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We present a high precision lattice calculation of the average up/down, strange, and charm quark

masses performed with Nf ¼ 2 twisted-mass Wilson fermions. The analysis includes data at four values

of the lattice spacing and pion masses as low as ’ 270 MeV, allowing for accurate continuum limit and

chiral extrapolation. The strange and charm masses are extracted by using several methods, based on

different observables: the kaon and the �s meson for the strange quark and the D, Ds, and �c mesons for

the charm. The quark mass renormalization is carried out nonperturbatively using the regularization

independent momentum–subtraction renormalization (RI-MOM) method. The results for the quark

masses in the modified minimal subtraction (MS) scheme read: �mudð2 GeVÞ ¼ 3:6ð2Þ MeV,

�msð2 GeVÞ ¼ 95ð6Þ MeV, and �mcð �mcÞ ¼ 1:28ð4Þ GeV. We also obtain the ratios ms=mud ¼ 27:3ð9Þ
and mc=ms ¼ 12:0ð3Þ.
DOI: 10.1103/PhysRevD.82.114513 PACS numbers: 12.38.Gc

I. INTRODUCTION

A precise knowledge of the values of the quark masses is
of great importance for testing the standard model of par-
ticle physics. From a phenomenological point of view,
several useful observables to constrain the standard model
or to search for new physics depend on quark masses, thus
requiring accurate quark mass values in order to allow for
significant theory/experiment comparisons. From a more
theoretical side, explaining the quark mass hierarchy,
which is not predicted by the standard model, is a deep
issue and a great challenge. Lattice QCD calculations play
a primary role in the determination of quark masses.
Recently, the progress achieved thanks to several high
statistics unquenched simulations is leading to a significant
reduction of the uncertainty on the quarkmass values [1–6].

In this article we present an accurate determination of
the average up/down, strange, and charm quark masses
performed by the European Twisted-Mass Collaboration
(ETMC) with Nf ¼ 2 maximally twisted-mass Wilson

fermions. The high precision of this analysis is mainly
due to the extrapolation of the lattice results to the con-
tinuum limit, based on data at four values of the lattice
spacing, to the well controlled chiral extrapolation, which
uses simulated pion masses down to M� ’ 270 MeV, and
to the use of the nonperturbative renormalization constants
calculated in [7]. The only systematic uncertainty which is
not accounted for by our results is the one stemming from
the missing strange and charm quark vacuum polarization
effects. Those are not accessible to us with Nf ¼ 2 flavor

simulations. However, a comparison of Nf ¼ 2 results for

the up/down and strange quark masses to already existing
results from Nf ¼ 2þ 1 quark flavor simulations [8] in-

dicates that, for these observables, the error due to the
partial quenching of the strange quark is smaller at present
than other systematic uncertainties. The same conclusion is
expected to be valid for the effects of the strange and charm
partial quenching in the determination of the charm quark
mass.
In this work, the calculation of the isospin averaged up/

down quark mass, based on the study of the pion mass and
decay constant, closely follows the strategy of [9]. At
variance with the latter, however, in the present analysis
we include data at four values of the lattice spacing, and
use the same lattice setup for all quark mass analyses.
For the strange quark mass, the main improvement with

respect to our previous work [10], which used data at a
single lattice spacing only, is the continuum limit.
Moreover, the chiral extrapolation is performed by using
either SU(2)- or SU(3)-chiral perturbation theory (ChPT).
In order to extract the strange quark mass we have used
both the kaon mass and the mass of the (unphysical) �s

meson composed of two degenerate valence strange
quarks. In both cases, the ultimate physical input is the
kaon mass, together with the pion mass and decay constant.
For the charm quark mass, similarly to the strange quark,

we have investigated several experimental inputs to extract
its value: the mass of the D, Ds, and �c mesons. In the
charm quark sector discretization effects require some care
and having data at four lattice spacings helps in performing
the continuum limit.
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The results that we obtain for the quark masses are, in

the modified minimal subtraction (MS) scheme,

�mudð2 GeVÞ ¼ 3:6ð1Þð2Þ MeV ¼ 3:6ð2Þ MeV;

�msð2 GeVÞ ¼ 95ð2Þð6Þ MeV ¼ 95ð6Þ MeV;

�mcð �mcÞ ¼ 1:28ð3Þð3Þ GeV ¼ 1:28ð4Þ GeV; (1)

where the two separate errors are, respectively, statistical
and systematic. We also obtain for the ratios of quark
masses the values

ms=mud¼27:3ð5Þð7Þ¼27:3ð9Þ; mc=ms¼12:0ð3Þ; (2)

which are independent of both the renormalization scheme
and scale.

II. SIMULATION DETAILS

The calculation is based on the Nf ¼ 2 gauge field con-

figurations generated by the ETMC with the tree-level
improved Symanzik gauge action [11] and the twisted-
mass quark action [12] at maximal twist, discussed in detail
in [9,13–16]. We simulated Nf ¼ 2 dynamical quarks,

taken to be degenerate inmass,whosemasses are eventually
extrapolated to the physical isospin averagedmass of the up
and down quarks. As already mentioned, the strange and
charm quarks are quenched in the present calculation.

The use of the twisted-mass fermions turns out to be
beneficial, since the pseudoscalar meson masses, which
represent the basic ingredient of the calculation, are auto-
matically improved at OðaÞ [17]. As discussed in
[10,18,19], we implement nondegenerate valence quarks
in the twisted-mass formulation by formally introducing a
twisted doublet for each nondegenerate quark flavor. In the
present analysis we thus include in the valence sector three

twisted doublets, ðu; dÞ, ðs; s0Þ, and ðc; c0Þ, with masses
�l, �s, and �c, respectively. Within each doublet, the
two valence quarks are regularized in the physical basis
with Wilson parameters of opposite values, r ¼ �r0 ¼ 1.
Moreover, we only consider in the present study pseudo-
scalar mesons composed of valence quarks regularized
with opposite r. This choice guarantees that the squared
meson mass m2

PS differs from its continuum counterpart

only by terms of Oða2�qÞ and Oða4Þ [20,21].
Details of the ensembles of gauge configurations used in

the present analysis and the values of the simulated valence
quark masses are collected in Tables I and II, respectively.
In order to investigate the properties of the various light,
strange, and charmed mesons, we simulate the sea and

valence up/down quark mass in the range 0:15m
phys
s &

�l & 0:5mphys
s , the valence strange quark mass within

0:8m
phys
s & �s & 1:5m

phys
s , and the valence charm quark

mass within 0:9mphys
c & �c & 2:0mphys

c , with mphys
s and

m
phys
c being the physical strange and charm masses. Quark

propagators with different valence masses are obtained
using the so-called multiple mass solver method [22,23],
which allows inverting the Dirac operator for several
valence masses at a relatively low computational cost.
The statistical accuracy of the meson correlators is sig-

nificantly improved by using the so-called ‘‘one-end’’
stochastic method, implemented in [24], which includes
all spatial sources at a single time slice. Statistical errors on
the meson masses are evaluated using the jackknife proce-
dure. With 16 jackknife bins for each configuration en-
semble we have verified that autocorrelations are well
under control. Statistical errors on the fit results which
are based on data obtained from independent ensembles
of gauge configurations are evaluated using a bootstrap

TABLE I. Details of the ensembles of gauge configurations used in the present study: value of
the gauge coupling �; value of the lattice spacing a; lattice size V ¼ L3 � T in lattice units; bare
sea quark mass in lattice units; approximate value of the pion mass; approximate value of the
product m�L; number of independent configurations Ncfg.

Ensemble � a½fm� V=a4 a�sea m�½MeV� m�L Ncfg

A2 3.8 0.098 243 � 48 0.0080 410 5.0 240

A3 0.0110 480 5.8 240

B1 3.9 0.085 243 � 48 0.0040 315 3.3 480

B2 0.0064 400 4.1 240

B3 0.0085 450 4.7 240

B4 0.0100 490 5.0 240

B7 3.9 0.085 323 � 64 0.0030 275 3.7 240

B6 0.0040 315 4.3 240

C1 4.05 0.067 323 � 64 0.0030 300 3.3 240

C2 0.0060 420 4.5 240

C3 0.0080 485 5.2 240

D1 4.2 0.054 483 � 96 0.0020 270 3.5 80

D2 0.054 323 � 64 0.0065 495 4.3 240
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procedure, with 100 bootstrap samples, which properly
takes into account cross correlations.

The analysis is based on a study of the dependence of
meson masses on renormalized quark masses, with data at
the four simulated values of the lattice spacing simulta-
neously analyzed. For the quark mass renormalization
constants Z� ¼ Z�1

P we use the results obtained in [7],

which read

ZPj� ¼ f0:411ð12Þ; 0:437ð7Þ; 0:477ð6Þg
at � ¼ f3:8; 3:9; 4:05g; (3)

in theMS scheme at 2 GeV. The errors given in Eq. (3) are
those quoted in [7] and do not account either for discreti-
zation errors or for the uncertainty associated with the
perturbative conversion from the regularization indepen-
dent momentum–subtraction renormalization (RI-MOM)

to the MS scheme. The former are taken care of by per-
forming on the renormalized quark masses the extrapola-
tion to the continuum limit. The uncertainty associated

with the conversion from the RI-MOM to the MS scheme
is included in our final estimate of the systematic error on
the quark masses and will be discussed in Sec. III. For
the renormalization constant at � ¼ 4:2, not calculated in

[7], we use the preliminary result ZMS
P ð2 GeVÞj4:2 ¼

0:501ð20Þ, where the conservative uncertainty is due to
the preliminarity of the result.

The uncertainty on ZP has been taken into account by
including in the definition of the �2 to be minimized in the
fits a term

ð ~Zi
PðaÞ � Zi

PðaÞÞ2
�ZPðaÞ2

; (4)

for each value of the lattice spacing and for each bootstrap
sample, where Zi

PðaÞ � �ZPðaÞ is the input value for the
renormalization constant at the lattice spacing a and for the
bootstrap i, and ~Zi

PðaÞ the corresponding fit parameter.
This procedure corresponds to assuming for the renormal-
ization constant a Bayesian Gaussian prior [9,25].
The simultaneous analysis of data at different values of

the lattice spacing also requires the data conversion from
lattice units to a common scale. For the analysis in the pion
sector, we have expressed all dimensionful quantities in
units of the Sommer parameter r0 [26]. We use for r0=a in
the chiral limit the values

r0
a

���������
¼ f4:54ð7Þ; 5:35ð4Þ; 6:71ð4Þ; 8:36ð6Þg

at � ¼ f3:8; 3:9; 4:05; 4:2g; (5)

obtained from an extension of the analyses in [9,14] with
the inclusion of all four lattice spacings. As in [9], the
chiral extrapolation of r0=a is performed by using three
Ansätze for the sea quark mass dependence: linear only,
quadratic only, and quadraticþ linear. The size of mass-
dependent discretization effects is verified by including in
the fits Oða2mlÞ and Oða2m2

l Þ terms, which turn out to be

negligible. The uncertainties on the results given in Eq. (5)
include the systematic errors estimated as the spread
among the values obtained from the above-mentioned
fits. In the present analysis the uncertainty on the r0=a
values is taken into account by adding a term to the �2 of
the fit in a similar way to ZP, as explained above.
The analysis in the pion sector is also used to determine,

besides the value of the average up/down quark mass at the
physical point, the lattice spacing at each coupling �. The
physical input used for this determination is the pion decay
constant f�. In the successive determination of the strange

TABLE II. Values of simulated bare quark masses in lattice units for each configuration
ensemble in the light, strange, and charm sectors.

a�l a�s a�c

A2–A3 0.0080, 0.0110 0.0165, 0.0200 0.2143, 0.2406

0.0250, 0.0300 0.2701, 0.3032

B1–B4 0.0040, 0.0064, 0.0150, 0.0180 0.2049, 0.2300

0.0085, 0.0100 0.0220, 0.0270 0.2582, 0.2898

B7 0.0030 0.0150, 0.0180 0.2049, 0.2300

0.0220, 0.0270 0.2582, 0.2898

B6 0.0040 0.0150, 0.0180 0.2049, 0.2300

0.0220, 0.0270 0.2582, 0.2898

C1–C3 0.0030, 0.0060, 0.0120, 0.0135 0.1663, 0.1867

0.0080 0.0150, 0.0180 0.2096, 0.2352

D1 0.0020 0.0130, 0.0150 0.1670, 0.1920

0.0180 0.2170

D2 0.0065 0.0100, 0.0120 0.1700, 0.2200

0.0150, 0.0190 0.2700
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and charm quark masses, the data are analyzed directly in
physical units.

III. UP/DOWN QUARK MASS

The calculation of the up/down quark mass follows the
strategy of [9]. The analysis is repeated here including
simultaneously all data available at the four values of the
lattice spacing.

We have studied the dependence of the pion mass and
decay constant on the renormalized quark mass. For these
quantities the predictions based on next-to-leading order
(NLO) ChPT and the Symanzik expansion up toOða2Þ can
be written in the form

m2
� ¼ ð2B0mlÞ �

2
41þ 2B0ml

16�2f20
log

�
2B0ml

16�2f20

�

þ P1ml þ a2 �
�
P2 þ P3 log

�
2B0ml

16�2f20

��35;

f� ¼ f0 �
2
41� 2

2B0ml

16�2f20
log

�
2B0ml

16�2f20

�

þ P4ml þ a2 �
�
P5 þ P6 log

�
2B0ml

16�2f20

��35; (6)

where ml is the renormalized light quark mass and B0 and
f0 are the low energy constants entering the leading order
(LO) chiral Lagrangian.1

The coefficients of the discretization terms of
Oða2ml logðmlÞÞ receive a contribution from the Oða2Þ

splitting between the neutral and charged pion (squared)
mass, �m2

� ¼ m2
�0 �m2

�� , which occurs with twisted-

mass fermions. This contribution has been recently eval-
uated in [27]. Our main results are obtained through a fit of
Eq. (6), with the coefficients P3 and P6 obtained by ex-
panding the results of [27] up to Oða2Þ. We have also
verified that the results obtained in this way are indistin-
guishable from those obtained using directly the resummed
formulas of [27]. From our fit, the splitting �m2

� turns out
to be determined with an uncertainty of approximately
60%. We obtain �m2

� ¼ �ð33� 19Þa2�4
QCD, which is

consistent with a direct ETMC determination performed
with two lattice spacings (�m2

� ¼ �50a2�4
QCD [28]). On

the final result for the light quark mass the impact of this
correction is at the level of the fitting error.
Lattice results for pion masses and decay constants have

been corrected for finite size effects (FSEs) evaluated using
the resummed Lüscher formulas. The effect of the Oða2Þ
isospin breaking has been taken into account also in these
corrections [29]. On our pion data, FSEs vary between
0.2% and 2%, depending on the simulated mass and vol-
ume. The inclusion of the pion mass splitting in the FSEs
induces a variation of about 15%–40% in the finite size
correction itself. This effect is at the level of one-third of
the statistical error for our lightest pion mass at � ¼ 3:9 on
the smaller volume, and even smaller in the other cases.
In Fig. 1 (left) we show the dependence of r0m

2
�=ml on

the renormalized light quark mass at the four �’s, and the
curves corresponding to the best fit of the lattice data
according to Eq. (6).
In order to illustrate the dependence of the pion mass on

the lattice cutoff, we have interpolated the lattice data for
m2

� at the four values of the lattice spacing to a common
reference value of the light quark mass, �mref

ud ¼ 50 MeV.
The resulting values of ðr0m�Þ2 obtained in this way are
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FIG. 1 (color online). Left: Dependence of r0m
2
�= �ml on the renormalized light quark mass at the four lattice spacings. Right:

Dependence of ðr0m�Þ2 on the squared lattice spacing, for a fixed reference light quark mass ( �mref
ud ¼ 50 MeV). Empty diamonds

represent continuum limit results.

1The pseudoscalar decay constant in the chiral limit, f0, is
normalized such that f� ¼ 130:7 MeV at the physical point.
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shown in Fig. 1 (right) as a function of a2, together with the
corresponding continuum extrapolation. We see that dis-
cretization errors on the pion mass square are below 10% at
� ¼ 3:9 and negligible within the fitting errors at � ¼ 4:2.

The value of the physical up/down quark mass is ex-
tracted from the ratio m2

�=f
2
� using as an input the

experimental value of the latter ratio.2 In order to estimate
the systematic uncertainty due to discretization effects we
have performed both a fit without the logarithmic discre-
tization terms, i.e., with P3 ¼ P6 ¼ 0 in Eq. (6) (the so-
called fit B of [9]), and a fit without all Oða2Þ corrections,
i.e., with P2 ¼ P3 ¼ P5 ¼ P6 ¼ 0 (the so-called fit A of
[9]). Both these Ansätze turn out be compatible with the
lattice data. We find that the result for the up/down quark
mass decreases by approximately 2% and increases by
about 6% in the two cases, respectively, so that we estimate
an overall uncertainty due to residual discretization effects
of �4%. We have also tried to add in the fit discretization
terms of Oða2m2

l Þ or Oða4Þ. In both cases these terms turn

out to be hardly determined with our data, leading for mud

to results consistent with those obtained from the other fits,
but with uncertainties larger by a factor 3.

For estimating the systematic uncertainty due to the
chiral extrapolation we have also considered a fit including
a next-to-next-to-leading order local contribution propor-
tional to the light quark mass square. In this case we are not
able to determine all the fitting parameters and we are thus
forced to introduce, on the additional low energy constants,
priors as in [9]. In this way we find that the result for mud

increases by 6%.
The results of the fits described above are collected in

Table III in the Appendix.
As anticipated in the previous section, we also include in

the final result a systematic uncertainty coming from the
perturbative conversion of the quark mass renormalization

constant from the RI-MOM to the MS scheme. Using the
results of the 3-loop calculation of [31], one can write the
relation between the quark mass in the two schemes as

�mð�Þ
mRIð�Þ ¼ 1� 0:424�sð�Þ � 0:827�sð�Þ2

� 2:126�sð�Þ3 þOð�sð�Þ4Þ: (7)

The uncertainty due to the truncation of the perturbative
series has been conservatively estimated by assuming the

unknown Oð�4
sÞ term to be as large as the Oð�3

sÞ one.
Evaluating this term at the renormalization scale � ’
3 GeV, which is the typical scale of the nonperturbative
RI-MOM calculation in our simulation [7], and using
�sð3 GeV; Nf ¼ 2Þ ¼ 0:202, we then find that this uncer-

tainty corresponds to approximately �2%.
Adding in quadrature the three systematic errors dis-

cussed above we obtain �mud ¼ 3:55ð14Þðþ28
�16Þ MeV in the

MS scheme at the renormalization scale of 2 GeV, where
the two errors are statistical and systematic, respectively.
Finally we symmetrize the error, obtaining

�mudð2 GeVÞ ¼ 3:6ð1Þð2Þ MeV ¼ 3:6ð2Þ MeV: (8)

Note that, in the symmetrized result, the uncertainties due
to discretization effects, chiral extrapolation, and perturba-
tive conversion give similar contributions to the final sys-
tematic error, at the level of 4%, 3%, and 2%, respectively.
Using as an input the experimental value of the pion

decay constant, the fits also provide us with the values of
lattice spacing at the four simulated �’s, which are
used in the rest of the analysis. They read, at � ¼
f3:8; 3:9; 4:05; 4:2g, respectively,

aj� ¼ f0:098ð3Þð2Þ; 0:085ð2Þð1Þ;
0:067ð2Þð1Þ; 0:054ð1Þð1Þg fm; (9)

where again the two errors are statistical and systematic.
The results in Eqs. (8) and (9) are in good agreement with
the previous ETMC determination obtained in [9] from the
analysis of data at � ¼ 3:8, 3.9, and 4.05.
We observe that, in principle, the ratio of lattice spacings

at two different � values could be determined from the fit
of the pion meson mass and decay constant, without using
the additional information coming from the values of r0=a
of Eq. (5). With our data, however, the uncertainties on the
values of the quark mass renormalization constant, as well
as the a priori unknown size of discretization errors affect-
ing the pion masses and decay constants, do not allow us to
achieve a reliable determination of these ratios.

IV. STRANGE QUARK MASS

In this section, we first present the determination of the
strange quark mass based on the study of the kaon meson
mass. The alternative determination based on the study of
the �s meson will be discussed later on.
Since the valence strange quark mass has not been

previously tuned in our simulation, the determination of
the physical strange quark mass requires an interpolation
of the lattice data. As already mentioned, for all values of
the lattice couplings, the simulated values of the strange

quark masses are approximately in the range 0:8m
phys
s &

�s & 1:5m
phys
s .

In order to better discriminate the strange quark mass
dependence of the kaon masses on other dependencies,
in particular, discretization effects, we firstly slightly

2In order to account for the electromagnetic isospin breaking
effects which are not introduced in the lattice simulation, we
have used in the present analysis as ‘‘experimental’’ values of the
pion and kaon mass the combinations [30]

ðM2
�ÞQCD ¼ M2

�0 ;

ðM2
KÞQCD ¼ 1

2
½M2

K0 þM2
Kþ � ð1þ�EÞðM2

�þ �M2
�0 Þ�;

with �E ¼ 1. The values of the experimental inputs for the pion
and kaon masses are then m

exp
� ¼ 135:0 MeV, m

exp
K ¼

494:4 MeV.
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interpolate the lattice data to three reference values of the
strange quark mass, which are chosen to be equal at the
four lattice spacings: �mref

s ¼ f80; 95; 110g MeV. The inter-
polations to the reference masses are performed by using
quadratic spline fits. Then, at fixed reference strange mass,
we simultaneously study the kaon mass dependence on the
up/down quark mass and on discretization effects, thus
performing the chiral extrapolation and taking the contin-
uum limit. In this step, we have considered chiral fits based
either on SU(2)-ChPT [3,32], where the chiral symmetry is
assumed for the up/down quark only, or on partially
quenched SU(3)-ChPT [33], where instead also the valence
strange quark is treated as light. In order to extrapolate the
kaon mass values to the continuum and to the physicalmud

limit, we use the results for the average up/down quark
mass and for the lattice spacings obtained in Eqs. (8) and
(9), at each reference value of the strange quark mass.
Finally, we study the kaon mass dependence on the strange
quark mass, and determine the value of the physical strange
quark mass using the experimental value of mK.

Let us describe the chiral fits in more detail. As dis-
cussed above, fits are performed in two steps: (1) the
strange quark mass is fixed to the reference values and
only theml and a

2 dependence of the kaon mass is studied;
(2) the so obtained data in the continuum limit and at the
physical mud value are studied as a function of the strange
quark mass. In these two steps, we have considered for the
kaon meson mass functional forms based on the predic-
tions of either NLO SU(2)-ChPT [3], which predicts the
absence at this order of chiral logs,

ð1Þ m2
Kðms;ml; aÞ

¼ Q1ðmsÞ þQ2ðmsÞml þQ3ðmsÞa2; 8 ms; (10)

ð2Þ m2
Kðms;m

phys
l ; a ¼ 0Þ

� Q1ðmsÞ þQ2ðmsÞmphys
l ¼ Q4 þQ5ms; (11)

or SU(3)-ChPT [33]

ð1Þ m2
Kðms;ml; aÞ ¼ B0 � ðms þmlÞ � ð1þQ6ðmsÞ

þQ7ðmsÞml þQ8ðmsÞa2Þ; 8 ms; (12)

ð2Þm2
Kðms;m

phys
l ;a¼0Þ

�B0 � ðmsþm
phys
l Þ � ð1þQ6ðmsÞþQ7ðmsÞmphys

l Þ
¼B0 � ðmsþm

phys
l Þ �

�
1þ 2B0ms

ð4�f0Þ2
log

2B0ms

ð4�f0Þ2
þQ9ms

�
;

(13)

where B0 and f0 are determined from the pion fit described
in the previous section. Note that the dependence of the
kaon mass on the strange quark mass is not determined by
the chiral symmetry in the SU(2) theory. We find that, with
our choice of three reference strange masses around the
physical value, a linear fit as given in Eq. (11) is perfectly
adequate to describe the data.
For illustration we show in Fig. 2 the combined chiral/

continuum fit based on SU(2)-ChPT, Eq. (10), for a fixed
reference value of the strange quark mass, as a function of
the light quark mass (left) and of the squared lattice spacing
(right). In Fig. 3 the dependence on the strange quark mass
is shown, in the case of the SU(2) analysis [see Eq. (11)].
The dependencies are shown for the kaon squared mass as
well as for the �s squared mass discussed hereafter.
As an alternative way to determine the strange quark

mass we have studied the dependence on ms of a meson
made up of two strange valence quarks [5]. The advantage
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FIG. 2 (color online). Left: Dependence of m2
K and m2

�s on the renormalized light quark mass, for a fixed reference strange quark
mass ( �mref

s ¼ 95 MeV) and at the four lattice spacings. The orange vertical line corresponds to the physical up/down mass. Right:
Dependence of m2

K and m2
�s on the squared lattice spacing, for a fixed reference strange quark mass ( �mref

s ¼ 95 MeV) and at the

physical up/down mass. Empty diamonds represent continuum limit results.
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of this approach is that the mass of this unphysical meson,
denoted as �s, is only sensitive to the up/down quark mass
through sea quark effects, and it is thus expected to require
only a very smooth chiral extrapolation. This expectation
will be confirmed by our analysis. The price to pay is the
need for an additional chiral fit required to determine the
�s mass at the physical point.

In the real world, the �s meson is known to mix with
the ð �uuþ �ddÞ component to produce the physical � and
�0 mesons. This mixing proceeds through the contribution
of disconnected diagrams, which are known to be rather
noisy on the lattice and therefore computationally expen-
sive. In order to avoid this computation we consider here
the two strange quarks composing the meson as degener-
ate in mass but distinct in flavor. Though this �s meson
does not exist in nature, its mass can be determined on the
lattice [5].

In order to relate the mass of the �s meson to the
physically observable m� and mK, we have studied its
dependence on the kaon and pion masses for different
values of the simulated light and strange quark masses.
This dependence turns out to be well described by both the
functional form3 based on either NLO SU(2)-ChPT,

m2
�s

¼ R1 þ R2ð2m2
K �m2

�Þ þ R3m
2
� þ R4a

2; (14)

or SU(3)-ChPT,

m2
�s

¼ ð2m2
K �m2

�Þ � ½1þ ð�s � �lÞ logð2�sÞ
þ ðR7 þ 1Þð�s � �lÞ þ R8a

2�
�m2

�½��l logð2�lÞ þ �s logð2�sÞ þ R7ð�s � �lÞ�;
(15)

with �l ¼ m2
�=ð4�f0Þ2 and �s ¼ ð2m2

K �m2
�Þ=ð4�f0Þ2.

We observe that, within the accuracy of our lattice data,
theOða2Þ term in the�s mass is found to be independent of
the strange quark mass.
Once the physical values of the kaon and pion mass are

inserted in Eqs. (14) and (15), we find that the two fits yield
very close results for the �s meson mass, namely,

m�s
¼ 692ð1Þ MeV from SUð2Þ;

m�s
¼ 689ð2Þ MeV from SUð3Þ; (16)

to be compared with the LO SU(3) prediction ðm�s
ÞLO ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m2
K �m2

�

q
¼ 686 MeV and with the lattice determina-

tion of [5] m�s
¼ 686ð4Þ MeV.

Once the mass of the �s meson has been determined, the
strange quark mass can be extracted by following the very
same procedure described for the case of the kaon mass. At
first, lattice data at fixed reference strange mass are ex-
trapolated to the continuum and to the physical up/down
mass (see Fig. 2). After this extrapolation, the value of the
physical strange quark mass is extracted by studying the
dependence on the strange mass (see Fig. 3). We have
considered the following fitting functions based on NLO
ChPT for the dependence of the �s meson (1) on the (sea)
up/down quark mass and on the leading discretization
effects, and (2) on the strange quark mass:

ð1Þ m2
�s
ðms;ml; aÞ

¼ T1ðmsÞ þ T2ðmsÞml þ T3ðmsÞa2; 8 ms; (17)

ð2Þ m2
�s
ðms;m

phys
l ; a ¼ 0Þ

� T1ðmsÞ þ T2ðmsÞmphys
l ¼ T4 þ T5ms; (18)

in SU(2), and

ð1Þ m2
�s
ðms;ml; aÞ ¼ 2B0ms � ð1þ T6ðmsÞ

þ T7ðmsÞml þ T8ðmsÞa2Þ; 8 ms; (19)

ð2Þ m2
�s
ðms;m

phys
l ; a ¼ 0Þ

� 2B0ms � ð1þ T6ðmsÞ þ T7ðmsÞmphys
l Þ

¼ 2B0ms �
�
2
2B0ms

ð4�f0Þ2
log

�
2
2B0ms

ð4�f0Þ2
�
þ T9 þ T10ms

�
;

(20)

in SU(3). The low energy constants T2 and T7, describing
the dependence on the light quark mass, are found to be
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FIG. 3 (color online). Dependence of m2
K and m2

�s, in the
continuum limit and at the physical up/down mass, on the
strange quark mass. The strange mass results obtained from
the SU(2)-ChPT analyses of kaon and �s mesons are also shown,
with empty diamonds.

3The functional forms in Eqs. (14) and (15) are obtained from
the ChPT formulas given in Eqs. (17)–(20) by replacing quark
masses in terms of meson masses, and keeping terms up to NLO.
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independent of the strange mass, within the accuracy of our
lattice data. They are then fitted with a single parameter for
all reference strange quark masses.

The results for the strange quark mass obtained from
both the kaon and the �s meson masses turn out to be
consistent, as can be seen from Table IV in the Appendix
where the severalms values obtained from different fits are
collected.

In order to quote a final estimate for the strange quark
mass we choose as a central value the weighted average of
the results from the four determinations discussed above,
namely, from K and �s and based on SU(2)- and SU(3)-

ChPT. In the MS scheme at 2 GeV this average reads
�msð2 GeVÞ ¼ 95ð2Þ MeV, with the 2 MeVerror represent-
ing the typical statistical and fitting uncertainty. The dif-
ference between the determinations based on the K and �s

mesons is about 3%. The results obtained from either the
SU(2) or the SU(3) fits are practically the same in the
analysis based on the �s and differ by approximately 3%
in the kaon case. In order to evaluate the uncertainty of the
continuum extrapolation we have proceeded in two ways.
We have either added an Oða4Þ mass independent term in
Eqs. (10), (12), (17), and (19) or excluded from these fits
the data from the coarser lattice (with a ’ 0:098 fm). We
find that the Oða4Þ term turns out to be hardly determined
in the fit, leading to a factor 3 larger uncertainties. The
exclusion of � ¼ 3:8 data, instead, yields a variation of the
results of approximately 2% leaving the fitting error ap-
proximately unchanged. We then assume �2% as uncer-
tainty related to the continuum extrapolation. The different
fits considered for the determination of the up/down mass
and of the lattice spacing affect the determination of the
strange mass at the level of 3%. Finally, we include also in
this case an uncertainty of 2% related to the truncation
of the perturbative expansion in the conversion from the

RI-MOM to the MS scheme. Combining all these uncer-
tainties in quadrature, we quote as our final estimate of the

strange quark mass in the MS scheme

�m sð2 GeVÞ ¼ 95ð2Þð6Þ MeV ¼ 95ð6Þ MeV: (21)

We observe that our result for the strange mass in
Eq. (21) is, though compatible, smaller than the value
obtained in [10] at a fixed value of the lattice spacing (a ’
0:085 fm). This is a consequence of discretization effects,
which are at the level of 15% in m2

K on the a ’ 0:085 fm
lattice, as shown in Fig. 2 (right). A further comparison can
be done with the ETMC estimate of the strange quark mass
that appeared in the recent work on the bag parameter BK

[34]. Within that analysis, based on data at three � values
(3.8, 3.9, and 4.05), the strange quark mass is determined
from the same lattice setup by performing an SU(2) chiral
fit of the kaon meson mass. The result obtained in [34]
reads �msð2 GeVÞ ¼ 92ð5Þ MeV, to be compared to our
result �msð2 GeVÞ ¼ 92:1ð3:8Þ MeV, obtained from the
same fit (see Table IV).

Using our determinations of both the strange and light
quark masses, we can obtain a prediction for the ratio
ms=mud, which is both a scheme and scale independent
quantity. The several ms=mud values obtained from differ-
ent fits are collected in Table V in the Appendix.4 The
result that we quote as our final estimate is

ms=mud ¼ 27:3ð5Þð7Þ ¼ 27:3ð9Þ: (22)

V. CHARM QUARK MASS

The determination of the charm quark mass follows,
quite closely, the strategy adopted in the determination of
the strange quark mass discussed in the previous section. In
this case, we use as experimental input the masses of theD,
Ds, and �c mesons.
As for the strange quark case, the analysis requires an

interpolation of the lattice data, being the simulated charm

masses roughly in the range 0:9mphys
c & �c & 2:0mphys

c . In
order to better study the a2 and ml dependence of charmed
meson masses, we first use a quadratic spline fit to inter-
polate the data at three reference values of the charm mass
which are equal at the four � values: �mref

c ð2 GeVÞ ¼
f1:08; 1:16; 1:24g GeV. We have verified that a different
choice of the values of the reference masses leaves the
charm quark results unchanged. At fixed reference charm
mass, we then study the dependence of the D, Ds, and �c

meson on the up/down mass (and on the strange mass in the
case of the Ds meson) and on discretization terms, thus
getting the results for the meson masses in the continuum
limit, at the physical values of the light (and strange) quark
masses, and at the reference charm mass. Finally, the value
of the physical charm quark mass is extracted by fitting
these data as a function of the charm quark mass and using
as an input the experimental value of the corresponding
charmed meson mexp

D ¼ 1:870 GeV, mexp
Ds

¼ 1:969GeV,

m
exp
�c

¼ 2:981 GeV.5

In order to fit the meson masses we have considered the
following (phenomenological) polynomial fits, which turn
out to describewell the dependence on the light and strange
quark masses and on the lattice cutoff of the D, Ds, and �c

meson masses, at fixed (reference) charm mass mc,

4The results for the ratio ms=mud collected in Table V are
slightly different from the ratios of the �ms and �mud results. This
difference originates from the fact that in the ratio ms=mud the
quark mass renormalization constant Z�1

P exactly cancels out,
whereas in the determinations of �ms and �mud the central values
of ZP are slightly modified by the fitting procedure.

5The experimental value of the meson masses should be
corrected to take into account the absence of electromagnetic
effects and, in the case of the �c, of disconnected diagrams in the
lattice calculation. For the �c meson, these corrections are
estimated to be of the order of 5 MeV [5], thus affecting the
extracted charm quark mass to approximately 0.2%. Similar
corrections are expected for the D and Ds mesons. Given our
uncertainties, we can safely neglect these corrections in the
analysis.
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mHðmc;ms;ml;aÞ¼CH
1 ðmcÞþCH

2 ðmcÞml

þCH
3 ðmcÞmsþCH

4 ðmcÞa2; 8mc; (23)

with H ¼ D, Ds, �c. From the fits, we find that the coef-
ficients CH

2 and CH
3 turn out to be independent of the charm

mass within the statistical errors. The latter coefficient CH
3 ,

of course, enters the fit only in the Ds case.
For the charm mass dependence, a constant plus either a

linear or a 1=mc term have been considered for describing
data of the D, Ds, and �c mesons, namely,

mHðmc;m
phys
s ; m

phys
l ; a ¼ 0Þ

� CH
1 ðmcÞ þ CH

2 ðmcÞmphys
l þ CH

3 ðmcÞmphys
s

¼ CH
5 þ CH

6

mc

þ CH
7 mc: (24)

Since we have data at three reference charm masses (close
to the physical charm), we can keep only one of the
coefficients CH

6 , CH
7 different from zero. We find that

both choices describe very well the lattice data and affect
only in a marginal way the interpolation to the physical
charm mass.

In Fig. 4 we show the dependence of the D, Ds, and �c

masses on the light quark mass at a fixed reference charm
mass, for the four �’s. For the Ds and �c mesons, which
contain the light quark in the sea only, this dependence
turns out to be practically invisible.

In Fig. 5 (left) the meson masses at physical light and
strange quark masses are shown as a function of a2, for a
reference value of the charm quark mass. As can be seen
from this plot, discretization effects on the �c meson mass
vary from approximately 4% on the finest lattice up to 14%
on the coarsest one. These effects are larger than those
affecting the D and Ds meson masses by approximately
30%. Figure 5 (left) also shows that the dependence of the

three charmed meson masses on a2 is very well described
by a linear behavior, and attempts to vary the continuum
extrapolation with respect to the simple linear fit produce
only small effects. The latter are included in the estimate of
the systematic uncertainty, as discussed below.
Finally, Fig. 5 (right) shows the dependence of the D,

Ds, and �c masses on the charm mass (in the continuum
limit and at physical light and strange mass) and the
interpolation to the physical charm.
Using the experimental values of the considered meson

masses we get for the charm quark mass the results
collected in Table VI.
In order to estimate the uncertainty due to the continuum

extrapolation we have proceeded in two ways. We have
either added in the fitting form of Eq. (23) an Oða4Þ
dependence, which turns out to be hardly determined
thus leading to uncertainties larger by a factor 3, or ex-
cluded the data from the coarser lattice (with a ’
0:098 fm). This latter analysis yields a variation of the
results of approximately 1.5%. The two dependencies of
the meson masses on the charm quark mass, considered in
Eq. (24), yield results that differ by only a few MeV. The
systematic uncertainty then comes from the sum in quad-
rature of the approximately 1% spread among the three
determinations from the D, Ds, and �c mesons, the 1.5%
uncertainty due to discretization effects, and the 2% un-
certainty coming from the perturbative conversion of the

renormalization constants from the RI-MOM to the MS
scheme.
We quote as our final result for the charm quark mass in

the MS scheme

�m cð2 GeVÞ ¼ 1:14ð3Þð3Þ GeV ¼ 1:14ð4Þ GeV
! �mcð �mcÞ ¼ 1:28ð4Þ GeV; (25)
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where the evolution to the more conventional scale given
by �mc itself has been performed atN3LO [31] withNf ¼ 2,

consistently with our nonperturbative evaluation of the
renormalization constant. Had we evolved with Nf ¼ 4,

which is the number of active flavors above � ¼ mc, the
result for �mcð �mcÞ would have increased by less than 1
standard deviation.

Our result is compatible with the preliminary estimate of
the charm quark mass, �mcð2 GeVÞ ¼ 1:23ð6Þ, obtained by
ETMC [35] using data at three lattice spacings and pre-
liminary values for the renormalization constants. It is also
in good agreement with the HPQCD result �mcð �mcÞ ¼
1:268ð9Þ GeV [6], with a larger uncertainty in our deter-
mination. Finally, our result is in good agreement with the
recent sum rules determination �mcð �mcÞ ¼ 1:279ð13Þ GeV
of [36].

We also provide a prediction for the scheme and scale
independent ratio mc=ms. The several mc=ms values ob-
tained from different fits are collected in Table VII in the
Appendix. The result that we quote as our final estimate is

mc=ms ¼ 12:0ð3Þ; (26)

in good agreement with the other recent lattice determina-
tion mc=ms ¼ 11:85ð16Þ [5].

VI. CONCLUSIONS

We have presented results for the average up/down,
strange, and charm quark masses, obtained with Nf ¼ 2

twisted-mass Wilson fermions. The analysis includes data
at four values of the lattice spacing and pion masses as low
as ’ 270 MeV, allowing a well controlled continuum limit
and chiral extrapolation. Within the strange sector the

chiral extrapolation is performed by using either SU(2)-
or SU(3)-ChPT. The strange and charm masses are
extracted by using several methods, based on different
meson mass inputs: the kaon and the �s meson for the
strange quark and theD, Ds, and �c mesons for the charm.
The quark mass renormalization is carried out nonpertur-
batively using the RI-MOM method.

The results for the quark masses in theMS scheme read:
�mudð2 GeVÞ ¼ 3:6ð2Þ MeV, �msð2 GeVÞ ¼ 95ð6Þ MeV,
and �mcð �mcÞ ¼ 1:28ð4Þ GeV. The quoted errors include
the uncertainty in the perturbative conversion of the renor-

malization constants from the RI-MOM to theMS scheme,
which is conservatively estimated to be at the level of 2%.
We emphasize that this uncertainty is not related to the
lattice calculation itself, but comes from continuum pertur-
bation theory. If the RI-MOM scheme was chosen as a
reference scheme and, say, 3 GeV as a reference scale,
which is the typical scale of the nonperturbative RI-
MOM calculation in our lattice simulation [7], this uncer-
tainty would not be present at all. For reference we
provide our results for the quark masses also in this
scheme: mRI

udð3 GeVÞ ¼ 3:9ð1Þð2Þ MeV, mRI
s ð3 GeVÞ ¼

102ð2Þð6Þ MeV, and mRI
c ð3 GeVÞ ¼ 1:22ð3Þð2Þ GeV.

We have also evaluated the quark mass ratiosms=mud ¼
27:3ð9Þ and mc=ms ¼ 12:0ð3Þ, which are independent on
both the renormalization scale and scheme.
The only systematic uncertainty which is not accounted

for by our results is the one stemming from the missing
strange and charm quark vacuum polarization effects. A
comparison, for instance, of our Nf ¼ 2 result for the

strange quark mass to already existing results from Nf ¼
2þ 1 quark flavor simulations [8] indicates that the error
due to the partial quenching of the strange quark is smaller
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at present than other systematic uncertainties. In this re-
spect we mention that simulations with Nf ¼ 2þ 1þ 1

dynamical flavors are already being performed by ETMC
and preliminary results for several flavor physics obser-
vables have been recently presented [37,38].

ACKNOWLEDGMENTS

We thank all the ETMCmembers for fruitful discussions
and the apeNEXT computer centers in Rome for their
invaluable technical help. Some computation time has
been used for that project on the BlueGene system at
IDRIS. We are also grateful to Gilberto Colangelo for
having provided us with a routine for the calculation of
the FSEs [29], and to Chris Sachrajda for drawing our
attention to the uncertainty in the perturbative conversion
of the renormalization constants.

APPENDIX

We collect in this Appendix the results obtained for the
up/down, strange, and charm quark masses from the differ-
ent fits considered in the present analysis.

As discussed in Sec. III, in the light quark sector we have
performed the following fits:

L1: this is our best fit which is based on NLO ChPTwith
the inclusion of Oða2Þ discretization effects. This fit cor-
responds to Eq. (6) with all parameters different from zero.

L2: same as L1 but without discretization terms, i.e.,
P2 ¼ P3 ¼ P5 ¼ P6 ¼ 0 in Eq. (6).

L3: same as L1 with the inclusion of a next-to-next-to-
leading order correction proportional to the square of the
light quark mass.

The results for the up/down quark mass obtained from
these fits are collected in Table III. For illustration, we
also show in the table the value of �mud obtained from a fit
(denoted as L4 here and B in [9]) without logarithmic
discretization terms, i.e., with P3 ¼ P6 ¼ 0 in Eq. (6),
and without isospin breaking corrections in the FSEs.

For the strange quark mass we collect the results of the
different fits in Table IV, where we use the short notation
K-SU(2), K-SU(3), �s-SU(2), and �s-SU(3) for distin-
guishing the determinations from the kaon and �s masses,
and based on SU(2)- and SU(3)-ChPT.

The results for the ratio ms=mud are given in Table V.
Finally, for the charm quark mass and the ratio mc=ms

the results are collected in Tables VI and VII, whereD,Ds,
or �c indicates the meson whose mass is used as input.
These analyses are practically insensitive to the choice of
the fit in the pion sector and only the results obtained from

the fit L1 are shown in the tables. Similarly, for the ratio
mc=ms the values shown in Table VII correspond to the
analysis of the D meson only, since the analyses of the Ds

or �c mesons yield practically identical results.

TABLE III. Results for the up/down quark mass in the MS
scheme at 2 GeV, as obtained from fits L1, L2, L3, and L4.

L1 L2 L3 L4

�ml½MeV� 3.55(14) 3.75(7) 3.78(17) 3.47(11)

TABLE IV. Results for the strange quark mass in the MS
scheme at 2 GeV, as obtained from the different fits within the
light and strange quark sectors.

�ms½MeV� K-SU(2) K-SU(3) �s-SU(2) �s-SU(3)

L1 92.1(3.8) 94.7(2.2) 96.0(2.6) 95.5(2.1)

L2 91.6(3.9) 94.6(2.3) 95.4(2.6) 95.3(1.9)

L3 95.4(3.8) 94.7(2.1) 99.4(2.9) 97.7(2.2)

TABLE V. Results for the ratio ms=mud, as obtained from the
different fits within the light and strange quark sectors.

ms=mud K-SU(2) K-SU(3) �s-SU(2) �s-SU(3)

L1 26.9(5) 27.2(5) 27.6(4) 27.3(7)

L2 27.1(5) 26.9(3) 27.5(3) 26.8(3)

L3 25.7(5) 26.0(6) 26.5(6) 26.0(7)

TABLE VI. Results for the charm quark mass in the MS
scheme at 2 GeV, as obtained from the different fits within the
charm sector.

D Ds �c

�mc½GeV� 1.14(3) 1.14(3) 1.15(2)

TABLE VII. Results for the ratio mc=ms, as obtained from the
different fits within the strange quark sector, and from the
analysis of the D meson mass in the charm sector.

K-SU(2) K-SU(3) �s-SU(2) �s-SU(3)

mc=ms 12.4(4) 12.1(2) 11.9(2) 12.0(3)
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