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We present a new study of D semileptonic decays on the lattice which employs the highly improved

staggered quark action for both the charm and the light valence quarks. We work with MILC unquenched

Nf ¼ 2þ 1 lattices and determine the scalar form factor f0ðq2Þ for D ! K, l� semileptonic decays. The

form factor is obtained from a scalar current matrix element that does not require any operator matching.

We develop a new approach to carrying out chiral/continuum extrapolations of f0ðq2Þ. The method uses

the kinematic ‘‘z’’variable instead of q2 or the kaon energy EK and is applicable over the entire physical q2

range. We find fD!K
0 ð0Þ � fD!Kþ ð0Þ ¼ 0:747ð19Þ in the chiral plus continuum limit and hereby improve

the theory error on this quantity by a factor of�4 compared to previous lattice determinations. Combining

the new theory result with recent experimental measurements of the product fD!Kþ ð0Þ � jVcsj from BABAR

and CLEO-c leads to a very precise direct determination of the CKM matrix element jVcsj, jVcsj ¼
0:961ð11Þð24Þ, where the first error comes from experiment and the second is the lattice QCD theory error.

We calculate the ratio fD!Kþ ð0Þ=fDs
and find 2:986� 0:087 GeV�1 and show that this agrees with

experiment.

DOI: 10.1103/PhysRevD.82.114506 PACS numbers: 12.38.Gc, 13.20.Fc, 13.20.He

I. INTRODUCTION

Independent determinations of each of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix elements and checks
of three generation unitarity provide stringent consistency
tests of the standard model and have become an important
part of flavor physics. For instance, first row unitarity has
now been checked to very high accuracy with jVudj2 þ
jVusj2 þ jVubj2 � 1 ¼ �0:0001ð6Þ [1]. Such precision be-
came possible when both experiment and lattice QCD
theory inputs to the determination of jVusj reached sub-
percent levels of accuracy (the contribution from jVubj to
the unitarity sum is negligible and jVudj is known with
�0:02% errors).

In contrast to the elements of the 1st row, direct deter-
minations of the 2nd row matrix elements are still much
less precise. The latest PDG summary [2] quotes 4.8%,
3.5%, and 3.2% errors for jVcdj, jVcsj, and jVcbj, respec-
tively when one considers all ways of extracting the matrix
elements. If one focuses just on determinations of jVcdj and
jVcsj from semileptonicD ! �, l� andD ! K, l� decays,
until recently the total error has been at the 10% level and
dominated by lattice QCD theory errors. Furthermore, tests
of 2nd row unitarity stands at jVcdj2 þ jVcsj2 þ jVcbj2 ¼
1:101� 0:074 and for the 2nd column at jVusj2 þ jVcsj2 þ
jVtsj2 ¼ 1:099� 0:074 [2]. In both cases the error is domi-
nated by the uncertainty in jVcsj. Clearly reducing the
errors in jVcsj will have an immediate and significant

impact on flavor physics and on CKM unitarity tests. On
the experimental front Belle [3], BABAR [4], and CLEO-c
[5] have all recently published precise measurements of the
combination fD!Kþ ð0Þ � jVcsj with 3.3%, 1.4%, and 1.1%
errors, respectively. These precise measurements can be
turned into accurate jVcsj determinations if and only if
theory can provide the form factor fD!Kþ ð0Þ with compa-
rable precision. The main goal of the current work was to
improve lattice QCD calculations of fD!Kþ ð0Þ and the out-
come is that we have now succeeded in reducing the theory
errors from 10% down to 2.5%. Innovations that made this
dramatic improvement in errors possible include the em-
ployment of a new and better action for charm quarks, the
use of an absolutely normalized hadronic matrix element
that does not require any operator matching, improved
analysis tools for lattice data, and a new method for carry-
ing out chiral/continuum extrapolations.
One reason for the large disparity in the size of lattice

QCD errors between kaon andDmeson systems in the past
has been the challenge of simulating quarks with masses as
large as that of the charm quark. If ‘‘a’’is the lattice spacing
and hence �1=a the cutoff in the theory, then for charm
quarks it was thought to be difficult to satisfy amc ¼
mc=cutoff � 1. In the past this problem was circumvented
by employing effective theories to handle the charm quark,
nonrelativistic QCD, HQET, or the ‘‘heavy clover’’ action
of the Fermilab lattice collaboration. The first Nf ¼ 2þ 1
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were carried out by the Fermilab Lattice and MILC col-
laborations using an effective theory for charm [6]. This
pioneering work predicted the shape of the form factors as
a function of q2 prior to subsequent verification by experi-
ment. The theory errors, however, were quite large at
�10%. The calculations by the Fermilab Lattice and
MILC collaborations are being improved upon and their
theory errors should be reduced significantly soon [7]. On
the other hand, working with effective theories typically
leads to larger statistical and systematic errors than when
employing ‘‘relativistic’’ quark actions as can be done for
kaon physics. This includes uncertainties coming from
matching of heavy-light currents responsible for heavy
meson leptonic or semileptonic decays, and from the tun-
ing of heavy quark masses, all procedures that are much
more complicated in effective theories.

In recent years there has been a major shift in lattice
simulations with charm quarks. With the advent of highly
improved lattice quark actions, the concerns described
above of mc=cutoff being too large have been overcome
and several collaborations are now working on charm
physics without resorting to effective theories. In 2007
the HPQCD collaboration introduced the ‘‘highly im-
proved staggered quark’’ (HISQ) action [8]. Many lattice
artifacts, including allOððamcÞ2Þ discretization effects and
all Oð�sðamcÞ2Þ and OððamcÞ4Þ effects at leading order in
the charm quark velocity v

c have been removed. It then

becomes feasible to simulate charm quarks on the lattice in
a fully relativistic setting without introducing large discre-
tization errors as long as one works with lattice spacings
a � �0:15 fm. This last condition is easily met nowadays
in typical lattice simulations. Another approach to charmed
meson leptonic and semileptonic decays using relativistic
charm quarks is being pursued by the European Twisted
Mass (ETM) collaboration [9]. They employ a special
version of Wilson type quark action called the ‘‘twisted
mass’’ quark action where discretization errors come in at
Oða2Þ.

The HPQCD collaboration has successfully applied
HISQ charm quarks to studies of D and Ds meson leptonic
decays [10]. This formalism significantly reduced lattice
errors in decay constant calculations. We have now also
initiated D meson semileptonic decay studies based on

HISQ charm and light valence quarks. In Ref. [11] we
developed and tested our approach on a simpler test case
of a fictitiousDs ! �s, l� semileptonic decay (�s refers to
a pseudoscalar s� �s bound state). In the current paper we
present the first application of HISQ charm quarks to
realistic D meson semileptonic decays. More specifically,
we calculate the scalar form factor f0ðq2Þ for D ! K, l�
decays. As mentioned above already experiment provides
us with the product fþð0Þ � jVcsj. Then using the kinematic
relation f0ð0Þ ¼ fþð0Þ, an accurate calculation of f0ðq2Þ
from the lattice leads to a precise determination of the
CKM matrix element jVcsj.
We have carried out simulations on three of the MILC

‘‘coarse’’ ensembles with lattice spacing a� 0:12 fm and
two of the ‘‘fine’’ ensembles with a� 0:09 fm. Details of
these ensembles are listed in Table I. The five ensembles
provide enough variation and information to allow sensible
chiral and continuum extrapolations to the physical world.
In the next section we review the formalism for extract-

ing semileptonic decay form factors from hadronic matrix
elements of appropriate heavy-light currents. We describe
the advantages of working with the same relativistic action
for both the heavy and the light quarks and explain why the
form factor at q2 ¼ 0 is most accurately extracted from
hadronic matrix elements of the scalar current as opposed
to from the vector current. In Sec. III we introduce the
HISQ action and describe how action parameters such as
bare quark masses were tuned. Section IV provides further
details of our simulations including benefits derived from
using ‘‘random wall’’ sources, in particular, when simulat-
ing kaons with nonzero momenta. Section V describes our
fitting strategy. We have invested considerable effort into
developing improved fitting methods in order to extract the
form factors of interest with subpercent errors for each
ensemble and for all kaon momenta needed to cover the
physical q2 range.
In Sec. VI we take the form factor results from the five

ensembles and extrapolate to the chiral/continuum limit.
To this end we have developed a new extrapolation method
that can be used over the entire physical q2 range, ðMD �
MKÞ2 � q2 � 0. Since we are interested in the form factor
at q2 ¼ 0, it is important that any extrapolation scheme
work all the way down to q2 ¼ 0 where the kaon in the D

TABLE I. Details of MILC configurations employed in this article. Ntsrc is the number of time
sources used per configuration. All sea quark masses are given in the MILC collaboration

normalization convention with u
plaq
0 ¼ hplaquettei1=4. Values for the scale variable r1 in lattice

units, r1=a, are taken from Ref. [12]. Errors in this ratio are at the �0:1% level.

Set r1=a au0msea u
plaq
0 Nconf Ntsrc L3 	 Nt

C1 2.647 0:005=0:050 0.8678 600 2 243 	 64
C2 2.618 0:010=0:050 0.8677 600 2 203 	 64
C3 2.644 0:020=0:050 0.8688 600 2 203 	 64
F1 3.699 0:0062=0:031 0.8782 600 4 283 	 96
F2 3.712 0:0124=0:031 0.8788 600 4 283 	 96

NA et al. PHYSICAL REVIEW D 82, 114506 (2010)

114506-2



meson rest frame has energy EK 
 1 GeV. The new ap-
proach uses the ‘‘z expansion’’ of Refs. [13–15] to parame-
trize the kinematics (the dependence on Ek or equivalently
on q2). The coefficients of this expansion are then allowed
to be functions of the light and strange quark masses and of
the lattice spacing. We find that good fits to all our data are
possible with such an ansatz and the resulting f0ð0Þ in the
chiral/continuum limit is very stable against higher order
terms in this ansatz.

Section VII summarizes our final results for f0ð0Þ ¼
fþð0Þ at the physical point and explains our error budget.
We incorporate experimental input from BABAR [4] and
CLEO-c [5] to determine the CKM matrix element jVcsj
and compare with values listed in the PDG and with expec-
tations from CKM unitarity. In Sec. VIII we collect results
obtained as ‘‘side products’’ of our analysis of semileptonic
decay three-point hadronic matrix elements, namely, results
coming from two-point correlators such as decay constants
of the pion, kaon,D andDs mesons. These two-point results
provide nontrivial tests of our mass tunings, fitting, and
chiral/continuum extrapolation strategies leading to greater
confidence in our form factor (i.e. three-point) results as
well. Finally, Sec. IX gives a summary and addresses future
plans. Several appendices cover details of Bayesian fits
employed in this article. In Appendix C we carry out the
chiral/continuum extrapolation of f0ðq2Þ using an approach
that differs completely from the z-expansion method of
Sec. VI and is based instead on chiral perturbation theory.
We show that the two extrapolation methods give results in
very good agreement with each other.

II. FORMALISM

To study the process D ! K, l� one needs to evaluate
the matrix element of the charged electroweak current
between the D and the K meson states, hKjðV� �
A�ÞjDi. Only the vector current V� contributes to the
pseudoscalar-to-pseudoscalar amplitude and the matrix
element can be written in terms of two form factors
fþðq2Þ and f0ðq2Þ, where q� ¼ p

�
D � p

�
K is the four-

momentum of the emitted W boson:

hKjV�jDi ¼ fD!Kþ ðq2Þ
�
p
�
D þ p

�
K �M2

D �M2
K

q2
q�

�

þ fD!K
0 ðq2ÞM

2
D �M2

K

q2
q� (1)

with V� � ��s�
��c. As described below, we find it useful

to consider also the matrix element of the scalar current

S � ��s�c,

hKjSjDi ¼ M2
D �M2

K

m0c �m0s

fD!K
0 ðq2Þ: (2)

In continuum QCD one has the partially conserved vector
current (PCVC) relation and the vector and scalar currents
obey

q�hVcont
� i ¼ ðm0c �m0sÞhSconti: (3)

In fact, PCVC is the reason why the same form factor
fD!K
0 ðq2Þ appears in Eqs. (1) and (2). On the lattice, it is

often much more convenient to simulate with vector cur-

rents ��Q1�
��Q2 that are not exactly conserved at finite

lattice spacings even for Q1 ¼ Q2. Such non-exactly-
conserved currents need to be renormalized and acquire
Z factors. We are able to carry out fully nonperturbative
renormalization of the lattice vector current by imposing
PCVC. In the D meson rest frame the condition becomes

ðMD � EKÞhV latt
0 iZt þ ~pK � h ~V lattiZs ¼ ðm0c �m0sÞhSlatti:

(4)

We have checked the feasibility of this renormalization
scheme and extracted preliminary Zt and Zs values for the
test case of Ds ! �s, l�mentioned above in Ref. [11]. We
plan to apply this fully nonperturbative renormalization
scheme to evaluate h�jV�jDi and hKjV�jDi relevant for
realistic D ! �, l� and D ! K, l� semileptonic decays in
the near future. In the present article, however, we will
focus on the form factor fþðq2Þ just at q2 ¼ 0, since this is
all that is needed to extract jVcsj. We do this by exploiting
the kinematic identity fþð0Þ ¼ f0ð0Þ, and concentrating on
determining the scalar form factor f0ðq2Þ as accurately as
possible. The best way to proceed is to evaluate the had-
ronic matrix element of the scalar current rather than of the
vector current. From Eq. (2), one then has

fD!K
0 ðq2Þ ¼ ðm0c �m0sÞhKjSjDi

M2
D �M2

K

: (5)

The numerator on the right-hand side is a renormalization
group invariant combination. This is true even in our lattice
formulation, because we use the same relativistic action for
both the heavy and the light valence quarks. Moreover,
Eq. (5) allows a lattice determination of f0ðq2Þ and hence
also of fþð0Þ ¼ f0ð0Þ without any need for operator
matching. Using Eq. (5) and going to the continuum limit
is straightforward, because our action is so highly im-
proved even for heavy quarks.

III. THE HISQ ACTION AND TUNING
OFACTION PARAMETERS

The HISQ action was introduced in Ref. [8] and repre-
sents the next level of improvement of staggered quarks
beyond the AsqTad [16] action. Relative to the latter, the
HISQ action reduces taste breaking effects by approxi-
mately a factor of 3 on MILC coarse and fine lattices.
For heavy quarks such as charm the HISQ action includes
one adjustable parameter � which modifies the ‘‘Naik’’
term already present in the AsqTad action 1

6a
2�3

� !
1þ�
6 a2�3

�. In Ref. [8] � was adjusted nonperturbatively to

get the correct dispersion relation for the �c meson. It was
found that one ends up with �’s close to estimates coming
from requiring that the tree-level quark propagator have
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speed of light cðpÞ ¼ 1. In the current simulations we
have set � in the charm propagators equal to its tree-level
value. The size of � decreases rapidly with decreasing amq,

so for strange and light quarks � can safely be set equal
to zero. Table II lists the bare valence masses and the
�ðcharmÞ values employed for the five ensembles. The
bare charm and strange quark masses were tuned in order
to obtain the correct �c and �s meson masses. am0l was
chosen so that the ratio of HISQ valence masses
m0lðvalenceÞ=m0sðvalenceÞ ended up close to the analo-
gous ratio of light and ‘‘physical’’ strange quark masses for
AsqTad quarks on the same ensemble.1 This makes the
valence light quark mass approximately equal to the sea
light quark mass, both measured relative to a physical,
tuned strange quark mass. Figures 1 and 2 show our results
for the �c and �s masses on the five ensembles together
with the target values. One sees that tuning has been
achieved very accurately. For �c our target value is

M
target
�c

¼ 2:9852ð34Þ GeV which differs slightly from the
experimentalM

exper
�c

¼ 2:9803 GeV since we adjust for the
absence of electromagnetic and annihilation effects in the
lattice simulations [17]. The target value for the �s is
M�s

¼ 0:6858ð40Þ GeV [17]. The data points in Figs. 1

and 2 show only statistical and r1=a errors. We first deter-
mine r1 	Mmeson using the precisely know r1=a for each
ensemble. At this point, our data points have errors coming
from both statistics and from the �0:1% uncertainty in
r1=a (with the latter dominating). For the purposes of using
a physical scale on the vertical axis, we then convert
r1 	Mmeson to MeV using r1 ¼ 0:3133ð23Þ fm (r�1

1 ¼
0:6297ð46Þ GeV) [17]. For reasons explained below, we
find it more informative not to include the �0:7% uncer-
tainty in the physical value of r1 in these plots. Including
this error will affect all five data points in the same way
without changing relative uncertainties.

Once the bare charm and strange quark masses have
been fixed for each ensemble there are no adjustable pa-
rameters left when one goes on to determining other meson
masses such as MD or MDs

, decay constants fD, fDs
, fK,

etc. or semileptonic form factors. In Fig. 3 we show results
forMD andMDs

. Again the errors on the data points reflect

statistical and r1=a errors only. Any changes in the physi-
cal value of r1 will shift all five data points uniformly
without affecting their relative positions. Furthermore,
chiral/continuum extrapolations would be carried out on
r1 	Mmeson with r1 and its error coming in only after
having extracted the physical limit. By omitting the full
r1 errors in Fig. 3, one can more easily identify discretiza-
tion effects and light quark mass dependence. For instance,
for MDs

the difference between the coarse and fine en-

semble results is at the �6 MeV level or �0:3% and the
sea light quark mass dependence is essentially nonexistent.
The 0.3% discretization effect should be compared to the
�0:7% uncertainty in r1. One lesson to be learnt from this
is the importance of tuning quark masses accurately
enough so that results on the different ensembles agree to
within the smaller r1=a errors and not just to within the
larger r1 error. Otherwise it would not be possible to have
data points lying along smooth curves as in Fig. 3 where
discretization and light quark mass dependence can be
clearly identified and distinguished from mass tuning
and r1 errors. Based on Figs. 1–3, we believe the HISQ
action parameters have been fixed accurately enough in

TABLE II. Action parameters and �c and �s masses. 1þ � enters the coefficient of the Naik
term for charm propagators.

Set am0c am0s am0l 1þ � aM�c
aM�s

C1 0.6207 0.0489 0.0070 0.780 1.7887(1) 0.4111(2)

C2 0.6300 0.0492 0.0123 0.774 1.8085(1) 0.4143(2)

C3 0.6235 0.0491 0.0246 0.778 1.7907(1) 0.4118(2)

F1 0.4130 0.0337 0.00674 0.893 1.2807(1) 0.2942(1)

F2 0.4120 0.0336 0.01350 0.894 1.2751(1) 0.2931(2)

0 0.1 0.2 0.3 0.4 0.5
m

l
/m

s

2950

2960

2970

2980

2990

3000

3010

M
ηc

[M
eV

]

coarse lattice
fine lattice
Experiment (adjusted)

0.1% error

FIG. 1 (color online). Tuning of the charm quark mass via the
�c meson mass. Errors on the simulation results include statis-
tical plus the�0:1% errors coming from r1=a. The smaller black
error bars on the lattice data indicate the statistical errors. The
‘‘experimental’’ �c mass has been adjusted to take into account
the lack of annihilation and electromagnetic effects in our lattice
calculation.

1Note that HISQ and AsqTad masses are not numerically the
same, since the two actions are different.
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preparation for going on toD semileptonic decays. Further
consistency checks, such as determinations of decay con-
stants, will be given in Sec. VIII.

IV. SIMULATION DETAILS

The goal is to determine the hadronic matrix element
hKjSjDi in Eq. (5) via numerical simulations. The starting
point is the three-point correlator,

C3 pntðt0; t; T; ~pKÞ ¼ 1

L3

X
~x

X
~y

X
~z

ei ~pK�ð~z� ~xÞh�Kð ~x; t0Þ

	 ~Sð~z; tÞ�y
Dð ~y; t0 � TÞi: (6)

�y
D and �K are interpolating operators that create a D

meson or annihilate a kaon, respectively, and ~S � a3S is
the scalar current in lattice units. We also work with
dimensionless fermion fields. Equation (6) corresponds to
first creating a zero momentum D meson at time t0 � T
which propagates to time slice t with t0 � t � t0 � T. At

time slice t, the scalar current ~S ¼ ��s�c converts the
charm quark inside theDmeson into a strange quark while
inserting momentum ~pK. The resulting kaon is then anni-
hilated at time t0.
In our simulations we have picked t0 the location of the

kaon operator �K randomly and differently for each con-
figuration in order to reduce autocorrelations. We also
worked with Ntsrc values of t0 per configuration (see
Table I) placed Nt=Ntsrc time slices apart (Nt is the total
number of time slices for our lattices). Once t0 was fixed,
for each configuration we obtained results for several T
values, T ¼ 15 and 16 on coarse and T ¼ 19, 20, and 23 on
fine lattices. We will see later that having data at many T
values significantly reduces errors in extracted three-point
amplitudes. To further improve statistics, for each t0 and T
value we also evaluated the time-reversed three-point cor-

relator, essentially the same as Eq. (6) but with �y
D acting

on time slice t0 þ T and the scalar current inserted at T þ
t0 � t � t0.
As is well known, with the HISQ action, each flavor

of quark comes in Ntaste copies called ‘‘tastes’’. One has
Ntaste ¼ 4 when working with one-component staggered
fields and Ntaste ¼ 16 for four-component ‘‘naive’’ fields.
In the naive fields language the interpolating operators

�D=K and the scalar current ~S become

�y
D ¼ 1

4
��c�5�l; �K ¼ 1

4
��l�5�s; (7)

and

~S ¼ ��s�c: (8)

These are all single site bilinears.�D=K correspond to taste

nonsinglet ‘‘Goldstone’’ pseudoscalars and the factors of
1
4 ¼ 1ffiffiffiffiffiffiffiffi

Ntaste

p serve to divide out traces over taste space. The

scalar current in Eq. (8) is a taste singlet current. Carrying
out the contractions over fermionic fields in C3 pnt and
using the well-known relation between naive quark propa-
gators G�ðx; yÞ and one-component field propagators
G�ðx; yÞ,

G�ðx; yÞ ¼ �ðxÞ�yðyÞG�ðx; yÞ (9)

with

�ðxÞ ¼ Y3
�¼0

ð��Þx� ; (10)

one obtains

0 0.1 0.2 0.3 0.4 0.5

m
l
/m

s

670

680

690

700
M

ηs
[M
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]

coarse lattice
fine lattice
Target

0.6% error

FIG. 2 (color online). Tuning of the strange quark mass via
the �s.
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FIG. 3 (color online). The D and Ds meson masses. As ex-
plained in the text although the vertical axis uses physical units,
the data points show statistical and r1=a errors only. The
experimental points have not been adjusted for electromagnetic
effects that are absent in the lattice simulations. Such effects
have been estimated to be less than 0.2% [21].
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h�KðxÞ~SðzÞ�y
DðyÞi ¼

1

16
TrfG�;sðx; zÞG�;cðz; yÞ�5G�;lðy; xÞ�5g

¼ 1

16
Trf½�ðxÞ�yðzÞ�ðzÞ�yðyÞ�5�ðyÞ�yðxÞ�5�G�;sðx; zÞG�;cðz; yÞG�;lðy; xÞg

¼ 1

4
	ðyÞ	ðxÞ trfG�;sðx; zÞG�;cðz; yÞG�;lðy; xÞg

¼ 1

4
	ðyÞ	ðzÞ trfGy

�;sðz; xÞG�;cðz; yÞG�;lðy; xÞg: (11)

	ðyÞ stands for ð�1Þ
P

�
y� and similarly for 	ðxÞ and

	ðzÞ. In the last step we have used G�ðx; yÞ ¼ 	ðxÞ �
	ðyÞGy

�ðy; xÞ. ‘‘Tr’’ is the trace over spin and color and
‘‘tr’’ is the trace only over color. The three-point correlator
can now be written as

C3 pntðt0; t; T; ~pKÞ ¼ 1

L3

X
~x

X
~y

X
~z

ei ~pK�ð~z� ~xÞ 1
4
	ðyÞ	ðzÞ

	 h trfGy
�;sðz; xÞG�;cðz; yÞG�;lðy; xÞgi;

(12)

with x0 � t0, y0 � t0 � T, and z0 � t and where hi now
stands for average over configurations. One sees from
Eq. (12) that strange HISQ propagators are needed going
from ð ~x; t0Þ to general z and light propagators again from
ð ~x; t0Þ to general y. If one actually wanted to carry out
the 1

L3

P
~x, one would need a strange and a light propagator

from each spatial point on time slice t0 and that would be
prohibitively expensive. A common approach is to give up
on doing the

P
~x and to use ‘‘local sources’’ where ~x is fixed

at some ~x0, e.g. ~x ¼ ~0. One then has

C3 pnt
loc ðt0; t; T; ~pKÞ ¼

X
~y

X
~z

ei ~pK�~z 	 1

4
	ðyÞ	ðzÞ

	 htrfGy
�;sðz; xlocÞG�;cðz; yÞ

	G�;lðy; xlocÞgi; (13)

with xloc ¼ ð~0; t0Þ. Momentum conservation will ensure
that only kaons with momentum ~pK contribute and be
picked out at time slice t0. On the other hand random
wall sources allow us to carry out the 1

L3

P
~x without having

to invert at each spatial point. This can be seen by writing

C
3 pnt
rw ðt0; t; T; ~pKÞ ¼ 1

L3

X
~x

X
~x0

X
~y

X
~z

ei ~pK�ð ~z� ~xÞ

	 1

4
	ðyÞ	ðzÞhtrfGy

�;sðz; xÞG�;cðz; yÞ
	G�;lðy; x0Þ 	 
�ð ~xÞ
ð ~x0Þgi: (14)


ð ~xÞ is a field of random U(1) phases, and h
�ð ~xÞ
ð ~x0Þi ¼
�~x; ~x0 ensures that (14) reduces to (12) after averaging over
gauge field configurations. So in the random wall source
approach one calculates the light quark propagator G�;l

using the source 1ffiffiffiffi
L3

p P
~x0
ð ~x0Þ and G�;s, the strange propa-

gator by using the source 1ffiffiffiffi
L3

p P
~x
ð ~xÞei ~pK� ~x. Only one light

quark inversion is required in addition to a separate strange
quark inversion for each ~pK. In this way one obtains the
random wall propagators,

Grw
�;lðy; t0Þ �

1ffiffiffiffiffiffi
L3

p X
~x0
G�;lðy; x0Þ
ð ~x0Þ (15)

and

Grw
�;sðz; t0; ~pKÞ � 1ffiffiffiffiffiffi

L3
p X

~x

G�;sðz; xÞ
ð ~xÞei ~pK� ~x: (16)

The expression for the three-point correlator becomes

C3 pnt
rw ðt0; t; T; ~pKÞ ¼

X
~y

X
~z

ei ~pK� ~z 	 1

4
	ðyÞ	ðzÞ

	 htrfGrwy
�;s ðz; t0; ~pKÞG�;cðz; yÞ

	Grw
�;lðy; t0Þgi: (17)

The charm propagator in Eq. (17) is obtained by inverting
at time slice y0 ¼ t0 � T with source

P
~y	ðyÞGrw

�;lðy; t0Þ.
In this way one gets the ‘‘sequential’’ charm propagator,

G
seq
�;cðz; t0; TÞ �

X
~y

	ðyÞG�;cðz; yÞGrw
�;lðy; t0Þ; (18)

and

C
3 pnt
rw ðt0; t; T; ~pKÞ ¼

X
~z

ei ~pK� ~z 	 1

4
	ðzÞhtrfGrwy

�;s ðz; t0; ~pKÞ

	G
seq
�;cðz; t0; TÞgi: (19)

The most costly part of our simulations is calculating the
random wall strange quark propagators of Eq. (16). A
separate inversion is required for each ~pK [e.g. 8 inversions
for the different combinations ð�1;�1;�1Þ]. On the other
hand, when we change the T values, only Gseq

�;c of Eq. (18)
needs to be recalculated and one inversion suffices for all
momenta. This is one of the reasons why the full kaon
momentum ~pK is put into (16) and none into (15).
In Fig. 4 we show comparisons of percentage errors in

three-point correlator data of local sources versus random
wall sources. One sees significant improvement coming
from random wall sources. These tests were carried out in
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the test case Ds ! �s, l� calculations and with less than
the full statistics. For D ! K, l� we immediately went to
random wall sources.

In addition to the three-point correlators, as we will
show in the next section, several two-point correlators
are needed in order to extract the matrix element
hKjSjDi. They are

C
2 pnt
D ðt; t0Þ ¼ 1

L3

X
~x

X
~y

h�Dð ~y; tÞ�y
Dð ~x; t0Þi; (20)

and

C2 pnt
K ðt; t0; ~pKÞ ¼ 1

L3

X
~x

X
~y

ei ~pK�ð ~x� ~yÞh�Kð ~y; tÞ�y
Kð ~x; t0Þi:

(21)

The 1
L3

P
~x can again be implemented via random wall

sources. As already mentioned in the previous section,
we also calculated correlators for the �c, �s, and Ds

mesons in exactly the same way as C2 pnt
D=K in order to carry

out and check mass tunings. We have accumulated simu-
lation data for the three- and two-point correlators
described in this section for the ensembles of Table I. In
the next section we explain how hadronic matrix elements
such as hKjSjDi and meson masses and decay constants are
extracted from this data.

V. FITS AND DATA ANALYSIS

The interpolating operators �D and �K do not create
just the ground state D meson or kaon that we are inter-
ested in, but they also create excited states with the same
quantum numbers. With staggered quarks there is the
further complication that in addition to regular states so-
called ‘‘parity partner’’ states can contribute, whose ener-
gies are measured relative to i� so that e�Et ! ð�1Þte�Et.
TheDmeson correlator, for instance, has the t dependence
(we set t0 ¼ 0 for simplicity),

C
2 pnt
D ðtÞ ¼ XND�1

j¼0

bDj ðe�ED
j t þ e�ED

j ðNt�tÞÞ

þ XN0
D�1

k¼0

dDk ð�1Þtðe�E0D
k
t þ e�E0D

k
ðNt�tÞÞ: (22)

We are interested in the ground stateDmeson contribution
with amplitude,

bD0 � jh�DjDij2
2MDa

3
: (23)

Similar relations apply for other mesons. Only in the case
of equal mass mesons (�, �s or �c) at zero momentum
are the oscillatory contributions absent. The three-point
correlators such as Eq. (19) will have contributions from
regular and oscillatory states for both the kaon and the D
meson. The rather complicated t and T dependence is then
given by

C3 pntðt; TÞ ¼ XNK�1

j

XND�1

k

Ajke
�EK

j te�ED
k
ðT�tÞ þ XNK�1

j

XN0
D�1

k

Bjke
�EK

j te�E0D
k
ðT�tÞð�1ÞðT�tÞ

þ XN0
K�1

j

XND�1

k

Cjke
�E0K

j te�ED
k
ðT�tÞð�1Þt þ XN0

K�1

j

XN0
D�1

k

Djke
�E0K

j te�E0D
k
ðT�tÞð�1Þtð�1ÞðT�tÞ: (24)

We will only consider the region 0 � t � T and take
T � Nt so that any contributions from mesons propagat-
ing ‘‘around the lattice’’ due to periodic boundary condi-
tions in time can be neglected. The relevant amplitude
here is

A00 � h�KjKihKjSjDihDj�Di
ð2EKa

3Þð2MDa
3Þ a3: (25)

From Eqs. (5) and (23), one sees that our sought after
hadronic matrix element is given by

hKjSjDi ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MDEK

p A00ffiffiffiffiffiffiffiffiffiffiffiffi
bK0 b

D
0

q : (26)

So our goal is to extract the combination on the right-hand
side of (26) as accurately as possible and with any
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FIG. 4 (color online). Comparison between local and random
wall sources for ~p ¼ 2�

La ð0; 0; 0Þ (left plot), and for ~p ¼ 2�
La 	

ð1; 1; 1Þ (right plot).
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correlations among the errors of the individual compo-
nents, A00, b

K=D
0 , MD, and EK taken properly into account.

We have carried out simultaneous fits to C
2 pnt
D , C

2 pnt
K and

the three-point correlators with different T values,
C3 pntðt; TiÞ i ¼ 1; 2 � � � . following the fit ansatz of
Eqs. (22) and (24). Two (three) different T values are
used for the coarse (fine) ensembles. This allows us to
evaluate (26) within one fit. The two-point correlators
were fit for t values between tmin ¼ 2ð2Þ and tmax ¼
30ð20� 30Þ for the K and D, respectively, for coarse
lattices. For fine lattices, t values were used between tmin ¼
2� 4ð2Þ and tmax ¼ 30ð30Þ. For the three-point correla-
tors, we used all the data between t ¼ 2 and t ¼ T � 2 for
coarse lattices, and t ¼ 3 and t ¼ T � 2 for fine lattices.
Simultaneous fits with multiple T and taking different fit
ranges for different correlators were also helpful to reduce
the statistical errors, since it allows us to extract maximum
information from both the three-point and two-point cor-
relators. The number of exponentials in our fit ansatz was
varied to test for stability of fit results. For our final fits,
we ended up choosing around 3� 4 for ND and NK. N

0
D=K

was taken to be mostly ND=K � 1. Figures 5–9 show some

results for A00, MD, b
D
0 , EK, b

K
0 versus ND or NK for

ensemble C1 at kaon momentum ~p ¼ ð0; 0; 0Þ. All our
fits are carried out using Bayesian methods [18]. We de-
scribe choices for priors and prior widths in the Appendix.

We have found that using data from several C3 pnt with
different T values helps greatly in reducing statistical/
fitting errors. Figure 10 compares results for f0ðq2Þ for
ensemble C2. One sees that having two rather than just one
C3 pntðt; TiÞ involved in the simultaneous fit reduces errors
and that this effect is most pronounced when one combines
an even T with an odd T. It may not be surprising that
improvements are achieved from multi-T fits. From the
fit ansatz (24), one sees that having more C3 pnt’s
does not increase the number of fit parameters (Ajk etc.),

although the amount of data and hence of information
given to the minimizer is increased. Furthermore,

0 1 2 3 4 5 6 7 8 9
N

K

0.31

0.311

0.312

0.313

0.314

0.315

a 
E

K

SimFit result
2pt fit result

FIG. 8 (color online). Same as Fig. 6 for aEK versus NK.
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FIG. 5 (color online). A00 versus the number ND=K . In the left
(right) plot NK (ND) is fixed at 3 (4).
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FIG. 6 (color online). aMD versus ND. Green circles are from
simultaneous C2 pnt � C3 pnt fits. The red diamond is from fits to
just the C2 pnt.
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if T1 þ T2 is odd, then ð�1ÞT1�t and ð�1ÞT2�1 have oppo-
site signs and C3 pntðt; T1Þ and C3 pntðt; T2Þ will provide
more independent information.

Most of the fit parameters such asMD or bD0 etc. that one

gets from the simultaneous C2 pnt—C3 pnt fits can also be
determined by just fitting the two-point correlators by
themselves. Results from the C2 pnt fits are also shown on
Figs. 6–9 and provide consistency checks. One interesting
outcome is that two-point correlator parameters are more
accurately determined via simultaneous fits with three-
point correlators than when they are fit alone. This is
especially noticeable for D meson correlators, namely,
for MD and bD0 and has implications for determinations

of the decay constant fD. The latter is related to b
D
0 through

afD ¼ m0;c þm0;l

MD

ffiffiffiffiffiffiffiffiffiffiffi
2bD0
aMD

s
: (27)

In Figs. 11 and 12 we compare results forMD and fD using
either pure two-point fits or simultaneous fits. One sees the

significant improvement coming from the simultaneous fit.
Doing simultaneous fits gives a better handle on excited
state contributions because they contribute differently to
two-point and three-point correlators. This is effectively
similar to adding smearings to the correlators. In Sec. VIII
we will discuss extracting fD in the chiral/continuum limit.
Having simultaneous fit results will make this determina-
tion more accurate than what can be achieved from pure
two-point correlators. This appears to be a bonus side
product of semileptonic decay studies.
In Tables III, IV, and V we summarize our main fit

results. One sees from Table V that we were able to
determine f0ð ~pKÞ with errors ranging from �0:2% at
zero momentum to �0:9% at our highest momentum. In
Fig. 13 we plot the square of the ‘‘speed of light’’ c2ð ~pÞ for
the kaon:
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FIG. 10 (color online). Effect of multi-T fits.
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TABLE III. Fit results for aMD, afD, aMDs
, and afDs

. Numbers in brackets are from two-
point fits, whereas the rest come from simultaneous fits.

Set aMD afD aMDs
afDs

C1 1.1393(7) 0.1372(4)

(1.1398(21)) (0.1373(18)) (1.1876(5)) (0.1539(6))

C2 1.1595(8) 0.1423(4)

(1.1574(19)) (0.1405(17)) (1.2008(6)) (0.1560(7))

C3 1.1618(5) 0.1464(3)

(1.1620(10)) (0.1464(9)) (1.1899(5)) (0.1553(4))

F1 0.8141(3) 0.0971(2)

(0.8152(8)) (0.0979(5)) (0.8473(2)) (0.1083(2))

F2 0.8197(3) 0.1007(2)

(0.8191(5)) (0.1005(4)) (0.8435(2)) (0.1078(2))

TABLE IV. Fit results for aMK, aEKð ~pÞ, afK, am�, and af�. Numbers in brackets are from
two-point fits, whereas the rest come from simultaneous fits.

Set aMK aEK aEK aEK

(1,0,0) (1,1,0) (1,1,1)

C1 0.3122(2) 0.4081(7) 0.4837(9) 0.5469(20)

(0.3122(2)) (0.4083(7)) (0.4842(9)) (0.5477(24))

C2 0.3285(5) 0.4531(16) 0.5525(17) 0.6373(32)

(0.3285(3)) (0.4536(13)) (0.5532(18)) (0.6382(33))

C3 0.3572(2) 0.4750(9) 0.5720(10) 0.6524(22)

(0.3572(2)) (0.4755(9)) (0.5722(11)) (0.6524(35))

F1 0.2285(2) 0.3203(7) 0.3919(9) 0.4559(15)

(0.2286(2)) (0.3185(12)) (0.3896(23)) (0.4506(47))

F2 0.2460(1) 0.3340(4) 0.4014(7) 0.4609(11)

(0.2458(2)) (0.3334(7)) (0.4015(10)) (0.4616(16))

Set afK am� af�

C1 0.1011(1)

(0.1011(1)) (0.1599(2)) (0.0893(1))

C2 0.1044(1)

(0.1045(1)) (0.2108(2)) (0.0949(1))

C3 0.1079(1)

(0.1079(1)) (0.2931(2)) (0.1023(1))

F1 0.0721(1)

(0.0721(1)) (0.1344(2)) (0.0645(1))

F2 0.0748(1)

(0.0747(1)) (0.1873(1)) (0.0697(1))

TABLE V. Fit results for f0ð ~pKÞ.
Set f0ð0; 0; 0Þ f0ð1; 0; 0Þ f0ð1; 1; 0Þ f0ð1; 1; 1Þ
C1 1.022(3) 0.916(3) 0.846(3) 0.794(6)

C2 1.023(4) 0.885(5) 0.807(4) 0.758(7)

C3 1.010(2) 0.883(3) 0.803(4) 0.754(5)

F1 1.019(2) 0.876(3) 0.796(3) 0.745(4)

F2 1.011(1) 0.874(2) 0.792(2) 0.739(4)
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c2ð ~pÞ ¼ E2
Kð ~pÞ �M2

K

~p2
: (28)

One sees that the relativistic dispersion relation is satisfied
to about 1� 2%. We will check the effect of deviations
from exact continuum dispersion relations on our final
results for form factors in later sections.

VI. CHIRAL AND CONTINUUM
EXTRAPOLATIONS USING THE z EXPANSION

The 20 entries in Table V summarize our results for the
form factor f0ðq2Þ evaluated on the five ensembles of
Table I with four different momenta ~pK (including zero
momentum) per ensemble. The kaon energy in the D rest
frame, EK, is related to q2 via

q2 ¼ M2
D þM2

K � 2MDEK; (29)

and the physical region is 0 � q2 � q2max ¼ ðMD �MKÞ2.
MK, EK, and MD are given for the different ensembles in
Tables III and IV. The next step is to extrapolate the data of
Table V to the chiral/continuum physical limit. As is well
known, chiral extrapolations for form factors are much
more subtle than for static quantities such as masses or
decay constants. The main reason for this is that form
factors depend not only on meson/quark masses, but also
on a kinematic variable such as q2 (or equivalently on EK).
Kinematic variables are themselves functions of meson
masses. It is not sufficient to parametrize just the light
quark mass dependence of form factors. One must at the
same time capture the kinematic variable dependence cor-
rectly for each value of the light quark mass and the lattice
spacing (i.e. for each of our ensembles). Furthermore, we
are interested in a parametrization that works over the
entire physical kinematic range. In the chiral limit, q2

ranges between 0 � q2 � 1:9 GeV2 and EK between
0:495 � EK � 1:0 GeV.

A. The z expansion

In addition to q2 and EK, a third kinematic variable has
proven to be convenient in semileptonic form factor stud-
ies, in particular, in recent analysis of B ! �, l� decays
[13–15]:

zðq2; t0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ � q2

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ � t0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ � q2

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ � t0

p ; (30)

where t� ¼ ðMD �MKÞ2 and t0 is a free parameter that
defines the zero of the z variable, zðq2 ¼ t0; t0Þ ¼ 0. By
going to the z variable, one is mapping the cut region tþ <
q2 <1 in the complex q2 plane onto the circle jzj ¼ 1 and
�1< q2 < tþ onto z 2 ½�1; 1�. The physical region 0 �
q2 � q2max ¼ t� corresponds then to an even smaller re-
gion around z ¼ 0. For instance, for the choice t0 ¼ 0:5t�
and for physical values of MD andMK, one has �0:057 �
z � 0:046. In other words one always has jzj< 0:06 in the
physical region and this should make z a good variable for
a power series expansion. As discussed in the literature
using analyticity properties of form factors, one can write

f0ðq2Þ ¼ 1

Pðq2Þ�0ðq2; t0Þ
X1
k¼0

akðt0Þzðq2; t0Þk: (31)

The function Pðq2Þ in the denominator is there to factor out
any isolated poles in the region t� < q2 < tþ below theDK
threshold at q2 ¼ tþ. In the case of D ! K semileptonic
decays the charm-strange scalar current has the same
quantum numbers as the D�

s0ð2317Þ 0þ meson so that one

choice for Pðq2Þ would be Pðq2Þ¼ ð1�q2=ðMD�
s0
Þ2Þ. We

have worked with both Pðq2Þ¼ ð1�q2=ðMD�
s0
Þ2Þ and

Pðq2Þ ¼ 1 and find that although the expansion coefficients
ak depend on the choice forPðq2Þ, in either case the data can
be reproduced very well with just a few terms (as we will
discuss below, with just three terms) in the z expansion.
For the ‘‘outer function’’ �0, we adopt the choice given

in Ref. [14]:

�0ðq2; t0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3tþt�
32��0

s
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ � q2

q
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tþ � t0
p Þ

	 ðtþ � q2Þ1=2
ðtþ � t0Þ1=4

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ � q2

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ � t�

p Þ1=2
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ � q2

p þ ffiffiffiffiffi
tþ

p Þ4
:

(32)

�0 has been calculated in the literature using QCD pertur-
bation theory and the operator product expansion.
An expression including Oð�sÞ and condensate contribu-
tions is given for instance in Ref. [14]. For the fixed charm
quark mass, �0 is a constant and affects just the overall
normalization of the ak’s. For simplicity, we ignore the
condensate contributions, which are of Oðm�3

c Þ and
Oðm�4

c Þ, respectively, and retain just the tree-level and
Oð�sÞ contributions. Any other choice would just mean a
common overall rescaling of the expansion coefficients ak.
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FIG. 13 (color online). Speed of light squared versus momen-
tum for the kaon from the two-point fit.
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B. Testing the z expansion with individual fits

In order to test the usefulness of the z expansion, we first
fit f0ðq2Þ separately for each individual ensemble using the

ansatz of Eq. (31) with
P

k !
Pkmax

k¼0 . In each case values

used for MD, MK and hence also for t� were those specific
to that ensemble. We employed a common choice for t0,
t0 ¼ 0:942 GeV2 corresponding to t0 ¼ 0:5	 tcontinuum� . As
is well known from z expansions in general, other choices
for t0 made no difference in resulting fit curves. We find that
good individual fits are possible once kmax reaches kmax ¼ 2
and that fit curves are then very stable with respect to further
increases in kmax. In Fig. 14 we show representative results
for two ensembles C2 and F1 for f0ðq2 ¼ 0Þ versus kmax.
We also show results for two different choices, Pðq2Þ ¼ 1
and Pðq2Þ ¼ ð1� q2=ðM2

D�
s0
Þ2Þ. One sees that fit results

are very insensitive to these changes in kmax or Pðq2Þ. At
finite lattice spacing, we have used MD�

s0
¼ Mlattice

Ds
þ �M

with �M � ½MD�
s0
ð0þÞ �MDs

ð0�Þ�exper. These individual

z-expansion fit tests demonstrate (as advocated in the lit-
erature) the efficiency of z expansions in capturing the
kinematics of form factors with just a small number of
parameters and in a model independent way.

In Fig. 15 we give examples of z-expansion fits to indi-
vidual ensembles, specifically for ensembles C2 and F1.

C. Simultaneous modified z-expansion fit

Having verified the efficacy of the z expansion in fits to
individual ensembles, we turn next to modifying the fit
ansatz to enable extrapolation to the physical limit. All
kinematic properties that depend on q2 are absorbed by P,
�0, and z. A natural way to distinguish between ensembles
is to let ak ! ak �Dk, where Dk contains the light quark
mass and lattice spacing dependence as shown below [we
set kmax ¼ 2 and Pðq2Þ ¼ ð1� q2=ðMD�

s0
Þ2Þ]:

f0ðq2Þ ¼ 1

Pðq2Þ�0

ða0D0 þ a1D1zþ a2D2z
2Þ

	 ð1þ b1ðaEKÞ2 þ b2ðaEKÞ4Þ; (33)

where

Di ¼ 1þ ci1xl þ ci2�xs þ ci3xl logðxlÞ þ diðamcÞ2

þ eiðamcÞ4 þ fi

�
1

2
�M2

� þ �M2
K

�
; (34)

xl ¼ M2
�

ð4�f�Þ2
; (35)

�xs ¼
M2

�s
�M2

�phys
s

ð4�f�Þ2
; (36)

�M2
� ¼ 1

ð4�f�Þ2
ððMAsqTad

� Þ2 � ðMHISQ
� Þ2Þ; (37)

�M2
K ¼ 1

ð4�f�Þ2
ððMAsqTad

K Þ2 � ðMHISQ
K Þ2Þ: (38)

In Eq. (34), we put typical analytic terms for light valence
(xl and �xs terms) and sea quark mass (�M� and �MK

terms) dependence. We quote M
AsqTad
K and M

AsqTad
� from

Ref. [19]. For the chiral logs, we only include up/down
quark contributions. The strange quark chiral logs are close
to a constant that can be absorbed into the ai’s. There are
two distinct sources of lattice spacing dependence. ðamcÞ2
and ðamcÞ4 terms are due to the heavy quark discretization
error, and ðaEKÞ2 and ðaEKÞ4 terms are introduced to
estimate the discretization errors due to finite momentum.
Since we want the aiDi to be independent of the momen-
tum, the aEK terms are placed separately outside the z
expansion. We include lattice spacing dependent terms up
to fourth power, however we tested with even higher terms
and confirmed that the higher terms are negligible. We
have carried out simultaneous fits to all the data of
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FIG. 14 (color online). f0ð0Þ versus kmax for ensembles C2
and F1. Pðq2Þ ¼ ð1� q2=ðMD�

s0
Þ2Þ everywhere except for

at kmax ¼ 2 where results for both Pðq2Þ ¼ 1 and Pðq2Þ ¼ ð1�
q2=ðMD�

s0
Þ2Þ are shown.
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FIG. 15 (color online). Individual z-expansion fits for ensem-
bles C2 and F1.
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Table V using the above ansatz and find that very good fits
are possible. Figures 16 and 17 plot the resulting fit curves
for each ensemble and the chiral/continuum extrapolated
curve with its error band for f0ðq2Þ versus E2

K (we show

separately the coarse and fine ensembles in order to avoid
too much clutter). The fit is excellent and has �2=dof ¼
0:44. In Table VI we summarize fit results for ak �Dk, k ¼
0, 1, 2 coming from the simultaneous fit both for individual
ensembles and in the physical limit. These are plotted in
Figs. 18–20. In Fig. 21 we plot f0ðq2 ¼ 0Þ for the five
ensembles and in the physical limit. One sees that within
errors this quantity shows little light quark mass depen-
dence and a �1:3% lattice spacing dependence.

We call the chiral/continuum extrapolation based on the
ansatz (33)–(38) and shown in Figs. 16, 17, and 21, the

‘‘simultaneous modified z-expansion extrapolation.’’ We
have tested the stability of this extrapolation by adding
further terms to the ansatz and/or modifying some of the fit
parameters and checking for changes in the physical limit
f0ðq2 ¼ 0Þ. For example, we have
(1) added x2l terms,

(2) modified the lattice spacing dependent terms:
(a) dropped ðamcÞ4 and ðaEKÞ4 terms.
(b) dropped ðamcÞ4 term.
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FIG. 17 (color online). Chiral/continuum extrapolation of
f0ðq2Þ versus E2

K from the modified z-expansion ansatz. The
data points are fine lattice points. Two individual curves and the
extrapolated band are from a fit to all five ensembles.
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FIG. 16 (color online). Chiral/continuum extrapolation of
f0ðq2Þ versus E2

K from the modified z-expansion ansatz. The
data points are coarse lattice points. Three individual curves and
the extrapolated band are from a fit to all five ensembles.

TABLE VI. The expansion coefficients ai �Di, i ¼ 0, 1, 2
from a simultaneous z-expansion fit to all data.

Set a0 �D0 a1 �D1 a2 �D2

C1 0.095(2) 0.085(21) �0:07ð11Þ
C2 0.094(2) 0.083(21) �0:07ð11Þ
C3 0.089(2) 0.079(21) �0:07ð11Þ
F1 0.094(1) 0.084(18) �0:07ð11Þ
F2 0.091(1) 0.080(17) �0:07ð11Þ
Physical limit 0.097(2) 0.088(18) �0:07ð11Þ

0 0.1 0.2 0.3 0.4 0.5
m

l
/m

s

0.087

0.09

0.093

0.096

0.099
a 0 *

 D
0

coarse lattice
fine lattice
Physical limit

FIG. 18 (color online). The expansion parameter a0 �D0

versus the light quark mass from a simultaneous fit to all data.
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FIG. 19 (color online). Same as Fig. 18 for a1 �D1.
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(c) dropped ðaEKÞ4 term.
(d) added ðamcÞ6 term.
(e) added up to ðamcÞ10 terms.
(f) added ðaEKÞ6 term,

(3) used Pðq2Þ ¼ 1 for the pole term,
(4) used EK from dispersion relations,
(5) used an overall factor [1þ fð12�M� þ �MKÞ] out-

side the
P

k to incorporate sea quark effects, rather
than include them in the Di’s,

(6) used an overall factor [1þ dðamcÞ2 þ eðamcÞ4]
outside the

P
k to estimate the amc errors, rather

than include them in the Di’s,

(7) replaced �M2
�=K ! ðMAsqTad

�=K Þ2=ð4�f�Þ2,
(8) used a simpler Di ¼ 1þ di1xl þ di2xs,
(9) used an even simpler Di ¼ 1þ di1xl.

Figure 22 summarizes the results of these tests. One sees
that the standard z-expansion extrapolation result is very
robust. The second item of the tests checks that we estimate

the lattice spacing extrapolation error correctly. Until
ðamcÞ4 and ðaEKÞ4 terms are included, the error is increas-
ing; however, after including the fourth powers, the error is
stabilized. This also shows that the amc error of the HISQ
action is under control in our simulations.

VII. RESULTS IN THE PHYSICAL LIMIT:
fþð0Þ, jVcsj AND UNITARITY TESTS

This section summarizes the main results of this paper.
We present our standard model prediction for the D ! K,
l� decay form factor at q2 ¼ 0, fþð0Þ ¼ f0ð0Þ, determine
the CKM matrix element jVcsj using input from BABAR
and CLEO-c and carry out unitarity tests.

A. fþð0Þ ¼ f0ð0Þ
We have seen that the simultaneous modified

z-expansion extrapolation method gives very stable results.
It gives fþð0Þ ¼ 0:748� 0:019 in the physical limit for
D0 ! K�l�, and fþð0Þ ¼ 0:746� 0:019 for Dþ ! �K0l�.
We take an average over these two channels and our final
result in the physical limit becomes

fD!Kþ ð0Þ ¼ 0:747� 0:011� 0:015: (39)

The first error comes from statistics and the second error
represents systematic errors. Table VII summarizes the
error budget. One sees that the largest contributions to
the total error come from statistics followed by ðamcÞ
and ðaEKÞ extrapolation errors.
In order to calculate the form factor, we have to put in

meson masses from experiment and also from our lattice
simulations. For example, we need experimentalD, K, and
�meson masses to get the form factor at the physical limit,
and EK, D, and K meson masses from the lattice calcu-
lations are used to fit at nonzero lattice spacing. In
Table VII, ‘‘input meson mass’’ refers to errors induced
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FIG. 20 (color online). Same as Fig. 18 for a2 �D2.
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from these input meson masses. In the fit ansatz, Eq. (34),
there are light quark (ci1 and c

i
3), strange quark (c

i
2), and sea

quark dependent terms (fi). Each systematic error due to
these terms is shown on the fourth to sixth line in the table.
Lattice spacing dependence errors are estimated separately
for ðamcÞn and ðaEKÞj type contributions.

In the fit ansatz, xl logðxlÞ is the most infrared sensitive
term. We calculate the pion-tadpole loop integral both at
finite volume and at infinite volume and compare these to
estimate the finite volume effects. For the charm quark
mass tuning error, we calculate the form factor with a
different charm quark mass, amc ¼ 0:629, on the C3 en-
semble, and compare with the result with the tuned amc ¼
0:6235 of Table II. All but the last two entries in Table VII
(finite volume and charm mass tuning) were calculated
using methods introduced in Ref. [20]. The total error
coming out of the chiral/continuum extrapolation can be
decomposed into individual contributions, �2 ¼ P

ici�
2
i ,

where the sum
P

i goes over the first 8 entries in Table VII.
Details are described in Appendix B.

One might worry about other potential systematic errors,
not listed in Table VII, such as those due to missing sea
charm quarks or electromagnetism/isospin breaking. The
separate numbers given above Eq. (39) for D0 ! K� and
Dþ ! �K0 form factors take into account just the differ-
ences in masses of the charged versus neutral mesons. This
‘‘kinematic’’ effect is seen to be less than �0:3%. It is
much harder to assess the true dynamical electromagnetic
effects. However, no statistically significant differences
have been observed experimentally [5], and we will ignore
further electromagnetic/isospin breaking effects. Similarly,
we will assume that errors due to missing sea charm quarks
are small enough so that they do not change the 2.5% total
error when added in quadrature. This has been true in the
case of several quantities where it was possible and appro-
priate to apply perturbative estimates of dynamical charm
quark effects [21].

The total error for fþð0Þ is estimated here to be 2.5%. This
is a factor of 4 times smaller than in the previous lattice
calculation of Ref. [6]. This was achievable because of
applying several new methods and techniques that were

described in the text. We employ the HISQ action for both
charm and light quark actions and a scalar current rather than
the traditional vector current. Because of these newmethods,
we obtain results with smaller discretization errors and no
operator matching. We also developed the modified
z-expansion extrapolation method, which is crucial to de-
crease errors due to the discretization, chiral/continuum
extrapolation and parametrization of the form factor. In order
to decrease statistical errors, we apply random wall sources
and perform simultaneous fits with multiple correlators and
T’s. If we compare with the error budget of Ref. [6], then we
see the statistical errors reduced from 3% to 1.5% and the
extrapolation and parametrization errors from 3% to 1.5% as
well. The biggest improvement is in the discretization errors.
The total discretization errors have now been reduced from
9% to 2%. We note that the concept of the discretization
errors is different in Ref. [6] compared to here. In Ref. [6],
they estimate the discretization errors by power counting,
since they calculate at only one lattice spacing. However, we
actually perform continuum extrapolations with correction
terms for the discretization effects. As a result, we do not
have discretization errors per se, but instead extrapolation
errors due to higher order correction terms.
In their papers both BABAR [4] and CLEO-c [5] have

converted their measurements of fþð0Þ � jVcsj into results
for fþð0Þ using values for jVcsj fixed by CKM unitarity.
For this CLEO-c uses the 2008 PDG CKM unitarity value
of jVcsj ¼ 0:97334ð23Þ [22] and obtains fD!Kþ ð0Þ ¼
0:739ð9Þ and BABAR uses jVcsj ¼ 0:9729ð3Þ leading to
fþð0Þ ¼ 0:737ð10Þ. In Fig. 23 we plot the new HPQCD
result of this article, Eq. (39), together with earlier theory
results from the lattice [6] and from a recent sum rules
calculation [23] and with the BABAR and CLEO-c num-
bers. One sees the very welcome reduction in theory errors
which are now small enough so that the agreement between

TABLE VII. Total error budget.

Type Error

Statistical 1.5%

Lattice scale (r1 and r1=a) 0.2%

Input meson mass 0.1%

Light quark dependence 0.6%

Strange quark dependence 0.7%

Sea quark dependence 0.4%

amc extrapolation 1.4%

aEK extrapolation 1.0%

Finite volume 0.01%

Charm quark tuning 0.05%

Total 2.5%
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FIG. 23 (color online). Comparisons of f0ðq2 ¼ 0Þ with other
calculations and experiments.
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theory and experiment in Fig. 23 already provides a non-
trivial indirect test of CKM unitarity. We can, however, do
better and carry out more direct tests of unitarity by deter-
mining jVcsj without the assumption of unitarity.

B. Direct determination of jVcsj
As experimental input we take fþð0Þ � jVcsj ¼ 0:719ð8Þ

from CLEO-c [5] and fþð0Þ � jVcsj ¼ 0:717ð10Þ from
BABAR [4]. For the latter we have multiplied BABAR’s
quoted fþð0Þ with their quoted CKM unitarity value for
jVcsj. Averaging between the two experiments we use
fþð0Þ � jVcsj ¼ 0:718ð8Þ together with Eq. (39) to extract
jVcsj. One finds

jVcsj ¼ 0:961� 0:011� 0:024; (40)

in good agreement (as expected from Fig. 23) with the
CKM unitarity value of 0.97345(16) [2]. The first error in
(40) is from experiment and the second from the lattice
calculation of this article. This is a very precise direct
determination of jVcsj, made possible by the many advances
in lattice QCD that are described in this article together with
the tremendous progress in recent experimental studies ofD
semileptonic decays [4,5]. In Fig. 24 we plot several pre-
vious direct determinations of jVcsj from the 2010 PDG [2]
together with (40) and the CKM unitarity value.

In a companion paper [21] where we update HPQCD’s
Ds meson decay constant fDS

, we also determine jVcsj
from Ds ! 
� and Ds ! �� leptonic decays. One finds
jVcsjleptonic ¼ 1:010ð22Þ which is consistent with Eq. (40)

at the 1:4� level.

C. Further unitarity tests

Using the new value of jVcsj, Eq. (40), and the current
PDG values jVcdj ¼ 0:230ð11Þ and jVcbj ¼ 0:0406ð13Þ one
finds

jVcdj2 þ jVcsj2 þ jVcbj2 ¼ 0:978ð50Þ (41)

for the 2nd row. And similarly for the 2nd column, with
jVusj ¼ 0:2252ð9Þ and jVts ¼ 0:0387ð21Þ one gets

jVusj2 þ jVcsj2 þ jVtsj2 ¼ 0:976ð50Þ: (42)

These 2nd row and 2nd column unitarity test results are
shown in Fig. 25 together with the PDG numbers men-
tioned already in the Introduction. Again, one sees the
improvement coming from the reduction in the uncertainty
in jVcsj.

VIII. FURTHER RESULTS FROM
TWO-POINT CORRELATORS

In this section we summarize physics results extracted
from two-point correlators that emerged as part of our
analysis of D meson semileptonic decays. This includes
determinations of decay constants, f�, fK, fD, and fDs

.

These determinations serve mainly as consistency checks
on our quark mass tunings and on our fitting and chiral/
continuum extrapolation methods. More extensive studies
of fDs

involving five lattice spacings are reported in [21].

Here we present the first results for fD using HISQ charm
and light quarks that employs the new HPQCD r1 scale
[17] (the scale we use throughout in this article).
We use continuum partially quenched chiral perturba-

tion theory (ChPT) formulas augmented by discretization
terms to extrapolate to the chiral/continuum limit. Error
budgets are close to those in Ref. [10] with, however, a
decrease in the r1 uncertainty. For f� and fK, we find

f� ¼ 132:3� 1:6 MeV; (43)

fK ¼ 157:9� 1:5 MeV: (44)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

|V
cs

|

HPQCD (2010)

|V
cs

| = 0.961 (11)(24)

PDG 2010: direct estimation

Semi-leptonic decay: |V
cs

| = 0.98 (1)(10)

Leptonic decay: |V
cs

| = 1.030 (38)

PDG 2010: CKM Unitarity

Average: |V
cs

| = 1.023 (36)

|V
cs

| = 0.97345 (16)

FIG. 24 (color online). Comparisons of our new jVcsj with
values in the PDG [2].
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One sees that agreement with experimental results sum-
marized in [2] is good and within 1� 1:5� (or 1.5%).

For fD, we have results from the simultaneous fit with
three-point correlators and also from just the two-point
correlator fits. As we noted in Sec. V, the former has
smaller errors however they are consistent with each other:

fSimFit
D ¼ 206:3� 4:3 MeV; (45)

f
2pt
D ¼ 211:1� 5:7 MeV: (46)

Both values show good agreement with experiment [2] as
can be seen in Fig. 26.

For fDs
, we find

fDs
¼ 250:2� 3:6 MeV; (47)

which agrees with (but is less precise than) our recent
update in Ref. [21], fDs

¼ 248:0� 2:5 MeV. One sees

that with experimental values having come down in recent
years and with the increase in the HPQCD value, there is
no longer any discrepancy (beyond 1:6�) between theory
and experiment. The current HFAG [24] number is fDs

¼
257:3� 5:3 MeV.

Finally, we present the ratio

fD!Kþ ð0Þ
fDs

¼ 2:986� 0:087 GeV�1: (48)

This quantity can also be obtained from experimental
measurements ofD ! K, l� semileptonic, andDs leptonic
decay branching fractions, and has the virtue that jVcsj
drops out in the ratio. We compare (48) with experiment
in Fig. 27 and good agreement is found.

IX. SUMMARYAND FUTURE OUTLOOK

We have completed the first study of D ! K semilep-
tonic decays using the HISQ action for the valence charm,
strange and light quarks. The most important result of this
article is given in Eq. (39) and provides the form factor
fD!Kþ ðq2Þ at q2 ¼ 0. We were able to determine this

quantity with a 2.5% total error which represents a four
fold improvement in precision over earlier theory results.
This is shown in Fig. 23. We then combined our form factor
result with recent measurements of D ! K semileptonic
decays by the BABAR and CLEO-c collaborations to ex-
tract a very accurate direct determination of the CKM
matrix element jVcsj. This is given in Eq. (40) and com-
parisons with previous determinations shown in Fig. 24.
The new value for jVcsj is consistent with the PDG value
based on CKM unitarity. We carried out direct tests of
2nd row and 2nd column unitarity with results given in
Eqs. (41) and (42) and depicted in Fig. 25. Although still
far from the accuracy achieved in 1st row unitarity tests,
the reduction in errors on jVcsj has made 2nd row and
column unitarity tests much more relevant and interesting
than in the past. In Sec. VIII we give a lattice QCD value
for fD!Kþ ð0Þ=fDs

which is consistent with experiment.

Within the current theory and experimental errors, this
provides a highly nontrivial consistency check on how
we treat D semileptonic and leptonic decays on the lattice
and more generally in the standard model.
The calculations of this article can be improved upon

and extended in several ways. The largest errors in
Table VII from statistics and continuum extrapolations
can be reduced straightforwardly by working with more
gauge configurations and time sources and at more values
of the lattice spacing. An obvious extension of the current
study is to investigate D ! � semileptonic decays and
determine jVcdj. Work on this project has already begun.
In a future project we also plan to calculate the vector
current hadronic matrix elements hKð�ÞjV�jDi. This will
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FIG. 26 (color online). Comparisons of fD with experiment,
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estimate the experiment value from a simple calculation of
combining fDs

from HFAG [24] and fD!Kþ ð0Þ from BABAR [4]

and CLEO-c [5]. This is an appropriate thing to do since both
quantities were derived from experimental measurements using
the unitarity value of jVcsj.
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provide fþðq2Þ as a function of q2. As mentioned in Sec. II
we will be carrying out nonperturbative matching of the
vector current based on PCVC for this project.
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APPENDIX A: PRIORS AND PRIOR
WIDTHS FOR SEC. V

We list a sample set of priors and prior widths in
Table VIII that have been used for the simultaneous fits

to C2 pnt
D ,C2 pnt

K , and three of the three-point correlators with
T ¼ 19, 20, and 23 for ensemble F1. The fit ansatz and
results have been presented in Sec. V.

APPENDIX B: BAYESIAN FITS IN SEC. VI

From Eqs. (33)–(38), one sees that the chiral/continuum
extrapolation ansatz for f0ðq2Þ starts out with 23 basic fit
parameters cn, n ¼ 1; 2; . . . ; 23:

cn: a0; a1; a2; b1; b2; c
i
1; c

i
2; c

i
3; di; ei; fi; (B1)

where i ¼ 0, 1, and 2. In a Bayesian fit each of these fit
parameters will have its own prior �cn and prior width �n,
which we call ‘‘Group I.’’ Our choices for these priors will
be discussed below. Our fit ansatz for f0 includes in
addition to the fit parameters cn also many input parame-
ters such as MD, EK, r1 etc. all of which have some
uncertainty associated with them. Ref. [20] describes a
method to include effects coming from these types of
uncertainties into the final error in the extrapolated value
for f0. What one does is convert all these input parameters
into additional fit parameters with priors and prior widths
given by their known central values and errors Using this
approach we have changed 61 input parameters into new fit
parameters pj, j ¼ 1; 2; . . . :; 61, which we call

‘‘Group II:’’

pj:

�
r1
a

�
i
; aMi

D;aE
i
Kð ~pÞ;aMi

�s
;aMi

�; ðaMasqtad
K Þi; ðaMasqtad

� Þi;

Mi
D�

s
; r1;M

phys
�s

;M
phys
� ;M

phys
D ;M

phys
K ;M

phys
D�

s
; (B2)

where i ¼ 1; 2; . . . ; 5 goes over the 5 ensembles. The use of
Group II parameters is a very efficient way to include
errors coming from uncertainties in input parameters into
our final total error. An alternative approach would require
visiting each input parameter, in turn, redoing the chiral/
continuum extrapolation and coming up with an estimate
for the systematic error coming from this input parameter.
In our approach no additional systematic errors for these
input parameters are called for and the effects from their
uncertainties are included in the extrapolation error. For
instance, this is very helpful to include the error from E2

K.
In Figs. 16 and 17, there are errors for E2

K on the lattice data
as well as the extrapolated results, and estimating these
errors is not a trivial task. However, introducing the
Group II parameters incorporates all E2

K errors as part of
the final vertical error.
In Bayesian fits one minimizes the augmented chi

squared,

�2
aug ¼ �2

traditional þ �2
GroupI þ �2

GroupII; (B3)

�2
traditional ¼

X20
i¼1

ðfi0 � f0ðansatzÞÞ2
ð�i

f0
Þ2 ; (B4)

�2
GroupI ¼

X23
n¼1

ðcn � �cnÞ2
�2

n

; (B5)

�2
GroupII ¼

X61
j¼1

ðpj � �pjÞ2
�2

j

: (B6)

TABLE VIII. A sample set of the priors and prior widths for
ensemble F1 with ~p ¼ ð0; 0; 0Þ and ~p ¼ ð1; 1; 0Þ. We have tested
with various priors and prior widths, and the fit results are not
sensitive to reasonable variations. Note that i ¼ 1; 2; 3; . . . and j,
k ¼ 0; 1; 2; . . . .

Prior Width Prior Width

~p ¼ ð0; 0; 0Þ ~p ¼ ð1; 1; 0Þ
Ajk 0.01 0.1 0.01 0.1

Bjk 0.01 0.1 0.01 0.1

Cjk 0.01 0.1 0.01 0.1

Djk 0.01 0.1 0.01 0.1

ED
0 0.815 þ0:815

�0:408 0.8 þ0:8
�0:4

ED
i � ED

i�1 0.6 þ0:6
�0:3 0.4 þ0:4

�0:2

bD0 0.12 1.0 0.015 0.3

bDi 0.1 1.0 0.03 0.3

E0D
0 1.0 þ1:0

�0:5 1.0 þ1:0
�0:5

E0D
i � E0D

i�1 0.4 þ0:4
�0:2 0.4 þ0:4

�0:2

dD0 0.01 0.1 0.0028 0.1

dDi 0.01 0.1 0.006 0.1

EK
0 0.23 þ0:23

�0:12 0.39 þ0:39
�0:2

EK
i � EK

i�1 0.5 þ0:5
�0:25 0.4 þ0:4

�0:2

bKj 0.15 1.0 0.01 0.1

E0K
0 0.4 þ0:4

�0:2 0.53 þ0:53
�0:27

E0K
i � E0K

i�1 0.5 þ0:5
�0:25 0.4 þ0:4

�0:2

dKj 0.01 0.1 0.001 0.01
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When carrying out the chiral/continuum extrapolations,
we have expressed all dimensionful quantities in units of
GeV. We give the set of priors and prior widths for the
Group I parameters cn in Table IX and for the Group II
parameters pj in Tables X and XI.

Setting priors and prior widths is straightforward. For
Group I, the quark mass terms, such as xl and xs, are
normalized by the scale, � � 4�f�. Therefore, it is
natural that we expect that the parameters vary between
�1 to 1. However, we know from other lattice calculations
with the same gauge configurations and our lattice data that
the sea quark mass contribution is smaller than that of
valence quark. Thus, we take the priors and prior widths
for the sea quark mass terms as fi ¼ 0� 0:3. The leading
heavy quark error is proportional toOð�sðamcÞ2Þ sowe use
dj ¼ 0� 0:3 for the ðamcÞ2 terms. For the purposes of

setting priors, we conservatively do not include a factor of
v2=c2 here. On the other hand for the ðamcÞ4 terms, we do
take the expected factor of v2=c2 into account and choose
ei ¼ 0� 0:2. Similarly, we use bj ¼ 0� 0:3 for the

ðaEKÞ2 and ðaEKÞ4 terms. This reflects a factor of �s for
the ðaEKÞ2 terms and the fact that higher powers of ðap�Þ
typically come with smaller numerical factors relative to
lower powers [such as in an expansion of 1

a sinhðaEÞ]. For
Group II, we use lattice results and experiments that we
described in the text for the priors and prior widths.

TABLE IX. Priors and prior width of the Group I parameters
for the simultaneous modified z-expansion extrapolation fit.

Group I Prior Width Fit result Fit error

a0 0 1 0.09766 0.0029

a1 0 1 0.08999 0.02

a2 0 1 �0:07044 0.11

b1 0 0.3 0.03775 0.13

b2 0 0.3 0.07179 0.17

c01 0 1 �0:52596 0.31

c11 0 1 �0:19051 0.82

c21 0 1 0.02877 1

c02 0 1 �0:09919 0.98

c12 0 1 0.00827 1

c22 0 1 0.00044 1

c03 0 1 �0:02897 0.24

c13 0 1 0.32804 0.66

c23 0 1 �0:03116 1

d0 0 0.3 0.00966 0.11

d1 0 0.3 0.01769 0.29

d2 0 0.3 0.00541 0.3

e0 0 0.2 0.01554 0.19

e1 0 0.2 0.00447 0.2

e2 0 0.2 0.00131 0.2

f0 0 0.3 �0:10860 0.28

f1 0 0.3 �0:00474 0.3

f2 0 0.3 0.00105 0.3

TABLE X. Priors and prior width of the Group II parameters
for the simultaneous modified z-expansion extrapolation fit.
Parameters with five rows correspond to that on the five ensem-
bles, C1, C2, C3, F1, and F2.

Group II Prior Width Fit result Fit error

r1 0.3133 0.0023 0.313285 0.0023

Mphys
�s 0.6858 0.004 0.685799 0.004

M
phys
� 0.1373 0.0023 0.1373 0.0023

M
phys
D 1.8645 0.0004 1.8645 0.0004

M
phys
K 0.4937 0.000016 0.4937 0.000016

M
phys
D�

s
2.3173 0.0006 2.3173 0.0006

r1=a 2.647 0.003 2.64677 0.003

2.618 0.003 2.61818 0.003

2.644 0.003 2.64388 0.003

3.699 0.003 3.69905 0.003

3.712 0.004 3.71213 0.0039

aMD 1.13927 0.00066 1.13925 0.00066

1.15947 0.00076 1.15949 0.00076

1.16179 0.0005 1.16179 0.0005

0.814062 0.00035 0.814066 0.00035

0.819663 0.00026 0.819663 0.00026

aEK 0.312174 0.0002 0.312159 0.0002

~p ¼ ð0; 0; 0Þ 0.32851 0.00048 0.328529 0.00048

0.357205 0.00022 0.357228 0.00022

0.228546 0.00017 0.228572 0.00017

0.24596 0.00014 0.245944 0.00014

aEK 0.408141 0.00066 0.408059 0.00065

~p ¼ ð1; 0; 0Þ 0.453061 0.0016 0.453098 0.0015

0.475036 0.00087 0.474849 0.00086

0.320348 0.00069 0.320396 0.00067

0.333981 0.00037 0.333932 0.00036

aEK 0.483702 0.00094 0.483798 0.00093

~p ¼ ð1; 1; 0Þ 0.552504 0.0017 0.552527 0.0016

0.572004 0.001 0.572016 0.001

0.391932 0.00087 0.391883 0.00085

0.401385 0.00065 0.401619 0.00064

aEK 0.546941 0.002 0.547535 0.002

~p ¼ ð1; 1; 1Þ 0.637288 0.0032 0.637096 0.0032

0.652424 0.0022 0.652314 0.0022

0.45593 0.0015 0.455311 0.0015

0.460897 0.0011 0.460966 0.0011

aM�s
0.411128 0.00018 0.41113 0.00018

0.414346 0.00022 0.414345 0.00022

0.411848 0.00022 0.411847 0.00022

0.294159 0.00012 0.294158 0.00012

0.293114 0.00018 0.293117 0.00018

aM� 0.159893 0.00017 0.159895 0.00017

0.210815 0.00023 0.210813 0.00023

0.293124 0.00023 0.293119 0.00023

0.134449 0.00015 0.134445 0.00015

0.187346 0.00013 0.18735 0.00013
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As we stated above, all sources of systematic errors are
already included in the fit ansatz, except the finite volume
and charm quark mass tuning errors. We can consider the
total error squared, �2, as a linear combination of each
source [20];

�2 ¼ X23
n¼1

Ccn�
2
cn þ

X61
j¼1

Cpj
�2

pj
; (B7)

where the first term is for Group I (cn), and the second term
is for Group II (pj). We actually calculate the contributions

from each source, Ccn�
2
cn and Cpj

�2
pj

using the method

presented in [20], and they add up to the total error �2

correctly. We group together appropriate parameters, and
list them in Table VII.

APPENDIX C: CHIRAL AND CONTINUUM
EXTRAPOLATIONS BASED ON CHIRAL

PERTURBATION THEORY

In this Appendix we carry out further consistency tests of
the chiral/continuum extrapolation of Sec. VI by working
with a completely independent fit ansatz. We will use the
partially quenched chiral perturbation theory (PQChPT)
formulas developed in Refs. [25,26] augmented by terms
parametrizing discretization effects and EK dependence.

Heavy meson ChPT formulas are organized through
form factors fk and f? in terms of which f0ðq2Þ is given by

f0ðq2Þ ¼
ffiffiffiffiffiffiffiffiffiffi
2MD

p
M2

D�M2
K

½ðMD�MKÞfk þ ðE2
K �M2

KÞf?�: (C1)

We follow very closely the approach and notation of
Ref. [26], however with all the taste breaking effects turned
off. fk and f? are parametrized as

fk ¼ �

f�
½1þ �fk þ ckl ml þ ck

s0ms0 þ ckseað2mu þmsÞ
þ hkðEKÞ�ð1þ c0ðamcÞ2 þ c1ðamcÞ4Þ; (C2)

f? ¼ �

f�

g�
ðEk þ�� þDÞ ½1þ �f? þ c?l ml

þ ðckl þ c?l � ck
s0 Þms0 þ c?seað2mu þmsÞ

þ h?ðEKÞ�ð1þ c0ðamcÞ2 þ c1ðamcÞ4Þ: (C3)

TABLE XI. (Continued) Priors and prior width of the Group II
parameters for the simultaneous modified z-expansion extrapo-
lation fit. Parameters with five rows correspond to that on the five

ensembles, C1, C2, C3, F1, and F2. We quote MAsqTad
K and

M
AsqTad
� from Ref. [19].

Group II Prior Width Fit result Fit error

aM
asqtad
K 0.3653 0.00029 0.365304 0.00029

0.38331 0.00024 0.383309 0.00024

0.40984 0.00021 0.409839 0.00021

0.25318 0.00019 0.253177 0.00019

0.27217 0.00021 0.272174 0.00021

aM
asqtad
� 0.15971 0.0002 0.15971 0.0002

0.22447 0.00017 0.22447 0.00017

0.31125 0.00016 0.31125 0.00016

0.14789 0.00018 0.147889 0.00018

0.20635 0.00018 0.206351 0.00018

MD�
s

2.32897 0.005 2.33033 0.0047

2.32899 0.005 2.32818 0.0048

2.33053 0.005 2.33028 0.0048

2.32293 0.005 2.32179 0.0045

2.32113 0.005 2.32197 0.0045
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FIG. 29 (color online). Chiral/continuum extrapolation of
f0ðq2Þ versus E2

K from the ChPT ansatz. The data points are
fine lattice points. Two individual curves and the extrapolated
band are from a fit to all five ensembles.
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FIG. 28 (color online). Chiral/continuum extrapolation of
f0ðq2Þ versus E2

K from the ChPT ansatz. The data points are
coarse lattice points. Three individual curves and the extrapo-
lated band are from a fit to all five ensembles.
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The chiral logs are contained in �fk, �f?, and D. We give

their explicit expressions in Appendix D. ml and ms0 are
valence and mu and ms the sea quark masses. g� is the
DD�� coupling and �� theD�

s �Dmass splitting. hkðEKÞ
and h?ðEKÞ are unknown functions of EK. We will use

polynomial expansions for them. hk;?ðEKÞ ¼ ck;?1 EKþ
ck;?2 E2

K þ � � � . The first two terms are motivated by

ChPT [26], however we view hk;?ðEKÞ as potentially pa-

rametrizing f0 more generally, even beyond the regime of
small EK where ChPT is assumed valid. Our data is fit very
well (�2=dof ¼ 0:48), however, all the way to EK 

1 GeV keeping just terms through OðE2

KÞ in hk and h?.
Figures 28 and 29 show results from a simultaneous fit
to all our data points using the ChPT ansatz. These should
be compared to Figs. 16 and 17 from the modified
z-expansion ansatz.

In Fig. 30 we compare f0ðq2Þ in the physical limit
coming from the z-expansion extrapolation of Sec. VI
and the ChPT extrapolation of this Appendix over the
entire physical q2 range. And in Fig. 31 we compare results
at q2 ¼ 0 for each ensemble and in the physical limit. One
sees that the two extrapolations are nicely consistent with
each other. We believe the consistency check of this
Appendix has been very useful. It provides further support
for the results of the z-expansion extrapolation and

indicates that errors there were not underestimated. Note
that the ChPT ansatz includes all the complicated chiral
logs of Appendix D, whereas the z-expansion ansatz makes
do with just a simple xl logxl term.

APPENDIX D: PARTIALLY QUENCHED
CHPT CHIRAL LOGS

In this appendix we summarize partially quenched ChPT
(PQChPT) expressions for the chiral logarithm terms �fk,
�f?, and D that we employ in Eqs. (C2) and (C3). The
formulas for PQChPT in continuum QCD for heavy-to-light
semileptonic decays were first developed in Ref. [25] for
degenerate sea quarks. Reference [26] generalized these
results to nondegenerate 1þ 1þ 1 sea quarks and also to
staggered ChPT. We have started from the 1þ 1þ 1 con-
tinuum PQChPTexpressions given in Ref. [26] for individual
diagrams and for the D and kaon wave function renormali-
zations to obtain the full �fk;? in the 2þ 1 PQhPT case. For

the convenience of the reader, we give these reconstructed
expressions below. We use the same notation as in Ref. [26].
‘‘x’’ and ‘‘y’’ stand for the light valence quarks in the
daughter meson (for the kaon x � l and y � s0) and ‘‘u’’
and ‘‘s’’ denote sea light and strange quarks. Furthermore,
mab is the mass of the pseudoscalar meson with quark
content a and b and m2

� ¼ 1
3 ðm2

uu þ 2m2
ssÞ:

ð4�fÞ2�fD!K
k ¼

��
I1ðmyuÞ þ 1

2
I1ðmysÞ

�
� 3g2�

�
I1ðmxuÞ þ 1

2
I1ðmxsÞ

�
þ ½2I2ðmyuÞ þ I2ðmysÞ� þ 1

3
½R½3;2�

x ðmxxÞðI1ðmxxÞ

þ I2ðmxxÞÞ þ R½3;2�
y ðmyyÞðI1ðmyyÞ þ I2ðmyyÞÞ þ R½3;2�

� ðm�ÞðI1ðm�Þ þ I2ðm�ÞÞ� þ 1

6
½DR½2;2�ðmyy; I1Þ�

� 3g2�
6

½DR½2;2�ðmxx; I1Þ� þ 1

3
½DR½2;2�ðmyy; I2Þ�

�
; (D1)
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FIG. 30 (color online). Comparisons of f0ðq2Þ in the physical
limit from the z-expansion and the ChPT extrapolations.
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FIG. 31 (color online). Comparisons of f0 at q2 ¼ 0 for the
five ensembles and in the physical limit from the z-expansion
and the ChPT extrapolations.

D ! K, l�, SEMILEPTONIC DECAY . . . PHYSICAL REVIEW D 82, 114506 (2010)

114506-21



ð4�fÞ2�fD!K
? ¼

�
�
�
I1ðmyuÞ þ 1

2
I1ðmysÞ

�
� 3g2�

�
I1ðmxuÞ þ 1

2
I1ðmxsÞ

�
� g2�

3
½R½3;2�

x ðmxxÞK1ðmxxÞ þ R½3;2�
y ðmyyÞK1ðmyyÞ

þ R½3;2�
� ðm�ÞK1ðm�Þ� � 1

6
½DR½2;2�ðmyy; I1Þ� � 3g2�

6
½DR½2;2�ðmxx; I1Þ�

�
; (D2)

ð4�fÞ2DD!K ¼ �3g2�ðv � pÞ 	
�
½2K1ðmyuÞ þ K1ðmysÞ�

þ 1

3
½DR½2;2�ðmyy;K1Þ�

�
: (D3)

In the D meson rest frame v � p ¼ EK. Furthermore, one
has

I1ðmÞ ¼ m2 log
m2

�2
; (D4)

I2ðmÞ ¼ �2ðv � pÞ2 logm
2

�2
� 4ðv � pÞ2F

�
m

v � p
�

þ 2ðv � pÞ2; (D5)

with

FðxÞ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p

tanh�1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
Þ 0 � x � 1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
tan�1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
Þ x > 1

; (D6)

K1ðmÞ ¼
�
�m2 þ 2

3
ðv � pÞ2

�
log

m2

�2
þ 4

3
½ðv � pÞ2 �m2�

� F
�

m

v � p
�
� 10

9
ðv � pÞ2 þ 4

3
m2 � 2�

3

m3

v � p ;

(D7)

R½3;2�
x ðmÞ ¼ ðm2

uu �m2Þðm2
ss �m2Þ

ðm2
yy �m2Þðm2

� �m2Þ ; (D8)

R½3;2�
y ðmÞ ¼ ðm2

uu �m2Þðm2
ss �m2Þ

ðm2
xx �m2Þðm2

� �m2Þ ; (D9)

R½3;2�
� ðmÞ ¼ ðm2

uu �m2Þðm2
ss �m2Þ

ðm2
xx �m2Þðm2

yy �m2Þ ; (D10)

R½2;2�ðm;IÞ ¼ ðm2
uu �m2Þðm2

ss �m2Þ
ðm2

� �m2Þ IðmÞ

þ ðm2
uu �m2

�Þðm2
ss �m2

�Þ
ðm2 �m2

�Þ
Iðm�Þ; (D11)

and

DR½2;2�ðm;IÞ ¼ @

@m2
R½2;2�ðm; IÞ: (D12)

We refer the reader to the original literature [25,26] for
further details. Here, for completeness, we give partially
quenched formulas for the chiral logarithms in D ! �
decays. They will be used shortly in our own studies of
D ! �, l� decays. Some care is required in taking the y !
x limit of (D1)–(D3), however in the end expressions are
simpler for D ! � than for D ! K:

ð4�fÞ2�fD!�
k ¼

�
ð1� 3g2�Þ

�
I1ðmxuÞ þ 1

2
I1ðmxsÞ

�

þ ½2I2ðmxuÞ þ I2ðmxsÞ�

� 1þ 3g2�
6

½DR½2;2�ðmxx; I1Þ�
�
; (D13)

ð4�fÞ2�fD!�
? ¼

�
�ð1þ 3g2�Þ

�
I1ðmxuÞ þ 1

2
I1ðmxsÞ

�

þ g2�
3
½DR½2;2�ðmxx;K1Þ�

� 1þ 3g2�
6

½DR½2;2�ðmxx; I1Þ�
�
; (D14)

ð4�fÞ2DD!� ¼ �3g2�ðv � pÞ 	
�
½2K1ðmxuÞ þ K1ðmxsÞ�

þ 1

3
½DR½2;2�ðmxx;K1Þ�

�
: (D15)
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