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We construct and analyze theories with a gauge symmetry in the ultraviolet of the form G �Gb, in

which the vectorial, asymptotically free Gb gauge interaction becomes strongly coupled at a scale where

the G interaction is weakly coupled and produces bilinear fermion condensates that dynamically break the

G symmetry. Comparisons are given between Higgs and dynamical symmetry-breaking mechanisms for

various models.
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I. INTRODUCTION

An outstanding question at present concerns the origin
of electroweak symmetry breaking (EWSB), in which the
electroweak gauge symmetry of the standard model (SM),
based on the gauge group GEW ¼ SUð2ÞL � Uð1ÞY , where
SUð2ÞL and Uð1ÞY are the factor groups for weak isospin
and hypercharge, is broken to the electromagnetic Uð1Þem
subgroup. The standard model hypothesizes that this sym-
metry breaking is due to the vacuum expectation value
(VEV) of a fundamental Higgs field that transforms as
T ¼ 1=2 and Y ¼ 1. Similarly, the minimal supersymmet-
ric standard model attributes electroweak symmetry break-
ing to nonzero VEVs of the (scalar components of) two
Higgs chiral superfields with T ¼ 1=2 and Y ¼ �1. A
rather different approach is taken by technicolor (TC)
theories. In these, the vectorial, asymptotically free techni-
color gauge interaction becomes strongly coupled at the
TeV scale, producing condensates of technifermions that
break GEW to Uð1Þem. Other possibilities have also been
studied, such as electroweak symmetry breaking due to
boundary conditions on gauge fields in higher dimensions.
Experiments at the Large Hadron Collider (LHC) are
currently underway to answer the question of the origin
of electroweak symmetry breaking.

In general, a comparative study of Higgs-type and
dynamical approaches to the breaking of gauge symmetries
gives insights into both of these approaches. In this paper
we shall carry out such a study. We shall consider a class of
gauge theories with a direct-product gauge symmetry of
the Lagrangian, of the form

GUV ¼ G �Gb; (1.1)

such that as the theory evolves from some high
energy scale to lower energies, the Gb interaction becomes
strongly coupled at a scale �b, where the G interaction is
weakly coupled, and produces bilinear fermion conden-
sates that transform as nonsinglets under G and hence
dynamically break the G symmetry to a subgroup
H � G, i.e.,

G ! H induced by Gb: (1.2)

(The subscript b on Gb and �b refers to their roles in the
breaking of G.) The condition that the G interaction is
weakly coupled at the scale �b is similar to the fact that
the electroweak interaction is weakly coupled at the scale

2�1=4G�1=2
F ’ 250 GeV where it is broken. However, our

study is not an attempt to construct a semirealistic theory of
dynamical EWSB, but instead focuses on gaining insights
into the differences between Higgs-type and dynamical
symmetry breaking through comparative analyses of vari-
ous models.
In order for the dynamical symmetry in Eq. (1.2) to

occur, the following conditions are necessary and are
therefore assumed here: (i) the Gb gauge interaction is
asymptotically free, so that the running coupling �bð�Þ ¼
gbð�Þ2=ð4�Þ increases as the reference energy scale �
decreases; (ii) Gb, considered by itself, is a vectorial gauge
symmetry, so that it does not self-break when it forms
condensates, but instead remains exact; and (iii) the con-
tent of fermions that are nonsinglets under Gb is suffi-
ciently small so that as the Gb interaction evolves from
the ultraviolet to lower energy scales, �bð�Þ increases
sufficiently to exceed the critical value for the formation
of the requisite G-breaking fermion condensates rather
than evolving in a chirally symmetric manner. We consider
several types of symmetries G, both vectorial and
chiral, and of both direct-product and (semi)simple type.
Although Gb, considered by itself (with the G interaction
turned off), is vectorial, the full gauge symmetry GUV is
chiral in all of the cases that we consider. The GUV sym-
metry thus requires that the fermions that are nonsinglets
under Gb have zero intrinsic masses.
One can generalize the analysis further to deal with

gauge symmetries of the form

GUV ¼ G �
�Yk
i¼1

Gbi

�
; (1.3)

where k strongly coupled gauge interactions Gbi ,

1 � i � k, play a role in the dynamical breaking of G.
We will focus on the simplest case, k ¼ 1, but will also
comment on models with k ¼ 2.
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This paper is organized as follows. In Sec. II we review
two illustrative examples of the type of induced gauge
symmetry breaking that we consider. In Sec. III we carry
out a comparative study of the breaking of an SU(3) gauge
symmetry to SU(2) by a Higgs field in the fundamental
representation and by a dynamical mechanism. We also
discuss how color SUð3Þc would be broken in a modified
standard model with a strongly coupled SUð2ÞL interaction.
In Sec. IV we carry out a comparative study of the breaking
of an SU(3) gauge symmetry by a Higgs field in the adjoint
representation and by a dynamical mechanism. This is
generalized to SUðNÞ in Sec. V. Some further discussion
and our conclusions are given in Secs. VI and VII.

II. SOME EXAMPLES OF INDUCED DYNAMICAL
SYMMETRY BREAKING

A. QCD Breaking Electroweak Symmetry

As background for our work, we first briefly review two
examples of induced dynamical symmetry breaking of
weakly coupled gauge symmetries by strongly coupled
gauge interactions. In addition to the physics that is
responsible for the main electroweak symmetry breaking
at the scale �250 GeV, there is another source of EWSB,
albeit at a much smaller mass scale. This is quantum
chromodynamics (QCD). The color SUð3Þc gauge interac-
tion produces bilinear quark condensates at a scale
�QCD � 250 MeV, in the most attractive channel

3� �3 ! 1, of the form h �qqi ¼ h �qLqRi þ H:c: Because
these quark condensates transform as weak T ¼ 1=2,
jYj ¼ 1 quantities, they break GEW to electromagnetic
Uð1Þem. Indeed, one could imagine a hypothetical world
in which the electroweak symmetry were not broken at the
normal scale, but instead remained valid all the way down
to the QCD scale. In this world [assuming that the SUð3Þc,
SUð2ÞL, and Uð1ÞY running gauge couplings had approxi-
mately their usual values], QCD would be the main source
of EWSB [1,2]. Such a theory would be of the form of
Eqs. (1.1) and (1.2), with

G ¼ GEW; Gb ¼ SUð3Þc; H ¼ Uð1Þem: (2.1)

In this hypothetical world the W and Z would pick up
masses given bym2

W ¼ g2f2�=4 andm
2
Z ¼ ðg2 þ g02Þf2�=4,

where g and g0 are the SUð2ÞL and Uð1ÞY running gauge
couplings at the scale �QCD, and f� is the pion decay

constant.

B. Electroweak Symmetry Breaking by Technicolor

Technicolor models embody the idea of dynamical
electroweak symmetry breaking [1] (recent reviews in-
clude [3]). In these models, the gauge symmetry that is
broken is (the electroweak part of) the SM gauge
groupG ¼ GSM ¼ SUð3Þc � SUð2ÞL � Uð1ÞY . At the scale
where GSM is broken, all of the three gauge interactions
corresponding to its factor groups are weakly coupled. The

technicolor gauge interaction is associated with the group
Gb ¼ GTC. Typically, GTC ¼ SUðNTCÞ with some value of
NTC such as 2, so these models can be described in the
notation of Eqs. (1.1) and (1.2) by

G ¼ GSM; Gb ¼ SUðNTCÞ; H ¼ SUð3Þc � Uð1Þem:
(2.2)

The (vectorial, asymptotically free) technicolor gauge
interaction produces condensates of technifermions
h �FFi ¼ h �FLFRi þ H:c: that transform as weak T ¼ 1=2,
jYj ¼ 1 and hence break GEW to Uð1Þem, as indicated in
Eq. (2.2). Technicolor models are embedded in extended
technicolor (ETC) in order to communicate the electro-
weak symmetry breaking to the quarks and leptons. These
TC/ETC theories are subject to a number of constraints
from induced flavor-changing neutral processes, precision
electroweak data, and limits on pseudo-Nambu-Goldstone
bosons (PNGBs).
Technicolor models can be classified into two generic

types: (i) one-family models, in which the technifermions
comprise one SM family, and (ii) one-doublet models, in
which, among the technifermions, there is only a single
electroweak doublet. One-family (but not one-doublet)
technicolor models feature a color-octet technivector
meson resonance, as well as color-nonsinglet pseudo-
Nambu-Goldstone bosons. Many searches for techniha-
drons have been carried out [3]. Recent LHC results from
the ATLAS and CMS experiments have set lower limits of
order 1.5 TeVon a color-octet technivector meson [4,5].

III. BREAKING AN SU(3) GAUGE
SYMMETRY TO SU(2)

In this section we shall compare Higgs and dynamical
mechanisms for breaking an SU(3) gauge symmetry to
SU(2). We assume that the fermion content of the theory
is such that the fermions that are only nonsinglets under
SU(3) form a vectorlike sector. We shall begin by consid-
ering an abstract asymptotically free SU(3) theory at a
sufficiently high scale that it is weakly coupled.

A. Higgs mechanism to break SU(3) to SU(2)

The requisite breaking can be accomplished by includ-
ing a Higgs field � that transforms as a fundamental
(triplet) representation of the SU(3) group, with a potential

V ¼ �2

2
�y�þ �

4
ð�y�Þ2; (3.1)

where �2 < 0 (and � > 0 in order for V to be bounded
from below). This potential is minimized for a nonzero
value of the � vacuum expectation value. Without loss of
generality, one can use the SU(3) gauge invariance to
define directions in SU(3) space so that this has the form
h�i ¼ ð0; 0; 1ÞTv, and one can perform a global phase
redefinition on � to make v real. This breaks SU(3) to
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the SU(2) subgroup generated by the the SU(3) generators
Ta with a ¼ 1, 2, 3 (in the usual Gell-Mann ordering of
these generators). Of the six real components of the� field,
five are Nambu-Goldstone bosons and are absorbed by the
five gauge bosons in the coset space SUð3Þ=SUð2Þ to form
the longitudinal polarization states of the resultant massive
vector bosons. The resultant vector boson masses are /
g3ðvÞv, where g3 � g3ð�Þ is the running SU(3) gauge
coupling at the scale � ¼ v. The sixth component of the

� field forms a physical Higgs boson with a mass � ffiffiffiffi
�

p
v.

This is a singlet under the residual SU(2) gauge interaction.
As noted above, we assume that this breaking occurs at a

scale v that is large compared with the scale where the
running SU(3) gauge coupling �3ð�Þ ¼ g3ð�Þ2=ð4�Þ
would have grown to O(1) and the theory would thus
have become strongly coupled. This assumption is neces-
sary for this model to fall under the class of theories that
are considered in this paper. If one were to relax this
assumption, the analysis would become more complicated,
because one would not be able to perform a perturbative
analysis of the Higgs sector. (For a recent discussion of this
strongly coupled case and further references, see [6].)
Below the scale v, the resultant SU(2) theory would have
a fermion sector consisting of the SU(2)-nonsinglet com-
ponents of the original SU(3) fermion sector, together with
the SU(2) gluons, with a gauge coupling inherited from the
original SU(3) theory. This SU(2) theory would then
evolve further into the infrared. With a sufficiently small
fermion content ffg, the SU(2) coupling would eventually
increase to O(1) at a lower scale �2, where the SU(2)
interaction would confine and produce bilinear fermion
condensates. There would thus be a spectrum of
SU(2)-singlet meson and (bosonic) baryons, together
with glueballs (which would mix with the mesons to
produce mass eigenstates) at this lower scale �2.

There are several properties of this Higgs mechanism
that will be contrasted with the induced dynamical break-
ing mechanism to be discussed next. First, a priori, one has
the freedom to choose the coefficient �2 in the Higgs
potential (3.1) to be positive or negative. Since one wants
to construct the Higgs mechanism to break SU(3), one
chooses �2 < 0, but this sign choice could be considered
to be ad hoc, since one does not give any deeper explana-
tion for this choice. Second, the Higgs mechanism predicts
physical pointlike Higgs particle(s), whereas in a dynami-
cal mechanism, although the Gb interaction leads to vari-
ous Gb-singlet bound states, including some with angular
momentum J ¼ 0, the properties of these states are not, in
general, the same as those of a Higgs particle. Third, as is
well known, this potential is unstable to large loop correc-
tions and is thus sensitive to the nature of the ultraviolet
completion of the theory (i.e., has a hierarchy problem).
A fourth and related point is that the Higgs sector is not
asymptotically free; i.e., the beta function for the quartic
coupling, d�=dt, is positive, where t ¼ ln�. Because of

this, if one fixes � at the scale v, say, then one must worry
about a possible Landau pole in � that could occur at a
scale � 	 v. An equivalent way to phrase this is that if
one fixes � at a high scale in the ultraviolet, then �
decreases as � decreases and is subject to an upper bound
at a much lower scale such as v [7].

B. Induced dynamical breaking of SU(3) to SU(2)

In this subsection we discuss how one can produce the
breaking of the SU(3) symmetry to SU(2) in a dynamical
manner. For Gb we choose the smallest non-Abelian Lie
group, SUð2Þb, so that GUV ¼ SUð3Þ � SUð2Þb, in the no-
tation of Eq. (1.1). To the set of fermions ffg transforming
vectorially under SU(3) we add the following chiral fer-
mions [where a and � denote SU(3) and SUð2Þb gauge
indices, respectively, and the numbers in parentheses
denote the dimensionalities of the representations of
GUV]: (i) �a�L :ð3; 2Þ; (ii) ��

L:ð1; 2Þ; and (iii) �a
p;R:ð3; 1Þ

with p ¼ 1, 2. This set of fermions is similar to the set
that one of us used in Ref. [6]. Since the SUð2Þb gauge
interaction is asymptotically free, as the reference energy
scale � decreases from large values, the running coupling
�bð�Þ increases. The SUð2Þb-nonsinglet fermions com-
prise four chiral Weyl fermions or, equivalently, two
Dirac fermions. This is well below the estimated critical
number Nf;cr � 8 beyond which the SUð2Þb theory would

evolve into the infrared in a chirally symmetric manner [8].
Therefore, we can conclude that as� decreases to the scale
� ¼ �b such that �bð�Þ �Oð1Þ, the SUð2Þb interaction
produces bilinear fermion condensates. The most attractive
channel for the fermion condensation is 2� 2 ! 1. One

such condensate is of the form h	�
�a�L TC�b
L i, where 	�

is the antisymmetric tensor density for SUð2Þb. This is
automatically antisymmetrized in the SU(3) indices a, b
and hence is proportional to

h	abc	�
�a�L TC�b
L i; (3.2)

where 	abc is the antisymmetric tensor density for SU(3).
The condensate (3.2) transforms as conjugate fundamental
(�3) representation of SU(3) and therefore dynamically
breaks SU(3) to an SU(2) subgroup. A second condensate
formed by the SUð2Þb interaction is

h	�
�a�L TC�

Li: (3.3)

This transforms as a fundamental representation of SU(3)
and hence also breaks it to an SU(2) subgroup. One can use
vacuum alignment arguments [9] to infer that these SU(2)
subgroups are the same. Then, without loss of generality,
one may choose the index c ¼ 3 in the condensate (3.2)
and a ¼ 3 in the condensate (3.3). The residual SU(2)
subgroup preserved by these condensates is thus the one
generated by Ta, a ¼ 1, 2, 3 in SU(3). The fermions �aL

�

and ��
L with a ¼ 1, 2, 3, � ¼ 1, 2 involved in these

condensates gain dynamical masses of order �b and are
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integrated out of the low-energy effective field theory that
is operative at scales �<�2. The two copies of �a

p;L

decompose as two doublets under the resultant SU(2) for
a ¼ 1, 2 (while the a ¼ 3 components form two singlets).
The fermion content of this low-energy SU(2) theory thus
consists of these two doublets, together with the
SU(2)-nonsinglet components of the set ffg. With an
asymptotically free SU(2), the coupling �2ð�Þ, which is
inherited from the weakly coupled SU(3) theory, will in-
crease as� decreases below�b, and if the fermion content
is sufficiently small so that �2ð�Þ grows to O(1) at a lower
scale �2, the SU(2) gauge interaction will confine and
form bilinear fermion condensates at this scale. Given
that �2 is small at the scale �b and increases only loga-
rithmically, it follows that �2 
 �b.

If one were to turn off the SU(3) gauge interaction, the
SUð2Þb theory would have a classical U(4) or equivalently
SUð4Þ � Uð1Þ global chiral symmetry. The U(1) is broken
by SUð2Þb instantons, so that the actual nonanomalous
global chiral symmetry would be the SU(4) (generated
by global transformations of the �aL

� and ��
L among each

other for a fixed �). The bilinear condensates would break
this to Sp(4), with the resultant appearance of five Nambu-
Goldstone bosons. Turning on the SU(3) gauge interaction
explicitly breaks this global symmetry, although the break-
ing is weak, since �3 is small.

We contrast this dynamical breaking with the corre-
sponding Higgs mechanism presented above. First, the
dynamical mechanism is more predictive, in the sense
that once one has specified the gauge interaction Gb and
the fermion content, the resulting fermion condensation
and symmetry breaking follow automatically; one does not
have to make an ad hoc choice of a parameter, as one does
with the choice �2 < 0 in the Higgs potential (3.1).
Second, the theory does not suffer from a hierarchy prob-
lem, i.e., is not sensitively dependent on an ultraviolet
completion, in contrast to the Higgs mechanism. Third,
by construction, both the SU(3) and the SUð2Þb sectors are
asymptotically free, again in contrast with the Higgs
mechanism, in which the quartic coupling is not asymptoti-
cally free.

C. Induced breaking of SUð3Þc in a
modified standard model

Here we discuss another way to break an SU(3) gauge
symmetry dynamically. In this case we will take the SU(3)
to be the color SUð3Þc group of the standard model. The
point here is that with a modification of the properties
of the standard model, color SUð3Þc would, in fact, be
dynamically broken by the SUð2ÞL gauge interaction. Our
analysis also addresses a fundamental question in particle
physics. One of the profound properties of nature is the fact
that it is the chiral part of GSM that is broken, leaving as a
residual exact subgroup a symmetry that is vectorial,
namely, H ¼ SUð3Þc � Uð1Þem. This is naturally explained

in the standard model Higgs mechanism and also in techni-
color theories. One is led, then, to ask how general this
property is in quantum field theory. That is, can one con-
struct a model that exhibits dynamical breaking of a vec-
torial gauge symmetry? Clearly, this requires more than
one gauge interaction to be present, since if one has just a
single vectorial gauge interaction and it becomes strongly
coupled and produces condensates, then the most attractive
channel is Ri � �Ri ! 1 for the one or more fermion rep-
resentations Ri in the theory, so it does not self-break
[10,11].
Let us thus consider a theory with the same gauge group,

GSM, but make two changes: (i) first, we remove the usual
breaking of SUð2ÞL at the 250 GeV scale, and (ii) we
arrange the values of the gauge couplings so that at a
scale �2 considerably larger than �QCD, where SUð3Þc
[and Uð1ÞY] are weakly coupled, the SUð2ÞL interaction
becomes strongly coupled, with �2ð�2Þ ¼ gð�2Þ2=ð4�Þ of
order unity. The SUð2ÞL sector contains NgenðNc þ 1Þ ¼
12 chiral fermion doublets (whereNgen denotes the number

of SM fermion generations), so that the SUð2ÞL gauge
interaction is asymptotically free, with leading coefficient

ðb1ÞSUð2ÞL ¼ 1

3
½22� ðNc þ 1ÞNgen�: (3.4)

Given that there is no breaking of GEW, the fermions are
massless, so they all contribute to the SUð2ÞL beta function.
To illustrate this dynamical breaking in the simplest con-
text, we assume Ngen ¼ 1, so that there are four chiral

SUð2ÞL doublets, or, equivalently, Nf ¼ 2 Dirac doublets.

This is well within the phase in which SUð2ÞL confines and
spontaneously breaks global chiral symmetry. The model
thus contains one family of SM fermions:

Qai
L ¼ ua

da

� �
L
;

uaR, d
a
R,

Li
L ¼ �e

e

� �
L
;

and eR, where a and i are SUð3Þc and SUð2ÞL gauge
indices, respectively.
The most attractive channel for the strongly coupled

SUð2ÞL interaction is 2� 2 ! 1, and it produces several
condensates in this channel. The first of these is of the form

h	k‘Qa;k
L

TCQb;‘
L i, where 	k‘ is the antisymmetric tensor

density for SUð2ÞL. This is automatically antisymmetric
in SUð3Þc indices and hence is proportional to

h	abc	k‘Qa;k
L

TCQb;‘
L i ¼ 2h	abcuaLTCdbLi: (3.5)

This transforms as a ð3� 3Þas ¼ �3 under SUð3Þc (where
the subscript ‘‘as’’ stands for antisymmetric) and hence
breaks SUð3Þc to a subgroup SUð2Þc. It also breaks Uð1ÞY .
As is clear from the fact that electric charge satisfies
Q ¼ T3 þ ðY=2Þ and the fact that the condensate (3.5) is
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invariant under SUð2ÞL, it also violates electric charge
invariance. Without loss of generality, we choose the
breaking direction of SUð3Þc as the third direction, so
that the uaL and daL quarks with color indices a ¼ 1, 2 occur
in the condensate (3.5) and hence gain dynamical masses
of order �2.

The strong SUð2ÞL interaction would also produce the
condensate

h	k‘Qa;k
L

TCL‘
Li ¼ huaLTCeL � daL

TC�e;Li: (3.6)

This also breaks SUð3Þc to an SUð2Þc subgroup and violates
hypercharge and electric charge. As in our discussion
above, a vacuum alignment argument can be used to infer
that the condensate (3.6) breaks SUð3Þc to the same SUð2Þc
as the condensate (3.5), so that the color index in Eq. (3.6)
has the value a ¼ 3. This SUð2Þc is the one generated by
the color generators (Ta) with a ¼ 1, 2, 3. Thus, this model
is of the form in Eqs. (1.1) and (1.2) with

G¼ SUð3Þc �Uð1ÞY; Gb ¼ SUð2ÞL; H ¼ SUð2Þc:
(3.7)

In addition to breaking these gauge symmetries, the con-
densate (3.5) breaks baryon number by �B ¼ 2=3, while
the condensate (3.6) breaks B by �B ¼ 1=3 and lepton
number L by �L ¼ 1. The quarks uaL, d

a
L with a ¼ 1, 2, 3

and the leptons eL, and �e;L involved in these condensates

gain dynamical masses of order �2. (The actual mass
eigenstates involve linear combinations of these fields.)
Similarly, the five gluons in the coset SUð3Þc=SUð2Þc
corresponding to the broken generators of SUð3Þc gain
dynamical masses of order

mg � g3ð�2Þ�2 (3.8)

and the Abelian Uð1ÞY gauge boson B gains a mass

mB � g0ð�2Þ�2: (3.9)

Since by our assumptions, SUð3Þc and Uð1ÞY are weakly
coupled at this scale, the masses of these five gluons and of
the one B boson are smaller than the dynamically produced
fermion masses.

Of the quarks and leptons in this Ngen ¼ 1 model, all of

the components of the Nc þ 1 ¼ 4 SUð2ÞL doublets are
involved in the condensates (3.5) and (3.6) and gain
dynamical masses of order �2. These fermions are thus
integrated out of the low-energy effective theory below�2.
The SUð2Þc gauge symmetry of this low-energy effective
field theory remains exact. The content of nonsinglet fer-
mions in this low-energy theory consists of uaR and daR with
a ¼ 1, 2, which form two Weyl fermions, or, equivalently,
one Dirac fermion. The SUð2Þc gauge coupling �2c is
inherited from the SUð3Þc theory and is small at �2, but
eventually grows to O(1) at a much lower �2c 
 �2.
At this lower scale �2c, the SUð2Þc theory confines and
produces a bilinear fermion condensate,

h	abuaRTCdbRi; (3.10)

where here 	ab is the antisymmetric tensor density of
SUð2Þc. This SUð2Þc theory has a classical U(2), or, equiv-
alently, SUð2Þ � Uð1Þ global chiral symmetry defined by
transformations that mix up the uaR and daR fields (for fixed
a). The U(1) is broken by SUð2Þc instantons, so that the
actual nonanomalous global chiral symmetry is SU(2). In
general, an SU(2) gauge theory with Nd massless chiral
Weyl fermions transforming according to the fundamental
representation (withNd ¼ 2k even to avoid a globalWitten
anomaly) has an SUð2kÞ global chiral symmetry corre-
sponding to transformations that mix up the 2k chiral
doublets. Formation of condensates involving these dou-
blets breaks this global symmetry to Spð2kÞ. Since the
orders of these groups are 4k2 � 1 and kð2kþ 1Þ, respec-
tively, this entails the breaking of 2k2 � k� 1 generators
of SUð2kÞ, and the resultant appearance of this number of
massless Nambu-Goldstone bosons. In this SUð2Þc theory,
there are Nd ¼ 2 chiral fermions, i.e., k ¼ 1, so the SU(2)
global chiral symmetry is equivalent to Sp(2), and there is
no chiral symmetry breaking due to the formation of the
condensate (3.10).
It is also worthwhile to comment on the situation

concerning global chiral symmetry at the higher scale,
above �2. In the present model with its one generation of
SM fermions, if one turns off the SUð3Þc and Uð1ÞY
couplings, then, at an energy above �2, the SUð2ÞL theory
has a nonanomalous global SUðNdÞ symmetry, where
Nd ¼ Nc þ 1 ¼ 4. The condensates (3.5) and (3.6) break
this to Sp(4), leading to the appearance of five Nambu-
Goldstone bosons. Since the NGBs couple in a derivative
manner, their scattering amplitudes are suppressed by
powers of center-of-mass energy

ffiffiffi
s

p
=�2 and hence they

are progressively more weakly coupled as the energy scale
decreases further below �2 [13]. Turning on the SUð3Þc
and Uð1ÞY couplings explicitly breaks the global SU(4)
symmetry, but also the would-be NGBs are absorbed to
form the longitudinal components of the five vector bosons
in the coset SUð3Þc=SUð2Þc. This process is reminiscent of
the mechanism by which technicolor gives masses to theW
and Z bosons.
Our analysis here answers the question that we posed at

the beginning of this subsection concerning the breaking of
a vectorial, in contrast to a chiral, gauge symmetry. Our
answer is that it is certainly possible for a vectorial gauge
symmetry to be broken, if this breaking is induced by
another strongly coupled interaction. The reason that
SUð2ÞL does not break SUð3Þc in nature is a consequence
of the fact that SUð2ÞL is broken well above the scale where
its coupling would have become large enough to produce
the condensates (3.5) and (3.6). The resultant W and Z are
massive and weakly coupled and their interactions are too
weak to induce such condensates. Indeed, even if the
SUð2ÞL symmetry were not broken at this higher scale, it
would be broken by the quark condensates at the QCD
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scale, as discussed above, before it could become strong
enough to break SUð3Þc.

IV. INDUCED DYNAMICAL BREAKING OF
A GAUGE SYMMETRY BYADJOINT FIELDS:
AN ILLUSTRATIVE MODELWITH G ¼ SUð3Þ

A. Higgs mechanism

We next consider induced breaking of a gauge symmetry
by fields that transform as the adjoint representation of the
gauge group. In this section we discuss SU(3) because of
some special properties that it has, and in the next section
we discuss SUðNÞ for general N � 4. We begin by con-
structing a Higgs mechanism for this breaking. We assume
that the theory contains a Higgs field � transforming
according to the adjoint (i.e., octet) representation of
SU(3), with an appropriate Higgs potential. We will write
the components of � as �i

j, 1 � i, j � 3; these are subject

to the trace condition Trð�Þ ¼ P
3
i¼1 �

i
i ¼ 0. In general,

when using the adjoint representation of SUðNÞ, in addition
to the notation �i

j with 1 � i, j � N, it will also be

convenient to use an equivalent notation�a, with 1 � a �
N2 � 1, that indicates the 1–1 correspondence with the
N2 � 1 generators Ta of SUðNÞ. Thus the �i

j form the

entries of a matrix given by
ffiffiffi
2

p P
N2�1
a¼1 �aTa.

We will require that the Higgs part of the Lagrangian be
invariant under the replacement � ! ��. It follows that
the Higgs potential contains only quadratic and quartic
terms in �. For a general SUðNÞ theory with a Higgs field
in the adjoint representation, there are two independent
quartic terms, proportional to ½Trð�2Þ�2 and Trð�4Þ. For
the special values N ¼ 2 or N ¼ 3, ½Trð�2Þ�2 ¼ 2Trð�4Þ,
so there is only one independent quartic term. For the
present case of SU(3), the Higgs potential may thus be
written as

V ¼ �2

2
Trð�2Þ þ �

4
½Trð�2Þ�2: (4.1)

Here we take �2 < 0 to get the symmetry breaking. This
potential is minimized for a Higgs field VEVof the form

h�i ¼ T8v; (4.2)

where v can be made real by a global rephasing of �
and T8 is the second member of the Cartan subalgebra of
SU(3),

T8 ¼ 1

2
ffiffiffi
3

p
1 0 0
0 1 0
0 0 �2

0
@

1
A : (4.3)

The VEV (4.2) breaks SU(3) according to the pattern

SU ð3Þ ! SUð2Þ � Uð1Þ: (4.4)

Since SUð3Þ has order eight, while SUð2Þ � Uð1Þ has order
four, there are four broken generators of SU(3), namely, the
Ta with a ¼ 4, 5, 6, 7 in the standard Gell-Mann basis.
The corresponding components �a are Nambu-Goldstone

bosons and are absorbed to become the longitudinal com-
ponents of the massive vector bosons. Four physical Higgs

fields remain, with masses � ffiffiffiffi
�

p
v. Of these, �a, a ¼ 1, 2,

3 transform as the adjoint representation of the residual
SU(2) gauge interaction, and assuming that it confines,
they are thus confined in SU(2)-singlet bound states.
Since we have assumed that the SU(2) theory is weakly
coupled at the scale � ¼ v, and since its coupling in-
creases only logarithmically, the SU(2) confinement
scale �2 is much smaller than v. In passing, we note that
although a Higgs VEVof the form

h�i ¼ diagða; b;�ðaþ bÞÞ with jaj � jbj
is, a priori, possible, and would break SU(3) to U(1) rather
than SUð2Þ � Uð1Þ, it does not minimize the Higgs
potential.

B. Dynamical breaking mechanism with adjoint fields

To study the dynamical breaking of the SU(3) symmetry
by an SUðNbÞ gauge interaction, we must choose a value of
Nb and a requisite sector comprised of one or more fermion
fields that transform as nonsinglets under both G ¼ SUð3Þ
and Gb ¼ SUðNbÞ. For our model we choose a chiral
fermion that transforms as an adjoint of SU(3) and a
fundamental representation of SUðNbÞ:

ðc i
j;LÞ�: ð8; NbÞ; (4.5)

where the numbers in parentheses are the dimensions of the
representation under GUV ¼ SUð3Þ � SUðNbÞ, the indices
i, j are SU(3) indices, and � ¼ 1; . . . ; Nb is an SUðNbÞ
index. Because ðc i

j;LÞ� transforms according to a self-

adjoint representation of SU(3), it does not contribute
any gauge anomaly to the SU(3) theory. We take Nb ¼ 2,
the minimal value, so Gb ¼ SUð2Þb. As above, we will
also use the equivalent notation �a;L, 1 � a � 8. The

ðc i
j;LÞ� form the components of a matrix given byffiffiffi
2

p P
8
a¼1 c

�
a;LTa.

The SUð2Þb gauge interaction is asymptotically free,
with the leading beta function coefficient b1 ¼ 14=3 (see
the Appendix for notation). The fermion ðc i

j;LÞ� amounts

to 8 Weyl doublets, or, equivalently, 4 Dirac doublets, of
SU(2). Since this number is well below the estimated
critical value Nf;cr ’ 8 separating the (zero-temperature)

phase with confinement and spontaneous chiral symmetry
breaking from the chirally symmetric phase [8], we can
conclude that the SU(2) interaction confines and produces
bilinear condensates. These occur in the most attractive
SUð2Þb channel, which is 2� 2 ! 1, with a condensate of
the form h	�
ðc i

j;LÞ�TCðc k
‘;LÞ
i, where here 	�
 is the

antisymmetric tensor density for SUð2Þb. The 	�
 contrac-

tion antisymmetrizes the bilinear fermion product, so that
in the full Clebsch-Gordan decomposition,

8� 8 ¼ 1s þ 8s þ 8a þ 10a þ 10a þ 27s (4.6)
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(where the subscripts s and a denote symmetric and anti-
symmetric combinations), the above condensate must be
one of the antisymmetric products, namely, 8a or 10a. We
next use a vacuum alignment argument [9], according to
which the symmetry breaking should preserve as large a
subgroup symmetry as possible. Now, relative to the maxi-
mal subgroup SUð2Þ � Uð1Þ, an octet of SU(3) has the
decomposition

8SUð3Þ ¼ 30 þ 21 þ 2�1 þ 10; (4.7)

where the numbers on the right-hand side are the dimen-
sionalities of the SU(2) representations and the subscripts
are the hypercharges with the Gell-Mann normalization. In
contrast, the decuplet has the decomposition

10 SUð3Þ ¼ 41 þ 30 þ 2�1 þ 1�2: (4.8)

Of these, only the octet contains a piece that is a singlet
under SUð2Þ � Uð1Þ. Using a vacuum alignment argument,
we therefore can infer that the condensate transforms as the
10 piece of the octet of SU(3) and hence has the form

h	�
ðc i
j;LÞ�TCðc j

‘;LÞ
i / ðT8Þi‘�3
b: (4.9)

In the equivalent notation using c �
a;L with 1 � a � 8, the

condensate has the form h	�
fab8ðc a;LÞ�TCðc b;LÞ
i,
where the fabc are the structure constants of the SU(3)
Lie algebra. The nonzero structure constants fab8 with
a < b that enter here are f458 and f678. The condensate
(4.9) dynamically breaks SU(3) to SUð2Þ � Uð1Þ, as in
Eq. (4.4). As in the Higgs case, there are four broken
generators, namely, the Ta with a ¼ 4, 5, 6, 7. The
Nambu-Goldstone modes involving c �

a;L, a ¼ 4, 5, 6, 7,

contracted on the SUð2Þb indices � ¼ 1, 2 to form SUð2Þb
singlets, are absorbed by the corresponding SU(3) gauge
bosons, forming longitudinal polarization states and giving
them masses. The remaining c �

a;L fermions with a ¼ 1, 2,

3, 8 are bound in SUð2Þb-singlet states. Furthermore, of
these bound states, the ones with a ¼ 1, 2, 3 transform as
the adjoint representation of the residual SU(2) gauge
interaction, and assuming that it confines, they are confined
in SU(2)-singlet bound states. This is reminiscent of the
situation with the corresponding components of Higgs
fields in the situation where one uses a Higgs mechanism
for the breaking.

A comment is in order here concerning chiral symmetry
in this model. The c �

a;L fermions have zero Lagrangian

masses, and hence, if one turns off the SU(3) gauge inter-
action completely, the theory has a (nonanomalous) SU(8)
global chiral symmetry. In general, a full set of bilinear
fermion condensates breaks this to Sp(8). As noted above,
the breaking of SUð2kÞ to Spð2kÞ entails 2k2 � k� 1
broken generators and corresponding massless Nambu-
Goldstone bosons. With k ¼ 4, this means 27 NGBs in
the present case. When one turns on the SU(3) gauge
coupling, this explicitly breaks the global SU(8) chiral

symmetry, and moreover, the vacuum alignment argument
suggests which condensates form, as we have discussed
above.

V. INDUCED BREAKING OFAN SUðNÞ
SYMMETRY BYADJOINT FIELDS

A. General

In this section we carry out a comparative study of a
Higgs mechanism versus dynamical breaking of an SUðNÞ
gauge symmetry with N � 4 by fields transforming
according to the adjoint representation of this group. Two
general types of breaking patterns of the SUðNÞ symmetry
will be relevant. Both of these involve breaking to a
maximal subgroup of SUðNÞ, with the same rank (dimen-
sion of the Cartan subalgebra of mutually commuting
generators) as SUðNÞ, namely, N � 1. However, these
subgroups have different orders (numbers of generators).
The first of these symmetry-breaking patterns is

SU ðNÞ ! SUðN � 1Þ � Uð1Þ: (5.1)

The residual symmetry group has order

o½SUðN � 1Þ � Uð1Þ� ¼ ðN � 1Þ2 (5.2)

so the symmetry reduction in Eq. (5.1) involves the
breaking of

�o ¼ 2ðN � 1Þ (5.3)

generators of SUðNÞ, which is the dimension of the coset

SU ðNÞ=½SUðN � 1Þ � Uð1Þ�: (5.4)

The second type of symmetry-breaking pattern leads
to a residual symmetry involving three factor groups. To
describe this, it is convenient to deal separately with the
cases of even and odd N. For even N ¼ 2k, a possible
symmetry-breaking pattern is

SU ðNÞ ! SUðN=2Þ � SUðN=2Þ � Uð1Þ: (5.5)

The residual symmetry group has order

o½SUðN=2Þ�SUðN=2Þ�Uð1Þ�¼N2

2
�1¼2k2�1; (5.6)

so that (5.5) involves the breaking of

�o ¼ N2

2
¼ 2k2 (5.7)

generators of SUðNÞ.
For odd N ¼ 2kþ 1, a possible symmetry-breaking

pattern is

SU ðNÞ! SUððNþ1Þ=2Þ�SUððN�1Þ=2Þ�Uð1Þ: (5.8)
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The residual symmetry group has order

o½SUððN þ 1Þ=2Þ � SUððN � 1Þ=2Þ � Uð1Þ�

¼ N2 � 1

2
¼ 2kðkþ 1Þ; (5.9)

so that (5.8) involves the breaking of

�o ¼ N2 � 1

2
¼ 2kðkþ 1Þ (5.10)

generators of SUðNÞ. The symmetry-breaking patterns
(5.5) and (5.8) can be expressed in a unified manner as

SU ðNÞ ! SUðN � ‘Þ � SUð‘Þ � Uð1Þ; (5.11)

where ‘ ¼ ½N=2�ip and ½��ip denotes the integral part of

the real number �.
As we will discuss further below in the context of

dynamical symmetry breaking, a vacuum alignment argu-
ment prefers a symmetry-breaking pattern that yields the
largest residual symmetry. The size of the subgroup that
constitutes the residual symmetry can be characterized by
its rank and order. All of the patterns above satisfy the
condition that the rank of the residual symmetry group
should be maximal, i.e., the same as that of SUðNÞ, namely,
N � 1. Concerning the differences in the orders of the
various possible subgroups resulting from the symmetry
breaking of SUðNÞ, we calculate, for even N ¼ 2k, the
difference

o½SUðN � 1Þ � Uð1Þ� � o½SUðN=2Þ � SUðN=2Þ � Uð1Þ�

¼ ðN � 2Þ2
2

¼ 2ðk� 1Þ2: (5.12)

This difference is positive semidefinite, and positive-
definite for k � 2, i.e., N � 4. For odd N ¼ 2kþ 1,

o½SUðN � 1Þ � Uð1Þ� � o½SUððN þ 1Þ=2Þ
� SUððN � 1Þ=2Þ � Uð1Þ�

¼ ðN � 1ÞðN � 3Þ
2

¼ 2kðk� 1Þ: (5.13)

This difference is also positive semidefinite, and positive-
definite for k � 2, i.e., N � 5. Hence, as these calculations
show, a vacuum alignment argument prefers the breaking
pattern (5.1) for both even and oddN � 4. The special case
N ¼ 3 has been analyzed above, and leads to breaking of
the SU(3) group to SUð2Þ � Uð1Þ, which is also of the form
(5.1) with N ¼ 3.

There are other symmetry-breaking patterns that could,
a priori, occur. SUðNÞ could, in principle, break to a non-
maximal subgroup, i.e., a subgroup with rank smaller than
the rank of SUðNÞ, namely, N � 1. For example, in prin-
ciple SU(3) could, a priori, break to U(1), SU(4) could
break to SUð2Þ � Uð1Þ, and so forth. However, in the con-
text of the Higgs mechanism, these symmetry-breaking
patterns do not occur as minima of the Higgs potential,

and in the dynamical symmetry-breaking context, they are
disfavored by vacuum alignment arguments.

B. SUðNÞ breaking with an adjoint Higgs field

First, we discuss the mechanism for breaking an SUðNÞ
gauge symmetry with a Higgs field � in the adjoint repre-
sentation [14]. The components of the Higgs field are
denoted �i

j. We impose a � ! �� symmetry. Then the

Higgs potential has the general form

V ¼ �2

2
Trð�2Þ þ �1

4
½Trð�2Þ�2 þ �2

4
Trð�4Þ; (5.14)

where we take �2 < 0 to produce the symmetry breaking.
Since � is a Hermitian matrix, it can be diagonalized by a
unitary transformation. It follows that one can write

�i
j ¼ �i

j�j ðno sum on jÞ; (5.15)

for 1 � i, j � N. Substituting Eq. (5.15) into Eq. (5.14)
gives

V ¼ �2

2

XN
i¼j

�2
j þ

�1

4

0
@XN

j¼1

�2
j

1
A

2

þ �2

4

XN
j¼1

�4
j : (5.16)

Since Trð�Þ ¼ 0, the �j satisfy the condition

XN
j¼1

�j ¼ 0: (5.17)

Hence, � only involves N � 1 independent fields, and V
only depends on N � 1 of the components �j, which we

take to be �j with j ¼ 1; . . . ; N � 1. Now

½Trð�2Þ�2 � Trð�4Þ; (5.18)

as can be seen from the explicit expression for the differ-
ence,

½Trð�2Þ�2 � Trð�4Þ ¼ 2

2
4 X

1�i<j�N�1

�2
i �

2
j þ

0
@XN�1

i¼1

�2
i

1
A

�
0
@XN�1

j¼1

�j

1
A

2
3
5 � 0: (5.19)

As noted above, if N is equal to 2 or 3, then ½Trð�2Þ�2 ¼
2Trð�4Þ, so that there is only one independent quartic
term, and its coefficient, ð1=4Þ½�1 þ ð�2=2Þ�, must be posi-
tive. ForN � 4, the two quartic terms are independent, and
the condition that V be bounded from below requires that
�1 > 0.
For �2 > 0, it is again convenient to consider the

cases of even N ¼ 2k and odd N ¼ 2kþ 1 separately.
For �2 > 0 and even N ¼ 2k, V is minimized if the VEV
of � has the form given by

h�ii ¼ vffiffiffiffiffiffiffi
2N

p �
�
1 for 1 � i � k
�1 for kþ 1 � i � 2k:

(5.20)
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The normalization of v in Eq. (5.20) and in the
equations below is determined by the definition Trð�2Þ ¼
ð1=2Þv2, analogous to the usual normalization condition
TrðTaTbÞ ¼ ð1=2Þ�ab for the generators of SUðNÞ. At this
minimum, one finds

v2 ¼ �2�2

½�1 þ �2

N �
: (5.21)

The VEV (5.20) breaks SUð2kÞ according to (5.5). The
value of the potential at the minimum is

Vmin ¼ ��4

4
h
�1 þ �2

N

i : (5.22)

For �2 > 0 and odd N ¼ 2kþ 1 with k � 2, V is mini-
mized if the VEVof � has the form

h�ii ¼ v

�
k

2ðkþ 1Þð2kþ 1Þ
�
1=2

�
8<
:
1 for 1 � i � kþ 1

� kþ1
k for kþ 2 � i � 2kþ 1:

(5.23)

(The special case k ¼ 1, i.e.,N ¼ 3, was dealt with above.)
The minimization condition determines v according to

v2 ¼ �2�2h
�1 þ

�
N2þ3

NðNþ1ÞðN�1Þ
�
�2

i : (5.24)

This VEV (5.23) breaks SUð2kþ 1Þ according to (5.8).
The value of the potential at the minimum is

Vmin ¼ ��4

4
h
�1 þ

�
N2þ3

NðNþ1ÞðN�1Þ
�
�2

i : (5.25)

It is possible for �2 to have a restricted range of negative
values [15],

�
�

NðN � 1Þ
N2 � 3N þ 3

�
�1 < �2 < 0: (5.26)

For �2 in this range, V is minimized if � has the VEV

h�ii ¼ vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NðN � 1Þp �

�
1 for 1 � i � N � 1
�ðN � 1Þ for i ¼ N;

(5.27)

where

v2 ¼ �2�2h
�1 þ

�
N2�3Nþ3
NðN�1Þ

�
�2

i : (5.28)

The VEV (5.27) breaks SUðNÞ according to Eq. (5.1). The
value of V at this minimum is

Vmin ¼ ��4

4
h
�1 þ

�
N2�3Nþ3
NðN�1Þ

�
�2

i : (5.29)

Note that all three of the minimal values (5.22), (5.25), and
(5.29) have the form

Vmin ¼ �2v2

8
(5.30)

for the respective three values of v2. The lower limit on the
allowed negative range of �2 in Eq. (5.26) is evident from
Eq. (5.29), since in this equation Vmin ! �1 as �2 ap-
proaches this lower limit from above. The fact that �2 ¼ 0
is the boundary between the two types of minima is evident
from the difference between the values of the minima for
even N,

Vmin;�2>0 � Vmin;�2<0 ¼ �ðN � 2Þ2�2�
4

4
h
�1 þ �2

N

i
½NðN � 1Þ�1 þ ðN2 � 3N þ 3Þ�2�

; (5.31)

and for odd N,

Vmin;�2>0 � Vmin;�2<0 ¼ �N3ðN � 1ÞðN � 3Þ�2�
4

4½NðN2 � 1Þ�1 þ ðN2 þ 3Þ�2�½NðN � 1Þ�1 þ ðN2 � 3N þ 3Þ�2�
: (5.32)

Both of these differences are proportional to �2, explicitly
showing the switch in global minimum as �2 reverses sign.
The reason for the residual U(1) invariance in these
symmetry-breaking patterns obtained with a Higgs field
� transforming according to the adjoint representation of
SUðNÞ is that since� can be diagonalized, as noted above,
its VEV can be expressed as a linear combination of
coefficients multiplied by the N � 1 diagonal Cartan gen-
erators of SUðNÞ. Indeed, without loss of generality, one
can define axes in SUðNÞ space so that it points entirely
along one such Cartan generator, which can be denoted as
TC. Then expði
TCÞ commutes with h�i, yielding the U(1)
invariance.

From the formulas for �o, the number of broken gen-
erators for the various symmetry-breaking patterns, one
can immediately infer the number of gauge bosons of
SUðNÞ that become massive. Thus, for �2 > 0 and even
N ¼ 2k, the symmetry breaking (5.5) involves the break-
ing of N2=2 ¼ 2k2 generators, so that of the N2 � 1 (real)
components of �, N2=2 are absorbed to become the lon-
gitudinal components of the gauge bosons corresponding
to these broken generators, which pick up masses / gv.
The remaining N2=2� 1 ¼ 2k2 � 1 real components
of � are physical Higgs bosons. For �2 > 0 and odd N ¼
2kþ 1, the symmetry breaking (5.1) involves the breaking
of ðN2 � 1Þ=2 ¼ 2kðkþ 1Þ generators, so that of the
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N2 � 1 (real) components of �, ðN2 � 1Þ=2 are absorbed
to become the longitudinal components of the gauge
bosons corresponding to these broken generators. The
remaining ðN2 � 1Þ=2 ¼ 2kðkþ 1Þ real components of
� are physical Higgs bosons. For �2 < 0, the symmetry
breaking (5.1) involves the breaking of 2ðN � 1Þ genera-
tors, and an equal number of Nambu-Goldstone bosons,
which are absorbed to become the longitudinal compo-
nents of the gauge bosons in the coset (5.4). The remaining
ðN � 1Þ2 real components of� are physical Higgs bosons.

C. Dynamical mechanism for SUðNÞ
breaking by an adjoint field

For the analysis of dynamical symmetry breaking of
SUðNÞ by an adjoint field, we analyze a model of the
form of Eq. (1.1), in which

G ¼ SUðNÞ; Gb ¼ SUðNbÞ: (5.33)

For the fermions that transform under both SUðNÞ and Gb

we use

ðc i
jÞ�L: ðN2 � 1; NbÞ; (5.34)

where here and below, � is the Gb gauge index. Thus, we
assign each of the N2 � 1 components of ðc i

jÞ�L to trans-

form according to the fundamental representation of
SUðNbÞ. The numbers in parentheses in Eq. (5.34) are the
dimensions of the representations with respect to the factor
groups in Eq. (5.33). The Nb copies of fermions in the
adjoint representation of SUðNÞ contribute zero gauge
anomaly to SUðNÞ. As stated earlier, these and the other
fermions that we include are taken to have zero Lagrangian
masses since mass terms would violate the full GUV sym-
metry, which is chiral.

The choice of the rest of the Gb-nonsinglet fermions in
the model depends on the value ofNb. We first consider the
possibility that Nb ¼ 2. Now, N is even()N2 � 1 is odd.
The SUð2Þb theory must have an even number of chiral
doublet fermions in order to avoid a global anomaly, so if
N is odd, the N2 � 1 ðc i

jÞ�L form an acceptable SUð2Þb
fermion sector by themselves, while if N is even, then we
obtain an acceptable fermion sector by adding an odd
number of additional SUð2Þb doublets. We shall choose
this odd number to be the minimal value, namely, one, with
the fermion

!�
L included for even N: (5.35)

For these two cases, the SUð2Þb beta function has as its
leading coefficient

b1 ¼
8<
:

1
3 ð23� N2Þ for N odd
1
3 ð22� N2Þ for N even.

(5.36)

The requirement that the SUð2Þb theory be asymptotically

free is thus that N <
ffiffiffiffiffiffi
23

p
for odd N and N <

ffiffiffiffiffiffi
22

p
for even

N. These amount to the possibilities N ¼ 3 for odd N and

N ¼ 2, 4 for even N. We have already dealt with the case
N ¼ 3 above, so here we focus on the case N ¼ 4. As
discussed in the introduction, these are necessary but not
sufficient conditions; we also must require that the fermion
content of the SUð2Þb theory be sufficiently small that as
the reference energy scale� decreases, the coupling�bð�Þ
will increase sufficiently so that the SUð2Þb gauge interac-
tion will produce bilinear fermion condensates instead of
evolving in a chirally symmetric manner into the infrared.
For SU(2), the critical number of Dirac fermions, Nf;cr,

below which this condensation will occur is estimated to be
Nf;cr ’ 8 [8]. Because SU(2) has only (pseudo)real repre-

sentations, we can rewrite the theory with a given number
of chiral Weyl doublets as a theory with half this number of
Dirac doublets. For N ¼ 4, we would have N2 ¼ 16 chiral
doublets, or eight Dirac doublets, which is marginal.
Assuming that the SUð2Þb sector does, indeed, produce
bilinear fermion condensates, these would occur in the
most attractive channel, which is 2� 2 ! 1 in SUð2Þb.
These would have either the form

h	�
½c �
a;L

TCc 

b;L�asi (5.37)

or the form

h	�
c �
a;L

TC!

Li; (5.38)

where in Eq. (5.37) the symbol ½. . .�as means an antisym-
metric SU(4) combination of the two adjoint fermion
fields. In both cases, the condensate thus transforms as an
adjoint of SU(4). A vacuum alignment argument implies
that the condensates form in such a way as to preserve the
largest subgroup in SU(4). The order of the subgroup
SUð3Þ � Uð1Þ is 9, which is greater than the order of the
subgroup SUð2Þ � SUð2Þ � Uð1Þ, which is 7. Hence, from a
vacuum alignment argument, one may infer that the con-

densate is proportional to the SU(4) generator T15 ¼
ð2 ffiffiffi

6
p Þ�1diagð1; 1; 1;�3Þ, leading to the N ¼ 4 special

case of the symmetry-pattern pattern (5.1).
We next consider possible values Nb � 3 for the gauge

group symmetry SUðNbÞ responsible for the dynamical
breaking of SUðNÞ. In this case, for the rest of the
Gb-nonsinglet fermions we choose

!�
p;L: ðN2 � 1Þð1; �NbÞ; (5.39)

where the notation �Nb means the conjugate fundamental
representation and here the copy number takes on the
values 1 � p � N2 � 1. This ensures that the SUðNbÞ
theory has zero gauge anomaly. With the fermions (5.34)
and (5.39) [and with the SUðNÞ interaction taken as negli-
gibly weak], the SUðNbÞ theory is vectorlike. This is in
accord with one of the conditions that we imposed above,
which guarantees that theGb symmetry does not self-break
when it becomes strongly coupled. Expressed in manifestly
vectorial form, it has N2 � 1 Dirac fermions transforming
according to the fundamental representation of SUðNbÞ.
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The beta function for the SUðNbÞ coupling has leading
coefficient

ðb1ÞSUðNbÞ ¼
1

3
½11Nb � 2ðN2 � 1Þ�: (5.40)

The requirement that the SUðNbÞ theory be asymptotically
free is thus

Nb >
2ðN2 � 1Þ

11
: (5.41)

As noted above, this is a necessary, but not sufficient,
condition for the SUðNbÞ theory to produce the requisite
condensates. We must also require that, for a given value of
Nb, the fermion content of the SUðNbÞ sector must be small
enough so that as the theory evolves down in energy scale,
it produces condensates instead of evolving into the infra-
red in a chirally symmetric (conformal) manner. For a
vectorial asymptotically free SUðNÞ gauge theory with
Nf copies of Dirac fermions (with zero Lagrangian

masses) in the fundamental representation, if Nf is smaller

than a critical value, Nf;cr, then as the reference scale

decreases from large values, the coupling will eventually
grow large enough to form condensates which generically
break the global chiral symmetry. In contrast, ifNf > Nf;cr,

then the theory will evolve from the ultraviolet to the
infared without any spontaneous chiral symmetry break-
ing, yielding conformal behavior. A combined analysis of
the beta function and solutions of the Dyson-Schwinger
equation for the fermion propagator in the approximation
of one-gluon exchange yields the result [8]

Nf;cr ¼ 2Nbð50N2
b � 33Þ

5ð5N2
b � 3Þ : (5.42)

Although the Dyson-Schwinger analysis does not directly
incorporate effects of either confinement or instantons, it
has been shown that these two effects affect Nf;cr in oppo-

site ways, so that neglecting both of them can still yield a
reasonably accurate result [16]. Recent lattice simulations
of SU(3) gauge theory with variable numbers Nf of light

fermions in the fundamental representation are [taking
account of theoretical uncertainties in both Eq. (5.42) and
the lattice work] broadly consistent with Eq. (5.42) [17].
The lattice study of SU(3) with fermions in the fundamen-
tal representation provides further evidence indicating that
technicolor theories with a slowly running coupling asso-
ciated with an approximate infrared fixed point can lead to
a reduced TC contribution to the S parameter [17].
Although this lattice work does not test the prediction of
Nf;cr for Nb � 3, it makes it plausible that this prediction

could also be reasonably accurate. For these values of Nb,
Eq. (5.42) rapidly approaches the asymptotic large-Nb

form Nf;cr ’ 4Nb. We thus require that Nb be sufficiently

large that the SUðNbÞ theory with its Nf ¼ N2 � 1 Dirac

fermions will exhibit spontaneous chiral symmetry

breaking and confinement instead of evolving down in
energy in a chirally symmetric non-Abelian Coulomb
(conformal) phase. Using the prediction of Eq. (5.42), we
thus obtain the lower bound Nf;cr ’ 4Nb > N2 � 1, i.e.,

Nb >
ðN2 � 1Þ

4
: (5.43)

With the fermion content as specified via Eqs. (5.34) and
(5.39), and in the approximation that one turns off the
SUðNÞ gauge interaction, the SUðNbÞ sector has a classical
global symmetry of the form UðN2 � 1Þc � UðN2 � 1Þ!,
or, equivalently, SUðN2 � 1Þc � SUðN2 � 1Þ! � Uð1Þc �
Uð1Þ!, where the subscripts indicate which fields are in-
volved in the respective symmetry transformations. Both
the Uð1Þc and Uð1Þ! are broken by SUðNbÞ instantons, but
the linear combination corresponding to the difference
of the currents for the c and ! fields is conserved in the
presence of instantons. We will denote this symmetry as
Uð1Þ0. The actual (nonanomalous) global symmetry of the
Gb theory at the high scale is thus

SU ðN2 � 1Þc � SUðN2 � 1Þ! � Uð1Þ0: (5.44)

We comment on this further below.
Now we turn on the SUðNÞ gauge interaction. This

explicitly breaks the above global chiral symmetry.
However, just as the breaking of chiral SUð2ÞL � SUð2ÞR
symmetry in QCD by electroweak interactions is weak, so
also here this breaking is weak, since �G is small at the
scale �b. We can fix the initial value of �bð�Þ at a high
value of � so that as � decreases to the scale �b, this
coupling grows sufficiently large to produce bilinear fer-
mion condensates. These condensates will occur in the
most attractive channel, which, for the above fermion
content, is Nb � �Nb ! 1. In general, these condensates
would be of the form hc �

a;L
TC!p;�;Li. Avacuum alignment

argument implies that these condensates will form in a
manner so as to preserve the largest residual gauge sym-
metry. We regard this implication as very plausible, but add
the obvious caveat that one must remember the theoretical
uncertainties that are present in such a strongly coupled
theory. Combining this implication from the vacuum align-
ment argument with our discussion above, we infer that
the symmetry-breaking pattern is that SUðNÞ breaks to the
maximal subgroup SUðN � 1Þ � Uð1Þ as in Eq. (5.1), so
that the condensate would have the form

hc �
a;L

TC!p;�;Li with a ¼ N2 � 1: (5.45)

That is, it would transform like the last of the generators in
the Cartan algebra of SUðNÞ,

ðTa¼N2�1Þij ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2NðN � 1Þp �i
j

�
�
1 for 1 � i � N � 1

�ðN � 1Þ for i ¼ N:
(5.46)
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Here we emphasize an important contrast between this
dynamical symmetry-breaking mechanism and the Higgs
mechanism. In our introductory discussion above, we have
already noted a number of the differences between the
Higgs mechanism and a dynamical mechanism for break-
ing a gauge symmetry. Among other differences, for ex-
ample, the Higgs mechanism leads to the appearance of at
least one physical pointlike Higgs field, whereas a dynami-
cal mechanism does not yield such a particle (although it
may yield composite J ¼ 0 bound states). Furthermore, if
one uses a Higgs mechanism to break SUðNÞ, then by
appropriate choices of the parameters, one can guarantee
that the minimum of the potential occurs for a Higgs VEV
of the form (5.20) or (5.23), so that the symmetry breaking
is of the type (5.5) or (5.8), rather than (5.1). However, in
the dynamical approach to SUðNÞ breaking, once one
specifies the gauge and fermion content, there are no free
parameters, and the theory is, in principle, completely
predictive. Although the dynamical symmetry-breaking
mechanism involves a strongly coupled gauge sector, one
can use most attractive channel criteria and vacuum align-
ment arguments to make a plausible inference about what
form the bilinear fermion condensate will take, namely, as
discussed above, the form that preserves the largest resid-
ual symmetry, SUðN � 1Þ � Uð1Þ. These most attractive
channel and vacuum alignment properties would be mani-
fest if one were to explicitly calculate the effective poten-
tial for the composite operator represented by the
condensate, along the lines of Ref. [18]. In this context,
one may recall that the Higgs potential was partially
motivated by the original Ginzburg-Landau free energy
functional in phenomenological models of superconduc-
tivity, and retrospectively, from the perspective of the
Bardeen-Cooper-Schrieffer theory and the Cooper pair
condensate, one may view the Ginzburg-Landau free
energy functional as an approximate way to represent the
physics of this Cooper pair condensate. This is, of course,
not a precise isomorphism, but only a partial correspon-
dence. As recalled above, there are important differences
between a Higgs and dynamical mechanism for breaking a
gauge symmetry. To the extent that one may regard a Higgs
potential as embodying some of the same physics as an
effective potential for a composite operator represented by
bilinear fermion condensate(s), one may observe that the
pattern of symmetry breaking inferred from the dynamical
approach makes definite predictions for the coefficients
in the corresponding Higgs potential. First, because the
Lagrangian in the dynamical model is invariant under
the separate global transformations c �

a;L ! �c �
a;L and

!�
p;L ! �!�

p;L, it follows that an analogous effective po-

tential for the condensate (5.45) should not contain odd
powers of this condensate. Our dynamical model for the
symmetry breaking of an SUðNÞ gauge theory using fer-
mions transforming as an adjoint representation of SUðNÞ
then predicts that in a corresponding Higgs approach, in

order to obtain the same pattern of symmetry breaking,
the coefficients of the Higgs potential should have the
following properties: (i) �2 < 0, for symmetry breaking;
(ii) �2 < 0, yielding the specific symmetry-breaking
pattern (5.1); and the stability properties that (iii) �1 > 0
and (iv) �2 satisfy the lower bound in Eq. (5.26).
With the symmetry-breaking pattern as given by (5.1),

there are then 2ðN � 1Þ broken generators of SUðNÞ, and
Nambu-Goldstone modes formed from the fermion con-
densates are absorbed by the gauge bosons corresponding
to these broken generators, forming the longitudinal com-
ponents of the resultant massive vector bosons. These
masses are of order g�b. This is reminiscent of the process
whereby Nambu-Goldstone modes in the technicolor
mechanism for electroweak symmetry breaking are ab-
sorbed to give the W� and Z bosons their masses. The
SUðNbÞ-nonsinglet fermions involved in the condensate
(5.45) gain dynamical masses of order �b and are inte-
grated out of the low-energy effective theory that is opera-
tive at scales � below �b. Since, by construction, the
SUðNbÞ theory confines, the spectrum of the SUðNbÞ theory
includes a set of SUðNbÞ-singlet mesons, baryons, and
glueballs that form at the scale �b.

VI. REMARKS ON OTHER
DIRECTIONS OF STUDY

We comment here on some other related directions of
study that could be interesting to pursue. One could con-
struct models with dynamical symmetry breaking of other
gauge symmetries and compare results with those
obtained via Higgs scenarios. An example of this would
be models with extended electroweak gauge groups
such as G ¼ SUð3Þc � SUð2ÞL � SUð2ÞR � Uð1ÞB�L and
G ¼ SUð4Þ � SUð2ÞL � SUð2ÞR, for which dynamical
mechanisms were presented in Ref. [19]. In a more abstract
direction, one could consider groups such as G ¼ SOðNÞ.
One could also study the breaking of SUðNÞ by fields
transforming according to representations other than the
fundamental and adjoint, such as the rank-2 symmetric and
antisymmetric tensor representations.
One could also study situations in which the G gauge

interaction is not weakly coupled at the scale �b where
the Gb interaction becomes strongly coupled, so that there
is generically a combination of self-breaking of G and
induced breaking of G by Gb. Indeed, in reasonably
ultraviolet-complete ETC theories, the sequential breaking
of the ETC gauge symmetry down to the residual exact
technicolor symmetry typically involves both self-breaking
of ETC, which is a strongly coupled, chiral gauge symme-
try, and induced breaking by an auxiliary gauge interaction
called hypercolor in [20]. A similar statement applies to
ultraviolet completions of topcolor-assisted technicolor
models that include the necessary additional gauge inter-
actions to produce the required symmetry breakings [3,21].
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Although our study is primarily intended as a compari-
son of gauge symmetry breaking by dynamical and Higgs
mechanisms in a general field theoretic context, it is ap-
propriate to address the question of possible dynamical
symmetry breaking of a grand unified symmetry. We recall
that there has long been interest in grand unified theories
(GUTs) which embed the three factor groups of GSM in a
single group, since this would unify quarks and leptons,
predict the ratios of the three SM gauge couplings, and
quantize electric charge [22–24]. Much work on GUTs has
been done in a supersymmetric context, since supersym-
metry remedies the gauge hierarchy problem of the stan-
dard model and since the minimal supersymmetric
standard model naturally yields gauge coupling unifica-
tion. There have also been studies of the question of
whether some type of grand unification could feasibly be
achieved in a theoretical context involving dynamical elec-
troweak symmetry breaking [25]. It is natural to ask
whether one could use induced dynamical breaking of a
GUT gauge symmetry such as SU(5) or SO(10), which is
weakly coupled at the GUT scale,MGUT, using a (vectorial
non-Abelian, asymptotically free) Gb gauge interaction
that becomes strongly coupled at this scale. One could,
of course, argue that such an approach differs from the
original purpose of the grand unification, which was to
obtain an ultraviolet-scale theory with only a single gauge
group and gauge coupling. Indeed, such an induced GUT
symmetry-breaking scenario appears problematic, since in
order to produce the requisite bilinear fermion conden-
sates, theGb interaction would necessarily have to confine,
and this would generically lead to stable Gb-singlet bary-
ons with masses of order MGUT. With plausible estimates
for the relevant reaction cross sections, one finds that these
Gb-singlet baryons would contribute far too much to the
dark matter in the universe [26]. Interestingly, even if a
dynamical approach to breaking a GUT symmetry were
not excluded by its production of excessive dark matter, it
would predict that a GUT group such as SU(5) would
preferentially break to SUð4Þ � Uð1Þ rather than the SM
group, SUð3Þc � SUð2ÞL � Uð1ÞY . In the conventional
SUð5Þ GUT, the latter breaking to GSM is obtained by a
Higgs mechanism with a Higgs field transforming as the
adjoint representation [22]. Modern GUT theories also
make use of string-inspired mechanisms for the GUT
gauge symmetry breaking, including higher-dimension
operators and Wilson lines [24].

VII. CONCLUSIONS

In conclusion, in this paper we have constructed and
analyzed theories with a gauge symmetry in the ultraviolet
of the form G �Gb, in which the vectorial, asymptotically
free Gb gauge interaction becomes strongly coupled at a
scale where the G interaction is weakly coupled and pro-
duces bilinear fermion condensates that dynamically break

the G symmetry. We have compared the results to those
obtained with a Higgs mechanism. There are many inter-
esting contrasting properties of these two approaches to
breaking a gauge symmetry. The Higgs mechanism is
perturbative, and one has the freedom, by appropriate
choices of parameters in the Higgs potential, to determine
whether and, in general, how the symmetry breaks. In
contrast, the dynamical approach is arguably more predic-
tive, in the sense that, provided that one has chosen the
gauge and field content of the Gb sector appropriately,
there are no free parameters to vary; the Gb gauge inter-
action will confine and produce fermion condensates that
break the G symmetry. Most attractive channel and vac-
uum alignment arguments provide a plausible guide to
enable one to infer which channel(s) have fermion con-
densation, and what the form of this condensation is,
thereby predicting the resultant pattern of symmetry break-
ing. In the dynamical models that we have constructed, we
produce this breaking by introducing fermions that are
nonsinglets under both G and Gb. In the course of our
analysis, we have discussed how the gauge symmetry G
can be broken not just for the case where it is chiral (as in
electroweak symmetry breaking), but also for the case
where it is vectorial. We have compared Higgs and dy-
namical mechanisms for breaking SU(3) via a Higgs field
or condensate transforming according to the fundamental
or adjoint representation. We have also carried such an
analogous study for SUðNÞ with N � 4. Our present study
helps to elucidate the differences between the Higgs and
dynamical mechanisms for breaking a gauge symmetry.
We believe such theoretical studies are useful since it is
still an open question what mechanism is responsible for
breaking electroweak gauge symmetry or a grand unified
symmetry.
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APPENDIX

Here we define some notation used in the text. For a
gauge group Gj we denote the running gauge coupling as

gjð�Þ, where� is the Euclidean reference momentum, and

we denote �jð�Þ ¼ gjð�Þ2=ð4�Þ. The beta function is


Gj
¼ dgj=dt, where dt ¼ d ln�. We write

d�j

dt
¼ � �2

j

2�

�
b1 þ

b2�j

4�
þOð�3

j Þ
�
; (A1)

where the first two coefficients, b1 and b2, are scheme-
independent. For a representation R of a Lie group G,
the quadratic Casimir invariant C2ðRÞ is defined byPorderðGÞ

a¼1

PdimðRÞ
j¼1 ðTaÞijðTaÞjk ¼ C2ðRÞ�ik.
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