGT
is lost unless the integration of the fifth dimension con-
templates only the Fourier modes of five-dimensional co-
variant objects. This means that the curvatures are the
objects which must be expanded in Fourier series and not
the gauge fields, which is the method most commonly
followed in the literature so far. On the contrary, if the
gauge parameters do not propagate in the fifth dimension,
one can carry out the Fourier expansion at the level of
fields, since in this case the NSGT does not arise. Although
this scenario is less interesting from the physical point of
view, as it contains massless scalar fields, we will also
consider it for comparison purposes. Of course, we will
center our discussion in the scenario in which the gauge
parameters propagate in the bulk, as it allows us to make
contact with the physical reality. In particular, the identi-
fication of NSGT that arise in this scenario, and the con-
struction of a classical action being invariant under it, is an
important goal of this work.

As commented above, so far there is no consistent four-
dimensional KK Yang-Mills theory that includes a precise
description of the gauge symmetries to which it is subject.
However, the precise identification of these gauge trans-
formations, as well as the covariant objects needed to
construct invariants, is a first indispensable step to quantize
the theory. While most of the studies have been restricted
to tree-level processes, the quantum loop effects of the
theory have received much less attention, as only some
one-loop processes, such as electromagnetic dipoles [12],
the b ! s� [13], Z ! �bb [14,15], Bs;d ! �� [16],

Bd ! lþl� [17] decays, and B0 � �B0 [18] mixing, have
been considered. Nonetheless, to our knowledge, no quan-
tum fluctuations with only gauge KK modes circulating in
the loops have been considered so far. To predict this class
of effects one needs a theory that is consistently quantized.
As it is well known, to quantize the theory a gauge-fixing
procedure for the gauge fields must be introduced and their
associated ghost sector derived. In order to do this, the
precise gauge transformations obeyed by the gauge degrees
of freedom, in our case the KK modes associated with the
Yang-Mills fields, must be known in a precise way.
The modern approach to quantize gauge systems based in
the Becchi-Rouet-Stora-Tyutin (BRST) symmetry [19] re-
quires the ghost fields, which coincide with the parameters
of the gauge group but with opposite statistics, to be
introduced from the beginning [20]. This procedure is
well known in standard Yang-Mills theories, but its imple-
mentation for the case of the NSGT is more elaborate. The
first step consists in determining the tensorial structure of
the NSGT. At least there are three equivalent ways of
knowing them. One way consists in deriving them directly
from the infinitesimal gauge transformation obeyed by the
gauge fields in five dimensions. To carry out this, it is only
necessary to specify the periodicity and the parity of the
gauge fields and the gauge parameters with respect to the
compactified coordinate. Another different method to find
the NSGT consists in deriving the constraints of the theory
employing Dirac’s method and then using Castellani’s
gauge generator [21], which allows us to determine the
gauge transformations of the gauge fields. The third way,
which is intimately related to the latter, consists in using
the field-antifield formalism [20]. In this formulation, the
BRST symmetry arises naturally through the introduction
of the antibracket [20]. To be sure of the precise gauge
structure of the four-dimensional KK Yang-Mills theory,
we will employ all these schemes. In particular, we will use
the proper solution of the master equation in five dimen-
sions to derive the corresponding proper solution in four
dimensions. Then, we will use this solution to define the
gauge-fixed action with respect to the NSGT, S�NSGT ,
through a gauge-fixing fermion functional, �NSGT, that is
invariant under the SGT of SU4ðNÞ.
There are phenomenological and theoretical motivations

to quantize a gauge KK theory. If KK modes cannot be
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produced directly at the LHC, it would be possible to detect
their virtual effects through precision measurements such
as those planned for the International Linear Collider [22].
Electroweak precision observables can play a role in vari-
ous models. In many physics scenarios they can provide
information about new physics scales that are too heavy to
be detected directly. Because of this, it is important to
count on a consistent quantum theory of the KK excitations
that allows us to perform predictions at the one-loop or
higher orders. In particular, it is important to calculate the
one-loop effects of these new particles on SM observables
that eventually could be sensitive to new physics effects.
On the theoretical side, it is interesting to investigate the
behavior of the theory at the one-loop level. For instance, it
is very important to study the UV structure of light Green
functions, i.e. Green’s functions consisting of zero modes
only, due to loop contributions of excited modes. This is an
important objective of this work. As already commented,

the physical AðnÞa
� ðxÞ fields are subject to satisfying com-

plicated NSGT. So, to quantize these gauge fields one
necessarily must invoke a gauge-fixing procedure. The
fact that these fields also obey the SGT greatly facilitates
things, as it allows us to introduce a gauge-fixing procedure
that respects the SGT and thus to have a highly symmetric
effective quantum action. We will show below that it is
possible to define the propagators of these particles by
introducing nonlinear gauge-fixing functions transforming
covariantly under the SGTof the SU4ðNÞ gauge group. One
important goal of this work is to show that the one-loop
effects of the KK modes on light Green’s functions are
perfectly calculable like in any renormalizable theory be-
yond the SM. Let us clarify this point. As already men-
tioned, once the fifth dimension is compactified and
integrated, the theory can be written in terms of an effective
Lagrangian, which can be arranged as follows:

L ED ¼ Lð0ÞðAð0Þa
� Þ þLð0ÞðnÞðAð0Þa

� ; AðnÞa
� ; AðnÞa

5 Þ
þLðnÞðAðnÞa

� ; AðnÞa
5 Þ; (1)

where the first term Lð0Þ represents the usual renormaliz-

able Yang-Mills theory, and the second term Lð0ÞðnÞ con-
tains the interactions of the usual Yang-Mills fields with the

KK modes. Finally, the third term LðnÞ involves only
interactions between excited KK modes. Our point is that
the one-loop contribution to light Green’s functions is
perfectly determined like in any renormalizable theory.
As we will discuss below, the structure of the quantized
theory suggests that the only divergences induced by the
excited KK modes at the one-loop level on light Green’s
functions are those already present in the standard Yang-
Mills theory and can therefore be absorbed by the parame-
ters of the light theory. We will show this explicitly by
using the background field method [23] to quantize the
standard Yang-Mills theory, as in this scheme gauge in-
variance with respect to the SGT is preserved. As it is well

known, this sort of gauge invariance sets powerful
constraints on the infinities that can occur in the � effective
action, being particularly simple at the one-loop level. We
will see that, as a consequence of our gauge-fixing proce-
dure for the KK modes, which is covariant under the SGT,
the type of infinities generated by the KKmodes at the one-
loop level are identical to those generated by the zero
modes when quantized using the background field gauge,
which then allows us to absorb them in the parameters of
the light theory. It is important to point out that this good
behavior of light Green’s functions at the one-loop level
does not mean that they are also renormalizable at the two-
loop level or higher orders, and by no means that the
complete theory is renormalizable, as it is well known
that gauge theories in more than four dimensions are not
renormalizable in the Dyson sense. So they must be rec-
ognized as effective theories that become embedded in
some other consistent UV completion, such as string theo-
ries. However, it should be mentioned that effective field
theories are renormalizable in a wider sense [24,25].
Below, we will present some comments concerning the
possible variants that arise in the context of an effective
theory of this type. The nonrenormalizable nature of higher
dimensional theories arises from the fact that they have
dimensionful coupling constants. So, the effective theory
must be cut off at some scale Ms, above which the funda-
mental theory enters. The cutoff insensitivity of light
Green’s functions at the one-loop level, which seems to
be exclusive of the so-called universal extra dimensional
(UED) models (theories in which all the fields propagate in
the extra dimensions) with only one extra dimension, has
already been pointed out in previous studies on some
electroweak observables [14,26]. In this work, we will
show that this is the case for a pure Yang-Mills theory in
five dimensions.
The rest of the paper has been organized as follows. In

Sec. II, the five-dimensional SU5ðNÞ theory is discussed.
A compactification scheme is defined and the gauge struc-
ture of the four-dimensional theory determined. Both the
SGT and the NSGT are determined and covariant objects
under these gauge transformations identified. Section III is
devoted to quantizing the theory. The proper solution of the
master equation in five dimensions is used to derive the
corresponding proper solution for the four-dimensional
theory. A gauge-fixing procedure for the excited KKmodes
that is covariant under SGT is introduced. Then, the NSGT
are used to determine the ghost Lagrangian. In Sec. IV, the
renormalizability of the light Green’s functions at the one-
loop level is discussed. Finally, in Sec. V the conclusions
are presented.

II. A PURE SUðNÞ THEORY IN FIVE DIMENSIONS

This section is devoted to studying the gauge structure of
the four-dimensional theory that arises after carrying out
the compactification of a five-dimensional pure SU5ðNÞ
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theory. The compactification conditions will be defined
and the corresponding four-dimensional Lagrangian de-
rived. The main result of this section will be the derivation
of the four-dimensional Lagrangian together with the SGT
and the NSGT, already commented in the Introduction, to
which it is subject.

A. Compactification

In the following, we will denote by x the usual four
coordinates and by y the one that corresponds to the fifth
dimension. We will employ a flat metric with signature
diagð1;�1;�1;�1;�1Þ. The gauge fields will be denoted
by Aa

Mðx; yÞ, with Mð¼ 0; 1; 2; 3; 5Þ and a the Lorentz and
gauge indices, respectively. As usual, Greek indices will be
used to denote the four-dimensional spacetime. Consider
the five-dimensional Yang-Mills theory given by the fol-
lowing action:

S0 ¼
Z

d4x
Z

dyL5YMðx; yÞ; (2)

where the five-dimensional Lagrangian is given by

L 5YMðx; yÞ ¼ �1
4F

a
MNðx; yÞFMN

a ðx; yÞ; (3)

with the curvature defined in terms of the gauge fieldsAa
M

as follows:

F a
MN ¼ @MAa

N � @NAa
M þ g5f

abcAb
MA

c
N: (4)

Notice that the coupling constant g5 has dimension of

ðmassÞ�1=2. As commented in the Introduction, two sce-
narios arise depending on whether the gauge parameters
propagate in the bulk or not. We first consider the case of
gauge parameters propagating in the fifth dimension. The
gauge fields transform as

�Aa
M ¼ Dab

M �bðx; yÞ; (5)

where Dab
M ¼ �ab@M � g5f

abcAc
M is the covariant de-

rivative in the adjoint representation of SU5ðNÞ and
�aðx; yÞ are the gauge parameters. The covariant object
in this theory is the curvature, which transforms in the
adjoint representation:

�F a
MN ¼ g5f

abcF b
MN�

cðx; yÞ: (6)

It should be noticed that up to this point, all the spatial
dimensions have been treated equally.

We now assume that the fifth dimension is compactified
on a S1=Z2 orbifold whose radius is denoted by R. This
choice imposes some periodic and parity conditions on the
gauge fields and gauge parameters with respect to the extra
dimension. As it was emphasized in the Introduction, the
gauge structure of the four-dimensional theory depends
crucially on how the Fourier expansions are performed in
the integral

L 4YM ¼ � 1

4

Z 2�R

0
F a

MNðx; yÞFMN
a ðx; yÞ

¼ � 1

4

Z 2�R

0
½F a

��ðx; yÞF ��
a ðx; yÞ

þ 2F a
�5ðx; yÞF �5

a ðx; yÞ�; (7)

where

F a
��ðx; yÞ ¼ @�Aa

� � @�Aa
� þ g5f

abcAb
�Ac

�; (8)

F a
�5ðx; yÞ ¼ @�Aa

5 � @5Aa
� þ g5f

abcAb
�Ac

5: (9)

As it will be clear later on, gauge invariance is only
preserved after compactification and integration of the fifth
dimension if the Fourier expansions are implemented at the
level of the curvatures F a

��ðx; yÞ and F a
�5ðx; yÞ and not at

the level of the fields Aa
� and Aa

5 , as it has been done in

the literature. Accordingly, we implement the following
periodic and parity conditions:

F a
MNðx; yþ 2�RÞ ¼ F a

MNðx; yÞ; (10)

�aðx; yþ 2�RÞ ¼ �aðx; yÞ; (11)

F a
��ðx;�yÞ ¼ F a

��ðx; yÞ; (12)

F a
�5ðx;�yÞ ¼ �F a

�5ðx; yÞ; (13)

�aðx;�yÞ ¼ �aðx; yÞ: (14)

These periodicity and parity properties of the curvatures
and gauge parameters allow us to expand them in Fourier
series as follows:

F a
��ðx;yÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi

2�R
p F ð0Þa

�� ðxÞþ
X1
m¼1

1ffiffiffiffiffiffiffi
�R

p F ðmÞa
�� ðxÞcos

�
my

R

�
;

(15)

F a
�5ðx; yÞ ¼

X1
m¼1

1ffiffiffiffiffiffiffi
�R

p F ðmÞa
�5 ðxÞ sin

�
my

R

�
; (16)

�aðx; yÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2�R

p �ð0ÞaðxÞ þ X1
m¼1

1ffiffiffiffiffiffiffi
�R

p �ðmÞaðxÞ cos
�
my

R

�
:

(17)

It is important to stress at this point the fact that, although
the gauge parameters do not participate dynamically at the
classical level, they play a crucial role at the quantum level.
They become the Faddeev-Popov ghost fields, but with
opposite statistics. Indeed, the modern approach to the
BRST symmetry [20] promotes these fields as true degrees
of freedom from the beginning, at the same level of the
gauge fields, as they are needed to quantize the theory. The
importance of investigating the role played by the gauge
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parameters in the four-dimensional theory, to proceed then
to quantize it, is now clear.

Once we replace the curvaturesF a
��ðx; yÞ andF a

�5ðx; yÞ
into the integral (7) by their respective Fourier series, one
obtains

L 4YM ¼ �1
4ðF ð0Þa

�� F ð0Þa�� þF ðmÞa
�� F ðmÞa��

þ 2F ðmÞa
�5 F ðmÞa�5Þ; (18)

where sums over all repeated indices, including the Fourier
ones, are assumed. From now on, this convention will be
maintained throughout the paper. Notice that due to the
orthogonality of the trigonometric functions, there is no
interference between zero modes and excited modes of the
curvatures.

In order to determine explicitly the form of the curva-

tures F ð0Þa
�� , F ðmÞa

�� , and F ðmÞa
�5 , we use the definitions of the

tensorsF a
��ðx; yÞ andF a

�5ðx; yÞ, given by Eqs. (8) and (9),
and expand in Fourier series the gauge fields that constitute
them, which leads to

F a
��ðx; yÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi

2�R
p Fð0Þa

�� ðxÞ

þ X1
m¼1

1ffiffiffiffiffiffiffi
�R

p ðDð0Þab
� AðmÞb

� �Dð0Þab
� AðmÞa

� Þ

� cos

�
my

R

�
þ gfabc

X1
m¼1

X1
n¼1

ffiffiffiffiffiffiffi
2

�R

s
AðmÞb
� AðnÞc

�

� cos

�
my

R

�
cos

�
ny

R

�
; (19)

F a
�5ðx; yÞ ¼

X1
m¼1

1ffiffiffiffiffiffiffi
�R

p ðDð0Þab
� AðmÞb

5 þm

R
AðmÞa
� Þ sin

�
my

R

�

þ gfabc
X1
m¼1

X1
n¼1

ffiffiffiffiffiffiffi
2

�R

s
AðmÞb
� AðnÞc

5

� cos

�
my

R

�
sin

�
ny

R

�
; (20)

where

Fð0Þa
�� ¼ @�A

ð0Þa
� � @�A

ð0Þa
� þ gfabcAð0Þb

� Að0Þc
� : (21)

In addition, Dð0Þab
� ¼ �ab@� � gfabcAð0Þc

� and g ¼
g5=

ffiffiffiffiffiffiffiffiffiffi
2�R

p
. As a next step, we equalize the right-hand

side members of Eqs. (15) and (19). Then, we multiply

by 1=
ffiffiffiffiffiffiffiffiffiffi
2�R

p
, integrate over y in the interval 0 � y � 2�R,

and use the orthogonality of the trigonometric functions to
obtain

F ð0Þa
�� ¼ Fð0Þa

�� þ gfabcAðmÞb
� AðmÞc

� : (22)

Multiplying now by ð1= ffiffiffiffiffiffiffi
�R

p Þ cosðnyR Þ and proceeding in the
same way leads to

F ðmÞa
�� ¼ Dð0Þab

� AðmÞb
� �Dð0Þab

� AðmÞb
�

þ gfabc�mrnAðrÞb
� AðnÞc

� ; (23)

where

�mrn ¼ 1ffiffiffi
2

p ð�r;mþn þ �m;rþn þ �n;rþmÞ: (24)

Finally, we equalize the right-hand side members of
Eqs. (16) and (20) and follow the same path as in the
previous case to obtain

F ðmÞa
�5 ¼ Dð0Þab

� AðmÞb
5 þm

R
AðmÞa
� þ gfabc�0mrnAðrÞb

� AðnÞc
5 ;

(25)

where

�0mrn ¼ 1ffiffiffi
2

p ð�m;rþn þ �r;mþn � �n;rþmÞ: (26)

The gauge variation of the four-dimensional F ð0Þa
�� ,

F ðmÞa
�� , and F ðmÞa

�5 curvatures is encoded in the correspond-

ing gauge variation for the five-dimensional curvature
F a

MN given by Eq. (6), which can be decomposed into
two parts as follows:

�F a
��ðx; yÞ ¼ g5f

abcF b
��ðx; yÞ�cðx; yÞ; (27)

�F a
�5ðx; yÞ ¼ g5f

abcF b
�5ðx; yÞ�cðx; yÞ: (28)

Expanding both the left-hand and the right-hand sides of
these equations in Fourier series and using the orthogonal-
ity of the trigonometric functions, one obtains

�F ð0Þa
�� ¼ gfabcðF ð0Þb

�� �ð0Þc þF ðmÞb
�� �ðmÞcÞ; (29)

�F ðmÞa
�� ¼ gfabcðF ðmÞb

�� �ð0Þc þ ð�mnF ð0Þb
��

þ�mrnF ðrÞb
�� Þ�ðnÞcÞ; (30)

�F ðmÞa
�5 ¼ gfabcðF ðmÞb

�5 �ð0Þc þ �0mrnF ðrÞb
�5 �

ðnÞcÞ: (31)

It is not difficult to show that the L4YM Lagrangian is
invariant under these transformations of the curvatures.
However, it is important to stress that this Lagrangian
differs from those presented in the literature [5–7,9–11].
On the other hand, it is interesting to investigate the

structure of the equations of motion, which also serves to
check on theL4YM Lagrangian, as the equations of motion
can be derived in essentially two different ways, namely,
directly from the four-dimensional theory characterized
by this Lagrangian and by compactification of the five-
dimensional equations of motion. The equations of motion
coming from the four-dimensional theory are given by

@�

�
@L4YM

@�A

�
¼ @L4YM

@A
; (32)
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where A stands for Að0Þa
� , AðmÞa

� , and AðmÞa
5 . A straightfor-

ward calculation leads to

D ð0Þab
� F ð0Þb�� ¼ gfabcðF ðmÞb�5AðmÞc

5 þF ðmÞb��AðmÞc
� Þ;
(33)

D ðmnÞab
� F ðnÞb�� ¼ gfabcF ð0Þb��AðmÞc

� �DðmnÞab
5 F ðnÞb�5;

(34)

D ð0Þab
� F ðmÞb�5 ¼ gfabc�0nrmF ðnÞb�5AðrÞc

� ; (35)

where the object DðmnÞab
� is a sort of covariant derivative,

which will be defined in the next subsection. On the other
hand, in five dimensions the equations of motion are
given by

D ab
MF bMN ¼ 0; (36)

which is equivalent to

D ab
� F b�� þDab

5 F b5� ¼ 0; (37)

D ab
� F b�5 ¼ 0: (38)

Expanding these equations in Fourier series and integrating
the fifth dimension, we arrive at the same set of equations
of motion derived directly from L4YM.

B. Standard and nonstandard gauge transformations

As emphasized in the Introduction, one of our main
objectives in this work is to derive the gauge transforma-

tions determined by the �ð0Þa and �ðnÞa gauge parameters,
as it is crucial to quantize the theory. As already com-
mented, wewill derive these gauge transformations follow-
ing more than one method.

1. Four-dimensional transformations from standard
five-dimensional transformations

The precise way through which the fields Að0Þa
� and

AðmÞa
� transform is encoded in the corresponding five-

dimensional transformation given by Eq. (5), which can
be written as

�Aa
�ðx; yÞ ¼ Dab

� �bðx; yÞ; (39)

�Aa
5ðx; yÞ ¼ Dab

5 �bðx; yÞ: (40)

Following exactly the same procedure used in the deriva-
tion of the laws of transformation for the curvatures, we
obtain

�Að0Þa
� ¼ Dð0Þab

� �ð0Þb þ gfabcAðmÞb
� �ðmÞc; (41)

�AðmÞa
� ¼ gfabcAðmÞb

� �ð0Þc þDðmnÞab
� �ðnÞb; (42)

�AðmÞa
5 ¼ gfabcAðmÞb

5 �ð0Þc þDðmnÞab
5 �ðnÞb; (43)

where

D ðmnÞab
� ¼ �mnDð0Þab

� � gfabc�mrnAðrÞc
� ; (44)

D ðmnÞab
5 ¼ ��mn�ab m

R
� gfabc�0mrnAðrÞc

5 : (45)

The laws of transformation for the curvatures given by
Eqs. (29)–(31) can be reproduced using these variations
of the fields. From these expressions, two types of gauge
transformations can be distinguished. One of them is ob-
tained when all the excited KK modes of the gauge pa-

rameters are put equal to zero, i.e. �ðmÞa ¼ 0 for all
m ¼ 1; 2; � � � . In such a case,

�Að0Þa
� ¼ Dð0Þab

� �ð0Þb; (46)

�AðmÞa
� ¼ gfabcAðmÞb

� �ð0Þc; (47)

�AðmÞa
5 ¼ gfabcAðmÞb

5 �ð0Þc; (48)

which show that the zero mode Að0Þa
� transforms in the

standard way of a Yang-Mills theory, whereas the excited

KK modes AðnÞa
� and AðnÞa

5 transform as matter fields in the

adjoint representation of SU4ðNÞ. These are the well-
known SGT. The consideration of the above scenario
is strictly needed in order to recover the standard four-
dimensional Yang-Mills theory. This suggests investigat-
ing, in the same way, the role played by the parameters

�ðmÞa. As in the previous case, we now put �ð0Þa ¼ 0 in
Eqs. (41)–(43), which leads to

�Að0Þa
� ¼ gfabcAðnÞb

� �ðnÞc; (49)

�AðmÞa
� ¼ DðmnÞab

� �ðnÞb; (50)

�AðmÞa
5 ¼ DðmnÞab

5 �ðnÞb: (51)

Several comments are in order here. The first point to be
noted is that these transformations are much more compli-
cated than the standard ones, as they mix the infinite
number of excited modes. We can see that the zero modes

Að0Þa
� do not transform trivially under these NSGT, as

suggested in Ref. [11], but they are mapped into excited
gauge KK modes in a way that resembles the standard
adjoint representation. Also, we can see that the variations

of the KK modes AðnÞa
� depend on the zero modes Að0Þa

�

through the standard covariant derivative contained in

DðnmÞab
� . By contrast, the variation of the scalar KK modes

AðnÞa
5 does not depend on the zero or the excited gauge

modes. The mathematical structure of DðnmÞab
� suggests

that the KK modes AðnÞa
� are gauge fields under this second

sort of gauge transformations. As we will see below, the
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DðnmÞab
� tensorial structure plays a central role in deriving

the ghost sector associated with the excited KK modes.
Let us conclude this section by showing that the scalar

fields AðmÞa
5 can be eliminated altogether via a particular

NSGT. Consider a NSGTwith infinitesimal gauge parame-

ters given by �ðmÞaðxÞ ¼ ðR=mÞAðmÞa
5 . Then, from Eq. (51),

we can see that AðmÞa
5 ! A0ðmÞa

5 ¼ 0. On the other hand, the

sole term that contains the AðmÞa
5 scalar fields is the NSGT

invariant object 1
2F

ðmÞa
�5 F ðmÞa�

5 , which, in this particular

gauge, takes the form

1

2
F ðmÞa

�5 F ðmÞa�
5 ! 1

2
F 0ðmÞa

�5 F 0ðmÞa�
5 ¼ 1

2

�
m

R

�
2
AðmÞa
� AðmÞa�:

(52)

This result shows that the AðmÞa
5 ðxÞ scalar fields are in fact

pseudo-Goldstone bosons.

2. Dirac’s method

The SGT and the NSGT can also be derived by using
Dirac’s method [27], which allows us to study the phase
space constraints to which the gauge system is subject.
Once the constraints of the system are known, one con-
structs the Castellani gauge generator through which the
variations of the fields can be determined. In Dirac’s
formalism, one needs to determine the generalized mo-
menta, which are given by

�ð0Þa
� ¼ @L4YM

@ _Að0Þa
�

¼ F ð0Þa
�0 ; (53)

�ðmÞa
� ¼ @L4YM

@ _AðmÞa
�

¼ F ðmÞa
�0 ; (54)

�ðmÞa
5 ¼ @L4YM

@ _AðmÞa
5

¼ F ðmÞa
05 ; (55)

where the dot over the fields denotes velocities. For � ¼ i,
the above expressions can be solved for the following
velocities:

_A ð0Þia ¼ �ð0Þa
i �Dð0Þab

i Að0Þb
0 � gfabcAðmÞb

i AðmÞc
0 ; (56)

_A ðmÞia ¼ �ðmÞa
i �DðmnÞab

i AðnÞb
0 � gfabcAðmÞb

i Að0Þc
0 ; (57)

_A ðmÞa
5 ¼ �ðmÞa

5 �DðmnÞab
5 AðnÞb

0 þ gfabcAðmÞb
5 Að0Þc

0 ; (58)

whereas for � ¼ 0 one has the primary constraints

�ð1Þð0Þ
a � �ð0Þa

0 � 0; (59)

�ð1ÞðmÞ
a � �ðmÞa

0 � 0; (60)

where the label (1) stands for primary. On the other hand,
the primary Hamiltonian is given by

Hð1Þ ¼
Z

d3xH ð1Þ; (61)

with

H ð1Þ ¼ H þ �ð0Þa�ð1Þð0Þ
a þ �ðmÞa�ð1ÞðmÞ

a ; (62)

where �ð0Þa and �ðmÞa are Lagrange multipliers. In addition,

H ¼ þ1
2�

ð0Þa
i �ð0Þa

i þ 1
2�

ðmÞa
i �ðmÞa

i þ 1
2�

ðmÞa
5 �ðmÞa

5

þ Að0Þa
0 Dð0Þab

i �ð0Þb
i þ AðmÞa

0 DðmnÞab
i �ðnÞb

i

� AðnÞb
0 DðmnÞab

5 �ðmÞa
5 � gfabcð�ð0Þa

i AðmÞb
i AðmÞc

0

þ �ðmÞa
i AðmÞb

i Að0Þc
0 � �ðmÞa

5 AðmÞb
5 Að0Þc

0 Þ
þ 1

4ðF ð0Þa
ij F ð0Þa

ij þF ðmÞa
ij F ðmÞa

ij þ 2F ðmÞa
i5 F ðmÞa

i5 Þ:
(63)

We now demand that the primary constraints satisfy the
consistency conditions:

_� ð1Þð0Þ
a ¼ f�ð1Þð0Þ

a ðxÞ; Hð1Þg � 0; (64)

_� ð1ÞðmÞ
a ¼ f�ð1ÞðmÞ

a ðxÞ; Hð1Þg � 0; (65)

which leads to secondary constraints, given by

�ð2Þð0Þ
a ¼Dð0Þab

i �ð0Þb
i �gfabcð�ðmÞb

i AðmÞc
i þ�ðmÞb

5 AðmÞc
5 Þ�0;

(66)

�ð2ÞðmÞ
a ¼ DðmnÞab

i �ðnÞb
i �DðmnÞab

5 �ðnÞb
5 � gfabc�ð0Þb

i AðmÞc
i

� 0: (67)

After a tedious algebra, one finds the following relations:

f�ð2Þð0Þ
a ðxÞ; �ð2Þð0Þ

b ðx0Þg ¼ gfabc�
ð2Þð0Þ
c ðxÞ�ð ~x� ~x0Þ; (68)

f�ð2Þð0Þ
a ðxÞ; �ð2ÞðmÞ

b ðx0Þg ¼ gfabc�
ð2ÞðmÞ
c ðxÞ�ð ~x� ~x0Þ; (69)

f�ð2ÞðmÞ
a ðxÞ; �ð2ÞðnÞ

b ðx0Þg ¼ gfabcð�mn�ð2Þð0Þ
c ðxÞ

þ�mrn�ð2ÞðrÞ
c Þ�ð ~x� ~x0Þ: (70)

Since the Poisson brackets of the primary constraints with
the secondary ones also vanish, the constraints of the four-
dimensional theory are first-class constraints, thus showing

that excited KK modes AðmÞa
� are gauge fields.

It is worth noticing that the above set of primary and
secondary constraints can be derived directly from the five-
dimensional theory. At this level, the momenta definition
leads to

�a
Aðx; yÞ ¼

@L5YM

@ _Að0Þa
A

¼ F a
A0ðx; yÞ; (71)
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so, for A ¼ 0 the primary constraints arise:

�ð1Þ
a ðx; yÞ � �a

0ðx; yÞ � 0: (72)

Notice that, from its definition, the momentum�a
i ðx; yÞ has

even parity, whereas �a
5 is odd. We will assume that �a

0 or,

equivalently �ð1Þ
a , has even parity. The secondary con-

straints are given by

�ð2Þ
a � Dab

I �b
I ¼ Dab

i �b
i þDab

5 �b
5 � 0; I ¼ i; 5:

As before, we expand in Fourier series both the left-hand
and right-hand sides of the above expressions, and next we
use the orthogonality of the trigonometric functions to link
the corresponding Fourier modes. For instance, the primary
constraints are expanded as follows:

1ffiffiffiffiffiffiffiffiffiffi
2�R

p �ð1Þð0Þ
a ðxÞ þ X1

m¼1

1ffiffiffiffiffiffiffi
�R

p �ð1ÞðmÞ
a ðxÞ cos

�
my

R

�

¼ 1ffiffiffiffiffiffiffiffiffiffi
2�R

p �ð0Þa
0 ðxÞ þ X1

m¼1

1ffiffiffiffiffiffiffi
�R

p �ðmÞa
0 ðxÞ cos

�
my

R

�
: (73)

Next, multiply by 1=
ffiffiffiffiffiffiffiffiffiffi
2�R

p
, integrate over y, and use the

orthogonality of the trigonometric functions. The result is
the primary constraint given by Eq. (59). Then multiply by

ð1= ffiffiffiffiffiffiffi
�R

p Þ cosðny=RÞ, integrate over y, and use again the
orthogonality of the trigonometric functions. The result is
the primary constraint given by Eq. (60). Applying the
same procedure to the five-dimensional secondary con-

straints �ð2Þ
a ðx; yÞ, one reproduces the four-dimensional

secondary constraints given by Eqs. (66) and (67).
Finally, the gauge algebra given by Eqs. (68)–(70) can be
derived directly from the five-dimensional counterpart:

f�ð2Þ
a ðx;yÞ;�ð2Þ

b ðx0;y0Þg¼g5fabc�
ð2Þ
c ðx;yÞ�ð ~x� ~x0Þ�ðy�y0Þ:

(74)

In this case, once the constraints inside of the Poisson
brackets are expanded in Fourier series, a double integra-
tion over the variables y and y0 is needed in order to
reproduce the relations given by Eqs. (68)–(70).

Knowing the constraints is essential to construct
Castellani’s gauge generator [21], which allows us to de-
termine the gauge transformations of the gauge fields. Now
we show that this formalism reproduces both the SGT and
the NSGT given by Eqs. (46)–(48) and Eqs. (49)–(51),
respectively. In our case, such a generator can be written
as follows:

G ¼
Z

d3z½ðDð0Þab
0 �ð0Þb þ gfabcAðmÞb

0 �ðmÞcÞ�ð1Þð0Þ
a

� �ð0Þa�ð2Þð0Þ
a þ ðgfabcAðmÞb

0 �ð0Þc

þDðmnÞab
0 �ðnÞbÞ�ð1ÞðmÞ

a � �ðmÞa�ð2ÞðmÞ
a �; (75)

where the functions �ð0ÞaðxÞ and �ðnÞaðxÞ are the gauge
parameters, only restricted to be soft. The gauge trans-
formations are obtained by calculating the variations

�Að0Þa
� ¼ fAð0Þa

� ;Gg; (76)

�AðmÞa
� ¼ fAðmÞa

� ;Gg; (77)

�AðmÞa
5 ¼ fAðmÞa

5 ;Gg: (78)

The calculation of these Poisson brackets just leads to
Eqs. (41)–(43), which in turn implies the SGT and NSGT
given by Eqs. (46)–(48) and Eqs. (49)–(51), respectively.

C. Scenario with gauge parameters confined
to the brane

As it has been emphasized through the paper, the BRST
formalism introduces the gauge parameters from the outset,
i.e. at the classical level, as true degrees of freedom, as these
ghosts fields have been useful throughout the development
of covariant gauge systemquantization.Because of this, it is
important to study the physical implications of considering
the scenarios that can arise when the gauge parameters
propagate in the fifth dimension or are confined to the brane.
The former possibility was studied previously. Here, we
will study the consequences of assuming that the gauge
parameters �a do not depend on the fifth dimension.
Previously, we showed that if the gauge parameters propa-
gate in the fifth dimension, in order to preserve gauge
invariance, one must compactify the theory by considering
the curvature as the fundamental objects rather than the
fields. In the scenario with the gauge parameters confined
in the brane, there are no excitedmodes for such parameters
and no gauge symmetry can arise other than the standard
one, i.e. that characterized by the SGT studied above. As it
is evident from Eqs. (46)–(48) the gauge fields correspond
to the zero modes of the five-dimensional gauge field,
whereas the excited ones transform as matter fields in the
adjoint representation of the group. Indeed, the scenario that
will be studied here is entirely determined by the SGT, and
the four-dimensional theory differs from the one derived
above, as the corresponding Lagrangian, which we will

denote by L̂4YM, does not coincide with L4YM.
If the gauge parameters do not propagate in the fifth

dimension, the variation of the five-dimensional gauge
fields given by Eq. (5) takes the form

�Aa
�ðx; yÞ ¼ Dab

� �bðxÞ; (79)

�Aa
5ðx; yÞ ¼ g5f

abcAb
5ðx; yÞ�cðxÞ: (80)

The last equation in the above expressions clearly shows
that the fields Aa

5 transform in the adjoint representation

of the group even before the compactification. Since in
this scenario SU5ðNÞ ¼ SU4ðNÞ � SUðNÞ, both the
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five-dimensional theory and the four-dimensional one must
be governed by the well-known SGT. As before, we start
from the Lagrangian given by Eq. (7). However, instead of
using the Fourier series for the curvatures F a

�� and F a
�5,

given by Eqs. (15) and (16), we will use the expressions
given in Eqs. (19) and (20), which are obtained after
expanding in Fourier series the gauge fields Aa

� and

Aa
5 . To clarify why each procedure leads to different

four-dimensional theories, let us comment on the reason
behind this. If the integrand in Eq. (7) is defined by
expanding the curvatures directly in Fourier series, one
must solve integrals of the formZ 2�R

0
dy

�
F0 þ Fm cos

�
my

R

��
2 ¼ �Rð2F2

0 þ F2
mÞ: (81)

By contrast, if the integrand is defined by expanding the
gauge fields in Fourier series instead of the curvatures, one
must solve integrals of the formZ 2�R

0
dy

�
F0 þ Fm cos

�
my

R

�
þ Fmn cos

�
my

R

�
cos

�
ny

R

��
2

¼ �Rð2F2
0 þ F2

m þ 2F0Fmm þ �mrnFmFrn

þ�mnrsFmnFrsÞ; (82)

where the factor with two indices, Fmn, represents the
Fourier coefficients of the non-Abelian part of the curva-
tureF a

MN . This is why the NSGT violate gauge invariance.
Also, this is the reason why gauge invariance is manifest in
Abelian theories when one follows this path [6], as in this
case there is no mathematical difference between the
Fourier series of the curvature and that of the gauge fields.
After these considerations, we next evaluate the integral (7)
by expanding in Fourier series the gauge fields Aa

� and

Aa
5 . After carrying out the integrations and performing

some algebraic manipulations, one obtains

L̂ 4YM ¼ L4YM þ �L; (83)

where

�L ¼ 1
4g

2fabcfadeð�rnpqAðnÞc
� AðqÞe�

� �0rnpqAðnÞc
5 AðqÞe

5 ÞAðrÞb
� AðpÞd�: (84)

In the above expression,

�rnpq ¼ �rn�pq þ �mrn�mpq � �rnpq; (85)

�0rnpq ¼ �0mrn�0mpq � �0rnpq; (86)

with

�rnpq ¼ 1
2ð�r;nþpþq þ �n;rþpþq þ �p;rþnþq þ �q;rþnþp

þ �rþn;pþq þ �rþp;nþq þ �rþq;nþpÞ; (87)

�0rnpq ¼ 1
2ð��r;nþpþq þ �n;rþpþq � �p;rþnþq þ �q;rþnþp

þ �rþn;pþq � �rþp;nþq þ �rþq;nþpÞ: (88)

Notice that the new term, �L, is invariant under the SGT
but not under the NSGT. It is important to notice that it is
not possible to eliminate from the theory the scalar fields

AðmÞa
5 , as in this case, where gauge parameters are confined

to the brane, the NSGT are absent.
We have shown before that the assumption that the

gauge parameters are allowed to propagate in the fifth
dimension leads to first-class constraints, but not to
second-class ones. Second-class constraints can arise due
to the presence of massive vector fields (matter fields or
Proca fields). We now show that this system is subject to
both first-class and second-class constraints. To see this,
we need to study the constraints to which the system

characterized by the L̂4YM Lagrangian is subject, which
is simple to do, indeed, as this Lagrangian differs from
L4YM only by the term �L, which does not contain terms
with derivatives. This means that the momenta generated

by the L̂4YM theory, and therefore the primary constraints,
are the same as those induced by L4YM. The consistency

condition on the primary constraint �ð1Þð0Þ
a ¼ �ð0Þa

0 , which

leads to the secondary constraint�ð2Þð0Þ
a , introduces nothing

new because �L does not depend on Að0Þa
0 , the canonical

conjugate of �ð0Þa
0 , and therefore, the secondary constraint

�ð2Þð0Þ
a remains unchanged. On the other hand, the consis-

tency condition on the primary constraint �ð1ÞðmÞ
a ¼ �ðmÞa

0

produces some changes, as the new term �L does depend

on AðmÞa
0 , the canonical conjugate of �ðmÞa

0 . Taking into

account that the primary Hamiltonians of the two theories
are related in a simple way,

Ĥ ð1Þ ¼ Hð1Þ �
Z

d3x�L; (89)

it is easy to determine the new secondary constraint.

In fact, the consistency condition for �ð1ÞðmÞ
a ,

_� ð1ÞðmÞ
a ¼ f�ð1ÞðmÞ

a ðxÞ; Ĥð1Þg � 0; (90)

leads to

�̂
ð2ÞðmÞ
a ¼ �ð2ÞðmÞ

a þ g2fabcfbdeð�mnpqAðnÞc
� AðqÞe�

� �mnpqAðnÞc
5 AðqÞe

5 ÞAðpÞd
0 : (91)

It is easy to see that the consistency condition on �̂ð2ÞðmÞ
a

determines the Lagrange multipliers �ðmÞa appearing in

H ð1Þ because of

f�̂ð2ÞðmÞ
a ðxÞ; �ð1ÞðnÞ

b ðx0Þg � 0: (92)

This in turn implies that the constraints �ð1ÞðmÞ
a and �̂ð2ÞðmÞ

a

are second-class constraints. Since the relations given by
Eqs. (68) and (69) remain unchanged, the constraints

�ð1Þð0Þ
a and �ð2Þð0Þ

a are first-class constraints. This is just
the gauge structure of a theory that contains both gauge
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fields (the zero modes Að0Þa
� ) and Proca fields (the excited

modes AðmÞa
� ).

As already commented, the approach followed in the
literature when deriving the four-dimensional theory is the
one presented here, although it should be stressed that in
previous works the gauge parameters are taken as living in
the bulk, whereas we demand that they are confined to the
brane, which is necessary in order to preserve gauge in-
variance. However, the corresponding Lagrangian must
coincide in both schemes because the only difference is
the absence, in the case of excited KK modes, of the gauge
parameters and the presence of them in the other scenario.
The way in which the four-dimensional Lagrangian is
derived is the same in both schemes. Then, it is worth

comparing our Lagrangian L̂4YM with those obtained in
the literature.

The non-Abelian model analyzed in this work is inter-
esting and important, as it can be part of extra dimensional
standard model extensions and employed to perform phe-
nomenological calculations [28,29]. This five-dimensional
Lagrangian and its transition to a four-dimensional effec-
tive version, reached through the compactification process,
have been studied, and some results have been reported in
the literature. In Ref. [4] the authors analyzed some aspects
about extra dimensional models. In connection with our
work, in that time they developed an Abelian gauge model
with one extra dimension, which they compactified on the
orbifold S1=Z2. They obtained a set of gauge transforma-
tions for such a model and argued in favor of the renorma-
lizability of it when truncated to a certain order of the
Fourier series. Later, they commented that the same pro-
cedure could be repeated for the non-Abelian case, and that
the results concerning the renormalizability of this more
elaborate model followed straightforwardly. They did not
present any expression for the effective four-dimensional
Lagrangian nor a precise explanation of how they per-
formed the integration of the extra dimension.
Nonetheless, they offered a set of gauge transformations,
at the four-dimensional level, which do not coincide with
the ones that we obtained. Other related works are [5,7],
where the five-dimensional Yang-Mills theory was com-
pactified and the Lagrangian Fourier-expanded by taking
the gauge fields as the fundamental objects instead of the
curvatures. The expressions exhibited in both papers, con-
cerning the structure of the four-dimensional effective
Lagrangian, match our results for the case in which the
gauge parameters are constrained to the brane. In both
papers the authors did not study the gauge transformations
that rule the four-dimensional effective Lagrangian. The
authors in [6] studied some extra dimensional extensions of
the standard model, and also discussed some aspects con-
cerning an extra dimensional Yang-Mills theory, for which
they defined a non-Abelian Lagrangian as usual, and
considered gauge fixing and Faddeev-Popov terms. They
compactified the model on the orbifold S1=Z2 and offered

Feynman rules for the four-dimensional effective theory. In
that work, the expression for the 4D effective Lagrangian
was not explicitly shown, but the presence of the factors
�nmkl and �0nmkl in their Feynman rules suggests that
they directly expanded the gauge fields instead
of the curvatures. Another interesting element in this
paper is the exhibition of the gauge transformations corre-
sponding to the four-dimensional effective Lagrangian.
We have compared such transformation laws with those
that we presented in this paper and found a perfect agree-

ment in the case of the variations of the fields Að0Þa
� and

AðnÞa
5 . By contrast, we encountered some differences when

we analyzed the remaining transformations: �AðnÞa
� ¼

our result� ffiffiffi
2

p
gfabcAð0Þb

� �ðnÞc. Concerning our work, in
[8] the authors studied, among other things, a five-
dimensional electroweak standard model extension. The
Yang-Mills sector that they considered for such a model
differs from ours only because they included contact terms.
They performed an orbifold compactification on S1=Z2 and
then expanded the fields in sine and cosine series. It is
remarkable that in this paper the authors expanded the
curvatures and obtained the analogous four-dimensional
objects. They did not emphasize their procedure nor men-
tion integrating curvatures instead of fields in order to
preserve gauge invariance, but they showed the four-
dimensional expressions for the curvatures after introduc-
ing a classical background field in the context of the
background field method. We have compared our expres-
sions with those exhibited by these authors and have found
agreement. Finally, they did not derive the gauge trans-
formations governing the four-dimensional effective
Lagrangian. Another interesting reference is [11], where
some aspects related to the gauge structure of the usual
five-dimensional SUðNÞ model were analyzed. The author
incorporated two-brane kinetic terms into the non-Abelian
Lagrangian and compactified the model on the orbifold
S1=Z2, so, except for the brane kinetic terms, his initial
considerations are the same as in our case. He showed an
explicit expression for the four-dimensional effective
Lagrangian, but he did not talk about the precise procedure
he followed in order to obtain such an expression.
The structure of his result suggests that he employed the
same method as us; that is, he integrated the fifth dimen-
sion over the curvatures rather than over the gauge fields.
However, our result does not exactly coincide with his.
In fact, when one neglects the brane kinetic terms,

his Lagrangian can be written as Leff ¼ our result�
g2fabcfadeAðmÞb

� AðmÞc
� AðkÞd�AðkÞe�. This author also pre-

sented a set of gauge transformations for the gauge fields,
which he divided into two types: the SGT, defined by the
zero order parameters, and those determined by all the
other parameters, which are analogous to our NSGT.
The SGT found by this author are in perfect agreement
with our results. Nonetheless, there is a remarkable
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difference in the case of the remaining variations, for the
expressions found in this reference indicate that the trans-
formations for the zero-mode fields vanish; that is, there is
no variation of the zero-mode fields under such transfor-
mations. Contrastingly, in the NSGT that we report, the
transformations corresponding to the zero modes are not
zero, but something similar to adjoint transformations that
mix different KK modes.

III. QUANTIZATION

The purpose of this section is to carry out the quantiza-
tion of the four-dimensional KK gauge theory discussed in
the previous section. We will focus on the scenario in
which the gauge parameters propagate in the fifth dimen-
sion. The classical theory to be quantized is characterized
by theL4YM Lagrangian, which is invariant under both the
SGT and the NSGT of SU4ðNÞ. In particular, we are
interested in quantizing the excited KK gauge modes

AðmÞa
� , as our main objective is to investigate the quantum

loop fluctuations of these gauge fields on light Green

functions, h0jTðAð0Þa
� ðx1ÞAð0Þb

� ðx2Þ � � � j0i. This means that
it is only necessary to fix the gauge with respect to the
NSGT. We will do this by implementing a gauge-fixing
procedure that is covariant under the SGT. Our discussion
will be based on the BRST symmetry.

A. The proper solution of the master equation

Classically, the BRST symmetry arises naturally within
the context of the Batalin-Vilkovisky formalism [30], also
known as the field-antifield formalism [20]. To clarify our
presentation, let us present a brief discussion on this for-
malism. Although the following discussion is rather gen-
eral, wewill focus on the properties of Yang-Mills systems.
The starting point is the introduction of an antifield for
each field present in the theory. It is assumed that the
dynamical degrees of freedom of the gauge system com-
prise, besides the gauge fields, the ghost (Ca), antighost
( �Ca), and auxiliary (Ba) fields. The original action, which
will be denoted by S0, is a functional of the gauge fields
only, but this configuration is extended to include the ghost
fields because they are necessary to quantize the theory.
A ghost field for each gauge parameter is introduced. The
ghost fields have opposite statistics to that of the gauge
parameters. To gauge fix and quantize the theory, it is
necessary to introduce the so-called trivial pairs, namely,
the antighost and auxiliary fields. We let �A run over all
the fields. For each�A, an antifield ��

A is introduced, with
opposite statistics to �A and a ghost number equal to
�ghð�AÞ � 1, where ghð�AÞ is the ghost number of �A.
It is 0 for matter, gauge and auxiliary fields,þ1 for ghosts,
and �1 for antighosts. In this extended configuration
space, a symplectic structure, called an antibracket, is
introduced through left and right differentiation, defined
for the two functionals F and G as

ðF;GÞ ¼ @RF

@�A

@LG

@��
A

� @RF

@��
A

@LG

@�A
: (93)

In particular, the fundamental antibrackets are given by

ð�A;��
BÞ ¼ �A

B; (94)

ð�A;�BÞ ¼ 0 ¼ ð��
A;�

�
BÞ; (95)

so the antifield��
A is canonically conjugate to the field�A

in this sense. The extended action is a bosonic functional of
the fields and antifields, S½�;���, with zero ghost number,
which satisfies the master equation defined by

ðS; SÞ ¼ 2
@RS

@�A

@LS

@��
A

¼ 0: (96)

The extended action is the generator of the BRST trans-
formations:

�B�
A ¼ ð�A; SÞ; (97)

�B�
�
A ¼ ð��

A; SÞ: (98)

Notice that S is BRST invariant due to the master equation.
The solutions of the master equation which are of physical
interest are those called proper solutions [20]. A proper
solution must make contact with the initial theory, which
means imposing the following boundary condition on S:

S½�;���j��¼0 ¼ S0½��; (99)

where � runs only over the original fields. The proper
solution can be expanded in power series in antifields,

S½�;��� ¼ S0½�� þ ð�B�
AÞ��

A þ � � � ; (100)

in which all the gauge-structure tensors characterizing the
gauge system appear. In this sense, the proper solution S is
the generating functional of the gauge-structure tensors.
S also generates the gauge algebra through the master
equation. So, classically, a gauge system is completely
determined when the proper solution S is established and
the master equation is calculated, which yields the rela-
tions that must be satisfied by the gauge-structure tensors.
In general, the variations of the fields ð�B�

AÞ are not
known from the outset, so the most general solution with
gauge-structure tensors instead of these explicit variations
must be proposed, which uses the master equation to
determine them. This approach could be followed in de-
termining the tensorial structure of the NSGT. Although
this is feasible, we will follow a less bothersome alterna-
tive, which consists in using the well-known proper
solution for Yang-Mills theories formulated in a four-
dimensional spacetime, which can automatically be trans-
lated to five dimensions. The compactification of the
fifth dimension and its integration must lead to a
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four-dimensional proper solution of the master equation.
We will see below that this is indeed the case. In particular,
there arise just the same gauge-structure tensors of the SGT
and NSGT derived before by following other methods.

The proper solution of the master equation for Yang-
Mills theories in five dimensions can be written as follows:

S ¼
Z

d4x
Z

dy

�
� 1

4
F a

MNF
MN
a þA�

MaD
abMCb

þ 1

2
g5f

abcC�cCbCa þ �C�aBa

�
; (101)

which is a trivial generalization of the corresponding so-
lution in four dimensions. Notice that this proper solution
satisfies the boundary condition Sj��¼0 ¼ S0, with S0
given by Eq. (2). The term corresponding to the original
action, S0, is treated in the same way as in Sec. II A. This
leads to an action with the four-dimensional Lagrangian
L4YM. The remaining terms are also expanded in Fourier
series. A parity for the antifield identical to its correspond-
ing field is assumed. The ghost fields have the same parity
of the gauge parameters. An even parity for the antifield of
the antighost field is assumed, as the presence of the zero
mode of the antighost fields is needed in order to recover
the four-dimensional proper solution of the master equa-
tion. By the same token, an even parity for the auxiliary
fields Ba is assumed. The variations of the gauge fields in
five dimensions are recognized as fundamental objects
in the same sense as the curvatures. So, in the second
term in the above expression, the Fourier expansion is
realized on A�

Mað�AMaÞ instead of A�
MaðDabMCbÞ.

After doing this, one obtains

S ¼
Z

d4x

�
L4YM þ Að0Þ�

�a Dð0Þab�Cð0Þb þ �Cð0Þ�aBð0Þ
a

þ 1

2
gfabcCð0Þ�

c Cð0ÞbCð0Þa þ AðmÞ�
�a DðmnÞab�CðnÞb

� AðmÞ�
5a DðmnÞabCðnÞb þ �CðmÞ�aBðmÞ

a

þ 1

2
gfabcCð0Þ�

c CðmÞbCðmÞa þ 1

2
fabcCðmÞ�

c ðCð0ÞbCðmÞa

þ Cð0ÞaCðmÞb þ�mrnCðrÞbCðnÞaÞ
�
: (102)

Notice that if all the excited KK modes are deleted, the
well-known proper solution for Yang-Mills theories is
reproduced [20]. S is also a proper solution of the master
equation. On the other hand, a straightforward calculation
of Eq. (97) allows us to recover the SGT and NSGT given
by Eqs. (46)–(48) and Eqs. (49)–(51), respectively.

B. SU4ðNÞ-covariant gauge-fixing procedure

Having studied the classical structure of the KK theory,
we now carry out its quantization, for which one starts by

fixing the gauge, since the extended action is degenerate,
and hence cannot be quantized directly. Furthermore, the
antifields do not represent true degrees of freedom, so they
must be removed before quantizing the theory. They can-
not be just set to zero, since S0 is degenerate. However, one
can remove the antifields instead through a nontrivial
procedure and, at the same time, lift the degeneration of
the theory. The antifields can be eliminated by introducing
a fermionic functional of the fields, �½��, with ghost
number �1, such that

��
A ¼ @�

@�A
: (103)

Note that it is not necessary to distinguish between left and
right differentiation. In defining a gauge-fixing procedure,
the presence of the trivial pairs, �Ca and Ba, is necessary
since the only fields with ghost number �1 are precisely
the antighosts. In the case we are interested in, we only
need to remove the degeneration with respect to the NSGT,
so we will introduce a Fermionic functional �NSGT that
allows us to remove the excited KK modes of the antifields
via the relation

�ðmÞ�
A ¼ @�NSGT

@�ðmÞA : (104)

We introduce the following fermionic functional,

�NSGT ¼
Z

d4x �CðmÞa
�
fðmÞa þ 	

2
BðmÞa

þ gfabc�mrn �CðrÞbCðnÞc
�
; (105)

where 	 is the gauge parameter and fðmÞa represents bo-
sonic gauge-fixing functions, which will be conveniently
defined below. From this expression and Eq. (104), one
finds

AðnÞ�
�b ¼ @fðmÞa

@AðnÞb
�

�CðmÞa; (106)

AðnÞ�
5b ¼ @fðmÞa

@AðnÞb
5

�CðmÞa; (107)

CðmÞ�
a ¼ gfabc�mrn �CðrÞb �CðnÞc; (108)

�C ðmÞ�
a ¼ fðmÞa þ 	

2
BðmÞa þ 2gfabc�mrn �CðrÞbCðnÞc: (109)

After using these relations to eliminate the antifields in S,
one obtains the gauge-fixed action S�NSGT

,
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S�NSGT
¼

Z
d4x

�
L4YM þ Að0Þ�

�a Dð0Þab�Cð0Þb þ �Cð0Þ�aBð0Þ
a þ 1

2
gfabcCð0Þ�

c ðCð0ÞbCð0Þa þ CðmÞaCðmÞbÞ

þ �CðmÞc @f
ðmÞc

@AðnÞa
�

DðnrÞab�CðrÞb � �CðmÞc @f
ðmÞc

@AðnÞa
5

DðnrÞab
5 CðrÞb þ 	

2
BðmÞ
a BðmÞ

a þ BðmÞ
a ðfðmÞa þ 2gfabc�mrn �CðrÞbCðnÞcÞ

þ 1

2
g2fabcfcde�mpq �CðpÞd �CðqÞeðCð0ÞbCðmÞa þ Cð0ÞaCðmÞb þ�mrnCðrÞbCðnÞaÞ

�
: (110)

Notice that this action is still degenerate with respect to the
SGT, unless we introduce terms in fðmÞa that explicitly
break this symmetry. We have proceeded in this way
because we are interested only in investigating the loop
effects of new physics characterized by the excited KK
modes on light Green functions, as this class of effects will
be of great importance in future experiments. We will
preserve the gauge invariance with respect to the SGT of
S�NSGT

by introducing gauge-fixing functions fðmÞa that
transform covariantly under the SGT. On the other hand,
since the auxiliary fields BðmÞ

a do not propagate and appear
quadratically in the action, they can be integrated out in the
generating functional. Their integration is equivalent to
directly using the equations of motion, given by

BðmÞ
a ¼ � 1

	
ðfðmÞa þ 2gfabc�mrn �CðrÞbCðnÞcÞ: (111)

After eliminating these fields, one can write the following
effective Lagrangian:

L eff ¼ L4YM þLGF þL1
FPG þL2

FPG; (112)

where LGF is the gauge-fixing term, given by

L GF ¼ � 1

2	
fðmÞafðmÞa; (113)

whereas Lð1;2Þ
FPG represent the Faddeev-Popov ghost terms,

which are given by

L1
FPG ¼ �CðmÞc

�
@fðmÞc

@AðnÞa
�

DðnrÞab� � @fðmÞc

@AðnÞa
5

DðnrÞab
5

�
CðrÞb

� 1

	
gfabc�mrnfðmÞa �CðrÞbCðnÞc; (114)

L 2
FPG ¼ 1

2
g2fabcfcde�mpq �CðpÞd �CðqÞeðCð0ÞbCðmÞa

þ Cð0ÞaCðmÞb þ �mrnCðrÞbCðnÞaÞ: (115)

As already commented, it is desirable to preserve the
gauge invariance of Leff under the SGT of SU4ðNÞ. This
requires the introduction of gauge-fixing functions fðmÞa
that transform covariantly under this group. In accordance
with this, we introduce the following nonlinear gauge-
fixing functions:

fðmÞa ¼ Dð0Þab
� AðmÞb� � 	

m

R
AðmÞa
5 ; (116)

which, as is evident, transform under the adjoint represen-
tation of SU4ðNÞ. When these gauge-fixing functions are

introduced in the gauge-fixing and Faddeev-Popov ghost
terms, one obtains

L GF ¼ � 1

2	
ðDð0Þab

� AðmÞb�ÞðDð0Þac
� AðmÞc�Þ

þmmA
ðmÞa
5 ðDð0Þab

� AðmÞb�Þ � 1

2
	m2

mA
ðmÞa
5 AðmÞa

5 ;

(117)

which clearly is invariant under the SGT of SU4ðNÞ. Note
that an unphysical mass,

ffiffiffi
	

p
mm ¼ ffiffiffi

	
p ðm=RÞ, for the

pseudo-Goldstone bosons AðmÞa
5 has been generated. On

the other hand, the L1
FPG Lagrangian can be written as

follows:

L1
FPG ¼ �CðmÞcðDð0Þac

� DðmnÞab� þ 	mmD
ðmnÞcb
5 ÞCðnÞb

� 1

	
gfabc�mrnfðmÞa �CðrÞbCðnÞc: (118)

We can write this more explicitly by using the definitions

of DðmnÞab
� and DðmnÞab

5 given in Eqs. (44) and (45):

L1
FPG ¼ �CðmÞbðDð0Þab

� Dð0Þac�ÞCðmÞc � 	m2
m
�CðmÞaCðmÞa

� gfabc
�
�mrn �CðmÞdðDð0Þad

� AðrÞc�ÞCðnÞb

� 1

	
�mrn �CðrÞcðDð0Þad

� AðmÞd�ÞCðnÞb

þ 	mm�
0mrn �CðmÞaAðrÞc

5 CðnÞb

�mm�
mrn �CðrÞaAðmÞc

5 CðnÞb
�
: (119)

Notice that this Lagrangian is invariant under the SGT.
Also, notice that unphysical masses for the excited KK
ghost-antighost fields have been generated.
An important consequence of our gauge-fixing proce-

dure is the elimination of unphysical vertices, which
greatly simplifies loop calculations. In fact, we can see

that bilinear and trilinear couplings of the form AðmÞa
� AðnÞb

5

and Að0Þa
� AðmÞb

� AðnÞc
5 disappear when the terms ð1=2ÞF ðmÞa

5 �
F ðmÞa

5 and LGF are summed together:

1
2F

ðmÞa
�5 F ðmÞa�

5 þLGF ¼mm½AðmÞa
5 ðDð0Þab

� AðmÞb�Þ
þAðmÞa�ðDð0Þab

� AðmÞb
5 Þ�þ � � �

¼mm@�ðAðmÞa
5 AðmÞb�Þþ � � � : (120)
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In contrast to the conventional linear R	 gauges [31],

which do not modify the vertices of the theory and explic-
itly break gauge invariance, in the nonconventional
quantization schemes [23,32–36], such as the one pre-
sented here, a sort of gauge invariance remains at the
quantum level. For instance, the nonlinear gauge-fixing
procedure introduced by Fujikawa [32] to define the propa-
gator of the W	 weak gauge boson is covariant under the
electromagnetic group [33]. Although conventional quan-
tization schemes [31] are appropriate to calculate S-matrix
elements, they give rise to ill-behaved off-shell Green’s
functions that may display inadequate properties such as a
nontrivial dependence on the gauge-fixing parameter, an
increase larger than the one observed in physical ampli-
tudes at high energies, and the appearance of unphysical
thresholds. It would be interesting to study the sensitivity
of Green’s functions to radiative corrections without in-
voking some particular S-matrix element. Behind this are
the concepts of gauge invariance and gauge independence,
which are essential ingredients of the gauge systems.
Although the former plays a fundamental role to define
the classical action, it does not survive to quantization, as
one must invariably invoke an appropriate gauge-fixing
procedure to define the quantum action. At the quantum
level, the theory is governed by a remnant of the original
classical [20] BRST symmetry, which is the one first dis-
covered by Becchi, Rouet, Stora, and Tyutin [19]. The
generating functional constructed with this class of linear
gauges generates Green’s functions satisfying the Slavnov-
Taylor identities instead of the simpler ones that would
exist if the quantum action was gauge invariant. The pres-
ervation of some sort of gauge invariance at the level of the
quantum action is the main feature of nonconventional
quantization schemes. The most popular are the back-
ground field method [23] and the pinch technique [34].
In the former, each gauge field Aa

� is decomposed into a

quantum, Qa
�, and a classical, Âa

�, part: A
a
� ! Âa

� þQa
�.

While the effective quantum action is defined through the

path integral on the Qa
� fields, the classical fields Âa

� play

the role of sources with respect to which the vertex func-
tions are derived. Because of this, it is only necessary to
introduce a gauge-fixing procedure for the quantum fields
Qa

�, and thus the resultant quantum theory is invariant

under gauge transformations of the background fields Âa
�.

The Green’s functions derived in this context satisfy simple
(QED-like) Ward identities, which are well behaved be-
cause they contain less unphysical information in compari-
son with those that arise from the conventional
quantization methods. However, it is worth stressing that
they are still dependent on the gauge parameter 	Q that

characterizes the gauge-fixing scheme used for the quan-
tum fields, and so there is no gauge independence.
Although gauge dependent, one expects that these
Green’s functions provide us with information quite close
to the physical reality. At present, there is still no known

mechanism that allows us to construct a quantum action
from which both gauge-invariant and gauge-independent
Green functions can be derived, although the pinch tech-
nique is a diagrammatic method meant for this purpose
[34]. This method consists in constructing well-behaved
Green’s functions of a given number of points by combin-
ing some individual contributions from Green’s functions
of equal and higher numbers of points, whose Feynman
rules are derived from a conventional effective action or
even from a nonconventional scheme. Out of the scope of
the background field method and the pinch technique, it is
still possible to introduce gauge invariance with respect to
a subgroup of a given theory. This scheme is particularly
useful to assess the virtual effects of heavy gauge bosons
lying beyond the Fermi scale on the SM Green’s functions
in an SULð2Þ �UYð1Þ-covariant manner, in which case it is
only necessary to introduce a quantization scheme for the
heavy fields since the SM fields would only appear as
external legs. A scheme of this class was proposed by
one of us some years ago [36] to investigate the loop effects
of new heavy gauge bosons predicted by the so-called 331
models [37] on the off-shell W�Wþ� and W�WþZ verti-
ces. The virtual effects of heavy gauge bosons on light
Green’s functions studied in Ref. [36] are predicted by a
theory based on the SULð3Þ �UXð1Þ gauge group [37], and
the gauge-fixing functions introduced transform in the
fundamental representation of the usual electroweak group
SULð2Þ �UYð1Þ. The gauge-fixing procedure introduced
in the present work for the excited KK gauge modes has
some similitudewith both the background field method and
the one of Ref. [36], as in all of them a sort of non-Abelian
gauge invariance is maintained at the quantum level. In the
background field method, the gauge invariance of the
original group is maintained, but with respect to the clas-
sical background fields. On the other hand, in the scheme
introduced in Ref. [36], gauge invariance is maintained but
only with respect to a subgroup of the original group. In the
case analyzed in the present work, two types of gauge
transformations can be identified, one determined by the

zero modes of the gauge parameters �ð0Þa, which are called
SGT, and the other identified with the excited modes of
these parameters, called NSGT. Our gauge-fixing proce-
dure for the excited KK modes is covariant under the SGT
of the four-dimensional gauge group SU4ðNÞ.
So far there exist different proposals related to the issue

of the gauge fixing of the extra dimensional Yang-Mills
theory [6–8,11], some of them invoking the fixation at the
five-dimensional level, which is not the case in Ref. [7],
where the authors propounded a four-dimensional gauge-
fixing Lagrangian that has a similar structure to ours, but
that is essentially different. Another gauge-fixing scheme
for the four-dimensional effective model was given in [11],
where the author worked within the context of the back-
ground field method. As this author recognized two types
of gauge transformations, he introduced two types of
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gauge-fixing functions, one concerning the zero modes
and the other directed to the KK excitations. In the case
of the KK excitations, the gauge-fixing functions given in
this reference have a very similar structure to the ones
proposed by us, but they are different because the former
include covariant derivatives with respect to the back-
ground gauge fields, whereas we have not done such a
division, originated in the background field method.
Reference [6] propounds a gauge-fixing approach at the
five-dimensional level that has been widely used in the
literature, as it leads to a proper definition of the propa-
gators for the KK modes through the convenient cancella-
tion of some bilinear couplings. We have obtained, by
means of a Fourier analysis, the four-dimensional expres-
sions of the gauge-fixing functions given by these authors
and have verified that they do not match our proposal. This
dissimilitude appears because the gauge-fixing Lagrangian
defined by these authors involves only simple derivatives
operating on fields and no more terms that complete
covariant derivatives at the four-dimensional level. An
interesting point in Ref. [8] is to employ a gauge-fixing
scheme, which the authors introduced at the five-
dimensional spacetime level. They divided the fields into
background fields and quantum fluctuations, within the
context of the background field method, before the
Fourier expansions and the integration of the extra dimen-
sion, and fixed the gauge differently for these two kinds of
fields. In the case of the background fields, they used the
unitary gauge, while for the quantum fluctuations, they
employed a sort of R	 gauge. They expanded their

gauge-fixing functions in Fourier series and obtained
gauge-fixing conditions for both the zero mode and the
excited modes. The structure of the gauge-fixing functions
that these authors obtained for the KK modes includes our
fixation condition, but they have additional terms which
mix KK-mode fields. It is worth emphasizing that within
our scheme the fixation of the gauge for the zero modes and
that for the KK modes can be performed independently of
each other, which is a possibility implicitly present in the
separation of the gauge transformation parameters into two
types. In fact, in this analysis we have gauge fixed only the
excited modes, while leaving the gauge invariance with
respect to the SGT. We chose to fix only the KK excita-
tions, as such a procedure is crucial to properly study the
one-loop quantum contributions of this extra dimensional
model to light Green functions. On the other hand, the
gauge fixation for the zero modes can be accomplished as
usually done for the standard four-dimensional Yang-Mills
theory or by another scheme, such as e.g. the background
field method [23].
We would like to summarize the main result of this

section by displaying the Lagrangian that links up heavy
physics with light physics, i.e. the Lagrangian that de-
scribes the couplings among excited KK modes and zero
modes. Such a connection is given by the term

Lð0ÞðnÞðAð0Þa
� ; AðnÞa

� ; AðnÞa
5 Þ of the Lagrangian given in

Eq. (1). This Lagrangian, which receives contributions
from Eqs. (18), (117), and (119), is made of five pieces
that are separately invariant under the SGT:

Lð0ÞðnÞðAð0Þa
� ; AðnÞa

� ; AðnÞa
5 Þ ¼ � 1

2
gfabcFð0Þa

�� AðmÞb�AðmÞc� � 1

4
ðDð0Þab

� AðmÞb
� �Dð0Þab

� AðmÞb
� ÞðDð0Þac�AðmÞc� �Dð0Þac�AðmÞc�Þ

þ 1

2
ðDð0Þab

� AðmÞb
5 ÞðDð0Þac�AðmÞc

5 Þ þ 1

2
m2

mA
ðmÞa
� AðmÞa� � 1

2	
ðDð0Þab

� AðmÞb�ÞðDð0Þac
� AðmÞc�Þ

� 1

2
	m2

mA
ðmÞa
5 AðmÞa

5 þ �CðmÞbðDð0Þab
� Dð0Þac�ÞCðmÞc � 	m2

m
�CðmÞaCðmÞa: (121)

In this expression, the first and second terms arise from the �ð1=4ÞF ð0Þa
�� F ð0Þa�� and �ð1=4ÞF ðmÞa

�� F ðmÞa�� parts of Leff ,

respectively. The third and fourth terms come from �ð1=4ÞF ðmÞa
�5 F ðmÞa�

5 . The fifth and sixth terms are generated by the

gauge-fixing part LGF. Finally, the seventh and eighth terms are produced by the Faddeev-Popov ghost term LFPG. The

Feynman rules for the trilinear and quartic vertices Að0Þa�ðk1ÞAðmÞb�ðk2ÞAðnÞc
ðk3Þ and Að0Þa�Að0Þb�AðmÞc�AðnÞd
 are,

respectively, given by g�mnfabc���
ðk1;k2;k3Þ and ig2�ðmnÞabcd
���
 , where

���
ðk1; k2; k3Þ ¼ ðk3 � k2Þ�g�
 �
�
k1 � k2 � 1

	
k3

�


g�� þ

�
k1 � k3 � 1

	
k2

�
�
g�
; (122)

�ðmnÞabcd
���
 ¼ �mn

�
fadefbce

�
g��g�
 � g��g�
 þ 1

	
g�
g��

�
þ facefbde

�
g�
g�� � g��g�
 þ 1

	
g��g�


��
: (123)

In the above expression, all momenta are pointing to the vertex. Notice that, as a consequence of the invariance under the
SGT, the vertex function associated with the trilinear vertex satisfies the following simple Ward identity:
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k�1 ���
ðk1; k2; k3Þ ¼ �ðmÞ
�
 ðk2Þ � �ðmÞ

�
 ðk3Þ; (124)

where �ðmÞ
�
 ðkÞ is the two-point vertex function given by

�ðmÞ
�
 ðkÞ ¼ ðk2 �m2

mÞg�
 �
�
1� 1

	

�
k�k
: (125)

IV. ONE-LOOP RENORMALIZABILITY OF
LIGHT GREEN’S FUNCTIONS

The structure of the LagrangianLð0ÞðnÞðAð0Þa
� ;AðnÞa

� ;AðnÞa
5 Þ

suggests that the only divergences induced by the excited
KK modes on light Green’s functions at the one-loop level
are those already present in the standard Yang-Mills theory
and can therefore be absorbed by the parameters of the
light theory. We now proceed to show that this is indeed the
case. This requires us to quantize the standard Yang-Mills
theory, which means that a gauge-fixing procedure for the

zero-mode gauge field Að0Þa
� must be introduced. The one-

loop renormalizability of standard Yang-Mills theories is
particularly simple if one uses the background field method
[23], since in this scheme the quantum theory preserves
invariance under the SGT. This formal gauge invariance
sets powerful constraints on the infinities that can occur in
the effective action. We split the zero-mode gauge field

Að0Þa
� into a classical background field Að0Þa

� and a fluctuat-

ing quantum field Að0Þa
� ,

Að0Þa
� ! Að0Þa

� þAð0Þa
� : (126)

The classical part Að0Þa
� is treated as a fixed field configu-

ration, and the fluctuating part Að0Þa
� as the integration

variable of the functional integral. The Yang-Mills curva-
ture decomposes as follows:

Fð0Þa
�� ! Fð0Þa

�� þDð0Þab
� Að0Þb

� �Dð0Þab
� Að0Þb

�

þ gfabcAð0Þb
� Að0Þc

� : (127)

As a next step, we choose a gauge-fixing condition that is
covariant with respect to SGT of the background gauge
field:

fð0Þa ¼ Dð0Þab
� Að0Þb�: (128)

Notice that this gauge-fixing procedure is identical to that

introduced for the KK gauge modes AðmÞa
� , as both preserve

gauge invariance with respect to SGT. The gauge-fixed
Lagrangian for the standard Yang-Mills theory is

Lð0Þ
YM ¼ � 1

4
ðFð0Þa

�� þDð0Þab
� Að0Þb

� �Dð0Þab
� Að0Þb

�

þ gfabcAð0Þb
� Að0Þc

� Þ2 � 1

2	
ðDð0Þab

� Að0Þb�Þ2

þ �Cð0ÞaðDð0Þab
� Dð0Þbd� þDð0Þab�fbcdAð0Þc

� ÞCð0Þd:

(129)

This Lagrangian is invariant under the SGT, with the
fluctuating quantum fields and the ghost fields transform-
ing in the adjoint representation of the group. We now
center our attention on the one-loop contribution to light
Green’s functions of both the zero modes and the excited

ones. At this level, only quadratic terms inAð0Þa
� and AðmÞa

�

can contribute. From theLð0Þ
YM andLð0ÞðnÞðAð0Þa

� ;AðnÞa
� ;AðnÞa

5 Þ
Lagrangians, we can see that the one-loop effects of both
the zero modes and the excited ones are governed by the
following Lagrangian:

L 1-loop ¼ Lð0Þ
1-loop þ

X1
m¼1

LðmÞ
1-loop; (130)

where

Lð0Þ
1-loop¼�1

2

�
1

2
ðDð0Þab

� Að0Þb
� �Dð0Þab

� Að0Þb
� Þ2

þgfabcFð0Þa��Að0Þb
� Að0Þc

� þ1

	
ðDð0Þab

� Að0Þb�Þ2
�

þ �Cð0ÞbðDð0Þab
� Dð0Þac�ÞCð0Þc; (131)

LðmÞ
1-loop ¼ � 1

2

�
1

2
ðDð0Þab

� AðmÞb
� �Dð0Þab

� AðmÞb
� Þ2

þ gfabcFð0Þa��AðmÞb
� AðmÞc

�

þ 1

	
ðDð0Þab

� AðmÞb�Þ2 � ðmmA
ðmÞa
� Þ2

�
þ �CðmÞbðDð0Þab

� Dð0Þac� � 	m2
mÞCðmÞc

þ 1

2
ððDð0Þab

� AðmÞb
5 Þ2 � ðmmA

ðmÞa
5 Þ2Þ: (132)

Notice the similitude between the Lð0Þ
1-loop and LðmÞ

1-loop
terms. In particular, it is important to stress that the cou-

plings appearing in theLðmÞ
1-loop Lagrangian are of renorma-

lizable type and are all those that are allowed by gauge
invariance. This fact implies that the type of infinities

generated by the KK modes AðmÞa
� must be identical to

those generated by the fluctuations associated with the

zero mode Að0Þa
� . On the other hand, it is a well-known

fact that, as a consequence of the gauge invariance asso-
ciated with the background field gauge, the UV divergence
of a pure standard Yang-Mills theory must be of the form

L ð0Þ1 ¼ �1
4L

ð0ÞFð0Þa
�� Fð0Þa��; (133)

where it is expected from a dimensional analysis that the

constant Lð0Þ is logarithmically divergent. Since the com-
plete L1-loop Lagrangian is invariant under the SGT and

since only vertices of renormalizable type are present, the
same type of UV divergence is expected from each KK
mode. So, the one-loop UV divergence must be of the form
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L1 ¼ �1
4LF

ð0Þa
�� Fð0Þa��; (134)

where

L ¼ X1
m¼0

LðmÞ; (135)

with Lð0Þ ¼ Lð1Þ ¼ � � �LðmÞ ¼ � � � , which, as already men-
tioned, is a consequence of gauge invariance and also of the
fact that the couplings of excited KK modes to the zero
ones are identical to those among zero modes only. This in
turn implies that no divergences multiplying gauge invar-
iants of canonical dimension higher than four can arise.
Then, the UV divergences generated by the KK modes

AðmÞa
� at the one-loop level can be absorbed in the light

theory by defining the renormalized fields as follows:

Að0ÞaR
� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ L
p

Að0Þa
� ; (136)

which leads to a renormalized curvature given by

Fð0ÞaR¼@�A
ð0ÞaR
� �@�A

ð0ÞaR
� þgRfabcAð0ÞbR

� Að0ÞcR
� ; (137)

where the structure constant is also renormalized by the
same factor:

gR ¼ ð1þ LÞ�1=2g: (138)

This result arises as a consequence of gauge invariance,
which exhibits the particular virtue of the background field
gauge and of the covariant gauge conditions that we in-
troduced for the KK excited modes. On the other hand, it is
a well-known fact from radiative corrections that logarith-
mically divergent integrals can introduce nondecoupling
effects proportional to the logarithm of the mass of the
particle circulating in the loop. In our case, associated with
the divergent integrals, there would arise terms of the form
logðmR�1=�Þ, with� a mass scale like the one introduced
by dimensional regularization. These types of terms do not
decouple in the limit of a very small compactification
radius, but these effects are unobservable indeed, as they
can be absorbed by renormalization. The fact that the UV
divergences induced by the excited KK modes at the one-
loop level are controllable opens the possibility of inves-
tigating in an unambiguous way the one-loop impact of
these excitations on some electroweak observables. In
particular, this is important for the case of UED models,
such as the one studied here, in which the conservation of
the discrete momentum k5 ¼ mR�1 implies that the KK
parity ð�1Þm is conserved and no couplings involving only
one single KK mode can arise. This in turn implies that no
contributions to the electroweak observables can arise at
the tree level [26]. This means that in this class of extra
dimensional models, a direct contribution of excited KK

modes to low-energy observables first arises at the one-
loop level. Although these observables can receive tree-
level effects from operators of canonical dimension higher
than Dð¼ 5Þ, certain studies carried out on some electro-
weak observables show that, in theories with only one extra
dimension, the one-loop effect dominates. The importance
of our result concerning the renormalizability of the one-
loop effects of KKmodes on light Green’s functions can be
best appreciated in this context. A very recent calculation
for the one-loop form factors of the trilinear electroweak
vertices W�WþV (V ¼ �, Z) [28], as well as some pre-
liminary studies for other rare processes, such as light by
light scattering [29], indicates that this is indeed the case,
as the corresponding amplitudes possess the main proper-
ties observed in the context of other renormalizable theo-
ries, such as gauge invariance, absence of ultraviolet
divergences, and a good behavior at high energies. In
particular, the heavy physics effects decouple in the large
R�1 limit [28,29]. This should be compared with the case
of nonuniversal extra dimensional (NUED) models, in
which some fields are confined to the 4D brane. In this
class of models, the discrete momentum is not conserved in
the brane but only in the bulk [17]. As a consequence,
vertices involving only one KK excited mode can exist, and
divergences can arise at the tree level, although the in-
volved propagators are finite if only one extra dimension is
considered [17]. However, even in the case of NUED with
only one extra dimension, one-loop effects on light Green’s
functions depend on the cutoff [17].
As already commented in the Introduction, gauge theo-

ries in more than four dimensions are nonrenormalizable in
the Dyson sense, so they must be recognized as effective
theories that parametrize the low-energy manifestations of
a more fundamental theory. Although at the level of four-
dimensional theory the coupling constants are dimension-
less and the corresponding Lagrangian does not involve
interactions of dimension higher than four, the nonrenor-
malizable character manifests itself through the infinite
multiplicity of the KK modes. It is therefore reasonable
to expect that two-loop or higher effects of KK modes on
light Green’s functions cease to be renormalizable, as a
new class of couplings among KK modes appearing in the
complete L4YM Lagrangian arises and, as a consequence,
new discrete infinite sums must be considered. However,
effective field theories are predictive in a modern sense
[24,25,38]. Although effective theories arising from com-
pactification of extra dimensions incorporate ingredients
that are not present in conventional effective formulations
of physical theories, such as the chiral approach to strong
interactions [39] or electroweak effective Lagrangians
[38], it is worth presenting some comments on this issue.
It is not our objective to study renormalizability in a
modern sense of general Kaluza-Klein theories, but only
to contrast our result concerning the one-loop renormaliz-
ability of light Green’s functions in a wider context and to
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explore in a qualitative way the possibility of integrating
out the excited KK modes in this special case of UED
models with only one extra dimension. Following the spirit
of the paper, we will restrict our discussion to a pure Yang-
Mills theory in five dimensions, for simplicity. Since the
theory is nonrenormalizable in the Dyson sense, there is no
limit for the number of SU5ðNÞ invariants that can be
introduced. So, the five-dimensional Lagrangian comprises
an infinite series of effective operators:

L eff
5YM ¼ � 1

4
F a

MNðx; yÞF aMNðx; yÞ

þX1
N

�Ng
N1

5

MN2
s

ONðAa
MÞ; (139)

where the ON are operators of canonical dimension higher
than five, Ms is the energy scale at which the new physics
first directly manifests itself, and �N is a dimensionless
parameter that depends on the details of the underlying
physics. In the above Lagrangian, it is assumed that all the
independent operators that respect the Lorentz and gauge
symmetries are included and that each of them is multi-
plied by an unknown dimensionless parameter �i. The
canonical dimension in each term of the series is appropri-
ately corrected by introducing factors of g5 and M�1

s .
Operators of higher canonical dimension will be more
suppressed because they involve higher powers of the
new physics scale M�1

s . After compactifying and integrat-
ing the fifth dimension, one obtains a four-dimensional
effective Lagrangian, given by

L eff
4YM ¼ L4YMðAð0Þa

� ; AðmÞa
� Þ þ X1

N>4

�N

MN�4
s

OðAð0Þa
� ; AðmÞa

� Þ:

(140)

Several comments are in order here. Besides depending on

the light degrees of freedom, Að0Þa
� , the four-dimensional

effective Lagrangian also depends on the KK degrees of
freedom that arise at the compactification scale R�1, which
is expected to be below the scale Ms characterizing the
more fundamental theory. In this effective Lagrangian, the
compactification scale only arises through the masses of
the KK modes. It cannot arise as global factors of inverse
powers, since this effect is canceled by factors of g5
appropriately introduced in the five-dimensional effective
Lagrangian. The presence of two different scales in the
effective four-dimensional Lagrangian, namely, the low-
energy scale to which the light degrees of freedom (the
Fermi scale in the standard model) and the compactifica-
tion scale that characterizes the KK modes are associated,
which would differ substantially in both their own origin
and relative values, is a new complication not present in
conventional effective field theories. Another interesting
aspect of the four-dimensional effective Lagrangian is that
it is subject to satisfying, besides the usual Lorentz

symmetry, both the SGT and the NSGT. According to
renormalizability in a modern sense [24], one can carry
out radiative corrections (to light observables) using the
above effective Lagrangian. New types of infinities can
arise, but this does not constitute a serious problem, as the
counterterms needed to remove them are already present in
the effective Lagrangian. Such divergences simply renor-
malize the bare coupling constants �i. Indeed, the diffi-
culties encountered in effective theories are not related
with the issue of removing infinities, but with the predict-
ability of the theory, by virtue of the presence of a large
number of parameters. Despite the fact that the formalism
involves, in principle, an infinite number of local operators,
only a finite number of them need to be considered in any
given calculation; the number of operators which are con-
sidered is determined by the required degree of accuracy:
for higher precision, more terms in the effective
Lagrangian must be included, and the number of parame-
ters increases.
On the other hand, since in UED models the contribu-

tions to low-energy observables first arise at the one-loop
level, the interactions depending on excited KK modes in
operators of canonical dimension higher than four appear-
ing inLeff

4YM can be ignored, as their one-loop effects would
be quite suppressed with respect to those induced by the
couplings among KK modes appearing in L4YM. So, the
most relevant pieces of the effective Lagrangian are

L eff
4YM ¼L4YMðAð0Þa

� ;AðmÞa
� Þþ X1

N>4

�N

MN�4
s

OðAð0ÞaÞ; (141)

where in the operators of dimension higher than four any

dependence on the KK fields AðmÞa
� has been dropped.

However, the dependence on these fields is maintained in

the dimension-four L4YMðAð0Þa
� ; AðmÞa

� Þ Lagrangian. It is
important to notice that the most significant effects on a
given observable may arise at tree level from some effec-
tive operators. Depending of the specific spacetime struc-
ture of the extra dimensional model, this contribution may
be of the same order as or even larger than that induced at
the one-loop level by the KK modes. It is therefore im-
portant that we clarify, as much as possible, the relative
importance of the one-loop effects of KK modes on light
Green’s functions as compared with those induced at tree
level by operators of higher canonical dimension. As
shown in this work and also in some previous studies
[14,26], in the context of UED models that involve only
one extra dimension, the one-loop contribution of KK
modes to light Green’s functions is insensitive to the cutoff
Ms; it depends only on the compactification scale. Since
the compactification scale is lower than the fundamental
scale, one can expect that in this type of model the one-
loop KK contribution strongly competes with that induced
at tree level, as the latter is suppressed by inverse powers of
the fundamental scale Ms. This means that in this type of
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model, both types of contributions must be considered.
Explicit studies point in this direction, as calculations
[26,28] of some electroweak observables show that the
one-loop contribution of the KK modes dominates. If the
compactification scale R�1 is very much above the avail-
able energies, it would be desirable to integrate out each

heavy field AðmÞa
� to obtain an effective Lagrangian depend-

ing only on the light fields Að0Þa
� :

L eff
4YMðAð0Þa

� Þ ¼ � 1

4
Fð0Þa
�� Fð0Þa��

þ X1
m¼1

X1
N>4

�̂N

ðmRÞN�4
ÔNðAð0ÞaÞ

þ X1
N>4

�N

MN�4
s

OðAð0ÞaÞ: (142)

This effective Lagrangian must respect the SGT. The one-
loop renormalizability of the light Green’s functions
showed above for this Yang-Mills theory with only one
extra dimension suggests that the derivation of this effec-
tive Lagrangian is feasible [40]. However, it is not clear if
this is possible for more general formulations of theories in
extra dimensions, such as UED models with more than
one extra dimension or NUED with one or more extra
dimensions.

V. SUMMARY

We have studied the gauge structure and quantization of
a gauge system that arises after compactification of a pure
Yang-Mills theory in five dimensions, with the fifth dimen-
sion compactified on the orbifold S1=Z2 of radius R. The
importance of studying the role played by the gauge pa-
rameters of the compactified theory was stressed through-
out the paper, as they are essential pieces within the context
of the BRST symmetry, both at the classical and quantum
levels. In our opinion, this issue, which is fundamental to
quantize the theory, has not been properly studied.
Depending on whether the gauge parameters propagate in
the fifth dimension or not, two scenarios can arise. The
scenario with the gauge parameters propagating in the bulk
leads to a four-dimensional theory with a complicated
gauge structure due to the presence of an infinite tower
of gauge parameters that arise after compactification. In
this scenario, we have derived a four-dimensional
Lagrangian, L4YM, that differs substantially from the one
known in the literature. This is one of our main results. We
showed that this Lagrangian satisfies separately two types
of gauge transformations, which we called SGTand NSGT.
Under the SGT, which are defined by the zero modes of the
gauge parameters, the zero modes of the gauge fields trans-
form as gauge fields, whereas the excited KK gauge modes
and the pseudo-Goldstone bosons transform as matter
fields in the adjoint representation of the group. On the

other hand, under the NSGT, which are defined by the
infinite tower of excited modes of the gauge parameters,
the zero modes of the gauge fields are mapped into excited
modes in a way that resembles the ordinary adjoint repre-
sentation, whereas the excited KK gauge modes transform
as gauge fields through a gauge-structure tensor similar to
that of the SGT, which, however, involves the covariant
derivative of the SGT instead of the ordinary derivative
mixing the zero modes with the excited ones. As far as the
pseudo-Goldstone bosons are concerned, they transform
without mixing with other fields, but in a complicated way.
It looks like a combination of a translation plus a rotation.
Related to such unphysical fields, we have found a particu-
lar gauge transformation which allows us to remove them
from the theory. The NSGT are characterized as involving
an infinite sum of the mentioned terms. Special emphasis
was put on the gauge-structure tensor characterizing the
NSGT of the excited KK gauge modes, as its precise
determination is fundamental to quantize these gauge
fields. It was shown that in order to obtain a four-
dimensional Lagrangian that respects simultaneously
both the SGT and the NSGT, the curvatures must be
considered as the fundamental objects in the sense of
expanding them in Fourier series instead of the gauge
fields, which has been the route followed in the literature.
The Lagrangian so obtained is simpler than the one given
in the literature, as it is made of contractions among
covariant objects (curvatures) that transform in a well-
defined way under both the SGT and the NSGT. The
gauge-structure tensors associated with the NSGT were
derived in three different ways: from the five-dimensional
transformation laws, by employing the Dirac method to-
gether with the Castellani’s gauge generator, and indirectly
by using the master equation. It was shown that the theory
is subject to first-class constraints, showing that the zero
modes as well as the excited ones are gauge fields. These
constraints, which are not known in the literature, were
derived in two ways: by applying the Dirac method to the
four-dimensional theory and by compactification of the
corresponding constraints at the five-dimensional level,
finding a perfect agreement. As far as the quantization of
the theory was concerned, we focused on the quantization
of the KK gauge modes, as it is interesting to investigate
the loop effects of excited KK modes on light Green’s
functions. A proper solution of the master equation in
five dimensions was used to derive the counterpart of the
four-dimensional theory. This solution was used to derive
the quantum effective action, showing explicitly the struc-
tures of the gauge-fixing and Faddeev-Popov ghost terms.
A gauge-fixing procedure that is covariant under the SGT
was introduced. This covariant quantization scheme, which
can greatly simplify the radiative corrections to light
Green’s functions, is our other main result. The
Lagrangian linking up the light physics with the heavy

physics, Lð0ÞðnÞðAð0Þa
� ; AðnÞa

� ; AðnÞa
5 Þ, was presented. This
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Lagrangian, which is made of five pieces that are sepa-
rately invariant under the SGT, has all the ingredients of a
predictive theory, as it has all the dimension-four interac-
tions that are compatible with the SGT. In addition, it is
possible to endow the quantum theory with an R	 gauge

that is covariant under the SGT, which in practical loop
calculations permits better control of divergencies than
in conventional gauges. The gauge structure of this
Lagrangian suggests that the only divergences induced by
the excited KK modes on light Green’s functions would be
those already present in the standard Yang-Mills theory
and can therefore be absorbed by the parameters of the
light theory. A notable attribute of the gauge-fixing
Lagrangian presented here is that the fixation of the gauge
can be implemented for the KK excitations while keeping
the invariance under the SGT, with the possibility of re-
moving such an invariance by employing the usual fixation
of the gauge for the standard Yang-Mills theory defined in
four dimensions. The existence of two sorts of parameters
defining different gauge transformations embodies a symp-
tom of the independence of these two gauge-fixing proce-
dures with respect to each other.

We took advantage of the possibility of defining inde-
pendent gauge-fixing procedures for the two types of gauge
symmetries, SGT and NSGT, to quantize the standard
Yang-Mills theory via the introduction of the background
field gauge, which preserves gauge invariance with respect
to the SGT. The quantization of the complete theory in a
scheme that is covariant under the SGT was necessary in
order to show that the KK effects on the light Green’s
functions are renormalizable at the one-loop level. It was
shown that this gauge invariance sets powerful constraints
on the infinities that can occur at the one-loop level. In
particular, it was shown that only one type of infinity can be
generated at the one-loop level and that it is the same for

the contributions of the zero modes Að0Þa
� and the excited

ones AðmÞa
� . Because of this, such divergences can be ab-

sorbed in a renormalization of the zero-mode field Að0Þa
� ,

showing that the one-loop effects of KK modes on light
Green’s functions are insensitive to the cutoff Ms. The
relative importance of the one-loop effects of KK modes
on light Green’s functions in the context of UED models
with only one extra dimension was stressed. In this type of
model, this contribution is more important than the one that
could be induced at tree level by operators of higher
canonical dimension and it is the first direct contribution
of the KKmodes to low-energy observables, as they cannot
contribute at tree level.

The other scenario studied arises from assuming that the
gauge parameters do not propagate in the fifth dimension.
Since in this scenario both the five-dimensional theory and
the four-dimensional one are governed by the same gauge
group, SUðNÞ, no gauge transformations other than the
SGT can exist. In this case, it makes sense to integrate
the fifth dimension by expanding in the action the gauge

fields instead of the curvatures, as in the previous scenario.
Since in the context of the BRST symmetry the gauge
parameters do not appear in the original action S0, but
rather at the level of the extended one S, no role is played
by the gauge parameters when the fifth dimension is inte-
grated. Only the objects (gauge fields or curvatures) con-
sidered as fundamental in the Fourier series determine the
result. Because of this, we expected to reproduce the
results already known in the literature, but our four-

dimensional Lagrangian L̂4YM presents some differences.

Nonetheless, we found that both the L4YM and the L̂4YM

Lagrangians, as well as the results given in the literature,

contain the original part of the Lð0ÞðnÞðAð0Þa
� ; AðnÞa

� ; AðnÞa
5 Þ

Lagrangian, i.e. the term that results from removing the
gauge-fixing and Faddeev-Popov terms from

Lð0ÞðnÞðAð0Þa
� ; AðnÞa

� ; AðnÞa
5 Þ. In other words, the part of

Lð0ÞðnÞðAð0Þa
� ; AðnÞa

� ; AðnÞa
5 Þ present in the original action S0

is already known in the literature and arises in the two
scenarios considered here. However, it is important to
stress that in the scenario from which L4YM arises, the

excited KK modes AðmÞa
� are gauge fields, so diverse propa-

gators can be used in radiative corrections by choosing a
particular gauge. Nevertheless, in the scenario from which

L̂4YM arises, the excited KK modes AðmÞa
� are not gauge

fields but matter or Proca fields, so radiative corrections
must be calculated in this case using the unitary propaga-
tor. As it was emphasized previously, this scenario is un-
attractive due to the presence of massless scalar fields,
which in this case cannot be removed from the theory, as
they are not pseudo-Goldstone bosons. It was shown that
this system is subject to both first-class and second-class
constraints, as must be the case.
In conclusion, in this paper, a quantization procedure for

the excited KK gauge modes of a compactified Yang-Mills
theory that is covariant under the standard gauge trans-
formations of SUðNÞ was presented. The effective quan-
tum Lagrangian that links the heavy physics with the light
physics, which is invariant under the SUðNÞ group, was
presented. The gauge structure of this Lagrangian suggests
that the only divergences generated by the excited KK
modes on light Green’s functions are those that can be
absorbed by the parameters of the light theory. A gauge
covariant quantization of the complete theory was used to
show that the light Green’s functions are renormalizable at
the one-loop level. We stress that this is an important result,
as it would be possible to predict in an unambiguous way
the one-loop radiative corrections of extra dimensions on
some electroweak observables, which will be the subject of
experimental scrutiny at the next generation of linear
colliders.
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Phys. Lett. B 289, 381 (1992); C. Arzt, M. B. Einhorn, and
J. Wudka, Phys. Rev. D 49, 1370 (1994); M.A. Pérez, J. J.
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