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We present results for the kaon mixing parameter BK calculated using HYP (hypercubic fat link)-

smeared improved staggered fermions on the asqtad lattices generated by the MILC collaboration. We use

three lattice spacings (a � 0:12, 0.09 and 0.06 fm), ten different valence-quark masses (m � ms=10�ms),

and several light sea-quark masses in order to control the continuum and chiral extrapolations. We derive

the next-to-leading order staggered chiral perturbation theory (SChPT) results necessary to fit our data, and

use these results to do extrapolations based both on SU(2) and SU(3) SChPT. The SU(2) fitting is

particularly straightforward because parameters related to taste breaking and matching errors appear

only at next-to-next-to-leading order. We match to the continuum renormalization scheme [naı̈ve dimen-

sional regularization (NDR)] using one-loop perturbation theory. Our final result is from the SU(2)

analysis, with the SU(3) result providing a (less accurate) cross check. We find BKðNDR; � ¼ 2 GeVÞ ¼
0:529� 0:009� 0:032 and B̂K ¼ BKðRGIÞ ¼ 0:724� 0:012� 0:043, where the first error is statistical

and the second systematic. The error is dominated by the truncation error in the matching factor. Our results

are consistent with those obtained using valence domain-wall fermions on lattices generated with asqtad or

domain-wall sea quarks.
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I. INTRODUCTION

CP violation was first observed, long ago, in neutral
kaon mixing. The long-lived eigenstate KL has a small
CP-even impurity, allowing it to decay into two pions.
The amount of this impurity is parametrized by ", whose
experimental value is [1].

" ¼ ð2:228� 0:011Þ � 10�3: (1)

In the standard model, CP violation is induced by box
diagrams involving virtual W and Z bosons, which lead to
the prediction

" ¼ expði�"Þ
ffiffiffi
2

p
sinð�"ÞC" Im�tXB̂K þ � (2)

where

X ¼ Re�c½�1S0ðxcÞ � �3S3ðxc; xtÞ� � Re�t�2S0ðxtÞ (3a)
�i ¼ V�

isVid (3b)

xi ¼ m2
i =M

2
W (3c)

C" ¼ G2
FF

2
KmKM
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6
ffiffiffi
2

p
�2�MK

(3d)

� ¼ expði�"Þ sinð�"Þ ImA0

ReA0

(3e)

For the values of the parameters, see, e.g., Ref. [2]. The key
point is that, aside from known kinematic factors and QCD
Wilson coefficients, " is given in terms of elements of the
Cabibbo-Kobayashi-Maskawa (CKM)matrix (occurring in

the �i) and the hadronic matrix element B̂K. This matrix
element has the form

B̂ K ¼ Cð�ÞBKð�Þ (4)

BKð�Þ ¼
P
�
h �K0j½�s��ð1� �5Þd�½�s��ð1� �5Þd�jK0i

8
3 h �K0j�s�0�5dj0ih0j�s�0�5djK0i

(5)

where Cð�Þ is the Wilson coefficient which makes B̂K RG
(renormalization group) invariant (as discussed further in
Sec. III B), � is the renormalization scale of the operator,
and we have assumed that the kaons are at rest. Thus, if one
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can determine the value of B̂K, one can constrain the
CP-violating part of the CKM matrix.

It has been a long-standing goal of lattice QCD to
calculate BK. The challenging part of the required ratio
of matrix elements, Eq. (5), is the numerator. This is, at first
sight, relatively straightforward to evaluate, because it
involves only a single, stable particle in both initial and
final states. A complication arises, however, from the left-
handed structure of the four-fermion operator. This con-
strains its behavior in and around the chiral limit. In
particular, at leading order in chiral perturbation theory,
the matrix element in the numerator is proportional to m2

K.
This vanishing is not guaranteed if one uses a formulation
of lattice fermions in which chiral symmetry is broken.
Because of this, most recent lattice calculations of BK have
used fermions in which one has at least some remnant of
chiral symmetry—domain-wall, staggered, overlap, and
twisted-mass fermions.

After a long history of quenched calculations, advances
in algorithms, methodology and computers have allowed
calculations of BK using light dynamical quarks.
Particularly noteworthy are two ‘‘2þ 1 flavor’’ calcula-
tions in which all three of the physical light quarks are
dynamical, although the up and down quarks are kept
degenerate.1 These calculations both use valence domain-
wall fermions, with one using asqtad staggered sea quarks
[3], and the other domain-wall sea quarks [4,5]. Both
calculations have produced results in which all sources of
systematic error are controlled, and the total error is less
than 5%. In particular, both calculations use two lattice
spacings to allow a continuum extrapolation. The results of
these two calculations are consistent.

It is important for a parameter such as BK, which is used
to constrain the standard model, to have multiple calcula-
tions using different lattice methods. In particular, we think
it is important to use different valence fermions. Thus we
have undertaken a calculation using valence staggered
fermions. In particular, we use HYP (hypercubic fat
link)-smeared improved staggered fermions, since these
are known to reduce taste breaking, and are computation-
ally inexpensive to implement. We use the same asqtad
lattices as in Ref. [3], except that we add a third, smaller
lattice spacing (a � 0:12, 0.09 and 0.06 fm). An important
feature of our approach is that the four-fermion operators
are constructed using HYP-smeared (rather than thin)
links. This is known to reduce the size of perturbative
corrections [6] and scaling violations [7].

There has been one previous calculation of BK using
valence staggered fermions on the asqtad, Nf ¼ 2þ 1

lattices [8]. This work differs from ours in that they used
thin links to construct the operators, and only worked on
the a � 0:12 fm lattices. As a consequence, the result

contains potentially large discretization and matching
errors.
A drawback of using staggered fermions is that each

flavor comes with 4 tastes, and one needs to use to the
rooting prescription to reduce the number of sea quarks to
the physical complement. Rooting leads to unphysical
effects at nonzero lattice spacing. We assume, following
the arguments of Refs. [9–12], that the effects of rooting
vanish in the continuum limit, and are taken into account at
nonzero lattice spacing by our use of extrapolations based
on staggered chiral perturbation theory (SChPT). The phe-
nomenological successes of rooted staggered fermions [13]
provide support to this assumption.
This paper is organized as follows. In Section II, we

derive the necessary next-to-leading order (NLO) SChPT
results, first for SU(3) ChPT including the effects of our
use of a mixed action, and then for SU(2) ChPT. In
Section III, we explain our methodology, describe how
we obtain results for BK, and then present our fits using
both SU(3) and SU(2) SChPT. In the SU(3) case, we must
use constrained, Bayesian fitting, given the complexity of
the functional form. We also discuss the light sea-quark
mass dependence and the continuum extrapolation. We
close the section by presenting final results and error
budgets for both SU(3) and SU(2) analyses. We conclude
in Section IV with a comparison of our result with previous
work and some comments on our future plans. In four
appendices we present, respectively, the functional forms
needed for SU(3) fitting, the functional forms needed for
SU(2) fitting, a derivation of several key results needed to
obtain the SU(2) functional forms, and tables of a subset of
our numerical results.
Preliminary results from this project have been

presented in Refs. [14–17].

II. STAGGERED CHIRAL
PERTURBATION THEORY

To extrapolate our data to the physical (average) light-
quark mass, and to the continuum limit, we use
staggered chiral perturbation theory (SChPT). We have
carried out fits using the functions predicted by both
SU(3) (strange quark treated as light) and SU(2) (strange
quark treated as ‘‘heavy’’) SChPT. The purpose of this
section, and the associated appendices, is to derive these
functions and present them in an explicit form suitable
for fitting.
For SU(3), a next-to-leading order (NLO) SChPT analy-

sis of BK has been given in Ref. [18]. That work, however,
considered the theory in which the sea and valence quarks
had the same action. In our setup, by contrast, we have
asqtad sea quarks (since we use configurations generated
by the MILC collaboration [19]) and HYP-smeared va-
lence quarks (as described in the following section). Thus
we must generalize the results of Ref. [18] to a mixed-
action theory. We also present the results in an explicit

1We also compare to results from calculations with two
degenerate dynamical quarks in the concluding section.
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notation rather than using the compact but dense notation
of Ref. [18].

The use of SU(2) ChPT has been advocated in Ref. [20],
and the continuum partially quenched NLO predictions for
a variety of quantities, including BK, have been presented.
These results are directly applicable to domain-wall fermi-
ons, and have been used for extrapolating BK in Ref. [21].
Here we generalize the results to staggered ChPT, finding
that the complications of the SU(3) NLO SChPT form are
greatly reduced.

Before presenting the derivations we describe our nota-
tion for the quantities that appear in the SChPT expres-
sions, and explain how we obtain the numerical values for
these quantities. We work throughout in the isospin-
symmetric limit, and label the up and down sea quarks
collectively as l. Thus ml is the common light sea-quark
mass, while ms is the mass of the strange sea quark.
Following Ref. [18], valence down (anti-)quarks are
labeled x while valence strange (anti-)quarks are labeled
y. These have masses mx and my, respectively. As noted

above, the sea quarks use the asqtad action, while the
valence quarks use the HYP-smeared staggered action
(more precisely the HYP (II) choice in the convention of
Refs. [6,22]).

Many pseudo-Goldstone bosons (PGB) appear in the
NLO chiral expressions. The mass of the ‘‘kaon’’ com-
posed of x-quarks and y-antiquarks (or vice-versa) is de-
notedmxy:B, where B is the taste. The taste can be I, P, V, A

or T, standing, respectively, for taste scalar [1], pseudo-
scalar [�5], vector [��], axial [��5], and tensor [���]. Here

we use the result that at leading order (LO) in SChPT there
is an accidental SO(4) taste symmetry [23]. Similarly, the
masses of ‘‘pions’’ composed of x-quarks and x-antiquarks
are labeled mxx:B, while those of PGBs composed of
y-quarks and antiquarks are denoted myy:B. In the follow-

ing, PGB masses are always in physical units, converted
from the measured lattice masses using the scales deter-
mined by the MILC collaboration [13,24]. These scales are
given in Table IV below.

To simplify the chiral expressions, we also use the
following shorthand notations:

(i) The squared masses of the valence kaons are denoted
byKB � m2

xy:B. We also use a special shorthandG �
KP for the Goldstone-taste kaon. This is the particle
which we use for the external states in our
calculation.

(ii) The squared masses of the valence pions are de-
noted: XB ¼ m2

xx:B. Similarly, we use YB ¼ m2
yy:B.

Note that for tastes B ¼ I, V and A the pion masses
have LO contributions from quark-disconnected di-
agrams involving ‘‘hairpin’’ vertices. These are, by
definition, not included in XB and YB. In other
words, these mass-squareds are those of the pions
in which the quark and antiquark are taken (impli-
citly) to have different flavors.

(iii) We also need the squared masses of analogous
flavor nonsinglet pions composed of �ll and �ss
quarks. We call these LB � m2

ll:B and SB � m2
ss:B,

respectively, for B ¼ I, V and A.
(iv) Finally, we need the squared masses of the �B and

�0
B pions for B ¼ V, A and I. We call these masses

simply �B and �0
B. The �B and �0

B are the flavor
singlet, sea-quark mesons that result from the in-
clusion of mixing between �ll and �ss pions due to
hairpin diagrams [25].

We now address how we obtain the numerical values of
the various masses discussed above. The valence kaon and
nonsinglet pion masses KB, XB, and YB are obtained from
our simulations in an ancillary calculation. In fact, we find
to an extremely good approximation that, for our range of
valence-quark masses, the expected LO forms hold2:

KB ¼ b1ðmx þmyÞ þ �B (6a)

XB ¼ b1ð2mxÞ þ�B (6b)

YB ¼ b1ð2myÞ þ�B: (6c)

In practice, we do a fit to these equations and extract b1 and
the �B, and then use the latter to reconstruct the mass-
squareds. More details on these fits are given below in
Sec. III A.
In the case of pions composed of sea quarks, we obtain

the flavor nonsinglet masses LB and SB from MILC col-
laboration results [19,24]. The sea pion and ‘‘ss’’ meson
masses are quoted in Table I, while taste splittings are
collected in Table II. We do not include the errors on these
splittings in our analysis as their impact is much smaller
than other sources of error. This is because the errors are
very small, and furthermore enter into a numerically small
part of the one-loop correction. We use the same taste-
splittings for all the coarse ensembles, and similarly for

TABLE I. Masses of flavor nonsinglet, taste P sea-quark
masses, in lattice units [19,24]. Ensemble labels are from
Table III below.

Ensemble a
ffiffiffiffiffiffi
LP

p
a

ffiffiffiffiffiffi
SP

p

C1 0.3779 0.4875

C2 0.3113 0.4889

C3 0.2245 0.4944

C4 0.1889 0.4923

C5 0.1597 0.4913

F1 0.1479 0.3273

F2 0.1046 0.3273

S1 0.09371 0.2075

2SChPT predicts that �P ¼ 0, although in practice the missing
NLO terms together with finite-volume effects can lead to a
small nonzero value for �P.
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both the fine ensembles, which we expect to be a very good
approximation based on our results for valence pions.

For the flavor singlets sea-quark mesons, the taste-
singlet is simplest, since the �0

I (which corresponds to
the �0 of QCD) is not a PGB and can be integrated out.
This leads to the following result for the �I mass: [25]:

�I ¼ 1

3
LI þ 2

3
SI: (7)

For tastes B ¼ V and A, we use the result of Ref. [25]:

�B ¼ m2
�:B ¼ 1

2

�
LB þ SB þ 3

4
a2	0ss

B � ZB

�
; (8)

�0
B ¼ m2

�:B ¼ 1

2

�
LB þ SB þ 3

4
a2	0ss

B þ ZB

�
; (9)

ZB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

B � 1

2
a2	0ss

B HB þ 9

16
ða2	0ss

B Þ2
s

; (10)

HB ¼ SB � LB: (11)

The superscript on the hairpin vertices a2	0ss
A;V will be

explained in the following section. Their numerical values
are taken from the fits of Ref. [19]. Note that their dimen-
sions are given by 	0ss

B / �4
QCD.

The taste-violating parameters on the coarse lattices are
[24]

r21a
2	0

A ¼ �0:30ð1Þð3Þ (12)

r21a
2	0

V ¼ �0:05ð2Þð3Þ: (13)

These come from fits using the ‘‘smoothed’’ r1 values that
we adopt, and that are given in Table IV below. As for the
sea-quark taste-splittings, we fix these parameters to their
central values and ignore the errors. For the other lattice
spacings we scale the parameters assuming an a2
2

s

dependence.

A. Mixed-action effects in SU(3) SChPT

The inclusion of mixed-action effects into SChPT can be
accomplished by a straightforward generalization of the
methods worked out in Refs. [26–29]. A mixed action can
be described field-theoretically at the lattice level in the
same way as a partially quenched (PQ) theory: there are
valence quarks, corresponding ghosts, and sea quarks. The
difference is that there is no longer a symmetry interchang-
ing valence and sea quarks. This symmetry only emerges in
the continuum limit, where the choice of discretization
does not matter. What this means is that one has a standard
PQ setup when a ! 0, but, for a � 0, the corrections
introduced by discretization errors in the valence, sea and
mixed valence-sea sectors [parametrized by low-energy
coefficients (LECs)] are unrelated. At first sight (and in
light of the complexity of the analysis of BK in an unmixed
context [18]), the required generalization appears rather
daunting. It turns out, however, that this is not the case for
our particular application, since nearly all of the new LECs
do not enter at NLO in BK.
The easiest way to see this is to look at the quark-flow

diagrams which contribute. These have been presented in
Ref. [18], and we display them in Fig. 1. Only valence-
quark lines occur in Figs. 1(a) and 1(b), so that the PGBs
entering in loop diagrams are all of the ‘‘valence-valence’’
type. The form of the contributions from these diagrams
will thus be unchanged by the use of a mixed action, and
we can simply use the results of Ref. [18]. The contri-
butions of these diagrams give what is called the
‘‘connected’’ part of the matrix element, Mconn, where

TABLE II. Taste splittings, r21�B, for flavor nonsinglet pions
composed of sea quarks [24]. These are for the ensembles C3,
F1, and S1 (see Table III below).

taste coarse fine superfine

r21�A 0.2053 0.0706 0.0253

r21�T 0.3269 0.1154 0.0413

r21�V 0.4391 0.1524 0.0552

r21�S 0.5370 0.2062 0.0676

TABLE III. MILC lattices used for the numerical study. Here,
‘‘ens’’ represents the number of gauge configurations, ‘‘meas’’ is
the number of measurements per configuration, and ID will be
used later to identify the corresponding MILC lattice.

a (fm) aml=ams size ens�meas ID

0.12 0:03=0:05 203 � 64 564� 1 C1

0.12 0:02=0:05 203 � 64 486� 1 C2

0.12 0:01=0:05 203 � 64 671� 9 C3

0.12 0:01=0:05 283 � 64 274� 8 C3-2

0.12 0:007=0:05 203 � 64 651� 10 C4

0.12 0:005=0:05 243 � 64 509� 1 C5

0.09 0:0062=0:031 283 � 96 995� 1 F1

0.09 0:0031=0:031 403 � 96 678� 1 F2

0.06 0:0036=0:018 483 � 144 744� 2 S1

TABLE IV. Values for r1=a and 1=a. See text for discussion.

ID r1=a 1=a (GeV)

C1 2.650(4) 1.682(3)

C2 2.644(3) 1.679(2)

C3 2.618(3) 1.662(2)

C3-2 2.618(3) 1.662(2)

C4 2.635(3) 1.673(2)

C5 2.647(3) 1.681(2)

F1 3.699(3) 2.348(2)

F2 3.695(4) 2.346(3)

S1 5.296(7) 3.362(4)

TAEGIL BAE et al. PHYSICAL REVIEW D 82, 114509 (2010)

114509-4



connected means that the loops do not involve hairpin
vertices. We present a fully explicit form for Mconn in
the next section. We stress that the values of the LECs in
Mconn are altered by the change from unmixed to mixed
action, but this has no practical consequences as these are
a priori unknown parameters that are either determined
from the spectrum or by the fits to BK itself.

Another feature of the quarkline diagrams is that no
‘‘valence-sea’’ mesons appear at NLO. Thus the new
LECs associated with such mixed mesons do not enter
into our result.

New LECs do appear in the ‘‘disconnected’’ matrix
element,Mdisc, for which the quark-line diagram is shown
in Fig. 1(c). The hairpin vertices in the loop implicitly
contain a sum over any number of insertions of sea-quark
loops, corresponding to the propagation of ‘‘sea-sea’’
PGBs. This means that three types of hairpin vertex enter,
instead of the single type for an unmixed action: a2	0vv

B , for
the hairpin connecting valence-valence pions to them-
selves; a2	0vs

B , for the hairpin connecting valence-valence

pions to sea-sea pions, and a2	0ss
B , for the hairpin connect-

ing sea-sea pions to themselves. The last of these has
already appeared in Eqs. (8)–(10). These hairpins occur
as LO vertices only for tastes B ¼ V and A, so that, for BK,
the change to a mixed action introduces only four new
LECs: 	0vv

V , 	0vv
A , 	0vs

V , and 	0vs
A . We stress that these

hairpin vertices are independent of the quark masses.
Hairpins also occur at LO in the taste-singlet channel,

but here the dominant contribution is that which leads to
the bulk of the physical �0 mass. This is a continuum
contribution, which is therefore independent of the fermion
action, and thus is common to vv, vs and ss vertices. Small
differences between these vertices ofOða2Þ do not contrib-
ute to BK until next-to-next-to-leading order (NNLO).
Thus the three types of vertices are the same at LO in the
taste-singlet channel, and the result of Ref. [18] for this
channel is unchanged.

In light of the preceding discussion, we see that the
ingredients that change when moving from a PQ (unmixed

action) theory to a mixed-action (MA) setup are the hairpin

propagators, DB;PQ
xx ðqÞ, DB;PQ

xy ðqÞ, and DB;PQ
yy ðqÞ, where

B ¼ V or A labels the taste. We first recall the form of
these propagators in a theory with an unmixed action [18].
The ‘‘xy’’ hairpin propagator is

DB;PQ
xy ðqÞ ¼ �a2	0

B

1

ðq2 þ XBÞðq2 þ YBÞ
RBðqÞ; (14)

RBðqÞ ¼ ðq2 þ LBÞðq2 þ SBÞ
ðq2 þ �BÞðq2 þ �0

BÞ
; (15)

[this is Eq. (42) of Ref. [18] restricted to the case of 2þ 1
flavors]. The expressions for �B and �0

B are those given in
(8) and (9) above except that 	0ss

B is replaced by the single,

common, hairpin vertex 	0
B. The results for DB;PQ

xx are
simply obtained by the replacement YB ! XB, while the

opposite replacement yields the DB;PQ
yy . Similar replace-

ments hold for the mixed-action theory, and so we discuss
only Dxy below.

The result (14) can be understood as follows: a2	0
B is the

hairpin vertex, RBðqÞ is the result of the sum over sea-sea
mesons ‘‘within’’ the hairpin vertex, and the remaining two
propagators are those of the ‘‘external’’ xx and yy pions.
One can then see how the result changes when the hairpin
vertex splits into three types. If there are no sea-quark
loops, one has the vv hairpin vertex and the external
propagators, but no factor of RBðqÞ. If there are sea-quark
loops, then one has a common factor of ð	0vs

B Þ2 (from
vv ! ss and ss ! vv), and the sum RBðqÞ except for
the first term, with one factor of 	0ss

B removed to avoid

double-counting. Thus one finds that DB;PQ
xy ðqÞ should be

replaced with the mixed-action hairpin propagator

DB;MA
xy ðqÞ ¼ � 1

ðq2 þ XVÞðq2 þ YVÞ
�

�
a2	0vv

B þ ða2	0vs
B Þ2 ðRBðqÞ � 1Þ

a2	0ss
B

�
(16)

¼
�ð	0vs

B Þ2
	0ss
B 	0

B

�
DB;PQ

xy ðqÞ

� a2
�
	0vv
V 	0ss

B � ð	0vs
B Þ2

	0ss
B

�
1

ðq2 þ XBÞðq2 þ YBÞ
: (17)

From the second line, we see that the impact of using a
mixed action is twofold.
1. One must replace the overall factor multiplying the

loop contribution calculated in the unmixed case as
follows:

	0
B ! 	MA1

B ¼ ð	0vs
B Þ2
	0ss
B

; B ¼ V; A: (18)

The form of the contribution will be otherwise unchanged,
since the q dependence in the first term of (17) is the

same as that of DB;PQ
xy ðqÞ. We also note that our lack of

(a) (b) (c)

FIG. 1 (color online). Classes of quark-line diagrams contrib-
uting to BK at 1-loop order. The four-quark operator is repre-
sented as two bilinears which change a valence d-quark into a
valence s-quark. These bilinears are shown as either (blue)
squares (if the bilinear connects to both quark and antiquark
from an external kaon) or as (red) hexagons (if the bilinear
connects a quark from one kaon to an antiquark from the other).
For each of the three diagrams, there are others (not shown)
related by interchanging the roles of quark and antiquark. In (c)
the ‘‘hairpin vertex’’ contains, implicitly, a sum of ‘‘bubbles’’
composed of sea quarks.
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knowledge of the two 	MA1
B does not introduce new fit

parameters since these hairpin vertices multiply unknown
operator coefficients from the chiral theory [as shown
explicitly in Eq. (A16)].

2. In addition, one must evaluate a new loop integral, in
which propagator has the same form as for a quenched
hairpin, and in which the overall constant is

	MA2
B ¼ 	0vv

B 	0ss
B � ð	0vs

B Þ2
	0ss
B

; B ¼ V; A: (19)

The result is given as Fð2Þ
B in Appendix A 3. This does

introduce two new fit parameters.
We close this section with a comment on the expected

magnitudes of the four new LECs. The hairpin vertices of
SChPT are the result of mapping four-quark operators in
the Symanzik effective theory into the chiral theory. The
structure of the underlying four-quark operators mirrors
that of the chiral operators they produce. For example, the
hairpin vertex proportional to 	0vs

B arises from an operator
containing a valence-quark bilinear and a sea-quark
bilinear, while that proportional to 	0vv

B arises from an
operator containing two valence-quark bilinears. The im-
portant observation is these four-quark operators also give
nonhairpin taste-dependent contributions to the pion
masses (viewed as having the gluons exchanged in the
t-channel rather than the s-channel). The operators leading
to 	0vv

B , 	0vs
B and 	0ss

B lead, respectively, to taste splittings
for valence-valence, valence-sea and sea-sea pions. But we
know that the valence HYP-smeared action reduces taste
splittings by a factor of � 3 compared to that for the sea-
quark asqtad action [30]. Assuming that this is a universal
reduction, applicable to all four-quark operators, we con-
clude that 	0vv

B =	0ss
B � 1=3. Since the improvement in

taste-splittings arises from a reduction of the coupling
of quarks to high-momentum gluons, we expect that it

‘‘factorizes’’, so that 	0vs
B =	0ss

B � 1=
ffiffiffi
3

p
. Given these as-

sumptions, we are led to the expectations

	MA1
B � 	0ss

B =3 and 	MA2
B � 0: (20)

If these expectations are close to correct, then the taste V
and A hairpin contributions are significantly reduced by the
use of the mixed action: the ‘‘old’’ contributions from

DB;PQ
xy ðqÞ are reduced by a factor of �3, while the ‘‘new’’

	MA2
B terms are suppressed. We use these expectations to

simplify our fitting strategy.

B. SU(3) SChPT result

In this subsection, we summarize the NLO result for BK

in SU(3) SChPT—obtained from Ref. [18] with the gen-
eralization explained in the previous subsection. The utility
of this result depends on the extent to which one can treat
the strange-quark mass as light compared to�QCD. We will

attempt to judge this a posteriori based on how successful
we are in fitting with the SU(3) form.

Discretization errors in BK arise from the action and
from the four-quark operator. If they involve taste-breaking
then they are, for both HYP-smeared and asqtad actions, of
Oða2
2Þ, while nontaste-breaking errors are of Oða2Þ for
HYP-smeared quarks and ofOða2
Þ for asqtad quarks. The
different factors of 
 are, however, misleading, since
numerical results indicate that taste-breaking effects are
enhanced. Furthermore, as noted above, different actions
can lead to significantly different numerical sizes of taste-
breaking effects, although formally these effects are of the
same order. Thus, following Ref. [18], we adopt the
phenomenologically-based power-counting scheme in
which all discretization errors are treated as being of
Oðp2Þ, irrespective of the number of powers of 
. In light
of this choice, and for the sake of brevity, we refer below to
all discretization errors as being simply of ‘‘Oða2Þ’’, except
where the associated powers of 
 are important.
Additional errors arise if one uses perturbatively calcu-

lated matching factors to relate the lattice operator to its
continuum counterpart. We use one-loop matching, and
furthermore keep only the subset of the one-loop induced
operators involving bilinears with taste P. This results in
‘‘mixing errors’’ proportional to both 
s—from one-loop
mixing with operators with tastes other than P—and 
2

s—
from the unknown two-loop mixing with all operators,
including those with taste P. As explained in Ref. [18], it
is reasonable phenomenologically to treat both these
effects as also of Oðp2Þ. The justification for treating
Oð
Þ �Oð
2Þ is that the one-loop coefficients of the
operators we drop are known to be small, while two-loop
coefficients are unknown and might not be small. Indeed,
with HYP-smeared fermions, we find that the relevant one-
loop coefficients are of typical size 
s=ð4�Þ � 0:08
s

[22,31], and thus expect that their effects are noticeably
smaller than those of Oð
2

sÞ. In light of this, we refer to
truncation errors below as simply of Oð
2Þ unless we need
to be more specific.
Using this power-counting scheme, Ref. [18] deter-

mined all the operators in SChPT that must be included
at NLO, and carried out the required one-loop calculation.
This involves using LO propagators in the loops, which
implies that the accidental SO(4) taste symmetry [23,25]
holds for their masses. As already noted, we determine
these masses from an ancillary spectrum calculation on the
same configurations, or from published MILC results, so
that they are not unknowns in the fits.
The resulting expression for BK can be written as

BSUð3Þ
K ¼ X16

j¼1

bjHj: (21)

Here the coefficients bj are related to unknown SChPT

LECs, while the Hj are known functions of the (numeri-

cally determined) PGB masses. In the following we run
through these 16 terms in turn, explaining their origin and
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their properties. The explicit expressions for the Hj are

collected in Appendix A.
The dominant contribution to BK comes from the

function

H1 ¼ 1þ 1

8�2f2�G
½M0

conn þM0
disc�: (22)

This contains the LO contribution (the ‘‘1’’) together with
the ‘‘continuumlike’’ loop contributions to Mconn and
Mdisc. By ‘‘continuumlike’’ we mean that the logarithms
have the continuum form (thus the superscript 0, indicating
a ! 0), except that the pions in the loops have taste-
splittings included in their masses. If these taste-splittings
are set to zero, then M0

conn and M0
disc. go over to the

continuum chiral logarithms. Assuming that f� is known,
the coefficient of the chiral logarithms is predicted.3 Since
we know the values of the required PGB masses, we know
the value of the functionH1 for each choice of valence and
sea-quark masses. For this reason it makes sense to lump
these terms together into a single function,H1. The explicit
forms forM0

conn andM0
disc are given in Eqs. (A1) and (A8),

respectively. It turns out thatM0
disc vanishes for degenerate

valence quarks.
The chiral logarithms in (22) have the generic form

m2
K lnmK. Since an explicit 1=G factor is taken out, the

functions M0
conn and M0

disc have generic form m4
K lnmK.

The coefficient of H1 is given by

b1 ¼ B0 þOða2; 
2Þ: (23)

Here B0 is the value of BK in the combined SU(3) chiral
and continuum limits. B0 is a quantity that is of interest for
continuum ChPT. The remaining terms indicate the man-
ner in which b1 approaches the continuum limit: there are
contributions from both nontaste-breaking and taste-
breaking discretization errors, and from the truncation of
perturbation theory.4 When fitting at a single lattice spac-
ing, one can treat b1 as a single constant. The scaling
violations must be accounted for when extrapolating to
the continuum limit. Alternatively, one can attempt a com-
bined continuum-chiral fit, as has been done by the MILC
collaboration [19]. We have not done so here.

The next four terms are the analytic NLO (and, in the
case of H3, NNLO) corrections:

H2 ¼ G=�2
� (24)

H3 ¼ ðG=�2
�Þ2 (25)

H4 ¼ ðXP � YPÞ2
G�2

�

(26)

H5 ¼ LP þ SP=2

�2
�

(27)

All of these terms are present in the continuum limit, and to
the order we work their coefficients are independent of a
and the quark masses. We have chosen to write them in
terms of the PGB masses rather than the quark masses.
This allows us to set the scale of these terms by the chiral
scale �� which we take to be 1 GeV in our fitting. Then,

assuming naive dimensional analysis, we expect the
coefficients of these terms b2 � b4 to be of Oð1Þ.
We find that the NNLO analytic term, b3H3, is necessary

to obtain reasonable fits. The need for a NNLO term is not
surprising given relatively large kaon masses included in
our SU(3) fits. It is, perhaps, surprising that we can get
away with only a single term beyond NLO, given that the
MILC collaboration requires NNNLO and NNNNLO
terms in their fits to pion and kaon properties [19]. The
difference appears to be that the errors in BK are larger than
those in the quantities studied by the MILC collabora-
tion—PGB masses and decay constants.
We stress that we are not including the complete NNLO

expression (which is not known). In particular, we are not
including nonanalytic NNLO terms, and are keeping only
one of the NNLO analytic terms. Our approach here is
phenomenological—we are keeping the minimum number
of NNLO analytic terms needed to obtain reasonable fits.
The remaining 11 Hj are pure lattice artifacts, caused

either by discretization errors or the truncation of matching
factors, or both. They all arise from taste-violating inter-
actions.5 The first 7 are corrections to Mconn, and are
labeled by

H6 ¼ Fð4Þ
I (28)

H7 ¼ Fð4Þ
P (29)

H8 ¼ Fð4Þ
V (30)

H9 ¼ Fð4Þ
A (31)

H10 ¼ Fð4Þ
T (32)

H11 ¼ Fð5Þ (33)

H12 ¼ Fð6Þ: (34)

The explicit functional forms of Fð4Þ
B , Fð5Þ, and Fð6Þ are

given in Eqs. (A9)–(A11), respectively. The subscript on

Fð4Þ
B indicates the taste of the pion in the loop. The func-

3As discussed below, our data is insufficient to determine f�
from the fits. Thus we use a fixed value, which we vary among
reasonable choices.

4In this case there are no terms linear in 
 [18].

5There are also taste-conserving discretization and truncation
errors; these lead to the corrections in the expression for the
coefficient b1, Eq. (23).
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tions Fð5Þ and Fð6Þ vanish in the limit of degenerate valence
quarks.

The chiral logarithms in the functions H6–12 are en-
hanced over the continuumlike logarithms in H1. While
the latter are of standard form m2

K lnmK, the former are
simply proportional to lnmK. This enhancement of the
chiral logarithm is balanced by the fact that the coefficient,
bj, is small:

b6–12 ��2
QCD � ða2�2

QCD or 
2Þ: (35)

The final four functions Hj with j ¼ 13–16 arise from

corrections to Mdisc due to discretization and truncation
errors. These are the functions which are affected by our
use of a mixed action, as explained above in Sec. II A. H13

and H14 are the loop integrals involving the hairpin propa-

gator DB;PQ
xy ðqÞ [i.e. the first term in Eq. (17)]. They are, for

B ¼ V and A, respectively,

H13 ¼ Fð1Þ
V ; (36)

H14 ¼ Fð1Þ
A ; (37)

and are multiplied by coefficients proportional to 	MA1
V and

	MA1
A . This leaves the two functions multiplied by the two

additional LECs introduced by our use of a mixed action,
i.e. 	MA2

V and 	MA2
A . These are, respectively,

H15 ¼ Fð2Þ
V ; (38)

H16 ¼ Fð2Þ
A : (39)

The functions Fð1Þ
B and Fð2Þ

B are given in Appendix A 3.

They are yet more divergent in the chiral limit than Fð4–6Þ,
behaving generically as lnmK=m

2
K (although they vanish

when mx ¼ my). The power counting is restored by coef-

ficients [whose explicit expressions in terms of chiral co-
efficients are given in Eqs. (A16) and (A18) which are
proportional to the product of two factors arising from
discretization or truncation errors:

b13–16 ��2
QCD � ða2	MA1

B or a2	MA2
B Þ

� ða2�2
QCD or 
2Þ: (40)

(We recall that 	MA1;2
B / �4

QCD.) As discussed at the end of

Sec. II A, we expect 	MA1
B to be suppressed by a factor of 3

from its natural size, and for 	MA2
B to be close to zero. Thus

we expect the contributions from H13 and H14 to be small,
while those from H15 and H16 to be negligible.

C. SU(2) SChPT result

In the recent literature there has been much discussion of
the convergence and reliability of SU(3) ChPT when ex-
trapolating lattice results to the physical kaon mass. As
examples, we contrast the apparently successful extrapo-
lations of Refs. [3,13,19] (the latter being for BK using a

domain-wall valence/staggered sea mixed action), with the
lack of convergence found in Ref. [4,32]. Recent reviews
of the situation are given in Refs. [33,34], and a related
discussion in continuum ChPT is in Ref. [35]. Our view is
that whether SU(3) ChPT can be used reliably depends on
the quantity considered (the rate of convergence is not
universal) and on whether one includes NNLO and
higher-order terms (these are needed to represent data in
the region of the physical kaon mass). Thus we have
attempted SU(3) fits using the theoretical form described
in the previous subsection (which includes one NNLO
term), and find the reasonably successful results to be
described below.
It is nevertheless true that, for the nondegenerate lattice

kaons which lie closest to the physical kaon, and which
thus have the dominant effect on the extrapolation, the
nonanalytic dependence comes dominantly from chiral
logarithms involving only the light quarks (x and ‘ in our
notation). Chiral logarithms of mesons containing strange
quarks (i.e. of KB, SB, YB, �I and �0

B
6) can be expanded

about their values when the strange-quark mass equals its
physical value and represented accurately by analytic
terms. This means that, in effect, one is using an (approxi-
mate) SU(2) ChPTexpression for those kaons closest to the
physical kaon even when nominally doing an SU(3)
extrapolation.
The RBC collaboration were led, by considerations

along these lines, together with the poor convergence
they found for SU(3) ChPT, to propose the use of SU(2)
ChPT for the extrapolation of kaon (and pion) properties
[4]. In this approach, first considered systematically in
Ref. [36] and extended in Refs. [4,21], the kaon is treated
as a heavy, static source, and no expansion is made in the
mass of the (valence or sea) strange quark. The expansion
in powers of ðm�=��Þ2 is supplemented by an expansion in

ðm�=mKÞ2. In our calculation, this means that the SU(2)
ChPT result will apply only to the subset of our nondegen-
erate masses in which mx is small and my is large.

This methodology has been applied successfully to a
calculation of BK using domain-wall fermions by the
RBC collaboration [21]. Since they use lattice fermions
with an almost exact chiral symmetry, the corresponding
ChPT result is that of the continuum, except that the LECs
can depend on a2. For our calculation, however, what is
needed is an SU(2) staggeredChPTresult. At first sight, this
would appear to require a generalization of the rather in-
volved enumeration of operators performed in Ref. [18] to
the case of SU(2) chiral symmetry with a heavy kaon
source. It turns out, however, that a simpler approach suf-
fices. One can show that it is sufficient to consider the

6We do not include �V or �A in this list because the strange-
quark component is small and these mesons are light. This can
be seen from Eq. (8), which in the limit that a2	0

B 	 jSB � LBj,
which is the case in practice, gives �B � LB þ a2	0

B.

TAEGIL BAE et al. PHYSICAL REVIEW D 82, 114509 (2010)

114509-8



mx;m‘ 	 my � ms limit of the next-to-leading order

SU(3) SChPT result, provided that one allows the LECs to
depend on my and ms in an unknown (but analytic) way. In

addition, one can show that the size of the chiral logarithms
involvingmx andm‘ relative to the LO term is not corrected
by an unknown ms dependence. Thus the chiral logarithm
remains a predicted correction, as in SU(3) SChPT.

The validity of this ‘‘recipe’’ is demonstrated in
Appendix C. The argument holds to all orders in an ex-
pansion in powers of ms=�QCD.

Applying this recipe we find an important simplification:
the NLO terms in SU(3) SChPT that involve taste-breaking
LECs proportional to a2 or 
2

s get pushed to NNLO in
SU(2) SChPT. This drastically reduces the number of
parameters required in a fit to the NLO expression. How
this happens is explained in detail in Appendix B.

The final SU(2) SChPT result for BK is

BK ¼ X4
i¼1

diQ4; (41)

where the functions that appear are

Q1¼1þ 1

32�2f2

�
ðLI�XIÞ~‘ðXIÞþ‘ðXIÞ�2

X
B

�B‘ðXBÞ
�
;

(42)

Q2 ¼ XP

�2
�

; (43)

Q3 ¼
�
XP

�2
�

�
2
; (44)

Q4 ¼ LP

�2
�

: (45)

The chiral-logarithmic functions ‘ and ~‘ are defined in
Eqs. (A4) and (A5), and the factors �B, which are the
fractional multiplicities of the different tastes, are given
in Eq. (A3). Note that we have kept a single analytic
NNLO term, Q3, as for the SU(3) SChPT fits. As in the
SU(3) fits we fix�� ¼ 1 GeV, although we could also use

�� ¼ mphys
K .

The constants di are arbitrary, unknown, analytic func-
tions of ms and my. In addition, at NLO d1 contains taste-

conserving discretization and truncation errors (which it
inherits from b1). Specifically, one has

d1 ¼ BSUð2Þ
0 ðmy;msÞ þOða2; 
2Þ: (46)

where the first term is the value of BK in the SU(2) chiral
limit (mx ¼ m‘ ¼ 0) and with the given values of my and

ms. The Oða2; 
2Þ terms also have an implicit dependence
on my and ms.

Clearly the SU(2) SChPT result is much simpler than
that in SU(3) SChPT—at NLO, it has only 3 unknown
coefficients at a fixed lattice spacing, to be compared to 16
for the SU(3) form. This gain is compensated in part by the
fact that it can be used only for a small subset of our data,
and because the fit parameters have an implicit dependence
on my and ms. Nevertheless, we find, as described below,

that the SU(2) fitting is more straightforward and leads to
smaller final errors in BK.

III. DATA ANALYSIS

In this section, we explain how we calculate BK, how we
convert the numerical data into physical observables using
matching factors, and how we extrapolate to the physical
kaon mass and the continuum limit using S�PT.

A. Computation of BK

We use the MILC ensembles listed in Table III. They are
generated with Nf ¼ 2þ 1 flavors of improved (asqtad

action) staggered sea quarks, using the rooting trick to
cancel the effects of the extra tastes.
The values of the light sea-quark mass (aml) and strange

sea-quark mass (ams) are given in Table III. Details of the
lattice generation, decorrelation times, etc. are given in
Ref. [19]. We use three lattice spacings—a � 0:12, 0.09
and 0.06 fm—which are called coarse, fine and superfine,
respectively. These lattice spacings are the nominal
values—in our analysis we actually use the values obtained
on each ensemble from the value of r1=a obtained by the
MILC collaboration [13,24]. These are listed in Table IV.
To obtain a we set r1 ¼ 0:3108ð15Þðþ26

�79Þ fm, as given in

Ref. [13] using f� to set the scale.
The valence quarks are HYP-smeared staggered fermi-

ons, i.e. the configurations are HYP-smeared [37] (using
the coefficients of the HYP(II) choice in the convention of
Refs. [6,22]) and then we use the unimproved staggered
action. We have found this to be as effective at reducing
taste breaking as the more elaborate HISQ action [30]. We
use 10 different values of the valence-quark masses (i.e.mx

and my) running from �ms=10 to �ms. They are given in

Table V. In total, we have 55 mass combinations for our
valence PGBs: 10 degenerate ‘‘pions’’ (mx ¼ my) and 45

nondegenerate ‘‘kaons’’ (mx � my).

To give a more precise indication of the size of our
valence-quark masses, we quote in Table VI the values of
the valence ‘‘physical’’ down and strange-quark masses.

TABLE V. Valence-quark masses (in lattice units).

a (fm) amx and amy

0.12 0:005� n with n ¼ 1; 2; 3; . . . ; 10

0.09 0:003� n with n ¼ 1; 2; 3; . . . ; 10

0.06 0:0018� n with n ¼ 1; 2; 3; . . . ; 10
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These are obtained on each ensemble as follows. The
strange mass, my, is tuned so that YP ¼ ð0:6858 GeVÞ2,
which is the continuum s� �s mass keeping only quark-
connected contractions, as determined by Ref. [38]. The
down mass, mx, is then tuned so that G ¼ m2

K0;phys
. The

tunings require extrapolation, and we use the linear ex-
trapolation in quark masses discussed below. For the coarse
ensemble, we quote only results for the C3 ensemble, since
those on the other coarse ensembles are very similar.
Comparing to Table V, we see that our heaviest quark
mass is somewhat lighter than the physical strange-quark
mass on all ensembles.

To calculate the four-quark matrix elements needed for
BK we follow the methodology developed in Refs. [39–41].
We place wall-sources composed of U(1)-noise at time
slices t1 and t2 > t1, each of which are used to produce
both a valence quark and antiquark. Boundary conditions
are periodic in all directions. The sources consist of random
phases for each color index on each site on the time slice,
and have the property of selecting only the kaon having the
desired taste P (i.e. with quantum numbers �5 
 �5) and
having zero spatial momentum. One source produces a
valence kaon, the other an antikaon, and these are con-
tracted together in a gauge-invariant four-quark operator at
an intermediate time t. These operators involve quark and
antiquark fields spread out over 24 hypercubes, and thus
live on the two time slices t and tþ 1. They are made
gauge-invariant using products of HYP-smeared links
along the shortest paths joining quarks and antiquarks,
averaged over all such paths. The operators are then
summed over spatial directions so as to improve the signal.

For completeness, we give expressions for the operators
that we use. The four-fermion operator is, at tree-level,

OK ¼ X
j¼1;4

Olatt
j (47)

Olatt
1 ðtÞ ¼ X

~y

X
�

½V� � P�½V� � P�Ið ~y; tÞ (48)

Olatt
2 ðtÞ ¼ X

~y

X
�

½V� � P�½V� � P�IIð ~y; tÞ (49)

Olatt
3 ðtÞ ¼ X

~y

X
�

½A� � P�½A� � P�Ið ~y; tÞ (50)

Olatt
4 ðtÞ ¼ X

~y

X
�

½A� � P�½A� � P�IIð ~y; tÞ; (51)

where ~y is a vector labeling spatial hypercubes (so that its
components are all even). The operators are composed of
hypercube-based bilinears, each denoted by ½S� F�,
where S is the spin and F the taste. The subscripts I and
II distinguish the two ways in which the color indices in
the bilinears are connected by products of links. A com-
plete definition of these operators is given in Ref. [22].
At one-loop order, the coefficient multiplying each opera-
tor differs from unity, as shown in Eq. (59) below.
The four-quark matrix element should be independent of

t when t1 < t < t2, as long as the operator is far enough
from each source to remove contamination from excited
states. This is because we always use a kaon and antikaon
with the same mass. To obtain BK we then divide this
matrix element by that obtained via the ‘‘vacuum satura-
tion’’ approximation, as shown in Eq. (5). Explicitly, the
ratio of correlation functions we use is

BKðtÞ ¼ 2hWðt1ÞOKðtÞWðt2Þi
ð8=3ÞhWðt1Þ½A0 � P�ðtÞih½A0 � P�ðtÞWðt2Þi ;

(53)

whereW represents a wall source, and the factor of 2 in the
numerator accounts contractions present in the continuum
which are absent for our lattice operator [40]. This ratio
should be also be independent of t away from the sources,
and cancels the coupling of the wall sources to the (anti)
kaons. Thus our aim is to choose the sources so that there is
a clear plateau, and then fit BK to a constant in this region.
To gauge how far apart to place the sources, we look at

the two-point correlator from the wall-source (say at t ¼ 0)
to the taste-P axial current (i.e. with quantum numbers
�4�5 
 �5) summed over the spatial time slices at times t
and tþ 1. This is one of the two factors in the denominator
of BK (and also shows how we obtain the taste-P kaon
mass). We show an example of the resulting effective mass
in Fig. 2. This is defined by equating the correlator at times
t and tþ 1 to the form

fðtÞ ¼ Z½expð�m�ðtþ 0:5ÞÞ � expð�m�ðT � t� 0:5ÞÞ�;
(54)

which includes both a direct and a ‘‘wraparound’’ exponen-
tial (with T the lattice extent in the time direction). The plot
is for a pion on one of the coarse ensembles with a mass
close to that of the physical kaon. We observe a noticeable
contamination from the excited states up to t � 10, and that
the signal degrades for 26 & t. Also shown is a fit of the
correlator to the form (54) in the plateau region.
From this and similar plots, we know that on the

coarse lattices we need to place our four-fermion opera-
tor at least 10 time slices from both sources, i.e. that
�t ¼ t2 � t1 > 20. Here we assume that the coupling of
the four-quark operator to excited states is comparable to
that of the axial current—a reasonable assumption given
that the vacuum saturation approximation turns out to be
good to within a factor of 2. The source separation

TABLE VI. Physical down and strange valence-quark masses
(in lattice units).

Ensemble amd ams

C3 0.00212(2) 0.05174(5)

F1 0.00142(2) 0.03523(5)

S1 0.00102(1) 0.02362(3)
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cannot be too large, however, because the signal will
then be contaminated by wraparound contributions aris-
ing from our use of a periodic lattice. Thus we have
chosen �t to be somewhat larger than the minimum, but
not too much larger. Our specific choices are given in
Table VII. We have held the physical distance between
the sources, �t=a, roughly constant as the lattice spacing
is reduced. The table also gives the parameters that
determine the fitting range: we fit from t ¼ t1 þ tL to
t ¼ t1 þ tR ¼ t2 � tL � 1. Note that our fit ranges are
symmetrical with respect to the two wall sources since
the four-quark operator resides on time slices t and tþ 1.

We can estimate the systematic error due to wraparound
contributions as follows. These contributions have the kaon
from one source propagating the ‘‘wrong’’ way around the
lattice, so that the matrix element which occurs is
hK0K0jOj0i or its conjugate. At leading order in continuum
ChPT, this matrix element has the same magnitude (and
opposite sign) as the desired matrix element hK0jOj �K0i.
Since the wraparound effect is small, when estimating its
size we ignore the differences between these two matrix
elements due to higher-order SChPT effects. Then the

contamination is simply given by the ratio of the kaon
propagators in the two cases. Adding the two contributions
involving a single (anti) kaon wrapping around the lattice,
we find that the ratio of contamination to signal is

RKðtÞ ¼ 2 expf�amKðT � �tÞg
� coshf2amK½ðt� t1Þ � ð�t� 1Þ=2�g: (55)

This is suppressed by the overall exponential factor, but
grows on either side of its minimum (which occurs midway
between the sources) as a cosh with an exponent containing
2amK. To give an idea of the size of the effect we give two
examples of the value of RK at the edge of the fitting range
(where it is maximal). On the coarse lattices, with T ¼ 64,
�t ¼ 26 and t� t1 ¼ tL � t1 ¼ 10we find RKðtÞ ¼ 0:015
for the lightest pion (amxy:P ¼ 0:1342 for amx ¼ amy ¼
0:005), while RKðtÞ ¼ 1:2� 10�4 for the lightest kaon
used in the SU(2) chiral fit (amxy:P ¼ 0:2749 for amx ¼
0:005 and amy ¼ 0:04). The latter result is most relevant

for an estimate of the size of the induced error in our final

result for the physical kaon (which has a mass amphys
K �

0:3 on the coarse lattices). This is because, whether we use
the SU(3) or SU(2) fits, the most important points are those
closest to the place to which we are extrapolating. Thus we
conclude that the wraparound systematic is negligible for
BK, although it would be significant (at the few percent
level) were we to quote a result for B0 (BK in the chiral and
continuum limits).
Based on the autocorrelation lengths for light hadron

properties, the lattices in the MILC ensembles are some-
what correlated [19]. Because of this, we attempt to reduce
correlations between our measurements of BK by randomly
choosing the overall source position, t1, on each configu-
ration (with t2 fixed to t1 þ�t). For three ensembles
(C3, C3-2 and C4) we have increased our statistics by
doing multiple measurements on each lattice (as shown
in Table III). We chose the t1 values for these measure-
ments randomly and also set the random number seeds for
the U(1) noise sources randomly.
Using these enlarged data sets, we have done a prelimi-

nary study of autocorrelations by seeing how the error
changes when we bin configurations together. This has
been done for a pion two-point correlator, for which the
errors are smaller than those for BK. The results for en-
semble C3 are presented in Ref. [16]. We find that the
errors increase somewhat as the bin size increases, reach-
ing a plateau for bins of size 3 or above, in which the errors
are about 20% larger than those obtained treating each
configuration as independent. This increase is only visible
after we use the larger sample (9 measurements per
configuration).
We take this result as indicating that autocorrelations are

a small effect. In particular, because our statistical errors
turn out to be smaller than the systematic errors, a 20%
increase in the former would have little impact on our final

FIG. 2. Pion effective mass versus time from wall-source.
Parameters are amx ¼ amy ¼ 0:025 on the C3 coarse ensemble.

The fit is described in the text.

TABLE VII. Choices for the wall-source separation, �t, and
its ratio to the temporal length of the lattices, T, as well as the
parameters determining the fitting range.

a (fm) �t �t=T tL tR

0.12 26 0.41 10 15

0.09 40 0.42 13 26

0.06 60 0.42 22 37
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result. Thus we have ignored the possible impact of auto-
correlations in this paper.

Typical results for one-loop renormalized BK, along
with the fitting range and resulting value and error, are
shown in Fig. 3. This figure shows the dependence on the
lattice spacing when we use a kaon composed of degener-
ate quarks but with a mass close to that of the physical
kaon. The data have a similar profile for all three lattice
spacings, showing contamination from excited states near
the boundary but a reasonable plateau that extends further
out than our fit region. The smaller size of the errors on the
coarse lattice reflects the larger sample (9 measurements
on each lattice).

The effect of varying the quark masses (at fixed lattice
spacing) is illustrated by Fig. 4. The (blue) diamonds show
the same data as in Fig. 3, with degenerate quarks and an
approximately physical kaon mass. The (red) crosses show
the change when my �mx is maximized (in our data set)

with mx þmy fixed (so that the kaon mass is almost the

same). One sees that the central value increases a little, and
that the errors are significantly larger. The (brown) octa-
gons shows what happens if bothmx andmy are reduced to

our smallest value, so that the resulting kaon is closer to a
pion (having a mass� 220 MeV). Here the central value is
significantly reduced, and the errors are much larger.
Fortunately, our results from light ‘‘kaons’’ play little
role in determining the extrapolation to the physical kaon. In these figures, and in all subsequent analysis, errors are

obtained using the jackknife procedure. This is true both
for the errors on individual points and for the errors in fit
parameters. When doing fits to multiple time slices, and
when fitting to multiple quark masses (as required for the
chiral fits discussed below) we do not use the (inverse of
the) full covariance matrix, which he have found to lead to
instabilities, but rather keep only the diagonal elements.
This means that we cannot quantitatively judge the good-
ness of fit, since the �2 is generically underestimated.
Assuming, however, that the fits are reasonable, the jack-
knife errors should be reliable.
We close this subsection by describing how we deter-

mine the values ofmxy:B needed as inputs to the SChPT fits

to BK. For the taste-Pmeson, we measure the mass directly
using our wall sources. We have four sets of two-point
correlation functions:

C1ðtÞ ¼ hA4ðtÞPðt1Þi; (56a)

C2ðtÞ ¼ hA4ðtÞPðt2Þi; (56b)

C3ðtÞ ¼ hPðtÞPðt1Þi; (56c)

C4ðtÞ ¼ hPðtÞPðt2Þi: (56d)

We determine the Goldstone pion masses by fitting these
four sets of data individually and averaging the results.
We have calculated the masses of PGBs having all other

tastes on most of the ensembles. The methodology is
explained in Refs. [30,42]. Specifically, we use 8 ‘‘cubic
wall sources’’ per configuration, and ‘‘Golterman-style’’

FIG. 3 (color online). BKð� ¼ 1=aÞ as a function of
T ¼ t� t1. (Blue) diamonds are from the coarse ensemble C3,
with amx ¼ amy ¼ 0:025; (red) crosses are from the fine en-

semble F1, with amx ¼ amy ¼ 0:015; and (brown) octagons are

from the superfine ensemble S1, with amx ¼ amy ¼ 0:009. The

result of a fit to a constant over the range given in Table III is
shown by the horizontal lines. Note that the T is given in fermis.

FIG. 4 (color online). As for Fig. 3, except that all data is from
the C3 ensemble. (Blue) diamonds show results for amx ¼ 0:025
and amy ¼ 0:025, (red) crosses for amx ¼ 0:005 and amy ¼
0:045, and (brown) octagons for amx ¼ 0:005 and amy ¼ 0:005.
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sink operators. Results for the best-measured tastes are
shown in Figs. 5 and 6 for a coarse and the fine ensemble,
respectively. The nondegenerate points are also consistent
within errors with the observed linear behavior, though we
do not show them for the sake of clarity. The results for the
other tastes have masses that are completely consistent
with the SO(4) symmetry expected at LO. Given this, we
choose to assume exact SO(4) symmetry for the masses
used in the ChPT expressions, taking the values from the
best measured tastes (such as those in the Figures).

The LO prediction of Eq. (6) has the slopes being the
same for all tastes. NLO effects will, however, lead to a
difference between the slopes. We find that the slopes do
have statistically significant differences, but that these
differences are very small, a few percent or less [42]. In
practice we do linear fits allowing the slopes to differ (i.e.
allowing b1 to depend on taste B), and from these deter-
mine the intercepts �B. We then reconstruct the PGB
masses that we use in chiral loops using

KB ¼ Gþ�B � �P; (57a)

XB ¼ XP þ �B � �P; (57b)

YB ¼ YP þ�B � �P: (57c)

This choice effectively assumes that the slopes are equal to
that of the taste P mesons. This approach reproduces the
actual masses to within a few percent or better, and is, in
any case, theoretically consistent as the LO masses can be
used in loops. Put differently, the inclusion of the small

differences between slopes in the chiral logarithms would
lead to an analytic contribution of NNLO, i.e. of higher
order than our expressions.
We proceed in the manner just described on all ensem-

bles except the large-volume coarse ensemble (C3-2), the
fine ensemble (F2), and the superfine ensemble (S1). On

FIG. 6 (color online). As in Fig. 5, but for the fine ensemble
F1. Here r1 ¼ 3:701a.

FIG. 5 (color online). m2
xyr

2
1 versus ðmx þmyÞr1, for states

with mx ¼ my, and tastes (from bottom to top) �5, �i�5, �i�4,

�4 and 1. r1 is the modified Sommer-parameter, whose value is
2:619a. The fits are discussed in the text. Results are for the
coarse ensemble C3.

FIG. 7 (color online). �B from ensembles C3 and F1 (the
rightmost two sets of points). These are extrapolated, as de-
scribed in the text, to obtain the results for the S1 ensemble
(leftmost set of points). Numerical values are given in
Table VIII.
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these three ensembles we have not measured the full taste
spectrum, due to the high computational cost. We estimate
the taste splittings on these ensembles as follows. For
(C3-2) we simply use the taste splittings from the smaller
lattices with the same quark masses [ensemble (C3)]. For
(F2) we assume the same taste splittings as for the other
fine ensemble, (F1), based on the fact that taste splittings
on the coarse lattices are almost independent of the light
sea-quark mass. Finally, for the superfine ensemble, we
obtain the �B by extrapolating from the coarse and fine
lattices. These quantities are expected to vanish in the
continuum limit as a2
2. We thus fit our results from the
C3 and F1 ensembles to

�BðaÞ ¼ b1a
2
2

sð� ¼ 1=aÞ (58)

with 
s determined using 4-loop evolution from the
Particle Data Group value at � ¼ MZ. The result is sat-
isfactory, as shown in Fig. 7, and leads to the values
collected in Table VIII. Since the taste splittings on the
superfine lattice are so small, the uncertainty introduced by
the need to do this extrapolation has a negligible impact on
our chiral fitting.

B. Matching factors

To convert the results of our lattice calculation into
physical observables, we need to match lattice and con-
tinuum operators. The latter we define in the conventional

way using naive dimensional regularization with MS sub-
traction. For the matching, we use one-loop perturbation
theory, which leads to the general form

Ocont
i ð�Þ ¼ X

j

�
	ij � 
ðq�Þ

4�
ð�ij logða�Þ þ cijÞ

�
Olatt

j ðaÞ:

(59)

Here superscripts ‘‘cont’’ and ‘‘latt’’ indicate continuum
and lattice operators, respectively, �ij is the anomalous

dimension matrix, the cij are finite constants, and � is

the renormalization scale for the continuum operator. We
choose the coupling constant here and below to be that

defined in the continuum MS scheme (which we evaluate
numerically using four-loop running from mZ). The scale

at which it is evaluated, q�, is undetermined by one-loop
matching.
In our calculation we are interested in a single contin-

uum operator, so i takes one value, but the matching
involves many lattice operators, labeled by j. The operators
which appear are listed in Ref. [22]. The values of cij for

our HYP-smeared operators, using the appropriate
Symanzik-improved gauge action, have been calculated
by three of us and will be presented in Ref. [43].
When using this matching formula, we do not, in fact,

include all the lattice operators which appear at one-loop,
but instead keep only thosewith external tastesP. There are
four of these, and they are listed above in Eqs. (48)–(51).
Dropping the other operators leads to the Oð
=�Þ trunca-
tion errors discussed earlier.
Having matched to the continuum operator at an inter-

mediate scale �, we then evolve using the continuum
renormalization group (RG) down to a canonical scale
p ¼ 2 GeV. We do so using the two-loop formula

BKðNDR; pÞ ¼
½1� 
ð�Þ

4�
Z�

½1� 
ðpÞ
4�

Z�

�

ðpÞ

ð�Þ

�
dð0Þ

BKðNDR; �Þ

Z ¼ �ð1Þ

2
0

� dð0Þ

1


0

dð0Þ ¼ �ð0Þ

2
0

: (60)

Expressions for the 
i and �ðiÞ are given, for example, in
Ref. [44]. In this way we obtain BKðNDR; p ¼ 2 GeVÞ.
In order to implement this matching and running, we

have to choose values for � and q�. The result depends on
these choices because we have truncated the matching at
one-loop and the running at two-loops. In both cases, the
error we make is of Oð
2Þ. Based on the arguments of
Ref. [45], we use ‘‘horizontal matching’’ in which q� ¼ �.
The choice of q� should be made so as to minimize higher-
order terms in perturbation theory, which requires that q�
be a typical scale of momenta flowing in loops. We simply
take q� ¼ 1=a. It is possible to make a better-informed
estimate using the one-loop integrands themselves, but we
have not yet attempted this.
Finally, we recall that one can also define the RG invari-

ant quantity B̂K,

B̂ K ¼
�
1� 
ð�Þ

4�
Z

��
1


ð�Þ
�
dð0Þ

BNDR
K ð�Þ; (61)

which is often used in the continuum literature. This quan-
tity has the apparent advantage that all truncation errors are
manifestly proportional to 
ð�Þ2, with the scale � being
naturally chosen of Oð1=aÞ (and in our case, chosen to be
exactly 1=a). Thus these errors vanish (albeit logarithmi-
cally) in the continuum limit. By comparison, using
BKðNDR; 2 GeVÞ apparently leads to truncation errors
which have a nominal size of 
ð2 GeVÞ2, which does not
vanish in the continuum limit. This is, however, mislead-
ing, in that if different lattice calculations use the same

TABLE VIII. Results for valence taste-splittings, �B (GeV2),
on ensembles C3, F1 and S1. Those on C3 and F1 are obtained
by calculating PGB masses using cubic wall sources (see
Ref. [42]). Those on S1 are obtained by extrapolating using
Eq. (58).

a (fm) 0.12 (C3) 0.09 (F1) 0.06 (S1)

�A 0.02905(59) 0.00912(29) 0.003487(60)

�T 0.0565(13) 0.01753(49) 0.00666(12)

�V 0.0819(18) 0.02612(68) 0.00977(16)

�S 0.1052(88) 0.0314(33) 0.01219(80)
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truncated formula to run to 2 GeV, they are in effect

comparing B̂K, so the real truncation errors in the com-
parison are �
ð1=aÞ2.

C. SU(3) fitting: Strategy

We would like to fit our results for BK to the functional
form of Eq. (21). For a given ensemble (fixed a and sea-
quark masses) the fit form has 15 parameters.7 Despite the
fact that we have 10 degenerate and 45 nondegenerate data
points on each ensemble, we find a direct fit to Eq. (21) to
be very difficult. Here we explain why and describe our
strategies for dealing with this problem.

We begin by sorting the 15 terms into 4 categories,
according to the following criteria:

(i) Does the term survive in the continuum limit, i.e.
does it correspond to a term in continuum ChPT?
Contributions from discretization errors (taste-
breaking or otherwise) and from truncation errors
do not have such a correspondence.

(ii) Does the term contribute to BK in the degenerate
case of mx ¼ my, or does it vanish in that limit?

The result of this categorization is shown in Table IX.
From Table IX, we observe that the fitting functional is

somewhat simplified if we fit only to degenerate data
points. There are then three ‘‘continuumlike’’ terms,
H1–3, and five terms which are lattice artifacts, H6–10.
Since we have 10 degenerate data points, we can, in
principle, fit them to a functional form composed of 8
terms. In practice, this turns out to be very difficult, pri-
marily because the functional forms of the five lattice-
artifact terms are very similar for our range of PGBmasses.
This is not unexpected: the five functions have the same

form [that ofFð4Þ defined in Eq. (A9)], but differ in the taste
of the PGB whose mass appears. Thus one expects the
functions to be similar except at the lightest quark masses
where the taste-splittings are comparable to the masses
themselves (see Fig. 5). This is borne out by direct numeri-
cal evaluation. The similarity of the functions becomes
more pronounced as one approaches the continuum limit,
because of the reduction in taste splittings. Indeed, on the
superfine lattices, one can argue that the Oða2Þ effects
should be treated as of NLO, and thus that the difference
between these five functions is really an effect of NNLO.

In light of these considerations, we approximate all five

functions by Fð4Þ
T , i.e. the function in which the mass is that

of the taste-T PGB. We choose the tensor taste as its mass

is roughly the average of those of all tastes. We stress that
this is not a systematic procedure, since if OðmÞ �Oða2Þ,
as is the case for the smallest quark masses on the coarse
lattices, it is not legitimate to expand logðXBÞ about XB ¼
XT and treat the difference as of higher order. Our proce-
dure is simply a phenomenological way of resolving the
presence of nearly flat directions in the fit function.
With this approximation, the fitting function for the

degenerate data set collapses to

f
deg
th ¼ X4

i¼1

ciFi (62)

where F1 ¼ H1, F2 ¼ H2, F3 ¼ H3 [with the Hi as de-

fined in Eqs. (22)–(25)], and F4 ¼ H10 ¼ Fð4Þ
T . Fits to this

4-parameter form are stable, and we use them as the first
stage of most of our fitting strategies.
The fit to (62) can also be constrained given our prior

knowledge of the size of the coefficients. We expect from
continuum ChPT power counting that c1 � c2 � c3 �
Oð1Þ. For c4 ¼ b10 we have two possible estimates, given
in Eq. (35), depending on whether discretization or trun-
cation errors dominate. One can systematically include this
prior information in the fitting using the Bayesian method
[46], as discussed in the next subsection.
We now turn to the remaining 45 nondegenerate data

points. As can be seen from Table IX, including these
points in the fit requires the introduction of one additional
term with a nonvanishing continuum limit, and six terms
arising from lattice artifacts. Once again, however, directly
fitting to all these terms is difficult because some of the
functions are similar. Thus we choose again to approximate
the fitting function.

We first observe that H11 ¼ Fð5Þ [given in Eq. (A10)] is

numerically close to twiceH12 ¼ Fð6Þ [given in Eq. (A11)].
This proportionality is exact if taste-splittings are ignored.
Thus we choose to dropH11 and keepH12 as a surrogate for
both these functions.

Next we note that H13 ¼ Fð1Þ
V is very similar to

H14 ¼ Fð1Þ
A —differing only in the taste of the PGBs whose

masses appear in the function. Thus we choose to keep
only H14 from this pair.

TABLE IX. Classification of contributions, Hi, to the NLO
SU(3) SChPT expression for BK , Eq. (21), when fitting at a
fixed a and sea-quark masses. Terms in the ‘‘cont’’ column have
a corresponding continuum form, while those labeled ‘‘non-
cont’’ do not. Terms in the row labeled ‘‘deg’’ contribute both
for mx ¼ my and mx � my, while those in the ‘‘non-deg’’ row

contribute only for mx � my. Numbers in the table give the

subscript, i, of the fit form Hi. Numbers underlined indicate
those Hi which are kept in our final SU(3) fits.

cont non-cont

deg 1, 2, 3 6, 7, 8, 9, 10
non-deg 4 11, 12, 13, 14, 15, 16

7There are 15 rather than 16 parameters because H5 is a
constant for fixed sea-quark masses, and so can be absorbed
into b1 (the coefficient ofH1). Doing so leads to additional chiral
logarithms multiplied by quark masses, but these are of NNLO,
and thus irrelevant to our NLO expression. Of course, having
absorbed b5 into b1, we must subsequently take into account the
resulting sea-quark mass dependence of b1. This we do in
Sec. III F.
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Finally, we come to H15 ¼ Fð2Þ
V and H16 ¼ Fð2Þ

A . These

are also numerically similar, but, more importantly, their
coefficients are proportional to 	MA2

A and 	MA2
V , quantities

that we have argued are substantially suppressed (see
Sec. II A). Thus we consider these contributions to be of
NNLO and simply drop them.

The outcome of these considerations is that the func-
tional form we use when fitting our entire data set contains
7 terms:

fth ¼
X7
i¼1

ciFi (63)

where the first 4 terms are the same as in Eq. (62) and the

rest are F5 ¼ H4 (the analytic term), F6 ¼ H12 ¼ Fð6Þ and
F7 ¼ H14 ¼ Fð1Þ

A . We expect c5 ¼ Oð1Þ and c6 � c4,
while c7 ¼ b14 is given by the estimates in Eq. (40). In
some of our fits, we impose the latter two estimates using
the Bayesian method.

D. SU(3) fitting: Implementation

In this section, we use our fits to the C3 and S1 ensem-
bles as examples to explain our detailed strategy and the
results.

We first fit the degenerate data to the 4-parameter form
of Eq. (62) with no constraints. We label this fit ‘‘D-U’’,
with D for degenerate and U for unconstrained.8 We show
the result of this fit on the C3 and S1 ensembles in Figs. 8
and 9, respectively. These ensembles have, to good ap-
proximation, the same sea-quark masses and thus differ
mainly in the value of a. The fits give a good representation
of the data, as is the case also on the other ensembles (not
shown). The parameters from the D-U fits are collected in
Table X.9 We stress again that the �2=dof uses only diago-
nal elements of the covariance matrix and thus is expected
to be much less than unity. In fact, a value approaching
unity indicates a poor fit.

We find that c1–3 are of Oð1Þ, indicating that the chiral
expansion is behaving as expected. The convergence of the
ChPT series is illustrated in the figures. At LO, BK is a
constant. The NLO form is shown by the (brown) dashed
curves, and has curvature due to the chiral logarithms in F1

and F4. Our phenomenological NNLO term makes up the
difference between the full fit and the NLO form. The

convergence is reasonable for mK & m
phys
K , (e.g. on C3

we find LO : NLO : NNLO � 1 : 0:5 : 0:12 for mK �
mphys

K ), but clearly poor for our heaviest kaon. We stress,
however, that, because we do not have the complete NNLO
expression, this analysis of convergence is only
approximate.

Since c1–3 are continuum parameters, and are dimen-
sionless, we would expect approximate consistency
between their values in all the fits, up to a modest depen-
dence on lattice spacing and on sea-quark masses. This
expectation holds within errors—although we note that the
errors in c2 and c3 are quite large.
The coefficient c4 multiplies the sole NLO discretiza-

tion/truncation term in our fit function. We find that our fits
do not require such a term—it is consistent with zero on all
ensembles. The range of values of c4 allowed by the fits (as
indicated by the errors) are such, however, that this term
can make a noticeable contribution. This is illustrated in
the figures, where the contribution of the c4 term is given
by the difference between the full fits and the ‘‘No F4’’
curves. It is seen to be relatively small (< 10%) over the
entire mass range on the C3 ensemble, and, in particular, is
considerably smaller than continuumlike NLO terms (and

comparable to the NNLO terms) at mphys
K . As expected, its

contribution on the superfine ensemble is generally much
smaller than on the coarse ensemble. These results imply

 0.3
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FIG. 8 (color online). BKðNDR; � ¼ 1=aÞ vs m2
K for degener-

ate kaons (mx ¼ my), on the C3 ensemble. A fit of type D-U is

shown by the solid (blue) curve. The dotted (red) curve labeled
‘‘NLO’’ shows the impact of dropping the NNLO term. The
dashed (brown) curve labeled ‘‘No F4’’ shows the impact of
dropping the F4 term.

TABLE X. Parameters of D-U fits. The ci are defined in
Eq. (62). �2=dof represents �2 per degree of freedom calculated
using only diagonal elements of the covariance matrix.

ID c1 c2 c3 c4 (GeV2) �2=dof

C1 0.283(41) 0.88(40) 0.24(41) 0.0018(19) 0.004(20)

C2 0.351(42) 0.18(41) 0.85(41) �0:0022ð19Þ 0.012(17)

C3 0.339(13) 0.37(13) 0.72(13) �0:0008ð6Þ 0.041(54)

C4 0.327(13) 0.47(13) 0.60(13) �0:0005ð6Þ 0.051(59)

C5 0.286(32) 0.84(30) 0.22(30) 0.0013(14) 0.08(11)

F1 0.349(39) 0.05(33) 1.06(40) �0:0012ð11Þ 0.10(12)

F2 0.356(32) 0.01(27) 1.13(33) �0:0013ð9Þ 0.11(13)

S1 0.323(25) 0.18(21) 0.88(29) �0:0005ð6Þ 0.05(12)

8This fit is called ‘‘D-T3’’ in our previous publications.
9Ensemble C3-2 is only used for an estimate of finite-volume

errors, as described in Sec. III H.
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that we have been conservative in treating this term as of
NLO in our power counting.

Another way of seeing this is to compare the values of c4
(and their errors) to the magnitudes expected from power
counting. As noted above, these range from

jc4j ¼ Oða2Þ � �2
QCDða�2

QCDÞ2

�

8>>><
>>>:
0:0031 GeV2 on the coarse lattices;

0:0015 GeV2 on the fine lattice;

0:00075 GeV2 on the superfine lattice:

; (64)

(where we have used �QCD ¼ 0:3 GeV) to

jc4j ¼ Oð
2Þ � �2
QCD


2

�

8>>><
>>>:
0:010 GeV2 on the coarse lattice

0:0069 GeV2 on the fine lattice

0:0050 GeV2 on the superfine lattice

(65)

(where we have evaluated 
 at the scale � ¼ 1=a). Our
results for jc4 � 	c4j are at or below the smaller of these
estimates on all ensembles.

We have also considered the effect of constraining c4
using Bayesian fits. Specifically, following Ref. [46], we
augment the usual �2 with an additional term:

�2
aug ¼ �2 þ �2

prior (66)

�2
prior ¼

ðc4 � a4Þ2
~�2
4

: (67)

Since we have no prior information on the sign of c4 we set
a4 ¼ 0. We do have prior information on the expected size
of c4 ¼ b10, given in Eq. (35), and we choose ~�4 accord-
ingly. In particular we consider two Bayesian fits, one
assuming that discretization errors dominate [~�4 �
�2

QCDða�2
QCDÞ2], the other assuming that truncation errors

dominate [~�4 � �2
QCD


2]. We label these ‘‘D-B1’’ and

‘‘D-B2’’, respectively.10 The numerical values of ~�4 are
given in Eqs. (64) and (65) above.
We expect that adding these constraints will have little

impact on the fits, given that the unconstrained fits yield
values of c4 and 	c4 that are mostly consistent even with
the stronger of the constraints. This is borne out by the
results of the fits. We show the results for the D-B1 case
in Table XI. There is no significant change in c1–3, but
the central values, and the errors, in c4 have been reduced
on some ensembles (with a corresponding increase in the
augmented �2). As expected, the less constrained D-B2
fits are almost identical to the D-U fits, so we do not
show them.
We now turn to fits to our full data set, i.e. to all 55

degenerate and nondegenerate points. We first fit to the
functional form (63) without constraints, labeling the fits
‘‘N-U’’ (with N for nondegenerate, U for unconstrained).11

The parameters of the N-U fit for all ensembles are given in
Table XII, and the quality of the fit is illustrated by Figs. 10
and 11.
To better display the fit, we plot BK versus XP rather than

G ¼ m2
K. This has several advantages: it spreads the points

out, giving a sense of the quality of the entire fit; it displays
the dependence on the light valence-quark mass mx / XP,
which is the critical parameter which must be extrapolated
in order to reach the physical point; and it allows a more
direct comparison with the SU(2) ‘‘X-fits’’ presented be-
low. The fits are reasonable—as is the case on all other
ensembles. The C3 and C4 ensembles have larger �2=dof
because the statistical errors are substantially smaller,
which brings to light the inadequacies in our partial-
NNLO fit form.12

TABLE XI. Parameters of D-B1 fits.

ID c1 c2 c3 c4 (GeV2) �2
aug=dof

C1 0.300(25) 0.71(23) 0.42(23) 0.0011(12) 0.044(72)

C2 0.328(23) 0.39(22) 0.61(21) �0:0013ð12Þ 0.068(99)

C3 0.338(12) 0.38(12) 0.70(12) �0:0008ð6Þ 0.053(70)

C4 0.326(12) 0.48(12) 0.59(12) �0:0005ð6Þ 0.057(54)

C5 0.295(23) 0.76(21) 0.31(21) 0.0009(10) 0.11(15)

F1 0.327(21) 0.24(17) 0.81(20) �0:0007ð6Þ 0.17(22)

F2 0.338(21) 0.15(17) 0.93(20) �0:0009ð6Þ 0.20(22)

S1 0.311(13) 0.28(11) 0.73(15) �0:0003ð3Þ 0.11(21)
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FIG. 9 (color online). BKðNDR; � ¼ 1=aÞ vs m2
K for degener-

ate kaons on the S1 ensemble showing a D-U fit. Notation as in
Fig. 8.

10These correspond to D-BT7 and D-BT7-2 in our previous
publications.
11This corresponds to N-T2 in our previous publications.
12As noted by the MILC collaboration, more precise lattice data
requires the use of ChPT expressions of higher order, with the
order chosen so the error from the truncation of the series is
reduced to the level of the statistical errors.
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We also include in the figure the value of BKðNDR; � ¼
1=aÞ extrapolated to the physical quark masses using the fit
function, with all taste-breaking discretization and trunca-
tion errors removed.13 This ‘‘physical’’ BK is plotted at the
physical value ofXP. We also include physicalBK values in
Table XII, and subsequent tables for other fits, except that in
the tables we run them to a common scale, � ¼ 2 GeV,
so as to allow comparison between ensembles.

We stress that we are only able to remove taste-breaking
discretization errors because we have used a staggered
ChPT fit in which such breaking is explicit. We also note
that taste-conserving discretization and truncation errors
are not removed by this procedure, and must be dealt with
separately.

The values of the parameters c1 � c4 given in Table XII
are consistent with those from the fits to the degenerate
data alone. This is a nontrivial result, suggesting that our
truncation of the full NLO SU(3) expression down to 7
parameters can adequately describe the data. The ‘‘contin-
uum nondegenerate’’ parameter c5 appears to be nonzero
(this is most significant on the high-statistics ensembles C3
and C4), and is consistent across all ensembles. The ‘‘lat-
tice nondegenerate’’ parameters c6 and c7 appear also to be
nonzero on the high-statistics ensembles C3 and C4,
although they are consistent with zero on other ensembles.
Our errors are too large to tell whether c6 and c7 show the
expected decrease as the continuum limit is approached.

The most striking result, however, is that c5 is very
small. It is expected to be of order unity, but turns out to
be more than an order of magnitude smaller. We do not
know of an explanation for this smallness. Indeed, its value
is not of direct physical significance, since it depends on
the scale chosen in the chiral logarithms (which we have
taken to be �DR ¼ 0:77 GeV). Nevertheless, there is an
important practical consequence of our finding that c5 is
small. If c5 vanished, then fits to the degenerate data alone
would allow a determination of the physical BK, since F5 is

TABLE XII. Parameters from N-U fits. The ci are defined in Eq. (63), and �
2=dof is the uncorrelated �2 per degree of freedom. The

last column gives the value for BKð2 GeVÞ that results when we set quark masses to their physical values and remove discretization
errors (as described in the text), and then run the resulting BKð1=aÞ down to 2 GeV.

ID c1 c2 c3 c4 (GeV2) c5 c6 (GeV2) c7 (GeV4) �2=dof BKð� ¼ 2 GeVÞ
C1 0.275(38) 0.96(37) 0.15(37) 0.0021(17) 0.050(34) �0:0054ð37Þ 0.0012(5) 0.0063(80) 0.616(30)

C2 0.351(38) 0.17(37) 0.86(37) �0:0022ð18Þ 0.103(36) �0:0051ð42Þ 0.0015(6) 0.0039(38) 0.602(33)

C3 0.331(12) 0.46(12) 0.63(12) �0:0004ð6Þ 0.057(11) �0:0025ð12Þ 0.0008(2) 0.135(41) 0.596(10)

C4 0.319(12) 0.56(12) 0.51(12) �0:0001ð6Þ 0.062(11) �0:0034ð12Þ 0.0008(2) 0.196(47) 0.603(10)

C5 0.285(29) 0.85(28) 0.21(28) 0.0014(13) 0.069(24) �0:0052ð27Þ 0.0008(3) 0.040(30) 0.621(22)

F1 0.330(37) 0.21(31) 0.87(38) �0:0007ð10Þ 0.053(25) �0:0017ð23Þ 0.0006(3) 0.038(33) 0.564(20)

F2 0.343(30) 0.10(25) 1.00(31) �0:0010ð9Þ 0.039(18) 0.0000(18) 0.0003(2) 0.034(30) 0.550(16)

S1 0.316(23) 0.23(20) 0.80(26) �0:0004ð5Þ 0.072(15) �0:0031ð12Þ 0.0005(2) 0.018(22) 0.581(12)

FIG. 10 (color online). BKðNDR; � ¼ 1=aÞ as a function of
XP on the C3 ensemble. For each value of XP / mx, the tower of
points corresponds to the different values of my, with my

increasing from mx at the bottom to mmax
y ¼ 0:05=a at the top.

Curves show the N-U fit, both for fixed values of my and for

mx ¼ my. Error bands are not included for the sake of clarity.

The (blue) octagon gives BKð1=aÞ evaluated at the physical kaon
mass with lattice artifacts removed (as described in the text).

13In detail, we remove the terms induced by lattice artifacts by
setting c4 ¼ c6 ¼ c7 ¼ 0, remove all taste splittings in sea and
valence mesons (�B ¼ 0), and choose physical valence-quark
masses by setting YB ¼ m2

s�s;phys ¼ ð0:6858 GeVÞ2 [38], G ¼
KB ¼ m2

K0 ;phys
, and XB ¼ 2m2

K0 ;phys
�m2

s�s;phys (the latter assum-
ing the observed linear dependence on quark masses, Eqs. (6)).
In addition, we choose physical sea-quark masses by setting L ¼
m2

�0;phys
and S ¼ m2

K0 ;phys
. Here we are assuming Dashen’s

theorem, namely, that there are no electromagnetic corrections
to the neutral pion and kaon masses. Other choices for tuning the
quark masses lead to results that differ by much less than the
statistical errors.
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the only continuum term in our fit function that vanishes for
degenerate quark masses. Since we find c5 to be very small,
the degenerate data must play an important role in deter-
mining the extrapolated, physical BK.

The magnitude of the parameter c6 is expected to lie in
the same range as c4, namely, from �2

QCDða�QCDÞ2 (dis-

cretization errors) to �2
QCD


2 (truncation errors).

Numerical values for these ranges are given in Eqs. (64)
and (65) above. We see from Table XII that some of the
N-U fit values of c6 exceed the smaller of these expecta-
tions, though not the larger. As for c7, if discretization
errors dominate we expect

c7 � �4
QCDða�QCDÞ2 �

8>>><
>>>:
0:00027 GeV4 ðcoarseÞ
0:00014 GeV4 ðfineÞ
0:000068 GeV4 ðsuperfineÞ

;

(68)

while if truncation errors dominate we expect

c7 � �4
QCD


2
s �

8>><
>>:
0:00090 GeV4 ðcoarseÞ
0:00062 GeV4 ðfineÞ
0:00045 GeV4 ðsuperfineÞ

: (69)

In this case, some of the fit values of c7 are larger than both
of these expectations.

We have thus carried out Bayesian fits simultaneously
enforcing the expected sizes of c4, c6, and c7. As in the
degenerate case, �2 is augmented by

�2
prior ¼

X
i¼4;6;7

ðci � aiÞ2
~�2
i

: (70)

We set a4;6;7 ¼ 0, and make two choices for the ~�i. The

first assumes that discretization errors dominate,

~� 4 ¼ ~�6 ¼ �2
QCDða�QCDÞ2; ~�7 ¼ �4

QCDða�QCDÞ2;
(71)

while the second assumes that truncation errors dominate,
and leads to the weaker constraints:

~� 4 ¼ ~�6 ¼ �2
QCD


2; ~�7 ¼ �4
QCD


2: (72)

We label these fits N-B1 and N-B2, respectively.14

The N-B1 fit on the C3 ensemble is shown in Fig. 12.
The fit appears to be of comparable quality to that in
Fig. 10—the somewhat larger �2 indicates, however, that
the constraints are having a nontrivial impact. The most
notable changes compared to Fig. 10 are that the curvature
at small XP (and fixed my) is smaller, and that the value of

BKð1=aÞ is reduced. Similar changes are seen on all
ensembles.

The parameters from the N-B1 and N-B2 fits are given in
Tables XIII and XIV. The values of c1 � c4 from the two
fits are consistent with each other and with those from the
N-U fits. For several ensembles, however, c5 is not con-
sistent between the fits, most notably on the C3 and C4
ensembles. This suggests that the errors are underestimated
and/or that the truncated fit function does not fully repre-
sent our data. We conclude only that jc5j 	 1.

FIG. 11 (color online). BKðNDR; � ¼ 1=aÞ as a function of
XP on the S1 ensemble. Notation as in Fig. 10.

FIG. 12 (color online). BKð1=aÞ vs XP on the C3 ensemble,
showing the N-B1 fit. Notation as in Fig. 10.

14They correspond, respectively, to N-BT8 and N-BT8-2 in our
previous publications.
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Our tentative conclusion of a nonzero c6 from the N-U
fit is not confirmed by the two new fits. Results of both
signs are found. On most ensembles the results from the
three fits are consistent with each other, and with a vanish-
ing result. On C3 and C4, there are some marginal incon-
sistencies. We conclude that we cannot reliably determine
c6. The situation for c7 is slightly better, since all three fits
are consistent within 2-�, and all have the same sign.

The results for BKð2 GeVÞ from the three fits (N-U,
N-B1 and N-B2) are not consistent. The differences are
most significant on the C3 and C4 ensembles, where they
exceed 3-�. This is caused by the poor determination of
some of the fit parameters, particularly c5 and c6. Although
all the fits give a reasonable representation of the data, the
results obtained after extrapolation to physical quark
masses and removal of taste breaking differ. This is be-
cause c5 and c6 terms have significantly different depen-
dence on quark masses and taste breaking.

To do better, we recall that, because of the smallness of
c5, we can almost determine the physical BK using the
degenerate data alone. Furthermore, the D-U, D-B1 and
D-B2 fits give consistent results for c1–4, which we take to
indicate that these results are reliable. Thus, in our
last stage of SU(3) fitting, we use the results from the
degenerate fits as constraints on the parameters c1–4
when doing fits to the full data set. We dub these ‘‘double
Bayesian’’ fits, and think that they provide the most reli-
able way of determining the parameters c5 and c6.

In more detail, we first do a D-B1 or D-B2 fit to degen-
erate points as described above. The central values and
errors from these fits are then used as constraints on c1–4 in
a second fit to the full data set, along with the constraints on
c6;7 just described. In other words, if the first fit yields ai �
~�i for i ¼ 1, 4, then the second fit augments the �2 by

�2
prior ¼ �2

priorð1Þ þ �2
priorð2Þ (73a)

�2
priorð1Þ ¼

X4
i¼1

ðci � aiÞ2
~�2
i

(73b)

�2
priorð2Þ ¼

X
i¼6;7

ðciÞ2
~�2
i

(73c)

with ~�6;7 given either by Eq. (71), if the first fit was D-B1,

or by (72) otherwise. We label these fits N-BB1 and
N-BB2, respectively.15

Examples of the resulting fits are shown in Figs. 13 and
14, and fit parameters from all ensembles are collected in
Tables XV and XVI.
The values of the ci, the augmented �2, and BK, are

consistent between fits N-B1 and N-BB1, and between N-
B2 and N-BB2. The major changes induced by using two
levels of constraints are that the errors in c1 � c3 are
reduced, while those in BK are increased. The former is

TABLE XIII. Parameters of N-B1 fits. Notation as in Table XII.

ID c1 c2 c3 c4 c5 c6 c7 �2
aug=dof BKð� ¼ 2 GeVÞ

C1 0.265(30) 1.05(29) 0.06(29) 0.0026(14) �0:033ð23Þ 0.0021(9) 0.0002(1) 0.067(36) 0.557(12)

C2 0.312(31) 0.56(30) 0.46(30) �0:0005ð15Þ �0:003ð27Þ 0.0035(9) 0.0003(1) 0.106(53) 0.540(13)

C3 0.321(12) 0.55(12) 0.53(12) 0.0000(6) 0.005(7) 0.0017(3) 0.0004(1) 0.22(40) 0.560(5)

C4 0.309(12) 0.65(12) 0.40(12) 0.0003(6) 0.004(7) 0.0013(3) 0.0004(1) 0.283(41) 0.562(4)

C5 0.275(27) 0.94(25) 0.11(26) 0.0017(12) �0:006ð19Þ 0.0009(7) 0.0002(1) 0.072(39) 0.567(10)

F1 0.306(29) 0.42(24) 0.61(29) �0:0001ð8Þ 0.008(19) 0.0014(5) 0.0001(0) 0.103(57) 0.533(10)

F2 0.327(26) 0.24(22) 0.82(26) �0:0006ð8Þ 0.020(17) 0.0012(4) 0.0001(0) 0.080(51) 0.539(9)

S1 0.296(18) 0.41(16) 0.55(21) 0.0000(4) 0.011(12) 0.0005(2) 0.0001(0) 0.094(56) 0.533(7)

TABLE XIV. Parameters of N-B2 fits. Notation as in Table XII.

ID c1 c2 c3 c4 c5 c6 c7 �2
aug=dof BKð� ¼ 2 GeVÞ

C1 0.263(38) 1.07(37) 0.03(37) 0.0026(17) �0:027ð20Þ 0.0010(11) 0.0004(2) 0.021(12) 0.562(14)

C2 0.333(39) 0.35(38) 0.67(38) �0:0014ð18Þ 0.003(23) 0.0030(11) 0.0006(2) 0.028(15) 0.533(14)

C3 0.328(12) 0.48(12) 0.60(12) �0:0003ð6Þ 0.041(8) �0:0012ð9Þ 0.0007(1) 0.151(39) 0.585(8)

C4 0.316(12) 0.58(12) 0.48(12) 0.0000(6) 0.045(8) �0:0020ð9Þ 0.0007(1) 0.214(44) 0.591(8)

C5 0.277(30) 0.93(29) 0.13(29) 0.0016(13) 0.019(13) �0:0013ð11Þ 0.0004(2) 0.050(31) 0.585(11)

F1 0.321(38) 0.28(32) 0.77(39) �0:0005ð11Þ 0.011(15) 0.0010(7) 0.0003(1) 0.047(33) 0.532(8)

F2 0.340(31) 0.13(26) 0.96(31) �0:0009ð9Þ 0.024(11) 0.0010(7) 0.0002(1) 0.038(32) 0.539(6)

S1 0.309(23) 0.30(20) 0.71(27) �0:0003ð5Þ 0.038(8) �0:0012ð6Þ 0.0003(1) 0.036(23) 0.554(5)

15These correspond, respectively, to the N-BT7 and N-BT7-2
fits in our previous publications.
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expected, since we are placing constraints on c1 � c3 in the
second stage of fitting. The latter is indicative of the
uncertainties in the fit parameters induced by discretization
errors, particularly in c6. With c1 � c3 pinned down, a
greater range of c6 values are explored, leading to more
variation in the artifact subtraction needed to obtain the
physical BK. Since this variation represents a genuine
systematic error in our procedure, and is best represented
by the N-BB fits, we choose the N-BB fits for our central
values. Specifically, we choose fit N-BB1, using N-BB2
and N-B1 to estimate different fitting systematics.

We see from tables that the difference between the
physical BK obtained from the N-BB1 and N-BB2 fits
can be as large as 6% on the coarse and superfine lattices.
To understand this difference in more detail, Table XVII
gives a breakdown of the contributions to BK on both the
C3 and S1 ensembles. Here, valence-quark masses have
been set to their physical values, but taste-splittings have
not been removed. In other words, this is the result of using
the SChPT fit form to extrapolate the lattice data on this
ensemble to the physical valence-quark masses.16 The
chiral series shows poor convergence, with NLO:LO �
2=3, although the NNLO term is of reasonable size
(NNLO:LO � 0:13). We see also that the lattice artifacts
(given in the NLO-c4;6;7 column) amount to no more than a

quarter of the total NLO contribution on the coarse en-
semble, and significantly less on the superfine ensemble.
The major difference between the two N-BB1 and N-BB2

fits is in the relative size of these lattice artifacts and the
continuum c5 contribution. Since the artifacts are removed
when we quote a physical value, it is this difference which
is mainly responsible for the differences one sees in the
physical BK between the N-BB1 and N-BB2 fits. Given our
data, it appears difficult to resolve this uncertainty.
We close this subsection by further illustrating the im-

pact of lattice artifacts. Figures 15 and 16 show the depen-
dence of BK on XP / mx for the N-BB1 fit on the C3 and
S1 ensembles, with my set to the physical strange-quark

mass. The three curves on each plot show the fit function
itself (solid line), the fit function with lattice-artifact terms
removed (dashed line), and the fit function with all taste-
violating lattice artifacts removed, and sea-quark masses
set to their physical values (dotted line). The points with
errors indicate the resulting ‘‘physical’’ BKð1=aÞ. Only the
‘‘SU(2) regime’’ is shown, for which mx=m

phys
s < 1=2. We

observe that the size of the total taste-violating discretiza-
tion errors (the difference between the solid and [red]
dotted curves) is moderate on the course lattices (6% or

less for mx � mphys
x ), and somewhat reduced on the super-

fine lattices.
We also observe that the curvature in the fit functions is

almost entirely due to the lattice-artifact terms. Removing
these gives the (blue) dashed curves, which showmuch less
curvature. The chiral logarithms that remain if lattice-
artifact terms are removed are proportional to logðXIÞ,
and thus do not diverge in the chiral limit because XI is
nonvanishing in this limit due to taste splitting. After
removing taste splitting (giving the [red] dotted curves),
there is a logarithmically divergent term (an SU(2)
partially quenched chiral logarithm), but it has a small
coefficient and is barely visible.
We summarize our experience with SU(3) fitting as

follows. The fits are reasonably successful at reproducing
the data, but have two major drawbacks. First, the con-
vergence of the chiral series is suspected for physical quark
masses, which undermines our use of SChPT to remove
unphysical lattice artifacts. Second, our fits do not deter-
mine the size of the lattice-artifact terms, leading to
significant differences between the ‘‘physical’’ results
from different fits. To some extent these two drawbacks
‘‘cancel’’, and we can hope that the systematic error we
estimate by comparing fits takes into account the uncer-
tainties in removing the artifacts. Nevertheless, the reliance
on SU(3) SChPT is unsatisfactory.

E. SU(2) fitting

We now turn to our second fitting strategy, in which we

fix my close to m
phys
s , extrapolate mx to the physical light-

quark mass, and then extrapolate my to the physical

strange-quark mass. At all stages we need mx 	
my �mphys

s in order that SU(2) S�PT can be used. The

fitting function is given in Eqs. (41)–(45), and has the key

FIG. 13 (color online). BKð1=aÞ vs XP on the C3 ensemble,
showing the N-BB1 fit. Notation as in Fig. 10.

16We stress that the values for BKð1=aÞ differ from those in
Figs. 13 and 14 because the latter have taste splittings set to zero.
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feature that there are no terms arising solely from discre-
tization or truncation errors.

On each ensemble, we extrapolate to m
phys
s using our

three heaviest y quarks (e.g. amy ¼ f0:04; 0:045; 0:05g on
the coarse lattices). We label this choice ‘‘3Y’’. The extent
of the extrapolation varies substantially between the en-
sembles, as can be seen by comparing Tables Vand VI. Our
largest values of amy lie 3%, 15% and 24% below the

physical strange-quark mass, on coarse, fine and superfine
lattices, respectively.

For the chiral extrapolation we use either our lightest 4
or 5 values of mx, choices we label 4X and 5X, respec-
tively. For the ‘‘4X3Y’’ choice, which leads to our pre-
ferred fit, the SU(2) expansion parameter satisfies
mx=my � 1=2.

For fixed sea-quark masses, the fitting function (41) has
three terms. The first two are present at NLO, while the
third is of NNLO. We have thus tried two types of

‘‘X-fits’’: NLO (two parameter) and NNLO (three
parameter).
We begin by considering the 4X3Y-NLO fits. The first

stage is the ‘‘X-fit’’, which we do separately for the 3
largest values of amy. The fits for the largest amy on

ensembles C3 and S1 are shown, respectively, in Figs. 17
and 18. The (mild) curvature in the fit function is due to the
chiral logarithms. As in the SU(3) fit, these do not diverge
in the chiral limit because of taste breaking. The figures
also show the relative size of the LO and NLO contribu-
tions. The NLO contribution (difference between the solid
[black] and horizontal [blue] lines) is small, not exceeding
10% over the range of the fits. The (magenta) dashed
curves show the impact of removing taste-splittings from
the fit function, so that the chiral logarithms do diverge.
The impact is seen to be small in the region of our data,
most notably on the superfine lattice. The (red) dotted
curves show the form in the continuum limit, with physical

TABLE XV. Fit parameters for N-BB1 fits. Notation is as in Table XII.

ID c1 c2 c3 c4 c5 c6 c7 �2
aug=dof BKð� ¼ 2 GeVÞ

C1 0.2944(54) 0.767(45) 0.386(36) 0.0015(5) �0:017ð15Þ 0.0023(9) 0.0002(1) 0.084(61) 0.555(12)

C2 0.3269(51) 0.409(41) 0.623(34) �0:0011ð6Þ 0.004(16) 0.0036(8) 0.0003(1) 0.108(54) 0.538(12)

C3 0.3345(28) 0.418(27) 0.677(20) �0:0006ð2Þ 0.017(5) 0.0013(5) 0.0004(1) 0.250(55) 0.562(6)

C4 0.3229(27) 0.514(26) 0.560(19) �0:0003ð2Þ 0.016(5) 0.0009(5) 0.0004(1) 0.320(72) 0.564(5)

C5 0.2913(51) 0.790(43) 0.285(32) 0.0011(5) 0.003(12) 0.0009(6) 0.0002(1) 0.078(61) 0.567(10)

F1 0.3243(47) 0.253(28) 0.825(35) �0:0005ð3Þ 0.015(12) 0.0015(5) 0.0001(0) 0.111(55) 0.535(9)

F2 0.3367(49) 0.155(32) 0.939(30) �0:0008ð3Þ 0.024(10) 0.0013(4) 0.0001(0) 0.078(45) 0.540(8)

S1 0.3088(33) 0.293(19) 0.727(28) �0:0002ð2Þ 0.016(7) 0.0006(2) 0.0001(0) 0.105(63) 0.535(6)

TABLE XVI. Fit parameters for N-BB2 fits. Notation is as in Table XII.

ID c1 c2 c3 c4 c5 c6 c7 �2
aug=dof BKð� ¼ 2 GeVÞ

C1 0.2801(92) 0.905(86) 0.217(67) 0.0019(7) �0:013ð15Þ 0.0006(17) 0.0005(2) 0.026(26) 0.564(17)

C2 0.3444(87) 0.235(82) 0.795(59) �0:0019ð7Þ 0.013(15) 0.0027(17) 0.0007(2) 0.029(20) 0.535(17)

C3 0.3369(27) 0.395(26) 0.700(19) �0:0007ð2Þ 0.056(15) �0:0020ð15Þ 0.0008(2) 0.164(42) 0.592(14)

C4 0.3251(26) 0.493(25) 0.580(18) �0:0004ð2Þ 0.060(14) �0:0029ð15Þ 0.0008(2) 0.227(56) 0.598(13)

C5 0.2851(68) 0.850(61) 0.213(50) 0.0013(5) 0.027(17) �0:0017ð20Þ 0.0004(2) 0.052(40) 0.588(19)

F1 0.3409(92) 0.112(69) 0.996(65) �0:0010ð4Þ 0.025(12) 0.0006(12) 0.0004(2) 0.055(31) 0.539(12)

F2 0.3511(76) 0.030(56) 1.095(50) �0:0012ð4Þ 0.034(13) 0.0006(14) 0.0003(2) 0.042(28) 0.545(13)

S1 0.3189(63) 0.207(46) 0.843(52) �0:0005ð2Þ 0.048(11) �0:0015ð10Þ 0.0003(1) 0.042(25) 0.560(11)

TABLE XVII. Breakdown of contributions to BK in the SChPT N-BB1 and N-BB2 fits on the
C3 and S1 ensembles. Valence-quark masses are set to their physical values.

Ens. Fit BKð1=aÞ LO NLO-c1�2 NLO-c5 NLO-c4; c6;7 NNLO-c3

C3 N-BB1 0.598 0.335 0.157 0.013 0.052 0.042

C3 N-BB2 0.609 0.337 0.151 0.045 0.033 0.043

S1 N-BB1 0.530 0.309 0.144 0.012 0.020 0.045

S1 N-BB2 0.529 0.319 0.125 0.038 �0:006 0.052
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light sea-quarks, as predicted by the fit. The single point on
these curves shows the result (including errors from the fit)

for mx ¼ m
phys
d . The difference between the fit and these

‘‘continuum’’ curves is seen mainly to be the result of
setting the light sea-quark mass to its physical value, which
alters the size of the chiral logarithm. This correction for
unphysical effects is clearly dependent on our use of
SChPT.

The solid [black] and dotted [red] curves in these figures
can be compared, approximately, to the corresponding

curves from the SU(3) fits shown in Figs. 15 and 16. The
comparison is not exact because the values of my differ

(most notably for the S1 ensemble). For the C3 ensemble,
the curvature in the SU(2) fit is much smaller than in the
SU(3) fit. This is because the curvature in the SU(3) fits is
dominated by the lattice-artifact terms, which are absent in
the SU(2) fits, and very poorly determined in the SU(3) fits.
The SU(2) fit is superior in that it incorporates the expec-
tation that these artifacts are small in the SU(2) regime.
The continuum curves also differ between SU(2) and
SU(3) fits, with the chiral log being weaker in the latter.
This is possible because of Oðmx=myÞ corrections to its

coefficient that are of NNLO in SU(2) SChPT and thus
dropped in the SU(2) fit. Again, the SU(2) fit is superior,
since the size of these corrections is not known in the SU(2)
limit.
The parameters of the NLO X-fits, and the resulting

‘‘physical’’ BK, are given (for the largest values of amy

FIG. 14 (color online). BKð1=aÞ vs XP on the C3 ensemble,
showing the N-BB2 fit. Notation as in Fig. 10.
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FIG. 15 (color online). BKð1=aÞ vs XP (in GeV2) on the C3
ensemble from the N-BB1 fit. The solid (black) curve shows the

fit function with my ¼ m
phys
s , the dashed (blue) curve shows the

result of removing the lattice-artifact terms (i.e. those propor-
tional to c4, c6 and c7), and the dotted (red) curve shows the
‘‘physical’’ BK , i.e. with lattice artifacts and taste-splittings
removed, and with the sea-quarks set to their physical values.

The data-point shows the result for mx ¼ m
phys
d .
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FIG. 16 (color online). As in Fig. 15 but for the S1 ensemble.
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FIG. 17 (color online). BKð1=aÞ versus XP on coarse ensemble
C3, for amy ¼ 0:05. The 4X NLO fit is shown by the solid

(black) line. The horizontal (blue) line gives the contribution of
the LO term. The (magenta) dashed curve has taste-splittings
removed, while the (red) dotted curve shows the result of
removing taste-splittings and setting the light sea-quark to its
physical value. The (red) point on this line is at XP ¼ m2

�0
and

shows the errors from the fit.
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only) in Table XVIII for all ensembles. Some fits have a
relatively high (uncorrelated) �2=dof, indicating that the
NLO fit function may be insufficient. The fit parameters
themselves are consistent on all the coarse lattices, with
evidence for monotonic variation with a2.

After repeating this procedure for the three heaviest
values of my, we then proceed to the ‘‘Y-fit’’. The results

for ‘‘continuum, physical’’ BK from the X-fits are expected
to be a smooth, analytic function of YP / my. Examples of

the data are shown in Figs. 19 and 20. We extrapolate to the
‘‘physical’’ value of the �ss meson, YP ¼ ð0:6858 GeVÞ2
[38]. In all cases, our results are consistent with a linear
dependence, and so we use a fit to

fph ¼ b1 þ b2YP (74)

to obtain our central value. We also do a quadratic ‘‘fit’’ in
order to estimate the systematic error arising from this
extrapolation. The parameters from the linear 3Y fits are
collected in Table XIX. The fits are good, and the parame-
ters are consistent across all ensembles. Also quoted are

the values of BK obtained by extrapolation in YP and
subsequent running to the common scale 2 GeV.
We have repeated this analysis using NNLO X-fits (i.e.

keeping the Q3 term). The X-fits are shown in Figs. 21 and
22 for the C3 and S1 ensembles, respectively. The resulting
fit parameters are given in Tables XX and XXI.
The NNLO X-fits are better able to capture the curvature

seen in the data (particularly on the coarse ensembles), and

TABLE XVIII. Fit parameters for the 4X-NLOfits. The valence
strange-quark mass is fixed at our heaviest value, i.e. amy ¼ 0:05,

0.03, and 0.018 on coarse, fine and superfine lattices, respectively.
The result for BKð1=aÞ is obtained from the fit by setting taste-

splittings to zero, L ¼ m2
�0

and mx ¼ mphys
d .

ID d1 d2 �2=dof BKð� ¼ 1=aÞ
C1 0.548(11) 0.107(49) 0.19(26) 0.5568(96)

C2 0.556(12) 0.060(54) 0.36(37) 0.564(11)

C3 0.5602(34) 0.035(16) 0.83(54) 0.5676(31)

C4 0.5581(35) 0.039(16) 0.57(45) 0.5656(31)

C5 0.5501(85) 0.066(40) 0.08(16) 0.5582(77)

F1 0.5107(86) 0.089(45) 0.06(14) 0.5189(76)

F2 0.5146(75) 0.066(40) 0.03(11) 0.5222(66)

S1 0.4808(50) 0.143(30) 0.06(14) 0.4900(43)
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FIG. 18 (color online). BKð1=aÞ versus XP on the superfine
ensemble S1, for amy ¼ 0:018. The data point at the largest XP

is not included in the fit. Notation as in Fig. 17.

FIG. 19 (color online). BKð1=aÞ from the 4X-NLO fit vs YP, on
the coarse ensemble C3. A linear extrapolation to the physical
strange-quark mass is shown.

FIG. 20 (color online). BKð1=aÞ from the 4X-NLO fit, versus
YP, on the superfine ensemble S1. A linear extrapolation to the
physical strange-quark mass is shown.
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have correspondingly reduced �2=dof. The convergence of
the chiral series begins to break down on the C3 ensemble
at the largest fit values of XP, in the sense that NNLO :
NLO � 1. The convergence on the S1 ensembles is sat-
isfactory for all four fit points. The linear Y-fits remain
very good on all ensembles (and are not shown).

Comparing Tables XIX and XXI, we see that NLO and
NNLO fits yield ‘‘physical’’ BK values that are consistent
within errors. We have also done NNLO 5X3Y fits, and
simultaneous X and Y extrapolations (rather than sequen-
tial), both of which give consistent results.

Clearly, SU(2) SChPT fitting is much more straightfor-
ward than that to the SU(3) form. No fitting parameters
need be dropped, and no Bayesian constraints are required.
While we use only a fraction of our data (roughly a
quarter), the points we keep are those which lie closest to
the physical kaon and thus should dominate the extrapola-
tion to the physical point. As for the SU(3) fits, the use of
SChPT (rather than, say, an analytic extrapolation) is

crucial, as it allows us to remove the effect of taste break-
ing, and to account for the shift in the chiral logarithm due
to the use of an unphysical light sea-quark mass. We
cannot, however, claim to have provided a test of the
predicted chiral logarithms; instead, we have shown con-
sistency with our data.
We compare our SU(2) results with those from SU(3)

fitting when we discuss error budgets in Sec. III H below.

F. Dependence of BK on sea-quark masses

The fits presented above are on individual ensembles,
and thus at fixed values of lattice spacing and sea-quark
masses. Both SU(2) and SU(3) SChPT predict, at NLO,
linear dependence of BK on the light sea-quark mass (once
chiral logarithms have been accounted for, as has been
done above). This enters through the H5 term in SU(3)
SChPT and the Q4 term in SU(2) SChPT. At NLO, this
dependence can either be treated as that of the leading
order coefficients (b1 and d1) or of BK itself. We take the
latter approach, and investigate this dependence on the
coarse and fine lattices, where we have results with more
than one light sea-quark masses. We also discuss the
impact of the mismatch of the strange sea-quark mass
with its physical value.
We plot BKð� ¼ 2 GeVÞ on the coarse lattices from the

N-BB1 SU(3) fits against am‘ in Fig. 23. The data show
only weak dependence on am‘. We perform both constant
and linear extrapolations to the physical value of am‘, and
find that they lead to consistent results. The corresponding
results from the 4X3Y-NNLO SU(2) fit are shown in
Fig. 24. Here the linear and constant fits are almost indis-
tinguishable. We collect the results of these extrapolations
in Table XXII.
For the fine lattices, we have two light sea-quark masses,

corresponding approximately to am‘ ¼ 0:005 (C5) and
am‘ ¼ 0:01 (C3) on the coarse lattices. As on the coarse
lattices, the data have very weak dependence on am‘, as
shown in Figs. 25 and 26.
To quantify the size of the mass dependence, we use the

form expected from either SU(2) or SU(3) SChPT

BKðam‘Þ ¼ BKðam‘ ¼ 0Þ½1� LP=�
2�: (75)

The linear fit shown in Fig. 23 has � � 2:8 GeV. This is
much smaller than the canonical size expected in ChPT,
namely � � 1 GeV, indicating that the sea-quark mass
dependence is indeed weak. We note that mass dependence
with this value of � is also consistent with the fine lattice
data.
For the superfine lattices, we have only a single light

sea-quark mass, and so cannot perform an extrapolation to

am
phys
‘ . Instead, we assume (based on the fits above) that,

to first approximation, there is no dependence on am‘. We
do so consistently for all three lattice spacings, taking
ensembles C3, F1 and S1 for subsequent continuum ex-
trapolation. We use these three ensembles since they all

TABLE XIX. Parameters of 3Y fits (using input from 4X-NLO
fits) and the resulting BKð� ¼ 2 GeVÞ.
ID b1 b2 �2=dof BKð� ¼ 2 GeVÞ
C1 0.482(15) 0.162(22) 0.0009(6) 0.5488(95)

C2 0.466(16) 0.214(27) 0.0026(10) 0.556(10)

C3 0.4899(47) 0.1712(73) 0.0154(26) 0.5599(30)

C4 0.4866(50) 0.1725(75) 0.0135(28) 0.5577(31)

C5 0.476(12) 0.179(19) 0.0015(8) 0.5503(75)

F1 0.433(13) 0.215(23) 0.0017(10) 0.5416(77)

F2 0.437(11) 0.214(19) 0.0037(15) 0.5454(66)

S1 0.4061(69) 0.233(14) 0.0049(17) 0.5385(46)
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FIG. 21 (color online). BKð1=aÞ versus XP on coarse ensemble
C3, for amy ¼ 0:05. The 4X-NNLO fit is shown by the solid

(black) line. The horizontal (blue) line gives the contribution of
the LO term. The (magenta) dashed curve shows the fit with
NNLO term removed. The (red) dotted curve has taste-splittings
removed and the light sea-quark mass set to its physical value.
The (red) point on this line is at XP ¼ m2

�0
and shows the errors

from the fit.
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have m‘=ms ¼ 1=5, with ms � m
phys
s , and thus have

closely matched sea-quark masses.
Clearly this procedure leads to a systematic error if there

is, in fact, a dependence on am‘. We estimate this error
assuming that the dependence is that given by the linear fit
of Fig. 23. Specifically, we take the difference between the
result on ensemble C3 with that after linear extrapolation to

am
phys
‘ (as given in Table XXII), divided by the C3 value, as

our estimate of the fractional error from this source. The

resulting error is 1.2% for the SU(3) fits, and 0.06% for the
SU(2) fits. This is quite likely an underestimate in the SU(2)
case, but since other sources of error are significantly larger,
we have not attempted to improve on this estimate.
Finally, we should account for the difference between

the values of ams used in the MILC ensembles and m
phys
s .

These values are given in Table XXIII. The most reliable
approach would be to have results with more than one
value of ams, and extrapolate/interpolate to the physical
value. Absent this possibility, we can use SU(3) ChPT to
estimate the resulting error. In SU(3) ChPT, the depen-
dence on sea-quark masses is obtained from Eq. (75) by the
substitution LP ! LP þ SP=2. Assuming this, and using
the masses in Table XXIII, as well as the value of � from

TABLE XX. Fit parameters for the 4X-NNLO fits. Notation as in Table XVIII.

ID d1 d2 d3 �2=dof BKð� ¼ 1=aÞ
C1 0.561(19) �0:13ð20Þ 0.88(60) 0.031(51) 0.565(14)

C2 0.577(21) �0:29ð23Þ 1.31(69) 0.090(93) 0.577(16)

C3 0.5695(60) �0:127ð67Þ 0.61(20) 0.16(12) 0.573(5)

C4 0.5660(62) �0:097ð68Þ 0.50(20) 0.12(10) 0.571(5)

C5 0.557(15) �0:05ð16Þ 0.42(48) 0.037(56) 0.562(11)

F1 0.517(15) �0:04ð19Þ 0.54(66) 0.007(25) 0.523(11)

F2 0.519(13) �0:02ð17Þ 0.35(57) 0.002(14) 0.525(10)

S1 0.4834(93) þ0:09ð13Þ 0.27(51) 0.075(94) 0.491(7)

TABLE XXI. Parameters of 3Y fits (using input from
4X-NNLO fits), and the resulting BKð� ¼ 2 GeVÞ.
ID b1 b2 �2=dof BKð� ¼ 2 GeVÞ
C1 0.501(19) 0.139(31) 0.0002(3) 0.557(14)

C2 0.478(22) 0.215(39) 0.0012(6) 0.569(16)

C3 0.5081(64) 0.144(11) 0.0053(18) 0.5651(46)

C4 0.5080(69) 0.137(11) 0.0038(17) 0.5621(47)

C5 0.493(17) 0.150(27) 0.0003(4) 0.554(11)

F1 0.443(18) 0.199(34) 0.0005(6) 0.544(11)

F2 0.444(15) 0.203(27) 0.0016(11) 0.547(10)

S1 0.4121(98) 0.220(20) 0.0020(12) 0.5385(72)
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FIG. 22 (color online). BKð1=aÞ versus XP on the superfine
ensemble S1, for amy ¼ 0:018. Notation is as in Fig. 21. The

data point with the largest value of XP is not included in the fit.

FIG. 23 (color online). BKð� ¼ 2 GeVÞ from N-BB1 SU(3)
fits versus aml (light sea-quark mass) on MILC coarse ensem-
bles. The data come from Table XV. Linear and constant fits are
shown, along with the resulting value after extrapolation to the
physical value of aml. The errors on the point at am‘ ¼ 0:01 and
0.007 are smaller due to the larger number of measurements
made on the C3 and C4 ensembles.
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the linear fit in Fig. 23, we find that the correction to
BKð2 GeVÞ is þ0:0075, þ0:003, and �0:0006 for the
coarse, fine and superfine ensembles, respectively.
Extrapolating to the continuum linearly in a2 leads to a
final correction of�0:0028. We take the magnitude of this
correction as an estimate of thems mismatch error for both
SU(3) and SU(2) fits.

The analysis described in this subsection does not make
optimal use of all our data. For example, ensemble F2 is

only used to check the (lack of) am‘ dependence. By doing
a combined continuum and am‘ fit we could likely do
better. We have not attempted such a fit, however, since
this source of error is subdominant. Concerning the ams

mismatch, we plan in the near future to do an exact
interpolation to the physical strange sea-quark mass using
the reweighting technique [47].

G. Continuum extrapolation

At this stage of the analysis, we have results for BK on
three lattice spacings. As noted above, we take these to be
the results from the C3, F1 and S1 ensembles. Running to
the common scale � ¼ 2 GeV yields, for various SU(3)

FIG. 24 (color online). BKð� ¼ 2 GeVÞ from 4X3Y-NNLO
SU(2) fits versus aml (light sea-quark mass) on MILC coarse
ensembles. The data come from Table XXI. Details are as in
Fig. 23.

FIG. 25 (color online). As in Fig. 23 but for the MILC fine
ensembles.

FIG. 26 (color online). As in Fig. 24 but for the MILC fine
ensembles.

TABLE XXII. BKð� ¼ 2 GeVÞ on the coarse lattices after
extrapolation to the physical light sea-quark mass, for various
choices of fit.

S�PT valence fit am‘ fit BK

SU(3) N-BB1 constant 0.5613(33)

SU(3) N-BB1 linear 0.5680(56)

SU(2) 4X3Y-NNLO constant 0.5628(30)

SU(2) 4X3Y-NNLO linear 0.5624(57)

TABLE XXIII. Nominal (ams) and actual (am
phys
s ) strange

sea-quark masses [13].

MILC ams amphys
s

coarse 0.05 0.0350(7)

fine 0.031 0.0261(5)

superfine 0.018 0.0186(4)
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and SU(2) fits, the results in Tables XXIV and XXV,
respectively. Most of these results have appeared in earlier
Tables, but we also include results for the SU(2) 5X fits for
completeness. The dominant errors remaining at this stage
are those due to taste-conserving discretization and trun-
cation errors. These depend on the lattice spacing as a2
n,
where n ¼ 0; 1; . . . . (n ¼ 0 is allowed since we do not use
Symanzik-improved operators), and as 
2. Since we can-
not disentangle these effects with a fit to three points, we
choose to fit to a linear function of a2, and estimate the
error we make by dropping other dependences. The result-
ing fits are shown in Figs. 27 and 28, and the extrapolated
values for BK are given in Table XXVI.

For the SU(3) analysis, we take the continuum value
obtained with N-BB1 fits as our central value. The differ-
ence between the N-BB1 and N-BB2 fits will be used as a

fitting systematic, as discussed in the next subsection. To
account for the fact that the discretization errors can de-
pend on a2 times 
 to some power, rather than just a2, we
take the difference between the results on the S1 ensemble
and in the continuum as the systematic error in the ex-
trapolation. This is reasonable because including powers of

 moves the S1 ensemble closer to the continuum limit
relative to the other two ensembles. It is conservative
because our data strongly indicates that the actual contin-
uum value lies below that obtained on ensemble S1.
We follow the same strategy for the SU(2) analysis,

using the 4X3Y-NNLO fits for our central value.
Corrections proportional to 
2, arising from truncation

of the matching factors, are estimated separately, as we
now discuss.

H. Error budget

In this subsection, we estimate the remaining systematic
errors and combine them with those obtained above to give
the complete error budget.
We begin by estimating the impact of truncating match-

ing factors. We assume that the dominant missing term in
the perturbative expansion is of magnitude 1� 
sð1=aÞ2,
and thus take as our error estimate

�Bð2Þ
K � Bð1Þ

K ð� ¼ 1=aÞ � ½
sð� ¼ 1=aÞ�2: (76)

Here Bð1Þ
K is the one-loop corrected result, and 
s is theMS

coupling constant. The resulting error estimates for the
SU(3) analysis are given in Table XXVII. The results for
the SU(2) analysis are almost identical.

TABLE XXIV. BKð� ¼ 2 GeVÞ from various SU(3) fits.

a (fm) N-U N-B1 N-B2 N-BB1 N-BB2

0.12 0.596(10) 0.560(5) 0.585(8) 0.562(6) 0.592(14)

0.09 0.564(20) 0.533(10) 0.532(8) 0.535(9) 0.539(12)

0.06 0.581(12) 0.533(7) 0.554(5) 0.535(6) 0.560(11)

TABLE XXV. BKð2 GeVÞ from various SU(2) fits.

a (fm) 4X3Y-NLO 4X3Y-NNLO 5X3Y-NLO 5X3Y-NNLO

0.12 0.560(3) 0.565(5) 0.558(3) 0.563(4)

0.09 0.542(8) 0.544(11) 0.541(7) 0.543(10)

0.06 0.538(5) 0.538(7) 0.539(4) 0.538(6)

FIG. 27 (color online). BKð2 GeVÞ versus a2, together with a
linear extrapolation to the continuum limit. The data is obtained
using SU(3) N-BB1 fits.

FIG. 28 (color online). BKð2 GeVÞ versus a2, together with a
linear extrapolation to the continuum limit. The data is obtained
using SU(2) 4X3Y-NNLO fits.
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The continuum extrapolation discussed above will ex-
trapolate away some of this error, so that the truncation
error in the continuum result will be smaller than that on
the superfine ensemble. To be conservative, however, we

use the size of �Bð2Þ
K on the superfine ensemble as an

estimate of this error. It is appropriate to be particularly
conservative for the truncation error, since the choice of
unity multiplying 
2 is a guess. We note, however, that the
same approach applied to the tree-level data (i.e. using

�Bð1Þ
K ¼ Bð0Þ

K 
) leads to an overestimate of the shift be-

tween Bð0Þ
K and Bð1Þ

K [17].
A further source of error is due to our use of a finite

volume (FV). This error can be approximately accounted
for by fitting to the finite-volume form of the NLO SChPT
result (discussed in Appendix A). We have not yet imple-
mented this approach, however, as it is very computation-
ally demanding. We have used SChPT to make preliminary
estimates of the size of the corrections that might be
induced [16]. Considering the C3 ensemble, we found
that the FV error predicted by SU(3) SChPT was �1%
after extrapolation to physical masses. For SU(2) SChPT
the error was substantially smaller. Since these two results
disagree, while the actual FV error has a definite (though
unknown) size, we concluded that SChPT at NLO is not a
reliable quantitative guide to the size of FV effects.

Here we adopt a more direct approach. We determine the
impact of changing the volume by comparing the results on
ensembles C3 and C3-2. These differ only in their spatial
volumes, which are 203 and 283, respectively. The statis-
tical weights of the two lattices are almost equal because

Rstat ¼ 203 � 9� 671

283 � 8� 274
¼ 1:004 . . . : (77)

A comparison of results from these two lattices (after
extrapolation to physical quark masses) is given in
Table XXVIII. We take the difference in BK between C3
and C3-2 ensembles as our estimate of the finite-volume

error. By doing so, we are effectively assuming that the 283

lattices have negligible FV effects, which is what is found
using NLO SChPT.
The final source of significant error is our choice for the

decay constant f� that appears (as 1=f2�) in the coefficient
of the chiral logarithms. As should be clear from the
description of our fits, our data are not sensitive enough
to the contributions of chiral logarithms to allow a fit to f�.
Thus we must fix it. We choose f� ¼ 132 MeV for our
central value, which is a somewhat outdated approximation
to the physical value, f� ¼ 130:4 MeV [1]. (We have
checked that results for BK are indeed insensitive to the
small difference between these two values.) It is reasonable
to use the physical pion decay constant since the loops
which give the dominant curvature are those involving
pions. It is, however, equally valid at NLO to use the decay
constant in the chiral limit, which is� 108 MeV for SU(3)
ChPTand� 124:2 MeV for SU(2) ChPT [13]. In the SU(3)
fits, it is also equally valid at NLO to use the physical value
of the kaon decay constant, fK � 156:5 MeV [13].
It is straightforward to determine an ‘‘f� error’’ for our

SU(2) fits—we quote the difference between the results
obtained with 132 MeVand 124.2 MeV. For the SU(3) fits,
we have concluded after some experiments that the f�
error is already reasonably accounted for by the error we
include to account for the dependence on the Bayesian
fitting scheme [‘‘fitting (2)’’ below]. Since we do not use
the SU(3) fits for our central value, we have not pursued
this further.
We now collect all sources of error and present the error

budget. We do this separately for the SU(3) and SU(2)
analyses. The SU(3) budget is given in Table XXIX. Most
of these errors have been discussed either in this subsection
or earlier ones. The exceptions are the two ‘‘fitting’’ errors
and the r1 error. The first fitting error estimates the uncer-
tainty due to the possibility of implementing the Bayesian
method in different ways. The N-B1 fit uses one level of
Bayesian constraints while the N-BB1 fit uses two levels.
We prefer the latter method, for reasons explained earlier,
but to be conservative we take the difference between the
results of the two fits as a systematic error. The second
fitting error estimates the impact of making different as-
sumptions about the prior information used in the Bayesian
fits. The N-BB1 fit assumes that the dominant lattice
artifacts are of Oða2Þ while the N-BB2 fit assumes that
they are of Oð
2

sÞ. We take the difference between these
fits as an estimate of this error. The resulting rather large

TABLE XXVI. BKð� ¼ 2 GeV; a ¼ 0Þ from various fits.

Group fit BKð� ¼ 2 GeV; a ¼ 0Þ
SU(3) N-BB1 0.524(7)

SU(3) N-BB2 0.539(14)

SU(2) 4X3Y-NLO 0.531(6)

SU(2) 4X3Y-NNLO 0.529(9)

TABLE XXVII. Estimates of the truncation error in the SU(3)
analysis. We use the results of the N-BB1 fits, and ensembles C3,
F1 and S1.

a (fm) Bð1Þ
K 
s �Bð2Þ

K

0.12 0.5728(57) 0.3286 0.062

0.09 0.5271(88) 0.2730 0.039

0.06 0.5123(56) 0.2337 0.028

TABLE XXVIII. Volume dependence of BK. We show
BKð� ¼ 2 GeVÞ from N-BB1 fits for SU(3), and from
4X3Y-NNLO fits for SU(2).

analysis 203 (C3) 283 (C3-2)

SU(2) 0.5651(46) 0.5699(45)

SU(3) 0.5623(56) 0.5754(56)
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error roughly encompasses the range of results obtained
with different SU(3) fits, as can be seen from Table XXIV.
Thus it can be interpreted more generally as an estimate of
the error due to uncertainties in the parameters of the fit
function corresponding to lattice artifacts.

Finally, we have propagated the uncertainty in r1, which
sets the scale, through the analysis. We do so by repeating
the analysis using r1 � �r1 to determine the lattice

spacing.
Our final result from the SU(3) analysis is

BKðNDR;�¼2GeVÞ¼0:5237�0:0074�0:0438; (78)

where the first error is statistical while the second is the
sum of the systematic errors in quadrature. The former
error has magnitude 1.4% and the latter 8.4%.

The error budget for the SU(2) analysis is presented in
Table XXX. The errors are as for the SU(3) analysis except
for the two fitting errors and the f� error. The first of these
estimates the impact on the fit of the addition of higher-
order terms in the SChPT fit function used for the X-fits.
Specifically, we use the difference between the NLO and
NNLO fits on the 4X3Y data set. The second fitting error
results from the uncertainty in the Y-fit: we quote the
difference between linear and quadratic extrapolations to
the physical point YP ¼ 2m2

K �m2
�.

Our final result of BK from the SU(2) analysis is

BKðNDR; � ¼ 2 GeVÞ ¼ 0:5290� 0:0090� 0:0316;

(79)

with the statistical error having magnitude 1.7% and the
total systematic error 5.9%. Although the statistical error in
this result is somewhat larger than that from the SU(3)
analysis—a reflection of the smaller data set used in the
chiral extrapolation—the systematic error is considerably
smaller, as is the total error. This improvement results from
the simplifications which occur in SU(2) SChPT, which
allow more straightforward fitting. Because of this, we use
the SU(2) analysis for our final result, while the SU(3)
result provides a consistency check.

IV. CONCLUSION

We have presented a calculation of BK using improved
staggered fermions with 2þ 1 flavors of dynamical fermi-
ons. We have used three different lattice spacings and
multiple choices for the valence and sea-quark masses in
order to perform the extrapolations to the continuum limit
and the physical quark masses. A key ingredient in our
analyses are the fitting forms predicted by staggered chiral
perturbation theory, for they allow us to determine, and
remove, the impact of taste-breaking discretization errors.
To carry out our analysis, we needed to generalize previous
SU(3) SChPT results for BK by including the effects of a
mixed action (HYP-smeared valence quarks on asqtad sea)
and by extending the results to SU(2) SChPT.
A striking feature of the SU(2) SChPT result is that

taste-violating discretization and truncation errors do not
enter until NNLO. This means that fitting to the NLO form
(as we do) is as simple as for fermions with exact chiral
symmetry. Although we can use only a quarter of our
complete data set when doing the SU(2) fits, this is more
than compensated for by the simplicity of fitting.
Using these ChPT results, we have performed two inde-

pendent analyses based, respectively, on SU(3) and SU(2)
SChPT at NLO. The former requires some ad-hoc simpli-
fications of the fitting expression and the use of Bayesian
constraints to obtain stable fits. We find significant sensi-
tivity to the prior information used in the Bayesian proce-
dure, as well as to the precise implementation. The SU(2)
fitting does not require the use of Bayesian priors, and leads
to significantly smaller overall errors. Hence, we use the
SU(2) analysis for our final result (79), while the SU(3)
result, (78), provides a consistency check. Converting to
the renormalization group invariant BK, we find

B̂ K¼0:7243�0:0123�0:0433¼0:724�0:045: (80)

Our result is in good agreement with the two existing
results which use 2þ 1 flavors of dynamical fermions and
control all sources of error. Aubin, Laiho and Van de Water
use a mixed action with valence domain-wall fermions on
the MILC coarse and fine lattices and find [3]

TABLE XXIX. Error budget (in percent) for BK obtained
using SU(3) fitting.

cause error (%) memo

statistics 1.4 N-BB1 fit

matching factor 5.5 �Bð2Þ
K (S1)

discretization 2.2 diff. of (S1) and (a ¼ 0)

fitting (1) 0.36 diff. of N-BB1 and N-B1 (C3)

fitting (2) 5.3 diff. of N-BB1 and N-BB2 (C3)

aml extrap 1.0 diff. of (C3) and linear extrap

ams extrap 0.5 constant vs linear extrap

finite volume 2.3 diff. of 203 (C3) and 283 (C3-2)

scale r1 0.12 uncertainty in r1

TABLE XXX. Error budget for BK obtained using the SU(2)
fitting.

cause error (%) memo

statistics 1.7 4X3Y NNLO fit

matching factor 5.5 �Bð2Þ
K (S1)

discretization 1.8 diff. of (S1) and (a ¼ 0)

fitting (1) 0.92 X-fit (C3)

fitting (2) 0.08 Y-fit (C3)

aml extrap 0.48 diff. of (C3) and linear extrap

ams extrap 0.5 constant vs linear extrap

finite volume 0.85 diff. of 203 (C3) and 283 (C3-2)

r1 0.14 r1 error propagation

f� 0.38 132 MeV vs 124.4 MeV
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B̂ K ¼ 0:724� 0:008� 0:028 ¼ 0:724� 0:029: (81)

The RBC-UKQCD collaboration use both domain-wall
valence and sea quarks, finding [21]

B̂ K ¼ 0:720� 0:013� 0:037 ¼ 0:724� 0:039 (82)

on a single lattice spacing of 1.16 fm, with a preliminary
result (without an estimate of finite-volume effects),

B̂ K ¼ 0:738� 0:026; (83)

based on two lattice spacings (a ¼ 0:86 and 1.16 fm) and
updated fitting [5]. Our result is also consistent with the
previous calculation using staggered fermions on the

coarse (a � 0:12 fm) MILC lattices, which finds B̂K ¼
0:83� 0:02� 0:18 [8]. We view it as a significant success
of lattice QCD that results with valence staggered and
domain-wall fermions are consistent. Although our calcu-
lation shares lattices with that of Ref. [3], it is completely
independent of that of Refs. [5,21].

Compared to the other two calculations, our result has
the advantages of pushing closer to the continuum limit,
and being based on three, rather than two lattice spacings.
It also is significantly computationally cheaper. A clear
disadvantage is that we must deal with taste breaking,
although this is much less of an issue with SU(2) fitting
than with SU(3). Even with SU(2) fitting, however, we do
rely on ChPT to a greater extent than the other calculations.

Our total error (6%) is significantly larger than that from
the other calculations—4.1% for Ref. [3] and 3.5% for
Ref. [5]. This difference is due almost entirely to our use
of perturbative (one-loop) matching rather than the non-
perturbative renormalization (NPR) used by the other cal-
culations. Quantitatively, our matching error is 5.5% to be
compared to 3.3% [3] and 2.4% [5]. In addition, our error
estimate is less reliable since it is based on an educated
guess about the possible size of two-loop terms.

It is also of interest to compare our result to those
obtained using two flavors of dynamical quarks (but a
quenched strange quark). This may be a useful comparison
because there are indications that the dependence of di-
mensionless quantities on the mass of the strange sea quark
is weak. Indeed, our results for BK show weak dependence
on all sea-quark masses, at least within the range of masses
that we consider. In fact, our result is consistent with those
obtained from Nf ¼ 2 calculations. A recent calculation

using twisted-mass fermions, and with all errors controlled
except for that due to quenching the strange quark, finds

B̂K ¼ 0:729� 0:025� 0:016 [48]. The result obtained
with dynamical overlap fermions, using a single lattice

spacing, is B̂K ¼ 0:758� 0:006� 0:071 [49]. With
domain-wall fermions on a single lattice spacing, the result

is B̂K ¼ 0:699� 0:025 [50]. Finally, with improved

(untwisted) Wilson fermions, the best result is B̂K ¼
0:69� 0:18 [51].

Looking into the future, our result would be competitive
with those of the otherNf ¼ 2þ 1 calculations if we could

reduce our matching error down to the level achieved in
these other calculations. We are following two approaches
to achieve this reduction: using 2-loop perturbation theory
(which would reduce our error estimate to 1.3%, although
this would remain an educated guess), and using NPR to
determine the matching factors (which we expect to lead to
similar errors to those quoted by the other calculations.)
First results with NPR using improved staggered fermions
and studying bilinear matching factors are encouraging
[52].
Other improvements that are underway are the use of a

fourth lattice spacing (the MILC ‘‘ultrafine’’ lattices with
spacing a � 0:045 fm), SU(2) fitting including the finite-
volume effects predicted by NLO SChPT, simultaneous
continuum and chiral fitting, the addition of ensembles
with other values of the strange-quark mass, and an im-
provement in statistics for all ensembles. We are also
calculating matrix elements of operators with other Dirac
structures, since these are needed to constrain some
theories of physics beyond the standard model.
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APPENDIX A: FUNCTIONS
APPEARING IN SU(3) FITTING

In this appendix, we present explicit forms for the
functions that appear in the NLO SU(3) SChPT result for
BK with a mixed action.

1. M0
conn and M0

disc

These two functions are unaffected by the use of a mixed
action, and thus can be obtained from the general results of
Ref. [18]. Here we give fully explicit results for 2þ 1
flavors. First we have

M 0
conn ¼

X
B

�BFð3Þ
B (A1)

Fð3Þ
B ¼ � 1

2
½ðGþ XBÞ‘ðXBÞ þ ðGþ YBÞ‘ðYBÞ

þ 2ðG� KBÞ‘ðKBÞ � 2GKB
~‘ðKBÞ�; (A2)
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where the coefficients give the relative weight of the differ-
ent tastes in the loop

�I ¼ 1=16; �P ¼ 1=16; �V ¼ 4=16;

�A ¼ 4=16; �T ¼ 6=16; (A3)

which are simply proportional to their multiplicity. Two
standard chiral-logarithmic functions arise:

‘ðXÞ ¼ X½logðX=�2
DRÞ þ 	FV

1 ðXÞ�; (A4)

~‘ðXÞ ¼ �d‘ðXÞ
dX

¼ � logðX=�2
DRÞ � 1þ 	FV

3 ðXÞ; (A5)

where �DR is the scale introduced by dimensional regu-
larization. The �DR dependence of the chiral logarithms is
canceled by a corresponding dependence of the LECs.

When we evaluate ‘ðXÞ and ~‘ðXÞ numerically we set

�DR ¼ 0:77 GeV. Although we do not use them in this
paper, we quote for completeness the finite-volume cor-
rections to the chiral logarithms: by

	FV
1 ðM2Þ ¼ 4

ML

X
~n�0

K1ðj ~njMLÞ
j ~nj (A6)

	FV
3 ðM2Þ ¼ 2

X
~n�0

K0ðj ~njMLÞ; (A7)

with L the box size, and ~n is a vector labeling the image
position. These formulas assume that the time direction is
much longer than the spatial directions—but this is easily
corrected by including images in the time direction as well.
The image sums converge fairly quickly because the
Bessel functions die off exponentially. For further discus-
sion of the properties of these functions see Refs. [19,53].
The second function is given by

6M0
disc¼‘ð�IÞðGþ�IÞðXI�YIÞ2ðLI��IÞðSI��IÞ

ðXI��IÞ2ðYI��IÞ2

þðLI�XIÞðSI�XIÞ
ð�I�XIÞ

2
4~‘ðXIÞðGþXIÞ�‘ðXIÞþ‘ðXIÞðGþXIÞ

�
1

LI�XI

þ 1

SI�XI

� 1

�I�XI

� 2

YI�XI

�35

þðLI�YIÞðSI�YIÞ
ð�I�YIÞ

2
4~‘ðYIÞðGþYIÞ�‘ðYIÞþ‘ðYIÞðGþYIÞ

�
1

LI�YI

þ 1

SI�YI

� 1

�I�YI

� 2

XI�YI

�35: (A8)

As is clear from this form, this is the taste-singlet contri-
bution to the disconnected matrix element, i.e. that involv-
ing hairpin vertices in the loop. The poles in this function
are misleading: due to cancellations between terms, the
function vanishes when XI ! YI and is finite when XI or YI

equal LI, SI or �I. These cancellations could lead to
numerical instability in the evaluation of Mdisc, but we
have not found this to be the case. Finally, we note that
M0

disc is independent of the renormalization scale �DR.

2. Definitions of Fð4Þ
B , Fð5Þ and Fð6Þ

These three functions describe the contributions to
Mconn that result from discretization and truncation errors.
Their origin is explained in detail in Ref. [18]. Their forms
are

Fð4Þ
B ¼ 3

8f2�G
½2G~‘ðKBÞ þ ð‘ðXBÞ þ ‘ðYBÞ � 2‘ðKBÞÞ�

(A9)

Fð5Þ ¼ 3

8f2�G
½ð‘ðXVÞ þ ‘ðYVÞ � 2‘ðKVÞÞ

þ ð‘ðXAÞ þ ‘ðYAÞ � 2‘ðKAÞÞ� (A10)

Fð6Þ ¼ 3

8f2�G
½‘ðXTÞ þ ‘ðYTÞ � 2‘ðKTÞ�: (A11)

Note that Fð5Þ and Fð6Þ vanish when mx ¼ my.

For completeness, we give the relationships between the
coefficients of these functions and those appearing in the
operator enumeration used in Ref. [18]. The coefficients of

the functions Fð4Þ
B are

bj ¼
X
B0

1

64�2f4
ðC1B0

� gB
0B � C2B0

� hB
0BÞ (A12)

where B0 runs over all five tastes, and B ¼ I, P, V, A, and
T, for j ¼ 6, 7, 8, 9, and 10, respectively. The matrices g
and h are defined in Ref. [18], and f is the chiral limit value

of the pion decay constant. The coefficient of Fð5Þ is

b11 ¼ � 4

�2f4
ðC2P

� þ 6C2T
� Þ; (A13)

while that of Fð6Þ is

b12 ¼ � 48

�2f4
C2T
� : (A14)

We can use these formulas to estimate the order of
magnitude of the coefficients b6–12. One expects that C� �
a2�8

QCD and/or �
2�6
QCD, while the numerical factors

vary from gB
0B=ð64�2Þ � 1=10 to 48=�2 � 5. We simply

treat them as of Oð1Þ, and f��QCD, leading to the crude

estimate given in Eq. (35).
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3. Definitions of Fð1Þ
B and Fð2Þ

B

These functions give the form of the contributions to
Mdisc that arise from discretization and truncation errors.

The explicit 2þ 1 flavor form of Fð1Þ
B can be deduced from

the general result given in Ref. [18]:

Fð1Þ
B ¼ 3

8f2�G

2
64‘ð�BÞ ðYB � XBÞ2ðLB � �BÞðSB � �BÞ

ðXB � �BÞ2ðYB � �BÞ2ð�0
B � �BÞ

þ ‘ð�0
BÞ

ðYB � XBÞ2ðLB � �0
BÞðSB � �0

BÞ
ðXB � �0

BÞ2ðYB � �0
BÞ2ð�B � �0

BÞ

þ ðLB � XBÞðSB � XBÞ
ð�B � XBÞð�0

B � XBÞ

8<
:~‘ðXBÞ þ ‘ðXBÞ

0
@ 1

LB � XB

þ 1

SB � XB

� 2

YB � XB

� 1

�B � XB

� 1

�0
B � XB

1
A
9=
;

þ ðLB � YBÞðSB � YBÞ
ð�B � YBÞð�0

B � YBÞ

8<
:~‘ðYBÞ þ ‘ðYBÞ

0
@ 1

LB � YB

þ 1

SB � YB

� 2

XB � YB

� 1

�B � YB

� 1

�0
B � YB

1
A
9=
;
3
75: (A15)

The coefficients of this function are

bj ¼ 1

�2f4
ð2C2B

� þ C3B
� Þa2	MA1

B ; (A16)

with B ¼ V and A for j ¼ 13 and 14, respectively.

The function Fð2Þ
B occurs only in the mixed-action setup.

Its form is

Fð2Þ
B ¼ 3

8f2�G

�
2
‘ðYBÞ�‘ðXBÞ

YB�XB

þ ~‘ðXBÞþ ~‘ðYBÞ
�
: (A17)

with the coefficients being

bj ¼ 1

�2f4
ð2C2B

� þ C3B
� Þa2	MA2

B ; (A18)

with B ¼ V and A for j ¼ 15 and 16, respectively.

The functions Fð1;2Þ
B are finite—the apparent poles have

vanishing residues—and vanish when mx ¼ my. They are

also independent of the renormalization scale.
The size of the coefficients b13–16 can be estimated as

for b6–12, with the result given in Eq. (40).

APPENDIX B: FUNCTIONS APPEARING
IN SU(2) SCHPT FITTING

In this appendix, we describe how SU(2) SChPT results
are obtained from SU(3) SChPT results using the recipe
outlined in Sec. II C and justified in Appendix C. The
recipe is to first expand the SU(3) result in powers of
mx=ms and m‘=ms (where ms is here meant generically,
and thus includes my), keeping only terms of the desired

order (here NLO) in SU(2) power counting. Secondly, one
allows the LECs which are constants in SU(3) SChPT
to become arbitrary functions of ms and my, with the

exception of f.
First consider the analytic terms H2 �H5 of Eqs. (24)–

(27).H2 is proportional to ðmx þmyÞ=�QCD. Themx=�QCD

part remains in SU(2) ChPT, while the my=�QCD part is

absorbed into thems dependence of the overall constantB0.

Similarly, H3 / ðmx þmyÞ2 leads to an analytic term pro-

portional to m2
x, to an ms dependence of the analytic term

linear in mx, and to an m2
s dependence of B0. H4 / ðmx �

myÞ2=ðmx þmyÞ leads to analytic terms of all orders inmx,

with the expansion parameter being mx=my rather than

mx=�QCD. Finally, H5 / ð2m‘ þmsÞ leads to an analytic

term linear inm‘ and furtherms dependence of B0. The net
result is that given in Eqs. (41)–(45), with the coefficients
dj having an arbitrary dependence on the strange-quark

mass(es).
Next, consider the continuumlike chiral logarithms in

H1 [see Eq. (22)]. Here a key role is played by the overall
multiplier 1=G ¼ 1=m2

xy:P, which arises from the denomi-

nator in the definition of BK. In order for a term from
M0

conn or M0
disc to remain of NLO in the SU(2) limit, it

must come with a compensating factor of G, my, or ms. If

not, it will become of NNLO in SU(2) SChPT.
To see how this works in more detail, consider first

Mconn, given in Eq. (A1). Its contribution to H1 consists
of a sum over tastes B of the expression

Fð3Þ
B

8�2f2�G
¼ � 1

2

1

8�2f2�

��
1þ XB

G

�
‘ðXBÞ þ

�
1þ YB

G

�
‘ðYBÞ

þ 2

�
1� KB

G

�
‘ðKBÞ � 2KB

~‘ðKBÞ
�
: (B1)

On the first line, the term proportional to ‘ðXBÞ survives as
a chiral log in the SU(2) limit, but its coefficient simplifies
to 1. This is because XB=G / mx=ms (where ‘‘mx’’ can
include taste-breaking Oða2Þ corrections) is suppressed in
the SU(2) limit, so that, given the overall factor of
1=ð8�2f2�Þ, the XB=G term is of NNLO in SU(2) power
counting. On the second line, no terms give rise to SU(2)
chiral logarithms, because the argument of the logarithms
is finite when either mx or m‘ vanishes. Thus one can
expand the logarithms about mx ¼ 0, leading to a power
series in mx, in which subsequent terms are suppressed by
mx=my or mx=� / XP=�

2
�, with � ¼ �QCD. The same is
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true for the factors multiplying the logarithms. For ex-
ample, the last term on the second line becomes

KB
~‘ðKBÞ

8�2f2�
/ KB log½KB�

�2
�

(B2)

/ ðmx þmy þ a2�3Þ
�

log½mx þmy þ a2�2� (B3)

/ f1ðmy=�Þ þ f2ðmy=�Þmx

�
þ . . . : (B4)

The analytic dependence on my in f1 can then be absorbed

into the (unknown) my dependence of the overall coeffi-

cient multiplying H1 [which becomes d1 in the SU(2)
SChPT result, Eq. (41)]. The dependence on mx, which is
of NLO, can be absorbed into the coefficient of the analytic
term Q3. In this way, one finds that the entire second line
can be absorbed into the coefficients d1 and d2. The overall
result is that

M0
conn

G
!SUð2Þ � 1

2

X
B

�B‘ðXBÞ: (B5)

Turning next to the contribution of M0
disc, Eq. (A8), we

find two new features. First, there are logarithms (and other
functions) of �I. But since �I ¼ LI=3þ 3SI=3 does not
vanish when m‘ and a2 vanish, these functions can be
expanded just as logarithms of YB and KB were above.
Second, we need to use the result17

ðSI � XIÞ
ð�I � XIÞ

!SUð2Þ 3
2
: (B6)

Third, one can have contributions proportional to

ðm‘=�Þfðms=�Þ (e.g. from the LI
~‘ðYIÞG term) which

can be absorbed into the coefficient d4.
Given these results, combined with the arguments used

above for M0
conn, we find that the only terms in M0

disc

which cannot be absorbed into the coefficients d1, d2, and
d4, are those multiplying lnXI. Of these, we must pick out
those multiplied by G, since all others are suppressed by
mx=ms and thus become of NNLO. The result is then the
greatly simplified form

6M0
disc

G
!SUð2Þ 3

2
� ½ðLI � XIÞ~‘ðXIÞ þ ‘ðXIÞ

þ analyticþ NNLO�: (B7)

All the remaining functions which arise in SU(3)
SChPT, H6-H16, become of NNLO in the SU(2) limit.

This is because all the functions which appear, Fð2Þ �
Fð6Þ, contain a factor of 1=G from the definition of BK,
but no counterbalancing factor in the numerator when the

numerator contains a logarithm of XB. For example, in Fð4Þ
B

[see Eq. (A9)] part of the numerator contains a factor of G,
but this multiplies lnKB, which gives only terms analytic in
mx. The part containing lnXB is multiplied by XB, leading
to the additional suppression by XB=G�mx=ms.
The final result, given in Eq. (41), therefore contains no

LECs induced by discretization or truncation errors.

APPENDIX C: DERIVATION OF RECIPE FOR
OBTAINING THE SU(2) SCHPT RESULT

In this Appendix, we demonstrate the validity of the
recipe used to obtain the SU(2) SChPT result. This recipe
has been described in Sec. II C and implemented in
Appendix B. The essential claim is that it is sufficient to
take the SU(2) limit of the NLO SU(3) expression, as long
as one allows LECs (except for f) to have an arbitrary
dependence onms andmy. This arbitrary dependence is the

only impact of working to all orders in rs ¼ ms=�QCD.
18 In

other words, higher orders in SU(3) SChPT do not lead to
new types of functional dependence on the small quantities
XP=�

2
�, LP=�

2
�, a

2�2
QCD and 
2.

In particular, looking at the final result of Eqs. (41)–(45),
there are two main features in need of justification:
(1) There are no terms involving those LECs that are

proportional to a2 or 
2.
(2) The chiral logarithm in the function Q1 [Eq. (42)]

is fully predicted. In particular, its coefficient
(/ 1=f2) has no dependence on ms.

Discretization and truncation errors thus enter only through
the coefficient d1 [see Eq. (46)] and through the masses of
the PGBs in the chiral logarithms.
The approach we use to justify the recipe is to use SU(3)

ChPT, working to all orders in rs, but only at NLO in light-
quark masses, discretization and truncation effects. This
amounts to a ‘‘poor-person’s SU(2) SChPT’’, and allows us
to piggyback on the SU(3) SChPTanalysis of Ref. [18]. We
assume that this all-orders perturbative analysis captures
all possible forms of dependence on the small quantities.
The form of the analytic terms in the SU(2) expression,

Eqs. (43)–(45)), follows immediately in this approach.
Indeed, since the SU(2) limit of the NLO SU(3) expression
already gives the most general NLO analytic dependence
on XP=�

2, LP=�
2, a2�2

QCD, and 
2, higher-order terms

can only generate rs dependence of their coefficients.

17One might be concerned about the legitimacy of the SU(2)
limit, since ChPT does not control the ms dependence when ms
becomes large. If one looks back at the source of this ratio in the
derivation, however, one finds that taking the ms ! 1 limit in
this way amounts to projecting onto the generators of the
appropriate partially quenched SU(2) subgroup. This is exactly
analogous to the way in which one projects against the
‘‘super-�0’’ by sending m2

0 ! 1 in a PQ calculation [54]. In
other words, it is a mathematical trick and does not imply control
over the actual ms dependence.

18Here and throughout this Appendix we use ms to represent
both ms and my.
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We now turn to the first feature noted above. We start by
displaying the form of the contributions proportional to the
discretization/truncation LECs that arise in the SU(2) limit
of the NLO SU(3) expression. Keeping only the parts
which are nonanalytic in light-quark quantities, one finds
that they all have the form

	BK

��������
SUð3Þ@NLO

disc=trunc
�
2 M

2
� logðM2

�Þ
G

: (C1)

We use here a compact notation: 
2 stands for discretiza-
tion and truncation effects proportional to 
2, 
=�, or
a2�2

QCD; M2
� stands for any light-meson mass-squared

[XB, �B (except �I) and LB] and also (except in the argu-

ment of the logarithm) for the hairpin vertices a2	MA1;2
B . In

addition, the scale �DR in the logarithm is kept implicit.
The form of (C1) arises as follows: the 
2 comes from the
LECs, the M2

� logðM2
�Þ from the pion loop, and the 1=G

from the denominator in the definition of BK. All other
factors of �QCD cancel, as required by dimensional analy-

sis. As noted in Appendix B, the contribution of Eq. (C1) is
of NNLO in SU(2) power counting, because it is
suppressed both by 
2 and by M2

�=G.
The issue then is whether this double suppression

continues to hold when one takes the SU(2) limit of
higher-order SU(3) SChPT expressions. If (C1) simply
gets multiplied by a function of rs, then it remains of
NNLO in SU(2) ChPT. If, however, some higher-order
terms reduce in the SU(2) limit to

	BKjunwanted � rsFðrsÞ
2 logðM2
�Þ; (C2)

then they would contribute at NLO. Here FðrsÞ is an
unknown function, which we assume to be of Oð1Þ in
SU(2) power counting for rs � 1. The overall factor of rs
is included because we know from Eq. (C1) that there is no
such term when rs ¼ 0.

That (C2) cannot appear follows from two observations.
First, higher orders in SU(3) ChPT cannot introduce an
enhancement by G=M2

� / ms=m‘. Second, chiral loga-
rithms always have the form M2

� lnðM2
�Þ, rather than sim-

ply lnðM2
�Þ. Since the factor of 
2 must be present as we

are considering LECs related to discretization or truncation
errors, and the 1=G arises from the definition of BK,

19 one
necessarily obtains terms of the form (C1) rather than (C2).

The two observations of the previous paragraph follow
from ChPT power counting, specifically the generalization
of staggered ChPT power counting applicable to a calcu-
lation of BK [18]. This power counting ensures that suc-
cessive orders in SU(3) SChPT are ‘‘suppressed’’ by
factors of m=�QCD or 
2 (using the latter generically).

Thus it is not possible that by going to higher order one
can enhance the result by a factor of ms=m‘—the best that

one can do is have a factor of rs �Oð1Þ, which does not
change the order in SU(2) ChPT.
As for the pion loop contribution, this can appear as part

of an arbitrary-order SU(3) diagram in which all the other
particles are heavy (i.e. with mass-squared proportional to
ms). In the SU(2) limit this diagram collapses to give a pion
tadpole. The contribution of the part of the diagram with-
out the tadpole can be no larger than 	BK � 
2FðrsÞ,
where the 
2 comes from the LEC, and SU(3) power
counting ensures that FðrsÞ �Oð1Þ. Adding back in the
pion loop, and noting that each pion field comes explicitly
with a factor of 1=f, one sees that the loop must give the
generic form

M2
� logðM2

�Þ
ð4�fÞ2 ¼ M2

� logðM2
�Þ

�2
�

�M2
� logðM2

�Þ
G

;

where in the last step we are using the fact that G��� in

SU(2) power-counting. In more detail, the loop can involve
either a flavor nonsinglet pion propagator, in which case
M2

� ¼ XB, or the flavor singlet propagator [e.g. of the form
in Eq. (17) for B ¼ V, A], in which case the M2

� inside the
logarithm can be XB or �B, while the M

2
� outside can also

be a hairpin vertex proportional to a2. In all cases one ends
up with an expression of the NNLO form (C1).
We now turn to the second feature of the result

Eq. (41) that needs to be explained, namely, that the
SU(2) chiral logarithm has a predicted coefficient, de-
spite working to all orders in rs. In the continuum, this
follows from an SU(2) ChPT analysis in which the kaon
is treated as heavy and serves, along with the four-quark
operator, as a source for pions [21]. Using the equations
of motion, it is shown in Ref. [21] that all operators
contributing to BK at one-loop order in SU(2) ChPT
(which can have any even number of derivatives acting
on the external kaons) collapse to a single form. Since
the coupling to pions is determined by SU(2) chiral
symmetry, both the form of the chiral logarithm and its
coefficient relative to LO are predicted. The result found
in this way is that obtained from Eq. (41) by setting taste
breaking in the pion masses to zero.
Our aim in the following is to show that continuum

argument can be generalized to staggered ChPT with
only minor changes. Since we have already dealt with the
contribution from LECs arising from discretization and
truncation errors in the operator, the remaining such errors
are those coming from Oða2Þ taste-breaking effects arising
from the action. These enter through the taste-breaking
potential, V , whose explicit form is given in
Refs. [23,25]. Thus we must consider SU(3) SChPT dia-
grams with a single insertion of V and any number of
powers of rs.
The potential V leads to two-point, four-point, and

higher-order vertices, all multiplied by an explicit factor
of a2. Those involving four-point or higher-order vertices
give contributions to BK of the form (C1), which are

19The 1=G can be converted into a 1=�2
� by a higher-order

correction proportional to rs � G=�2
�. This makes no difference

to our arguments since we treat G��2
� in the SU(2) limit.
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thus of NNLO in the SU(2) limit. The argument for this
is exactly as given above for the discretization/truncation
LECs. Thus we need only account for the two-point
Oða2Þ vertices, which only affect propagators. These
will only have an impact on the SU(2) chiral logarithm
if these vertices are included in the ‘‘light’’ meson
propagators. Including them on heavy meson propagators
will lead only to corrections of the NNLO form (C1).
The upshot is that we should work to all orders in rs in
continuum SU(3) ChPT, keeping Oða2Þ corrections only
on the single light-meson propagator needed to develop
the nonanalyticity. But working to all orders in rs in
SU(3) ChPT can be achieved by using continuum SU(2)
ChPT—indeed, the latter goes beyond perturbation the-
ory. Thus we end up with the following recipe: use the
continuum SU(2) ChPT calculation of Ref. [21] to de-
termine the Feynman diagrams and their overall factors,
but evaluate the integrals using the light-meson propa-
gators including the Oða2Þ corrections.

In fact, we must generalize the calculation of Ref. [21] to
include the extra taste degree of freedom. This is straight-
forward, and follows the methodology used in Ref. [18].
We find that, just as in SU(3) ChPT, adding taste results in
the LO chiral operator having two terms:

O �
K / StrðF1�KÞStrðF2�KÞ þ StrðF1�KF2�KÞ: (C3)

Here the pion fields are contained in � ¼ ffiffiffiffi
�

p ¼
expði�=½2f�Þ, while F1;2 are spurions which pick out the

flavor and taste of the underlying quark operator. The
argument for the equality of the coefficients of the two
terms is identical to that for SU(3) case given in Ref. [18].
Expanding the operator (C3) to quadratic order in pion
fields, removing contributions which are common to the

factor of f2K in the denominator of BK and thus cancel, and
contracting pion fields with staggered ChPT propagators,
leads to Eq. (42).

APPENDIX D: TABLES OF am� AND BK

In this appendix, we present the most useful subset of
our results for the ‘‘pion’’ masses and BK. We give results
only for the three ensembles, C3, F1, and S1, which we use
to do our continuum extrapolation. We also quote only the
degenerate pion masses, sincem2

� / mx þmy to very good

approximation. Finally, for BK we show the subset of our
data used in the SU(2) fits. These are the results that lead
our central value for BK. Table XXXI reports the average
pion masses obtained as described in the main text.
Table XXXII reports the values of BK obtained using
1-loop matching at the scale � ¼ 1=a.
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