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The phase structure of two-flavor QCD is explored for thermal systems with finite baryon- and isospin-

chemical potentials, �B and �iso, by using the Polyakov-loop extended Nambu–Jona-Lasinio (PNJL)

model. The PNJL model with the scalar-type eight-quark interaction can reproduce lattice QCD data at

not only �iso ¼ �B ¼ 0, but also �iso > 0 and �B ¼ 0. In the �iso-�B-T space, where T is temperature,

the critical endpoint of the chiral phase transition in the �B-T plane at �iso ¼ 0 moves to the tricritical

point of the pion-superfluidity phase transition in the �iso-T plane at �B ¼ 0 as �iso increases. The

thermodynamics at small T is controlled by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

p
defined by the chiral and pion condensates, �

and �.
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I. INTRODUCTION

The phase diagram of quantum chromodynamics (QCD)
is the key to understanding not only natural phenomena
such as compact stars and the early Universe but also
laboratory experiments such as relativistic heavy-ion col-
lisions. Quantitative calculations of the phase diagram
from the first-principle lattice QCD (LQCD) have the
well-known sign problem when the baryon chemical po-
tential (�B) is real [1]; here, �B is related to the quark-
number chemical potential �q as �B ¼ 3�q. Several ap-

proaches have been proposed so far to circumvent the
difficulty; for example, the reweighting method [2], the
Taylor expansion method [3] and the analytic continuation
from imaginary �q to real �q [4–6]. However, those are

still far from perfection particularly at �q=T * 1, where T

is temperature.
As an approach complementary to LQCD, we can con-

sider effective models such as the Nambu–Jona-Lasinio
(NJL) model [7–12] and the Polyakov-loop extended
Nambu–Jona-Lasinio (PNJL) model [13–33]. The NJL
model describes the chiral symmetry breaking, but not
the confinement mechanism. The PNJL model is extended
so as to treat both the mechanisms [14] approximately by
considering the Polyakov-loop in addition to the chiral
condensate as ingredients of the model.

In the NJL-type models, the input parameters are usually
determined from the pion mass and the pion decay constant
at vacuum (�q ¼ 0 and T ¼ 0). Some of the models have

the scalar-type eight-quark interaction. The strength of the
interaction is adjusted to LQCD data at finite T [31], since
the sigma-meson mass at vacuum related to the interaction
has a large error bar and then ambiguous [34]. It is then

highly nontrivial whether the models predict properly dy-
namics of QCD at finite �q. This should be tested from

QCD. Fortunately, this is possible at imaginary �q, since

LQCD has no sign problem there. In Ref. [32], it was
shown that the PNJL model can reproduce LQCD data at
imaginary�q. QCD has the Roberge-Weiss periodicity and

the Roberge-Weiss transition [35] in the imaginary �q

region, because of the extended Z3 symmetry [31–33].
The PNJL model can reproduce these, since it has the
symmetry [31]. In the real �q region, as an important

result, a phase diagram is predicted by the PNJL model
with the parameter set [32] determined from the LQCD
data at imaginary �q. The PNJL prediction shows that in

the �q-T plane at �I ¼ 0 there appears a critical endpoint

(CEP), that is, a second-order critical point where a first-
order chiral phase-transition line terminates.
A similar test of the PNJL model is possible for finite

isospin-chemical potential (�iso) [36], since LQCD has no
sign problem there; for later convenience, we use the
‘‘modified’’ isospin-chemical potential �I ¼ �iso=2 in-
stead of �iso. LQCD data are available for both real [37]
and imaginary [38,39] �iso. The PNJL model has already
been applied to the real �I [23,24] and the imaginary �I

case [40] with success in reproducing the LQCD data.
The PNJL calculation at real �I shows that in the �I-T
plane at�q ¼ 0 there exists a first-order pion-superfluidity

phase-transition line connected to a second-order pion-
superfluidity phase-transition line; the connecting point is
a tricritical point (TCP) by definition. Real �I dependence
of QCD phase diagram is investigated in other models such
as chiral perturbation theory [36], the strong coupling QCD
[41] and so on [42].
The CEP in the �q-T plane at �I ¼ 0 is important as a

good indicator of the chiral and deconfinement phase
transitions in collider experiments at Helmholtzzentrum
für Schwerionenforschung GmbH (GSI), Super Proton
Synchrotron (SPS) [43,44], Relativistic Heavy Ion
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Collider (RHIC) [45,46], and LHC [47]. In the measure-
ments, �I is not zero generally. It is then interesting to see
how critical points such as CEP and TCP are located in the
�q-�I-T space.

In this paper, we draw the phase diagram of two-flavor
QCD in the �I-�q-T space by using the PNJL model.

Following our previous paper [32], we introduce the
scalar-type eight-quark interaction to reproduce LQCD
data on thermal systems at �q ¼ �I ¼ 0. The scalar-type

eight-quark interaction is a next-to-leading order correc-
tion in the power counting rule based on mass dimension.
First, we will show that the PNJL model with the parameter
set thus determined also reproduces LQCD data on thermal
systems at �I > 0 and �q ¼ 0. After confirming the relia-

bility of the present PNJL model, we will predict locations
of CEP and TCP in the �I-�q-T space.

In Sec. II, the PNJL model is recapitulated. In Sec. III,
the PNJL calculation is compared with LQCD data for
thermal systems at �I > 0 and �q ¼ 0, and the phase

diagram is explored in the �I-�q-T space. Properties of

the susceptibilities near CEP and TCP are analyzed.
Section IV is devoted to a summary.

II. PNJL MODEL

The two-flavor PNJL Lagrangian in Euclidean space-
time is

L ¼ �qð��D
� � �4�̂þ m̂0ÞqþGs½ð �qqÞ2 þ ð �qi�5 ~�qÞ2�

þG8½ð �qqÞ2 þ ð �qi�5 ~�qÞ2�2 �Uð�½A�;�½A��; TÞ;
(1)

where D� ¼ @� þ iA� and A� ¼ ��
0gA

0
a
�a

2 with the gauge

field A�
a, the Gell-Mann matrix �a and the gauge coupling

g. In the NJL sector, Gs denotes the coupling constant of
the scalar-type four-quark interaction and G8 stands for
that of the scalar-type eight-quark interaction [32,48,49].
The Polyakov-potentialU, defined in (18), is a function of
the Polyakov-loop � and its Hermitian conjugate ��.

The chemical potential matrix �̂ is defined by �̂ ¼
diagð�u;�dÞ with the u-quark (d-quark) number chemical
potential �u (�d), while m̂0 ¼ diagðm0; m0Þ. This is
equivalent to introducing the baryon and isospin-chemical
potentials, �B and �iso, coupled, respectively, to the
baryon charge �B and to the isospin charge �I3:

�̂ ¼ �q�0 þ�I�3 (2)

with

�q ¼ �u þ�d

2
¼ �B

3
; �I ¼ �u ��d

2
¼ �iso

2
; (3)

where �0 is the unit matrix and �i (i ¼ 1, 2, 3) are the Pauli
matrices in flavor space. Note that�q is the quark chemical

potential and �I is half the isospin-chemical potential
(�iso). In the limit of m0 ¼ �I ¼ 0, the PNJL

Lagrangian has the SULð2Þ � SURð2Þ �Uvð1Þ � SUcð3Þ
symmetry. For m0 � 0 and �I � 0, it is reduced to
UI3ð1Þ �Uvð1Þ � SUcð3Þ.
The Polyakov-loop operator �̂ and its Hermitian con-

jugate �̂y are defined as

�̂ ¼ 1

N
TrL; �̂y ¼ 1

N
TrLy; (4)

with

LðxÞ ¼ P exp

�
i
Z 	

0
d�A4ðx; �Þ

�
; (5)

where P is the path ordering and A4 ¼ iA0. In the

PNJL model, the vacuum expectation values, � ¼ h�̂i
and �� ¼ h�̂yi, are treated as classical variables. In the
Polyakov gauge, L can be written in a diagonal form in
color space [14]:

L ¼ ei	ð
3�3þ
8�8Þ ¼ diagðei	
a; ei	
b; ei	
cÞ; (6)

where 
a ¼ 
3 þ
8=
ffiffiffi
3

p
, 
b ¼ �
3 þ
8=

ffiffiffi
3

p
and


c ¼ �ð
a þ
bÞ ¼ �2
8=
ffiffiffi
3

p
.

The Polyakov-loop � is an exact order parameter of the
spontaneous Z3 symmetry breaking in the pure gauge
theory. Although the Z3 symmetry is not exact in the
system with dynamical quarks, it still seems to be a good
indicator of the deconfinement phase transition. Therefore,
we use � to define the deconfinement phase transition.
The spontaneous breakings of the chiral and the UI3ð1Þ

symmetry are described by the chiral condensate � ¼ h �qqi
and the charged pion condensate [23]

�� ¼ �ffiffiffi
2

p e�i’ ¼ h �qi�5��qi; (7)

where �� ¼ ð�1 � i�2Þ=
ffiffiffi
2

p
. Since the phase ’ represents

the direction of the UI3ð1Þ symmetry breaking, we take

’ ¼ 0 for convenience. The pion condensate is then ex-
pressed by

� ¼ h �qi�5�1qi: (8)

Making the mean field (MF) approximation [11,23], one
can obtain the MF Lagrangian as

LMF ¼ �qð��D
� � �4�̂þM�0 þ Ni�5�1Þq

�Gs½�2 þ �2� � 3G8ð�2 þ �2Þ2 �U (9)

with

M ¼ m0 � 2Gs�� 4G8�ð�2 þ �2Þ; (10)

N ¼ �2Gs�� 4G8�ð�2 þ �2Þ: (11)
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Performing the path integral in the PNJL partition function

ZPNJL ¼
Z

DqD �q exp

�
�
Z

d4xLMF

�
; (12)

we can get the thermodynamic potential � (per unit
volume),

�¼�T lnðZPNJLÞ=V¼�2
X
i¼�

Z d3p

ð2�Þ3
�
3EiðpÞ

þ 1

	
ln½1þ3ð�þ��e�	E�

i ðpÞÞe�	E�
i ðpÞ

þ e�3	E�
i ðpÞ

�
þ 1

	
ln½1þ3ð�� þ�e�	Eþ

i ðpÞÞe�	Eþ
i ðpÞ

þ e�3	Eþ
i ðpÞ��þGs½�2þ�2�þ3G8ð�2þ�2Þ2þU

(13)

with E��ðpÞ ¼ E�ðpÞ ��q, where

E�ðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEðpÞ ��IÞ2 þ N2

q
(14)

for EðpÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
. On the right-hand side of (13), only

the first term diverges, and it is then regularized by the
three-dimensional momentum cutoff � [14,18].

We useU of Ref. [19] that is fitted to LQCD data in the
pure gauge theory at finite T [50,51]:

U ¼ T4

�
�aðTÞ

2
���þ bðTÞ lnð1� 6���

þ 4ð�3 þ��3Þ � 3ð���Þ2Þ
�
; (15)

aðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2
; bðTÞ ¼ b3

�
T0

T

�
3
;

(16)

where parameters are summarized in Table I. The
Polyakov potential yields a first-order deconfinement
phase transition at T ¼ T0 in the pure gauge theory. The
original value of T0 is 270 MeV determined from the pure
gauge LQCD data, but the PNJL model with this value of
T0 yields a larger value of the pseudocritical temperature
Tc at zero chemical potential than Tc ¼ 173� 8 MeV that
the full LQCD simulation [52–54] predicts. Therefore, we
reset T0 to 212 MeV [32] so as to reproduce the LQCD
result.

The classical variables X ¼ �, ��, �, and � are deter-
mined by the stationary conditions

@�=@X ¼ 0: (17)

The solutions to the stationary conditions do not give the
global minimum of � necessarily. There is a possibility
that they yield a local minimum or even a maximum.
We then have checked that the solutions yield the global
minimum when the solutions XðT;�q; �IÞ are inserted

into (13).
In this work, first-order transitions are defined by (ap-

proximate) order parameters, �, �, and � in their discon-
tinuities. When the susceptibility of one of the order
parameters diverges, we regard it as a second-order tran-
sition of the order parameter. For crossover, the pseudo-
critical point is determined by a peak of the susceptibility.
When the susceptibility has two peaks and it is not clear
which peak should be taken, we do not plot a phase
boundary to avoid the confusion.
Table II shows parameters in the NJL sector used in the

present analyses. As shown in Ref. [32], set A can repro-
duce not only the pion decay constant f� ¼ 93:3 MeV and
the pion mass M� ¼ 138 MeV at vacuum (T ¼ �q ¼
�I ¼ 0) but also Tc ¼ 173� 8 MeV [52–54] at finite
temperature (T > 0 and �q ¼ �I ¼ 0). For this reason,

we take this parameter set in this paper. For comparison,
we also use set B with no scalar-type eight-quark interac-
tion. This parameter set also reproduces the pion mass and
the pion decay constant correctly, but not LQCD data at
finite temperature (T > 0 and �q ¼ �I ¼ 0). The sigma-

meson mass M� is 526 (680) [MeV] for set A (B).

III. NUMERICAL RESULTS

The phase structure in the �I-�q-T space is explored by

the PNJL model with the eight-quark interaction.

A. Phase structure in the �I-T plane at �q ¼ 0

LQCD data are available in the �I-T plane at �q ¼ 0

[37], since LQCD has no sign problem there. In QCD, it is
known [36] that at zero T, a second-order phase transition
occurs at�I ¼ M�=2 from the normal (� ¼ 0) to the pion-
superfluidity phase (� � 0); this will be understood in
subsection III B also by using the PNJL model with the
eight-quark interaction. The critical chemical potential �c

of the pion-superfluidity phase transition is �c ¼ 0:57=a
in LQCD calculation with a lattice spacing a, while it is

TABLE I. Summary of the parameter set in the Polyakov-
potential sector determined in Ref. [19]. All parameters are
dimensionless.

a0 a1 a2 b3

3.51 �2:47 15.2 �1:75

TABLE II. Summary of parameters in the NJL sector. Here,
T0 ¼ 212 MeV for both the sets.

Set Gs G8 m0 �

A 4:673 ½GeV�2� 452:12 ½GeV�8� 5.5 [MeV] 631.5 [MeV]

B 5:498 ½GeV�2� 0 5.5 [MeV] 631.5 [MeV]
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�c ¼ M�=2 ¼ 69 ½MeV� in the PNJL calculation. In the
LQCD data, �I is then normalized as �c ¼ 69 ½MeV�.
This makes it possible to compare the PNJL calculation
with the LQCD data.

First, we consider the normal phase by taking a case of
�I ¼ 0:96�c ¼ 66 ½MeV�. Figure 1 presents � and� as a
function of T=Tc, where � is normalized by the value �0 at
zero T. LQCD data are plotted by plus (þ ) symbols with
10% error bar; LQCD data of Refs. [37] have only small
errors, but we have added 10% error that comes from
LQCD data [53] on the pseudocritical temperature Tc at
zero quark and isospin-chemical potentials. The PNJL
result with the scalar-type eight-quark interaction (the
thick-solid curve) is consistent with the LQCD data;
note that the present model has no free parameter. If the
scalar-type eight-quark interaction is switched off from
the PNJL model, the result (the thin-solid curve) deviates

sizably from the LQCD data particularly on �. This in-
dicates that the scalar-type eight-quark interaction is
inevitable.
We use the dimensionless susceptibility matrix [15,26]

~� ¼ C�1 (18)

defined by the dimensionless curvature matrix

C ¼
c�� c�� c�� c� ��

c�� c�� c�� c� ��

c�� c�� c�� c� ��

c ��� c ��� c ��� c �� ��

0
BBB@

1
CCCA

¼
T2��� T2��� T�1��� T�1�� ��

T2��� T2��� T�1��� T�1�� ��

T�1��� T�1��� T�4��� T�4�� ��

T�1� ��� T�1� ��� T�4� ��� T�4� �� ��

0
BBB@

1
CCCA;

(19)
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FIG. 1 (color online). T dependence of (a) chiral condensate �
and (b) Polyakov-loop � at �I ¼ 0:96�c ¼ 66 ½MeV� and
�q ¼ 0. Here, � is normalized by the value �0 at vacuum and

T is also normalized by Tc ¼ 173 ½MeV�. The thick (thin) solid
curves represent the PNJL results with (without) the scalar-type
eight-quark interaction; Lattice data (þ ) are taken from
Ref. [37]. The lattice data are plotted with 10% error bar, since
lattice calculations have 10% error in determining Tc [53].

 0

 10

 20

 30

 0.6  0.8  1  1.2  1.4

χ σ

T/Tc

(a)

Lattice
With G8

Without G8

 0

 10

 20

 30

 0.6  0.8  1  1.2  1.4

χ Φ

T/Tc

(b)

Lattice
With G8

Without G8

FIG. 2 (color online). T dependence of (a) chiral and
(b) Polyakov-loop susceptibility at �I ¼ 0:96�c ¼ 66 ½MeV�
and �q ¼ 0. See Fig. 1 for the definition of lines and LQCD

data. Since the susceptibilities of LQCD are obtained in arbitrary
units, the magnitudes are then rescaled to fit the corresponding
thick-solid curves, respectively.

SASAKI et al. PHYSICAL REVIEW D 82, 116004 (2010)

116004-4



where �xy ¼ @2�=@x@y for x, y ¼ �, �, �, ��. The

susceptibilities thus defined are dimensionless. For sim-
plicity, we take the following shorthand notation: ~�� ¼
~���, ~�� ¼ ~���, ~�� ¼ ~���.
Figure 2 presents the chiral and the Polyakov-loop sus-

ceptibility, ~�� and ~��, as a function of T. The PNJL model
with the scalar-type eight-quark interaction (the thick-solid
curve) gives a better agreement with the LQCD data than
the PNJL model without the scalar-type eight-quark inter-
action (the thin-solid curve). The present analysis for finite
�I is parameter free. Therefore, the reasonable agreement
between the PNJL model with the eight-quark interaction
and the LQCD data indicates that the PNJL model with the
eight-quark interaction is reliable.

Next, we consider the pion-superfluidity phase by taking
a case of �I ¼ 1:4�c ¼ 96 ½MeV�. Figure 3 presents �
and � as a function of T=Tc, where � is normalized by the
value �0 at zero T. Again, the PNJL model with the scalar-
type eight-quark interaction (the thick-solid curve) is con-
sistent with the LQCD data compared with the PNJL
model without the scalar-type eight-quark interaction (the

thin-solid curve). The PNJL calculation on � shows that
the pion-superfluidity phase transition is of second order
there.
Thus, the PNJL model with the scalar-type eight-quark

interaction is consistent with the LQCD data, indicating
that the model is more reliable than the original PNJL
model without the eight-quark interaction. Figure 4 shows
the phase diagram in the �I-T plane at �q ¼ 0. Panels (a)

and (b) present results of the PNJL calculations with and
without the eight-quark interaction, respectively. The
thick-solid curve shows a first-order pion-superfluidity
phase transition, while the dashed line indicates a
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FIG. 3 (color online). T dependence of (a) Polyakov loop and
(b) pion condensate at �I ¼ 1:4�c ¼ 96 ½MeV� and �q ¼ 0.

Here, � is normalized by the value �0 at zero T. See Fig. 1 for
the definition of lines and the LQCD data.
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FIG. 4 (color online). Phase diagram in the �I-T plane at
�q ¼ 0 for the case (a) with and (b) without the scalar-type

eight-quark interaction. The thick-solid (dashed) curve repre-
sents a first-order (second-order) pion-superfluidity phase tran-
sition. The dot-dashed (dotted) line means a deconfinement
(chiral) crossover transition. At �I >M�=2, ~�� has two peaks,
so we do not plot any deconfinement crossover transition line
there. Meanwhile, the chiral crossover transition line (dotted
line) terminates at TCP. LQCD on the chiral and deconfinement
crossover transitions are represented by a plus (þ ) symbol,
while LQCD on the second-order pion-superfluidity transition
and the deconfinement crossover transition are shown by a cross
(� ) symbol. See Fig. 1 for more information on LQCD data.
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second-order pion-superfluidity phase transition. A meet-
ing point between the two lines is a tricritical point (TCP)
by definition. The dot-dashed (dotted) line stands for a
deconfinement (chiral) crossover transition. In panel (a),
the two crossover transitions almost agree with each other.
In LQCD, meanwhile, the agreement is perfect, as repre-
sented by a plus (þ ) symbol with 10% error bar. LQCD
data on the pion-superfluidity transition is also shown by
a cross (� ) symbol with 10% error bar. Comparing the
PNJL results with LQCD data, we can confirm that the
PNJL model with the eight-quark interaction is more
consistent with the LQCD data than that without
the eight-quark interaction. The location of TCP is
ð�I; TÞ ¼ ð0:32 ½GeV�; 0:169 ½GeV�Þ for the PNJL
model with the eight-quark interaction and ð�I; TÞ ¼
ð0:401 ½GeV�; 0:171 ½GeV�Þ for the PNJL model without
the eight-quark interaction. Thus, the eight-quark interac-
tion is a sizable effect also on the location of TCP.

B. Phase structure in the �I-�q plane at T ¼ 0

In the �I-�q plane at T ¼ 0, the thermodynamic poten-

tial of the PNJL model is reduced to that of the NJL model:

� ¼ �6
X
i¼�

Z d3p

ð2�Þ3 ½EiðpÞ � ðEi ��qÞ�ð�q � EiÞ�

þGs½�2 þ �2� þ 3G8ð�2 þ �2Þ2: (20)

When �I � M�=2, � ¼ 0 and M � 330 MeV, so that

E� ¼ E��I � M� M�

2 � 260 MeV. Hence, when

�q < 260 MeV, � is reduced to

� ¼ Gs�
2 þ 3G8�

4 � 12
Z d3p

ð2�Þ3 EðpÞ: (21)

Therefore, � does not depend on �q and �I for �I <

M�=2 and �q < 260 MeV, indicating that no phase tran-

sition occurs there. In other words, there is a possibility
that a chiral phase transition takes place when �q >

260 MeV. This is realized, as shown later in Fig. 6. For
�I ¼ M�=2, more careful discussion is necessary, since it
is a boundary of the normal phase in which � ¼ 0. This is
discussed below.

In the normal-phase region at �q < 260 MeV, the cur-

vature of � in the �-direction is obtained by [12]

@2�

@�2
¼ 2G� � 48G2

�

Z d3p

ð2�Þ3
EðpÞ

EðpÞ2 ��2
I

	 fð�IÞ;
(22)

with

G� ¼ � 1

2

@N

@�
: (23)

Thus, fð�IÞ does not depend on �q. Here, an effect of the

eight-quark interaction appears only through M and G�.

In vacuum (T ¼ �q ¼ �I ¼ 0), the RPA function with

external momentum (q0 � 0, q ¼ 0) is [11,12,27]

2G� � 48G2
�

Z d3p

ð2�Þ3
EðpÞ

EðpÞ2 � q20=4
¼ f

�
q0
2

�
; (24)

and the pion mass M� is determined by the condition
fðM�=2Þ ¼ 0. We then find for �I ¼ M�=2 that

@2�

@�2
¼ f

�
M�

2

�
¼ 0: (25)

Thus, the curvature of � at �I ¼ M�=2 is zero in the
� directions, indicating that a second-order pion-
superfluidity phase transition takes place at �I ¼ M�=2
when �q < 260 MeV. This point will be confirmed later

in the phase diagram of Fig. 6(a) where the second-order
pion-superfluidity phase transition line (dashed line) is a
straight line.
Next we consider both regions of �I � M�=2 and �I >

M�=2. Figure 5 shows j�j, j�j and R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ N2

p
as a

function of �I and �q. The pion condensate � is zero at

�I <M�=2, but nonzero at �I >M�=2, as expected.
Therefore, the former region is the normal
(I3-symmetric) phase and the latter region is the pion-
superfluidity (I3-symmetry broken) phase. The order pa-
rameter j�j of the chiral symmetry is almost constant in the
normal phase, but goes down in the pion-superfluidity
phase. The parameter R is almost constant over the two
phases, when �q < 200 MeV. When �q > 200 MeV, R

has a discontinuity in the �q direction. Thus, the �q

dependence of R at finite �I is similar to that at �I ¼ 0
over a wide range of �I.
In the limit of m0 ¼ 0 and �I ¼ 0, the chiral symmetry

is an exact symmetry. In this situation, the thermodynamic
potential of (13) is a function of R, and R is a function offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

p
. This means that R or

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

p
is an order

parameter of the chiral symmetry. When m0 and/or �I is
finite, the chiral symmetry is not an exact symmetry any-
more. However, the fact that the �q dependence of R at

finite �I is similar to that at �I ¼ 0 means that the chiral
symmetry is preserved with good accuracy. This is under-
stood as follows.
Over the normal and pion-superfluidity phases, we have

E� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE��IÞ2 þ N2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ R2 � 2E�I þ�2

I

q
:

(26)

As shown in Fig. 5, R is about 330 MeVat�q & 200 MeV

and �I <� ¼ 631:5 MeV. In the region, E� is well ap-

proximated by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ R2 þ�2

I

q
, because p2 þ R2 þ�2

I 

2E�I. When �q * 200 MeV, R is small and hence E� is

approximated by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ�2

I

q
. Therefore, � is a function of

R or
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

p
with good accuracy; here, note that R �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ �2
p

because of m0 � R. Thus, when T is small, the
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thermodynamics at finite �q and �I is controlled by an

approximate order parameter R of the chiral symmetry
over both the normal (� ¼ 0) and the pion-superfluidity
(� � 0) phase; the chiral symmetry is spontaneously bro-
ken when R is finite, while it is restored when R is
zero. When T * Tc, R is not large any more. Hence, �
and � work independently there, as shown later in
subsection III D.

Figure 6 presents the phase diagram in the �I-�q plane

at T ¼ 0. When T ¼ 0, the system is in the confinement
phase because � ¼ 0 there. So we consider the chiral and
pion-superfluidity transitions only here. On the solid line,
the first-order chiral and pion-superfluidity transitions co-
exist, while on the dot-dashed line only the first-order
chiral transition takes place. The dashed line represents

the second-order pion-superfluidity transition. In panel (a)
where the eight-quark interaction is taken into account, the
solid, dot-dashed and dashed lines meet at a point. This is a
TCP, because the pion-superfluidity transition changes the
order from first order to second order there, while the chiral
transition keeps first order. Thus, there is no CEP in the
�I-�q plane at T ¼ 0. In panel (b) where the eight-quark

interaction is switched off, the endpoint of the dot-dashed
line is a CEP and a meeting point of the solid and dashed
lines is a TCP by definition. Comparing the two panels, we
can see that the eight-quark interaction changes the phase
diagram qualitatively.
Recently, it was shown in Ref. [55] that the � depen-

dence of� may change the order of the phase transition in
the mean field level. We then investigate the� dependence
of the phase diagram in the �I-�q plane at T ¼ 0. In this

procedure, we consider the four-quark and eight-quark
interactions only. The parameters of the PNJL model are
determined for each � so as to reproduce the pion decay
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FIG. 5. Order parameters (a) �, (b) � and (c) R as a function of
�I and �q.
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FIG. 6 (color online). Phase diagram in the �I-�q plane at
T ¼ 0 for the case (a) with and (b) without the eight-quark
interaction. The solid line represents a coexistence line of first-
order chiral and pion-superfluidity phase transitions, while the
dot-dashed line shows a first-order chiral phase-transition line.
The dashed line stands for a second-order pion-superfluidity
phase transition.
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constant f� ¼ 93:3 MeV and the pion mass M� ¼
138 MeV at vacuum, and Tc ¼ 173� 8 MeV at finite
temperature with no �q and �I [52–54]; note that Tc is a

much stronger constraint on G8 than M�, since M� has a
large error bar [32]. This parameter fitting is exactly the
same as that in Sec. II to determine the parameter set A.

We vary � from 573 to 651.5 MeV. The upper and the
lower bound of � are determined as follows. The QCD
sum rule yields the lower and the upper bound of j�j as
j�j ¼ ð225� 25 MeVÞ3 [56,57]. The absolute value of the
chiral condensate, j�j, increases as� goes up, and reaches
the upper bound of j�j when � ¼ 651:5 MeV. Thus, � ¼
651:5 MeV is the upper bound of�. Meanwhile, the lower
bound of � is determined by not the lower bound of j�j,
but the fact that no parameter set can reproduce f� ¼
93:3 MeV andM� ¼ 138 MeV simultaneously when�<
573 MeV. Although this fact is found by numerical calcu-
lations, it can be understood with reasonable approxima-
tions. At zero temperature, the thermodynamic potential of
the PNJL model is reduced to that of the NJL model, as
shown in (20). In the NJL model, the pion mass is obtained
by

M2
� ¼ �4m0�

ðM�m0ÞMIðM;M�Þ (27)

with

IðM;M�Þ ¼
8NfNc

2�2

Z �

0

p2dpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p ½4ðp2 þM2Þ �M2
��

;

(28)

where Nf and Nc are the numbers of colors and flavors,

respectively, and Nf ¼ 2 and Nc ¼ 3 in the present case.

Since M 
 m0 in (27), and M2 
 M2
� in (28), we then

neglect m0 in (27) and M� in (28), in order to understand
the mathematical structure of (27) and (28). Using the
approximate equations and the Gell-Mann-Oakes-Renner
relation, we have

NfNc

4�2
x2
�
ln
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p

x
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
p

�
¼ f2�

�2
; (29)

where x ¼ M=�. The left-hand side of (29) has a maxi-
mum at x ¼ 0:97, while the right-hand side increases
monotonously as � goes down. This means that there
exists a lower bound of � that satisfies (29). The lower

bound is � ¼ 573 MeV, although � obtained there is
within the constraint j�j ¼ ð225� 25 MeVÞ3 from the
QCD sum rule.
Table III presents three parameter sets, A, A’ and A’’,

obtained by the above procedure. Set A is the original
parameter set mentioned in Sec. II, set A’ is an example
of the parameter sets near the lower bound of�, and set A’’
is the parameter set at the upper bound of �. The value of
� in set A’’ is slightly larger than that in set A. This
indicates that set A’’ yields qualitatively the same phase
diagram as set A. Actually, we have confirmed this with
numerical calculations. Meanwhile, the phase diagram
calculated with set A’ is shown in Fig. 7. The phase
structure shows no qualitative difference from the result
of set A in Fig. 6(a), although the first-order chiral tran-
sition line (dot-dashed line) and the pion-superfluidity
phase-transition line (solid line) are slightly shifted down
by decreasing �. Furthermore, we have confirmed that
the phase diagram does not change qualitatively near the
lower bound. Thus, the order of the phase transition is
not changed by varying � in the range 573<�<
651:5 MeV. As a property of the parameter sets near the
lower bound of �, G8 is quite large. This means that the
higher-order multiquark interactions than the eight-quark
interaction may not be negligible there. However, this sort
of analyses is beyond the scope of the present work.
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FIG. 7 (color online). Phase diagram in the �I-�q plane at
T ¼ 0 calculated with set A’. See Fig. 6 for the definition of
lines.

TABLE III. Cutoff dependence of parameters. Here, T0 ¼ 203 MeV for the set A’, T0 ¼
212 MeV for the set A, and T0 ¼ 217 MeV for the set A’’.

Set Gs G8 m0 �

A’ 5:755 ½GeV�2� 1264:2 ½GeV�8� 5.77 [MeV] 580 [MeV]

A 4:673 ½GeV�2� 452:12 ½GeV�8� 5.5 [MeV] 631.5 [MeV]

A’’ 4:295 ½GeV�2� 351:32 ½GeV�8� 5.31 [MeV] 651.5 [MeV]
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C. Phase structure in the �q-T plane at �I ¼ 0

The phase diagram in the�q-T plane at�I ¼ 0 is shown

in Fig. 8. The solid curve shows a coexistence line of first-
order chiral and deconfinement phase transitions that ends
at ð�q; TÞ ¼ ð178 ½MeV�; 152 ½MeV�Þ. This point is a CEP
by definition and is known to be of second-order [8,10].
In general, once a first-order phase transition takes place
for some order parameter, the discontinuity propagates to
other order parameters unless the parameters are zero
[33,58]. The coexistence between the first-order chiral
and deconfinement phase transitions shown in Fig. 8 is a
typical case of the coexistence theorem. The dot-dashed
(dotted) line stands for a crossover deconfinement (chiral)
transition. The crossover chiral and deconfinement transi-
tions almost coincide with each other and end at the CEP.
Thus, a CEP exists in the present model. This CEP sur-
vives, even if the eight-quark interaction is switched off. In
the case of no eight-quark interaction, the CEP in the�q-T

plane at �I ¼ 0 moves to a CEP in the �I-�q plane at

T ¼ 0 of Fig. 6(b), as �I increases from zero. This behav-
ior of CEP is changed a lot by the eight-quark interaction,
as shown later in Fig. 10.

In principle, the Polyakov-potentialU depends on�q as

a consequence of the backreaction of the Fermion sector to
the gluon sector. Particularly, the �q dependence of the

parameter T0 in U is important and estimated by using
renormalization group arguments [22]:

T0ð�qÞ ¼ T�e
�ð1=
0bð�qÞÞ (30)

for bð�qÞ ¼ 29=ð6�Þ � 32�2
q=ð�T2

�Þwith
0 ¼ 0:304 and

T� ¼ 1:770 ½GeV�. Figure 9 shows effects of T0ð�qÞ on the
phase diagram in the �q-T plane at �I ¼ 0. Comparing

this figure with Fig. 8, we can see that the effect dose
not yield any qualitative change, but the location of CEP
is moved from ð�q; TÞ ¼ ð178 ½MeV�; 152 ½MeV�Þ to

ð�q; TÞ ¼ ð187 ½MeV�; 130 ½MeV�Þ. At small T, the effect

becomes negligible, since U itself tends to zero as T
decreases.

D. Phase structure in the �I-�q-T space

Figure 10 presents the phase diagram in the �I-�q-T

space. In this space, TCP and CEP emerge not at points but
on lines; precisely speaking, CEP appears on lines CD and
DA, while TCP does on lines GD and DA. Thus, CEP
moves from point C to A via D as �I increases from zero.
Meanwhile, TCP moves from point A to G via D as �q

increases from zero.
Line GE is a second-order pion-superfluidity transition

line in the �I-�q plane at T ¼ 0. A track of the line with
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FIG. 8 (color online). Phase diagram in the �q-T plane at
�I ¼ 0. The solid line is a coexistence line of first-order chiral
and deconfinement phase transitions. The dashed line stands for
the chiral crossover transition, while the dot-dashed line does for
the deconfinement crossover transition. Here, the eight-quark
interaction is taken into account in the PNJL model.
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Here, the eight-quark interaction is taken into account in the
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 0

 0.05

 0.1

 0.15

 0.2

 0  0.05  0.1  0.15  0.2  0.25  0.3

T
 [G

eV
]

µq [GeV]

1st order
cross over σ
cross over Φ

CEP

FIG. 9 (color online). Effect of �q-dependent T0 on the phase
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respect to increasing T becomes an area GEAD. Hence, the
pion-superfluidity transition is second order on the area.
Similarly, a track of line FG (GH) with respect to increas-
ing T becomes an area FGDC (GHBAD). In area FGDC,
the chiral and deconfinement transitions are of first order,
while the pion condensate is zero. In area GHBAD, all the
chiral, deconfinement and pion-superfluidity transitions
are of first order. The two areas smoothly connect to each
other, indicating that the thermodynamics in these areas are
controlled by R. Properties of lines and areas in Fig. 10 are
summarized in Table IV, while locations of points in
Fig. 10 are summarized in Table V.

Figure 11 presents the chiral susceptibility ~��, the
Polyakov-loop susceptibility ~��, and the pion susceptibil-
ity ~�� as a function of �q for the case of ð�I; TÞ ¼
ð0:075 ½GeV�; 0:140 ½GeV�Þ; these are plotted by the solid,
dashed and dotted curves, respectively. The�q dependence

of these susceptibilities correspond to a line parallel to the
�q axis in Fig. 10. The susceptibilities ~�� and ~�� have

peaks at the same position �q ¼ 187 MeV, indicating that

the chiral and deconfinement transitions are second order

there. This position corresponds to a point on line CD in
Fig. 10. Meanwhile, ~�� has a peak at�q ¼ 173 MeV. This

second-order critical point of the pion-superfluidity tran-
sition corresponds to a point on area ADGE in Fig. 10. As
an interesting feature, ~�� is discontinuous at �q ¼
173 MeV. This property will be analyzed in Sec. III E.
Figure 12 shows ~��, ~�� and ~�� as a function of �q for

the case of ð�I; TÞ ¼ ð0:100 ½GeV�; 0:169 ½GeV�Þ. All the
susceptibilities have peaks at the same position �q ¼
51 MeV, indicating that chiral, deconfinement and pion-
superfluidity transitions of second order take place simul-
taneously there. This critical point corresponds to a point
on line DA in Fig. 10. This is a TCP for �, and a CEP for �
and �. As an interesting feature, each of ~�� and ~�� has a
kink at �q ¼ 51 MeV. This property will be analyzed in

Sec. III E.
Now, the phase diagram in the �I-�q-T space is under-

stood more precisely by considering the �q-T plane at

four values of �I: each belongs to any of four regions,
(i) �I <�IðGÞ ¼ M�=2, (ii) �IðGÞ<�I <�IðDÞ,
(iii) �IðDÞ<�I <�IðAÞ, and (iv) �IðAÞ<�I, where
�IðXÞ is a value of �I at point X. The �q-T phase diagram

in region (i) is essentially equal to that in the�q-T plane at

�I ¼ 0, i.e., Fig. 8, since � is always zero there.
The �q-T phase diagram in region (ii) is a bit more

complicated, as shown in Fig. 13 where �I ¼ 75 MeV is
taken as an example. In Fig. 13, the thick-solid line ending
at TCP stands for a coexistence line of first-order chiral,
deconfinement and pion-superfluidity transitions. This is a
natural result of the coexistence theorem of the first-order

TABLE IV. Properties of areas and lines in Fig. 10. The phrase
‘‘1st’’ (‘‘2nd’’) means that the phase transition either in the area
or on the line is first (second) order. Blank means that no
significant transition takes place there.

area � � �

CDGF 1st � ¼ 0 1st

ABHGD 1st 1st 1st

ADGE 2nd

line � � �

CF 1st � ¼ 0 1st

CD CEP � ¼ 0 CEP

FG 1st � ¼ 0 � ¼ 0
AD CEP TCP CEP

DG 1st TCP 1st

GE 2nd � ¼ 0
EA 2nd

GH 1st 1st � ¼ 0

0

1

2

3

4

5

 0.16  0.17  0.18  0.19  0.2
µq [GeV]

χ∼

∼
∼σ
χπ
χΦ

FIG. 11 (color online). Chiral, pion and Polyakov-loop sus-
ceptibilities as a function of �q at ð�I; TÞ ¼ ð0:075 ½GeV�;
0:140 ½GeV�Þ. Here, the eight-quark interaction is taken into
account in the PNJL model. These are represented by the solid,
dashed and dotted, respectively. See Ref. [11] for the definition
of the susceptibilities. The ~�� and ~�� are multiplied by 10�3 and
10�5, respectively, but ~�� is not multiplied by any factor.

TABLE V. Locations of points in Fig. 10.

point ( T [GeV] , �q [GeV] , �I [GeV] )

A ( 0.169 , 0 , 0.320 )

B ( 0.166 , 0 , 0.350 )

C ( 0.152 , 0.178 , 0 )

D ( 0.136 , 0.190 , 0.084 )

E ( 0 , 0 , 0.069 )

F ( 0 , 0.295 , 0 )

G ( 0 , 0.270 , 0.069 )

H ( 0 , 0.223 , 0.350 )
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phase transition [33,58]. Meanwhile, on the thin-solid line
between TCP and CEP, first-order chiral and deconfine-
ment transitions coexist, but any first-order pion-
superfluidity transition does not take place, because � is
zero above the dashed line starting from TCP that repre-
sents a second-order pion-superfluidity transition.

The �q-T phase diagram in region (iii) is simpler than

that in region (ii). Figure 14 presents the �q-T plane at

�I ¼ 100 MeV belonging to region (iii). As shown by the
thick-solid line, all the first-order chiral, deconfinement
and pion-superfluidity transitions occur simultaneously
there. A second-order pion-superfluidity transition and a

crossover chiral transition occur on the dashed line start
from a point shown by triangle. This point is a TCP for �
and a CEP for � by definition. The point corresponds to a
point on line DA in Fig. 10.
The �q-T phase diagram in region (iv) is simple and

easily imaginable from Fig. 10. In this region, only a
coexistence line of first-order chiral, deconfinement and
pion-superfluidity transitions exists.

E. Properties of susceptibilities

Properties of the susceptibilities near the second-order
pion-superfluidity transition line, CEP and TCP are
investigated.
For simplicity, we take the following shorthand notation

for the curvature matrix C of (19):

C ¼ c�� A
AT K

� �
; (31)

where A ¼ ðc��; c��; c� ��Þ, AT is the transverse of A, and
the matrix K is expressed by

K ¼
c�� c�� c� ��

c�� c�� c� ��

c ��� c ��� c� ��

0
@

1
A: (32)

As shown in (13), � is an even function of �. Noting that

cXY (X, Y ¼ �, �, �, ��) are proportional to @2�=@X@Y;

therefore, we can find that c�� and cxy for x, y ¼ �, �, ��

are �-even, while cx� and c�y for x; y ¼ �;�; �� are

�-odd.
First, we consider the normal (� ¼ 0) phase including

the second-order pion-superfluidity transition line. Since
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FIG. 13 (color online). Phase diagram in the �q-T plane at
�I ¼ 75 MeV. Here, the eight-quark interaction is taken into
account in the PNJL model.
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FIG. 14 (color online). Phase diagram in the �q-T plane at
�I ¼ 100 MeV. Here, the eight-quark interaction is taken into
account in the PNJL model. The thick-solid line represents a
coexistence line of the first-order chiral, deconfinement and
pion-superfluidity transitions. On the dashed line, a second-order
pion-superfluidity transition and a crossover chiral transition
occur simultaneously.
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FIG. 12 (color online). Chiral, pion and Polyakov-loop
susceptibilities as a function of �q at ð�I; TÞ ¼ ð0:100 ½GeV�;
0:169 ½GeV�Þ. Here, the eight-quark interaction is taken into
account in the PNJL model. See Fig. 11 for the definition of
lines. ~�� and ~�� are multiplied by 1=20 and 10�4, respectively,
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� ¼ 0 in this phase, the�-odd quantities cx� and c�y for x,

y ¼ �, �, �� are zero. Therefore, C is reduced to

C ¼ c�� 0
0 K

� �
: (33)

Equation (33) shows the following properties.
1. On the second-order pion-superfluidity transition line,

the curvature c�� in the � direction is zero by definition of
the second-order transition. Therefore, det½C� ¼ 0. This
indicates that ~�� ¼ det½K�= det½C� diverges on the transi-
tion line, since det½K� is not zero in general.

2. If a CEP of the chiral phase transition appears in the
normal phase, the determinant det½K� is zero at the CEP;
see Ref. [10] for the details of this proof. Hence, ~�� is
divergent at the CEP because of det½C� ¼ c�� det½K� ¼ 0.

Properties 1 and 2 are understood clearly with numerical
results shown in Fig. 11. The peak of ~�� at �q ¼ ��

q ¼
173 MeV shows a second-order pion-superfluidity transi-
tion, while the peak of ~�� at �q ¼ ��

q ¼ 187 MeV does a

CEP in the normal phase. Hence, the thermal system is in
the normal phase (� ¼ 0) for �q >��

q and in the broken

phase (� � 0) for �q <��
q . Figure 15 shows det½C� and

det½K� as a function of �q at ð�I; TÞ ¼ ð0:075 ½GeV�;
0:140 ½GeV�Þ. It is found from this figure that det½C� ¼ 0
and det½K� � 0 at �q ¼ ��

q , while det½C� ¼ det½K� ¼ 0

at �q ¼ ��
q . Thus, properties 1 and 2 are confirmed to be

true by the numerical results.
Next, we consider the broken (� � 0) phase. Fig. 11 is a

good example. At �q slightly smaller than ��
q , � is small,

because � ¼ 0 at �q ¼ ��
q . Hence, any quantity can be

expanded into a power series of �. After the expansion, the

�-even quantities cxy (x, y ¼ �, �, ��) are of order ð�Þ0,

while the �-odd quantities c�y and cx� (x, y ¼ �, �, ��)

are of order ð�Þ1. The entry c�� is of order ð�Þ2, as shown
below. The stationary condition (17) for � is rewritten into

0 ¼ @�

@�
¼ @�

@�2

d�2

d�
¼ @�

@�2
2�; (34)

and hence

@�

@�2
¼ 0 (35)

because of� � 0. Expanding the�-even function� into a
power series of �2,

� ¼ X
n

an�
2n; (36)

one can see from (35) that

a1 ¼ 0: (37)

Hence, c�� ¼ T2@2�=@�@� is of order ð�Þ2. Therefore,
the matrix C is the following property in the broken phase:
3. At�q slightly smaller than��

q , c�� is of order ð�Þ2, A
and AT are of order ð�Þ1, and K is of order ð�Þ0.
Now, we consider the reason why ~�� is discontinuous at

�q ¼ ��
q in Fig. 11. The susceptibility ~�� is expressed by

~�� ¼ ���

det½C� ; (38)

where ��� is the cofactor of entry c�� in the matrix C.
Property 3 indicates that both ��� and det½C� are of order
ð�Þ2 in the broken phase at �q <��

q , so that the left-hand

limit of ~�� as �q approaches �
�
q is finite. As an important

point, the �-odd quantities contribute to this left-hand
limit. Meanwhile, the �-odd quantities are zero in the
normal-phase at �q >��

q , so that they do not contribute

to the right-hand limit of��� and det½C� as�q approaches

��
q . Thus, the right-hand limit of ~�� is different from the

left-hand limit of ~��.
In Fig. 12, all the susceptibilities, ~��, ~�� and ~��, have

peaks at the same position �q ¼ ��
q ¼ 51 MeV. The di-

vergence of ~�� means that in (38), the denominator det½C�
tends to zero faster than the numerator ��� as �q ap-

proaches��
q from the left-hand side. There is no guarantee

that such a strong damping of det½C� also happens in the
right-hand limit, because �-odd quantities c�y and cx� are

zero there. Actually, such a fast damping in the right-hand
limit does not occur here, as shown by the numerical
calculation. As �q approaches �

�
q , therefore, ~�� is diver-

gent in the left-hand limit, but finite in the right-hand limit.
This is the reason why ~�� has a kink at �q ¼ 51 MeV.

The fast damping of det½C� in both the left- and the right-
hand limit happens only on point D in Fig. 10, as shown
below. Figure 16 presents ~��, ~��, and ~�� as a function of
�q at �I ¼ 0:08425 GeV and T ¼ 0:136 GeV. All the

susceptibilities diverge at �q ¼ 0:190 GeV. This peak

-12
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 0.16  0.17  0.18  0.19  0.2
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FIG. 15 (color online). �q dependence of det½C� and det½K� at
T ¼ 0:14 ½GeV� and �I ¼ 0:075 ½GeV�. The solid (dashed) line
stands for det½C� ( det½K�). Here, the eight-quark interaction is
taken into account in the PNJL model. The det½C� is multiplied
by 6� 102.
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corresponds to point D in Fig. 10. In this case, obviously,
the susceptibilities have no kink. Therefore, det½C� tends to
zero faster than ��� in both the right- and the left-hand
limit. Point D is a meeting point of CEP and TCP. There is
no guarantee that such a special critical point always

happens. Actually, such a point does not appear if the
eight-quark interaction is switched off, as shown in
Fig. 17; here, line CD (AG) represents CEP (TCP) of the
chiral (pion-superfluidity) phase transition and there is no
meeting point between CEP and TCP.

IV. SUMMARY

Critical points such as CEP and TCP are important as
indicators of the chiral, deconfinement and pion-
superfluidity phase transitions in measurements at GSI,
SPS, RHIC and LHC. In the measurements, �I is not
zero generally. We have then predicted the phase diagram
of two-flavor QCD in the �I-�q-T space by using the

PNJL model with the scalar-type eight-quark interaction.
The PNJL model with the scalar-type eight-quark interac-
tion is consistent with the LQCD data [37] in the �I-T
plane at �q ¼ 0, while the original PNJL model without

the scalar-type eight-quark interaction is not.
In the �q-�I-T space, as shown in Fig. 10, a CEP in the

�q-T plane at �I ¼ 0 moves to a TCP in the �I-T plane

�q ¼ 0 as �I increases. Meanwhile, the TCP in the �I-T

plane at�q ¼ 0moves to aTCP in the�q-�I plane atT ¼ 0.

When�I <M�=2, the pion condensate� is zero andhence a
CEP exists but any TCP does not. When M�=2<�I &
80 MeV, a CEP and a TCP exist separately. And when�I *
80 MeV, they coexist. If the eight-quark interaction is
switched off, a CEP in the �q-T plane at �I ¼ 0 moves to

a CEP in the �q-�I plane at T ¼ 0 as �I increases; see

Fig. 17. Thus, the eight-quark interaction changes the QCD
diagram qualitatively in the �q-�I-T space.

When T is small, the thermodynamics at finite �I and

�q is controlled by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

p
. The quantity

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

p
is

an approximate order parameter of the chiral symmetry
over the I3-symmetric (� ¼ 0) and I3-symmetry broken
(� � 0) phases.
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