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We investigate the critical behavior of the three-dimensional, three-state Potts model in presence of a

negative external field h, i.e. disfavoring one of the three states. A genuine phase transition is present for

all values of jhj, corresponding to the spontaneous breaking of a residual Z2 symmetry. The transition is

first/second-order, respectively, for small/large values of jhj, with a tricritical field htric separating the two

regimes. We provide, using different and consistent approaches, a precise determination of htric; we also

compare with previous studies and discuss the relevance of our investigation to analogous studies of the

QCD phase diagram in presence of an imaginary chemical potential.
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I. INTRODUCTION

Potts models [1] have been often considered in literature
to reproduce the critical properties of more complex physi-
cal systems [2–16]. In the present work we are interested in
the 3-state Potts model defined on a three-dimensional
cubic lattice. The generic q-state Potts model is defined
by the following partition function:

Zð�;HÞ ¼ X
f�ig

e��ðE�HMÞ; (1)

where the spin variable�i lives on lattice site i and can take
q different possible values, e.g. �i 2 f0; 1; . . . ; ðq� 1Þg,
while � ¼ 1=ðkBTÞ. E and M denote, respectively, the
energy and magnetization with respect to a chosen refer-
ence spin value �� (e.g. �� ¼ 0):

E ¼ �J
X
hi;ji

��i;�j
(2)

M ¼ X
i

��i; �� (3)

where J is the coupling constant, H is an external applied
field and hi; ji in the sum denotes all pairs of nearest
neighbor lattice sites. In the following, as usual, we shall
set J ¼ 1 and make use of the normalized magnetic field
h � �H.

For h ¼ 0 the system has an exact symmetry, corre-
sponding to all possible global permutations of the q spin
values, i.e. the symmetry group is the group of permuta-
tions Sq. Such symmetry gets spontaneously broken below

a given critical temperature, where the spin variables align
themselves along a given direction. The corresponding
phase transition is first-order, in three dimensions, for
q � 3, and second-order for q ¼ 2 (the system coincides
with the Ising model in this case). For q ¼ 3 the critical
temperature is given by �cðh ¼ 0Þ ¼ 0:550565ð10Þ [8].

The critical properties of 3D Potts models with q ¼ 2 or
3 at h ¼ 0, have often been associated with those met at the

finite T phase transition of QCD (with 2 or 3 colors) in the
pure gauge limit, via the well-known Svetitsky-Yaffe con-
jecture [3]. The symmetry group which is spontaneously
broken in the high T, deconfined phase of SUðNÞ pure
gauge theories is that associated with center symmetry, ZN ,
corresponding to local gauge transformations which are
periodic in the Euclidean time direction only up to a global
group element belonging to the center of the gauge group.
The symmetry group coincides with the permutation group
for N ¼ 2, while for N ¼ 3 one has to add charge con-
jugation to center transformations to recover the full per-
mutation group S3. The corresponding order parameter in
pure gauge theories, playing the role of magnetization and
signalling the spontaneous breaking of center symmetry in
the deconfined phase, is the Polyakov loop, i.e. a closed
parallel transport in the Euclidean time direction.
For h � 0 the symmetry Sq is explicitly broken to a

residual Sq�1, corresponding to permutations among spin

values other than the chosen direction ��. The case h > 0,
in which alignment of spin variables along �� is favored,
has been extensively studied in the literature: one can still
distinguish two phases in which the system is more (low T)
or less (high T) aligned along ��, however in both phases
the residual Sq�1 symmetry stays unbroken, so that no real

phase transition is expected a priori. However, for q � 3,
the first-order transition present at h ¼ 0 persists also for
nonzero positive values of h, till a critical endpoint is met,
after which the transition disappears. Such critical end-
point is expected to be in the Ising 3D universality class
and for q ¼ 3 it has been located at ð�c; hcÞ ¼
ð0:54938ð2Þ; 0:000775ð10ÞÞ [9,12].
In the analogy with finite T pure gauge theories, the case

h > 0 corresponds to adding dynamical fermions of mass
m and in the fundamental representation of the gauge
group (the limit h ! 0 corresponding to m ! 1): that
induces an effective coupling to the Polyakov loop, which
breaks center symmetry and aligns the Polyakov loop
along the positive real direction, while the residual charge
conjugation symmetry stays unbroken for all values of T.
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The case h < 0 is quite different. Indeed in this case the
reference state �� is disfavored, so that low T ordering
happens along one of the remaining q� 1 states: there is
therefore an order/disorder transition associated with the
spontaneous breaking of the unbroken Sq�1 symmetry

group. Actually, in the limit of large jhj, the system becomes
completely equivalent to a (q� 1)-state Potts model at zero
magnetic field, since the disfavored state disappears from
the statistical ensemble. Therefore a true phase transition is
expected for every value of jhj, coinciding with the transi-
tion of q- or (q� 1)-state Potts model in the limit of zero or
infinite field, respectively.

In the present paper we shall discuss the case q ¼ 3 in
three dimensions, which is particularly interesting (as well
as the case q ¼ 5 in two dimensions), since in this case
the transition at h ¼ 0 is first-order, while the transition at
h ¼ �1 is second-order in the 3D Ising universality class.
Hence the expectation is that the first-order continues for
small values of jhj, until a tricritical point htric is met,
governed by mean field indexes, after which the transition
becomes second-order in the 3D Ising universality class.
An accurate verification of this scenario and the precise
location of the tricritical point is the aim of our study.
Notice that, for small jhj, we expect an interesting example
of system which may be naively believed in the Ising 3D
universality class because of symmetry reasons (the rele-
vant symmetry being Z2), but has instead a first-order
transition because of the interplay with different dynamical
degrees of freedom, corresponding to the disfavored state
�� in this case.
Going back to the correspondence with the critical prop-

erties of SUð3Þ lattice gauge theories, switching the sign of
h is like turning the boundary conditions of dynamical
fermions in the temporal direction from antiperiodic to
periodic: fermions are not thermal anymore and the
Euclidean temporal direction can then be viewed as a com-
pactified spatial direction; the effective coupling to the
Polyakov line changes sign, so that the Polyakov line tends
to align along one of the complex center elements below a
given compactification radius, thus breaking spontaneously
the residual charge symmetry (see e.g. Refs. [17–20] for
early lattice studies of the associated transition, which has
been studied in the context of orientfold planar equivalence
[21,22]). Alternatively, one can interpret the system as the
usual thermal theory in presence of a purely imaginary
quark number chemical potential such that Imð�Þ=T ¼ �:
in that case the Z2 breaking transition is interpreted as the
endpoint of the high T Roberge-Weiss (RW) transitions
which are met in the T-Imð�Þ plane [23].

The importance of this Z2 transition and of its order for
the general features of the QCD phase diagram has been
discussed extensively in recent literature [24–29]. In par-
ticular, its order has been investigated by lattice simula-
tions in QCD with two degenerate flavors in Ref. [26], and
more recently also for the three flavor theory [27]: in both

cases one finds a nontrivial phase structure, with the tran-
sition being first-order both for small and high quark
masses, and second-order in the middle. Such phase struc-
ture can be mapped to that of the Potts model with a
negative magnetic field, which is the subject of our study,
on the large mass side; on the other hand, on the small
quark mass side, chiral degrees of freedom come into play,
requiring a different effective model description. In the
context of the investigation of the QCD phase diagram, it
is of course particularly important to give precise estimates
of the tricritical values of the quark mass, separating the
second-order from the first-order regions.
The study of the 3D three-state Potts model in a negative

magnetic field can be placed in the more general context of
studies of the same model in complex magnetic fields
[11,12,27], aimed at mimicking the dynamics of QCD in
presence of a quark chemical potential, which have also
considered the properties of the tricritical point [27]. Our
purpose is that of performing a detailed study of the critical
behavior of the system as a function of h, with the specific
aim of determining the location of the tricritical field htric.
We will make use of different and consistent approaches in
order to do that: the strategy developed for this model and
the corresponding results can then be taken as a guideline
for the analogous determination of the tricritical masses for
the endpoint of the Roberge-Weiss transition in QCD [30].
The paper is organized as follows: in Sec. II we present

and discuss the different strategies used to investigate the
critical properties of the system; in Sec. III we present our
numerical results and finally, in Sec. IV, we give our
conclusions.

II. OBSERVABLES AND NUMERICAL
ANALYSIS SETUP

Natural observables for the Potts model are the energy
E, which is defined in Eq. (2), and the magnetization. As
for the latter, we replace it by a new quantity P which, in
the analogy with QCD, plays the role of the average
Polyakov line. In order to define P, let us associate with
each spin variable a complex number on the unit circle as
follows:

si ¼ exp

�
i2��i

3

�
; (4)

then we define

P ¼ 1

V

X
i

si; (5)

where V ¼ L3 is the lattice volume. Assuming that the
state coupled to the magnetic field is �� ¼ 0, the residual Z2

symmetry of the model corresponds to an exchange of the
states 1 and 2, i.e. to complex conjugation for the complex
spin variables si and for P. Therefore, while E and ReðPÞ
are even under the residual Z2 symmetry, ImðPÞ is odd and
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plays the role of the order parameter for the realization of
this symmetry.

The purpose of our investigation is that of determining
the location of the phase transition, its order and universal-
ity class, as a function of the magnetic field h, which is
taken to be negative. In order to do that, we shall consider
at first the susceptibility of the order parameter

� � L3ðhImðPÞ2i � hjImðPÞji2Þ (6)

and the specific heat of the system

C � L3ðhE2i � hEi2Þ: (7)

The scaling of the two quantities around the phase tran-
sition, as a function of the size of the system, is fixed by the
respective critical indexes

� ¼ L�=�	1ðtL1=�Þ (8)

and

C ¼ C0 þ L
=�	2ðtL1=�Þ; (9)

where C0 is a regular contribution and t � ðT � TcÞ=Tc is
the reduced temperature. In the following we will be
interested, in particular, in the scaling of the height of the
peaks, which is regulated by �=� and 
=�, respectively,
and in the scaling of the width of the peaks, which is
regulated by 1=� in both cases. The critical indexes which
are relevant to the different possibilities which may take
place (i.e. first-order, second-order in the 3D Ising univer-
sality class and mean field tricritical) are listed in Table I.

Another interesting quantity is the modulus of P, how-
ever it takes contribution both from the order parameter
and from the spin state coupled to the magnetic field, which
is Z2 even, hence its susceptibility is expected to be the
mixing of different contributions scaling like � or C,
respectively, apart from the limit h ! 1, in which case
the contribution of the state coupled to h is completely
suppressed and the system can be mapped exactly to a 3D
Ising model. We shall not consider such quantity in the
following.

It is interesting to notice that, while first-order scaling
and 3D Ising scaling are expected to take place for a
continuous range of values of h, tricritical scaling is in
principle expected only for a specific value htric, which we
want to determine, at the boundary between the first-order
and the second-order region. However, the correct expec-
tation is to have tricritical scaling regulating a neighbor-
hood of htric, with the size of the neighborhood going to

zero as L ! 1. Putting the question the other way around,
we expect to need increasingly large volumes to discrimi-
nate between first-order and 3D Ising second-order as we
approach the tricritical field htric from either side, since a
fictitious tricritical scaling will mask the true thermody-
namical limit for not large enough volumes (see Fig. 1 for a
graphical representation of that).
This reasoning can be made more quantitative by use of

the so-called crossover exponents: in the thermodynamical
limit, the true critical behavior of the system can be seen

only for jtj & p1=	, where t is the reduced temperature, p is
the parameter that controls the change of critical behavior
and	 is the crossover exponent (see e.g. [32–34]), which is
by definition 	 ¼ yp=yt (yt and yp are the renormalization

group eigenvalues of the relevant variables t and p). In our
case p / h� htric and 	 ¼ 1=2 [35]. On a finite lattice of

typical size L, jtj can be traded for L�1=� and the previous

condition becomes L * jh� htricj��=	; in particular, ac-
cording to the known tricritical indexes in Table I, one
expects tricritical behavior to dominate up to a critical size

Lc ’ Ajh� htricj�1 (10)

where A is some unknown constant which may be different
on the first-order and on the second-order side; a numerical
check of this behavior will be reported in Sec. IIIA (see, in
particular, Fig. 10). That implies that a correct and precise
determination of htric may be quite difficult if one looks at
the finite size scaling of susceptibilities or other quantities
alone.
As an alternative and easiest way to determine htric, we

shall determine quantities which give a measure of the
strength of the first-order transition, such as the latent
heat or the gap of the order parameter at the transition,
and study the variation of such quantities as a function of
h, in order to extrapolate the point htric where they vanish,
i.e. where the first-order disappears, without the need of
making simulations very close to htric.

TABLE I. Critical exponents (see e.g. [31,32]).

� � 
 �=� 
=�

3D Ising 0.6301(4) 1.2372(5) 0.110(1) �1:963 �0:175
Tricritical 1=2 1 1=2 2 1

1st Order 1=3 1 1 3 3

L

scalingtricritical

3D Ising
scaling

first order
scaling

h htric

FIG. 1. On finite volumes tricritical scaling is expected to
dominate a finite range of h values around htric, which shrinks
to zero as L ! 1.
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We shall consider, in particular, the Binder-Challa-
Landau cumulant [36] of the energy, which is defined as
B4 ¼ 1� hE4i=ð3hE2i2Þ. It can be shown (see e.g. [37])
that near a transition B4 develops minima whose depth
scales as

B4jmin ¼ 2

3
� 1

12

�
Eþ
E�

� E�
Eþ

�
2 þOðL�3Þ

¼ 2

3
� 1

3

�
�E

�

�
2 þOð�3

EÞ þOðL�3Þ (11)

where E� ¼ lim�!��
c
hEi, �E ¼ Eþ � E� and � ¼ 1

2 �
ðEþ þ E�Þ. In particular, the thermodynamical limit of
Bjmin is less than 2=3 if and only if a latent heat is present;
to simplify the notation in the following we will use the
shorthand B ¼ 2

3 � B4jmin.

A different, but analogous quantity is the gap of the
order parameter, �, which can be extracted by looking at
the scaling of the maximum of its susceptibility, �, and
using the relation, valid in the large volume limit for a first-
order transition,

�max � Aþ L3

4
�2: (12)

Both �E and � are expected to vanish as we approach
the tricritical field htric from the first-order side. In particu-
lar, the leading order expected behavior is the following
(see [35] or [38] for a brief summary):

�E / ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h� htric

p
(13)

and

� /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðh� htricÞ logðh� htricÞj

q
: (14)

Another useful quantity is the fourth-order cumulant of
the order parameter. This is usually defined by hM4i=hM2i2
([39,40]), where M is the order parameter, and is typically
used in the study of second-order transitions. Since in this
work we will analyze mainly region of the parameter space
in which first-order transitions are present, the connected
form

U4 ¼ hð�MÞ4i
hð�MÞ2i2 �M ¼ jImPj � hjImPji (15)

appears to be best suited to disentangle the fluctuations
inside a thermodynamical phase from the tunneling be-
tween the two sectors with different Z2 magnetization.
Another reason to prefer the connected form is that at the
critical point it develops a minimum, thus making it pos-
sible to obtain the value of the cumulant at the transition,
without introducing cross-correlations with other observ-
ables, or between different lattice size data. As a last point,
we note that the relative error of the cumulant value at
transition turned out to be smaller by a factor 2 for the
connected cumulant than for the usual one.

For a first-order transition it is simple to show that in the
thermodynamic limit U4 ! 1, by using a double Gaussian
approximation for the distribution of the order parameter.
For a second-order transition it can be shown that the value
of U4 at the transition is a renormalization group invariant
([39,40]), so that the intersection point of U4 calculated
on two lattices of different size can be used as an estimator
of the transition point. It can also be shown that the slope of
U4 at the transition point U�

4 satisfies the relation

@U4ðbLÞ
@U4ðLÞ

��������U�
4

¼ b1=� (16)

thus giving an estimate of the � critical index.

III. NUMERICAL RESULTS

The first-order transition, which is already quite weak at
h ¼ 0, gets weaker for negative h values, so that we do not
need to use algorithms specifically designed for strong
first-orders, like the multicanonical one. While approach-
ing the tricritical point autocorrelation times grow up,
however, since we will perform our simulations mainly in
the first-order region, this slowing down is not expected to
be too significant for our study. Numerical simulations
have thus been performed using a standard Metropolis
algorithm.
Collected statistics have been of the order of 107 � 108

independent configurations for all volumes and parameter
sets explored; numerical simulations have been performed
on GRID resources provided by INFN.

A. Discerning the critical behavior
from finite size scaling

One way to discern between a first-order and a second-
order critical behavior1 is to look at the distribution of
physical observables, like the energy, at the transition
point: that is expected to develop a double peak structure,
in the thermodynamical limit, for a first-order transition,
while it stays single peaked in the second-order case. In
Figs. 2 and 3 we show two examples, for h ¼ �0:0025 and
h ¼ �0:01, respectively, where the situation is quite clear:
h ¼ �0:0025 clearly belongs to the first-order region,
while h ¼ �0:01 appears to be on the second-order side.
Such conclusions are confirmed by looking at the scaling

of the height of the specific heat peak. For h ¼ �0:025
(see Fig. 4) a cubic term in L, which is characteristic of
first-order, nicely fits the behavior on the larger volumes.
For h ¼ �0:01 (see Fig. 5) the situation is also quite clear
and data correctly scale according to 3D Ising critical
indexes.

1For the sake of simplicity we will speak of ‘‘critical
behavior’’ also for the case of first-order transitions, although
this is not completely appropriate.
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What is less clear is the critical behavior of the specific
heat peak for h ¼ �0:005, which is shown in Fig. 6. Data
scale linearly with L, i.e. according to tricritical indexes,
for a large range of lattice sizes, with small deviations,
going in the direction of a smallest value of 
=� (hence in
the direction of the 3D Ising class), visible only on the
largest sizes explored, L > 100. Our subsequent analysis
will clearly show that for this value of h the system belongs
to the 3D Ising universality class, however it would have
been difficult to state that clearly from the scaling of the
specific heat alone: tricritical indexes regulate the system
behavior till L� 100, completely masking the correct
thermodynamical limit, which would be evident only on
much larger lattices. We expect the situation to be worse-1.8 -1.75 -1.7 -1.65 -1.6 -1.55

E/V

0

5

10

15

P(
E

/V
)

30
40
50
60

FIG. 3 (color online). Probability distribution of the energy
density for different lattice sizes and h ¼ �0:01, where the
transition is second-order.
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E
/V

)
30
40
50
60
70

FIG. 2 (color online). Probability distribution of the energy
density for different lattice sizes L and h ¼ �0:0025, where the
transition is first-order.
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FIG. 4 (color online). Scaling of the specific heat peak with L
for h ¼ �0:0025. �2=d:o:f: ’ 0:4 (range of fit: L > 50).
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0.175

FIG. 5 (color online). Scaling of the specific heat peak with L
for h ¼ �0:01. In this case the correct scaling with 3D Ising
critical indexes is visible already from moderate size lattices.
�2=d:o:f: ’ 0:95 (range of fit: L > 20).
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FIG. 6 (color online). Scaling of the specific heat peak with L
for h ¼ �0:005. According to our determination of htric, the
system belongs to the 3D Ising universality class, however data
scale according to tricritical indexes, with small deviations ap-
pearing only on the largest available volumes. �2=d:o:f: ’ 1:4
(lattices with L > 100 are not included in the fit).
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and worse as one gets closer to htric (see the previous
discussion in Sec. II).

The situation is even more difficult when studying the
scaling of the peak of the order parameter susceptibility, �,
since in this case the relevant critical index, �=�, practi-
cally coincides for the tricritical (�=� ¼ 2) and 3D Ising
cases (�=� ’ 1:963).

For h ¼ �0:0025 one clearly sees a first-order contri-
bution (see Fig. 7). Notice however that, in order to cor-
rectly fit data, it is necessary to take into account also a
small but nonzero contribution proportional to L2; this is
the dominant term in the case of tricritical scaling, there-
fore we can interpret that as evidence for a non-negligible
influence from a possibly close tricritical point. The fit

with the functional form aþ bL3 þ cL2 gives the esti-
mates for the parameters a ¼ 710ð70Þ, b ¼ 0:0139ð3Þ
and c ¼ �0:37ð3Þ, meaning that the tricritical corrections
to first-order is about 20% on the largest lattices explored
for this h value. For h ¼ �0:005 there is no hope to discern
between mean field and 3D Ising (see Fig. 8).
A better probe in this case is furnished by the width of

the susceptibility peak at half height, which is expected to

scale like L�1=�, since 1=� changes appreciably frommean
field tricritical to 3D Ising (see Table I). Data for the width
are shown in Fig. 9: two different regimes are visible,
the first for L < 100 regulated by the tricritical exponent
(� ¼ 1=2) and the second, for larger lattices, where this

0 50 100

L

0

2000

4000

6000

8000

χ m
ax

a + b L
2

FIG. 8 (color online). Scaling with L of the peak of the order
parameter susceptibility for h ¼ �0:005. In this case it is hard to
disentangle tricritical from 3D Ising scaling, since�=� ¼ 2 in the
first case and �=� ’ 1:968 in the second case. �2=d:o:f: ’ 1:4
(range of fit: L < 130).
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FIG. 7 (color online). Scaling with L of the peak of the order
parameter susceptibility for h ¼ �0:0025. The contribution of
two different terms, corresponding, respectively, to first-order
scaling and tricritical scaling, is needed to correctly fit our data.
�2=d:o:f: ’ 0:45 (range of fit: L> 50).
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FIG. 9 (color online). Scaling with L of the half height width
of the peak of the order parameter susceptibility for h ¼ �0:005.
While until moderate size the scaling is compatible with a
tricritical one, on larger volumes a deviation from the tricritical
behavior is clearly seen. �2=d:o:f: ’ 1:3 for the small volumes
(L < 100), �2=d:o:f: ’ 0:3 for the larger ones (L > 80).
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FIG. 10 (color online). On the vertical axis it is plotted the size
Lc such that for L > Lc the scaling of the maxima of the energy
susceptibility is well described by a first-order scaling. The
dashed (red) line is a fit of the form aþ b=jh� htricj where
htric ¼ �0:00415ð3Þ (see Sec. III B).
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index is sensibly larger, � ¼ 0:526ð3Þ. We explicitly note
that this value for � is to be regarded just as an ‘‘effective’’,
size dependent, index interpolating between the tricritical
(� ¼ 1=2) and Ising one (� ¼ 0:63). That confirms what
was already found by looking at the scaling of the specific
heat.

Let us summarize and comment the results contained in
this subsection. Discerning the correct critical behavior
from the finite size scaling analysis of susceptibilities or
other quantities may be a difficult task since, as expected,
tricritical behavior masks the correct asymptotic scaling
behavior for some range of lattice sizes, which increases as
we get closer to the tricritical field htric according to the
tricritical crossover exponents, as summarized in Eq. (10).

We have tried to verify quantitatively the prediction re-
ported in Eq. (10) by estimating, for each value of h on the
first-order side, the critical size Lc such that for L> Lc the
scaling of the maxima of the specific heat is well described
by a first-order scaling. Results are reported in Fig. 10:
Eq. (10) is well verified by using the value of htric obtained
and reported in Sec. III B.
The difficulties are generally larger on the second-order

side than on the first-order one, and we can easily under-
stand why: the growth of susceptibilities is larger for mean
field tricritical indexes than for 3D Ising critical indexes,
hence a fake tricritical behavior can mask 3D Ising indexes
for a large range of lattice sizes; on the other hand a first-
order behavior, which implies a faster growth of suscepti-
bilities with respect to the tricritical one, is in general more
easily detectable as a correction to tricritical behavior
starting from smaller lattice sizes. As a last comment, we
note that such difficulties make it preferable to look at the
scaling of the specific heat rather than at that of the order
parameter, since the critical index regulating the growth of
the specific heat with L, 
=�, changes more drastically
when going from first-order (
=� ¼ 3) to tricritical
(
=� ¼ 2) and to 3D Ising (
� ’ 0:175).
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FIG. 11 (color online). Binder-Challa-Landau cumulant of the
energy for h ¼ �0:0025> htric. B extrapolates to a nonzero
value as V ! 1. �2=d:o:f: ’ 1:4.
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FIG. 12 (color online). As in Fig. 11, for h ¼ �0:005< htric.
B goes to zero but the power law changes beyond a given size
separating tricritical from 3D Ising scaling: a ¼ �1:77ð1Þ and
b ¼ �1:98ð1Þ. �2=d:o:f: ’ 1:4 (L < 100) and �2=d:o:f: ’ 0:4
(L > 80), respectively.

TABLE II. Estimated values for the thermodynamical limit of
B and �2.

h B �2

�0:002 1:17ð2Þ � 10�3 1:45ð2Þ � 10�2

�0:0025 8:29ð6Þ � 10�4 1:28ð7Þ � 10�2

�0:003 5:1ð1Þ � 10�4 7:8ð3Þ � 10�3

�0:0035 2:78ð1Þ � 10�4 5:6ð3Þ � 10�3

�0:0038 1:7ð2Þ � 10�4 2:7ð4Þ � 10�3

�0:005 5ð11Þ � 10�6 �2ð2:8Þ � 10�4
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FIG. 13 (color online). Extrapolation of the Binder cumulant
and of the order parameter gap in order to extract the tricritical
value of the magnetic field htric.
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B. The latent heat, the order parameter
gap and determination of htric

As explained in Sec. II, we will now determine the
parameters that fix the strength of the first-order transition
taking place for small values of jhj, in order to extrapolate
the critical value htric at which the first-order disappears.
The parameters are the latent heat, or equivalently the
minimum of the Challa-Landau-Binder cumulant defined
in Eq. (11), and the gap of the order parameter, which can
be extracted from the large volume limit of the maximum
of its susceptibility �, see Eq. (12).

In Fig. 11 we show the quantity B (see Eq. (11) and the
related discussion) as a function of 1=V for h ¼ �0:0025.
It clearly extrapolates to a nonzero value for V ! 1,
a ¼ 8:35ð4Þ � 10�4, with both 1=V and 1=V2 corrections
visible in the range of explored volumes. For the same
value of h and using the same fit shown in Fig. 7, from the
coefficient of the cubic term in L we extract the order
parameter gap, �2 ¼ 1:689ð5Þ � 10�3. In Fig. 12 instead
we show the case h ¼ �0:005, together with a power law
fit B / La. If we try instead B ¼ b0 þ La we get for b0 the

result consistent with zero shown in Table II, indicating
that no latent heat is present.
We have applied the same procedure to all values of h

where the first-order transition is clearly detectable on
the explored volumes, obtaining the values for B and the
gap reported in Table II. From those values, and using
the expected behaviors reported in Eqs. (13) and (14), we
can fit the value of htric from both quantities. Results
are reported in Fig. 13: we obtain htric ¼ �0:00410ð5Þ
from the extrapolated minimum of the cumulant, and
htric ¼ �0:00412ð7Þ from the order parameter gap. The
two values are in perfect agreement with each other
and with the outcome of the finite size scaling analysis
reported above; however the finite size scaling analysis
alone would have not been able to locate htric with such
precision. We also notice that our determination for htric
is in good agreement with the results reported in
Refs. [12,27] (Fig. 5 in both references), whose estimate
was2 htric ¼ �0:00445ð20Þ.
As an alternative, independent way to locate htric,

we have studied the cumulant U4 defined in Eq. (15).
The theoretical expectation is that increasing the lattice
size U4 ! 1 for h > htric, U4 ! Utric

4 for h ¼ htric and

U4 ! UIsing
4 for h < htric. In particular the cumulants

calculated on different lattices are expected to intersect at

the tricritical point, with a slope increasing as L1=� (see
Eq. (16)), with � ¼ 1=2.
Numerical results for U4 are reported in Fig. 14 and

Table III; the location of the intersection point is deter-
mined by using the method exposed in [41], Sec. III B: a
scaling law of the form U4 ¼ fððh� htricÞLyÞ is assumed
and, since we are sufficiently close to the tricritical point,
we can develop fðxÞ in power series around x ¼ 0 (also

TABLE III. U4 values at the transition for different lattice
sizes and magnetic field.

h L ¼ 40 L ¼ 50 L ¼ 60 L ¼ 70 L ¼ 80

�0:0015 1.496(2) 1.410(2) 1.325(2) 1.244(2) . . .
�0:002 1.573(4) 1.512(5) 1.435(4) 1.367(2) 1.301(3)

�0:0025 1.648(4) 1.598(4) 1.542(5) 1.496(4) 1.431(5)

�0:003 1.710(2) 1.677(2) 1.646(3) 1.612(3) 1.573(4)

�0:0035 1.770(3) 1.745(4) 1.739(7) 1.719(6) 1.691(7)

�0:0038 1.794(4) 1.781(5) 1.782(6) 1.769(5) 1.761(6)

�0:005 1.880(4) 1.906(4) 1.913(7) 1.932(6) 1.955(5)

�0:01 2.080(6) 2.071(6) 2.121(7) 2.116(8) 2.123(9)
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FIG. 14 (color online). Binder cumulant of the order parameter
at the critical temperature, as defined in Eq. (15). The curves at
different volumes intersect at htric.
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FIG. 15 (color online). Slope of the Binder cumulant of the
order parameter at the critical temperature. The line is a linear fit.

2P. de Forcrand, private communication.
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scaling corrections are usually to be taken into account, see
the discussion in [41]); a fit is then performed in the
expansion parameters taking into account the data mea-
sured at different L values. By using data for �0:005 	
h <�0:002 and L � 40 the fit has 19 d.o.f. and
�2=d:o:f: ’ 0:8 The estimated location of the tricritical
point is htric ¼ �0:00415ð3Þ. In Fig. 15 it is shown that
the derivative of the cumulant scales with the expected
critical index.

C. Critical temperature

We conclude the presentation of our numerical results by
analyzing the behavior of the critical temperature as a
function of h, �cðhÞ. Our determinations of �c are sum-
marized in Table IV and they have been obtained by using
the number of phase criterion for first-order transitions
([8]), while for the second-order ones the crossing point
of the order parameter cumulant was used (see e.g. [40]).

We expect that for large negative values of h the state
coupled to the magnetic field disappears from the system
dynamics, which then becomes completely equivalent to
that of a 3D Ising system. That must be visible from the
behavior of �cðhÞ which should approach 2 times3

�cðIsingÞ ¼ 0:2216546ð10Þ ([42]) as h ! �1. In Fig. 16
we show the quantity�cðhÞ � 2�c (Ising), in the regime of
large jhj, which is expected to vanish in the same limit;
indeed we have verified that the functional behavior ex-
pected from a strong coupling expansion

�cðhÞ � 2�cðIsingÞ ¼ b1e
h þ b2e

2h þ b3e
3h (17)

fits our data with b1 ¼ 0:0514ð1Þ, b2 ¼ 0:0185ð5Þ,
b3 ¼ 0:0150ð5Þ and ~�2=d:o:f: ¼ 2:8. The agreement
is reasonable taking into account that our data are very

accurate and we truncate the strong coupling series just to
third-order.
In the opposite limit of small values of h, as shown in

Fig. 17, we have been able to fit the �ðhÞ dependence by a
third-order polynomial in h:

�cðhÞ ¼ ~b0 þ ~b1hþ ~b2h
2 þ ~b3h

3; (18)

with ~b0 ¼ 0:550500ð45Þ, ~b1 ¼ 0:676ð44Þ, ~b2 ¼ 26ð13Þ,
~b3 ¼ 2100ð1400Þ and ~�2=d:o:f: ¼ 2:5. We notice that b0
gives an estimate of the critical point position of the Potts
model without external field compatible with the known
result �cðh ¼ 0Þ ¼ 0:550565ð10Þ obtained in [8] and that
the slope of �cðhÞ at h ¼ 0� is different from the one
observed on the positive h side [9].
Finally, fitting data for �cðhÞ around htric, we can esti-

mate also the temperature location of the tricritical point
and state ð�tric; htricÞ ¼ ð0:5480ð1Þ;�0:00415ð3ÞÞ.

TABLE IV. Estimated values for �c at fixed h.

h �c

�0:0015 0.549537(4)

�0:002 0.549237(2)

�0:0025 0.548942(1)

�0:003 0.548652(1)

�0:0035 0.548358(3)

�0:0038 0.548199(2)

�0:005 0.5475152(6)

�0:01 0.545071(8)

�0:5 0.484166(5)

�1:0 0.465188(4)

�1:5 0.45576(1)

�2:0 0.450591(4)
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FIG. 16 (color online). Plot of �cðhÞ � 2�c (Ising). The line is
the result of a fit with the function in Eq. (17).
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FIG. 17 (color online). Plot of �cðhÞ. The line is the result of a
fit with the function in Eq. (18). The point at h ¼ 0 is the result
of [8] and is not included in the fit. The (red in color) spot on the
fitted line corresponds to our location of the tricritical point.

3This multiplicative factor is caused by a different normaliza-
tion in the Hamiltonians: the Ising one is usually written as a sum
of terms ��i�j ¼ �ð2��i�j

� 1Þ.
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IV. CONCLUSIONS

We have investigated the critical properties of the three-
dimensional three-state Potts model as a function of a
negative magnetic field coupled to one of the three spin
states. In this case the system possesses a residual exact
symmetry, which gets spontaneously broken at a critical
coupling �cðhÞ, which approaches twice the critical cou-
pling of the 3D Ising model for jhj ! 1. In particular, we
have determined the tricritical value htric at which the finite
temperature first-order transition, taking place for null or
small values of jhj, turns into a second-order transition in
the universality class of the 3D Ising model.

We have shown that, in proximity of the tricritical field
hcrit, it is difficult to determine the critical behavior from
the finite size scaling of susceptibilities alone, since, at a
given distance from hcrit, tricritical scaling masks the cor-
rect critical indexes up to a given lattice size Lmax, which is
regulated by tricritical crossover exponents (Lmax / jh�
htricj�1 in our case). A better strategy is to determine
parameters which fix the strength of the first-order region,
like the order parameter gap � or the latent heat �E, and
to determine htric as the value of h at which these parame-
ters extrapolate to zero. We also showed that the order
parameter cumulant is another very useful quantity to
look at. In this way we have obtained the quite accurate

estimate htric ¼ �0:00415ð3Þ, which is in agreement with
previous determinations reported in Refs. [12,27].
Although in this work the cumulant method has proved
to be the most efficient, which of the studied methods is to
be preferred to locate a tricritical point should be model
dependent.
Our results may be useful in lattice QCD studies aimed

at determining the order and universality class of the
Roberge-Weiss endpoint, and the values of the tricritical
masses separating the second-order from the first-order
regions both for two [26,30] and three [27] degenerate
flavors. In particular, we expect that distinguishing the
correct critical behavior on feasible lattice sizes will be
increasingly difficult as we approach the tricritical masses,
the specific heat being more sensitive anyway than the
order parameter susceptibility. An accurate determination
of the tricritical masses may be based, for instance, on a
careful study of the transition strength as a function of h in
the first-order regions.
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