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We study the thermodynamics of SUðNcÞ pure gauge theories for Nc ¼ 3, 4 and 6. The continuum and

thermodynamic limits of bulk quantities such as the pressure (p), energy density (�) and the entropy

density (s) are taken by using several different lattice spacings and volumes. There is no window of

temperature in which a nontrivial conformal theory describes bulk thermodynamics. We extract the latent

heat of the first-order deconfinement phase transitions and observe good scaling with Nc. For all quantities

that we measure, strong Nc scaling holds, except, possibly, very close to the transition temperature, Tc;

however we are unable to find strong evidence for scaling with the ’t Hooft coupling in thermal quantities

at the small values of Nc which we study.
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I. INTRODUCTION

Interest in SUðNcÞ gauge theories with large Nc began
with the pioneering studies of [1], where it was shown that
in 1þ 1 dimensions the limit Nc ! 1 when taken such
that the gauge coupling, g ! 0, with the ’t Hooft coupling
� ¼ Ncg

2 fixed gave rise to an interesting and nontrivial
but tractable theory. In this so-called ’t Hooft scaling limit
stable mesons exist with properties which parallel much of
known hadron phenomenology. The limit is nonperturba-
tive, and the computation of any correlation function
requires the summation of an infinite number of well-
characterized Feynman diagrams. Corrections to this limit
appear in powers of 1=Nc in general, and in powers of
1=N2

c for the pure gauge theory. Since then many models
have used this ’t Hooft limit [2], including the currently
fashionable conformal cousins of QCD: the so-called
N ¼ 4 supersymmetric theories which turn out to be
tractable using the AdS/CFT correspondence. Lattice
simulations of theories with small Nc � 3 can test the
smoothness of approach to the ’t Hooft limit.

A contemporary reason for studying the large Nc theory
is in the light it could throw on the phase diagram of QCD.
At any fixed Nc with two flavors of massless quarks, the
theory is expected to have a second-order chiral symmetry
restoring transition at finite temperature, T, which is in the
O(4) universality class. If a tiny mass is given to the quarks,
then the theory has a crossover at finite temperature instead
of a phase transition. The limit of infinite quark mass
corresponds to the pure gauge theory, which has a first-
order deconfining thermal transition for all Nc > 2. Hence,
at an intermediate quark mass there is a critical point, in the
Ising universality class, which ends a line of first-order
deconfining transitions [3]. We represent this information
in the diagram of Fig. 1. In the regions with the chiral
crossover (region A) and the large Nc deconfinement tran-
sition (region B) the phase diagrams in the plane of T and

baryon chemical potential, �, are topologically distinct; a
representative phase diagram from each of these regions is
also shown. In region A one expects a first-order phase
transition line dividing the chiral symmetry broken phase
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FIG. 1. The diagram on top shows the regions of first- and
second-order thermal phase transitions for SUðNcÞ gauge theo-
ries with two flavors of fermions as Nc and the quark mass, m,
are varied. We also show the phase diagrams in two interesting
regions—(A) the chiral crossover region and (B) the large Nc

deconfinement region. The topology of the phase diagrams in
region A is expected to involve a line of first-order transitions
ending in a critical point at finite chemical potential �. In region
B large Nc arguments indicate that the phase diagram contains
three lines of first-order phase transitions separating pairs of
phases labeled baryonic, deconfined and quarkyonic, with a
triple-point where all three phases coexist.
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from the deconfined gluoNc plasma phase with a critical
end point at finite �. In region B one might expect a
triple-point with coexistence of the three phases—gluoNc

plasma, baryonic, i.e., chiral symmetry broken and
confined, and quarkyonic, i.e., chirally symmetric and
confined [4]. Since the arguments for the existence of a
quarkyonic phase are based on a picture of the large Nc

theory which arises in the ’t Hooft limit, it is interesting to
explore the range of validity of such large Nc arguments.

In this paper our primary interest is in examining the
thermodynamics of SUðNcÞ pure gauge theory in the large
volume and continuum limits. The deconfinement transi-
tion in SUðNcÞ theories has been studied in [5–9]. The
latent heat of the transition was studied in [6,8] on spatial

volumes, V, of size T
ffiffiffiffi
V3

p
< 3. The equation of state (EOS)

has been studied with lattice spacing of a ¼ 1=ð5TÞ up to
2Tc in [10] and up to 3:5Tc in [11]. Previous work has
shown that the continuum limit of the EOS [12] is hard to
extract on such coarse lattices [8,9]. In view of this, we
have studied the equation of state at smaller lattice spacing
in the extended temperature range 0:97Tc � T � 4Tc

(preliminary results were presented in [3]). We extrapolate
to the continuum limit using the nonperturbative
beta-functions determined earlier [9]. We perform finite-
size scaling studies by changing the spatial volume

up to T
ffiffiffiffi
V3

p ¼ 4 for a ¼ 1=ð6TcÞ and T
ffiffiffiffi
V3

p ’ 3:5 for
a ¼ 1=ð8TcÞ. We use statistics significantly larger than
used before in this context, and comparable to that
used in studies of thermodynamics for SU(3) pure gauge
theory.

One of the purposes of a study like this is to perform
lattice simulations for small Nc > 3, and, from measure-
ments of any physical quantity, find the series expansion
for it around Nc ¼ 1 in powers of 1=N2

c . In this work we
assume that the Nc ¼ 1 limit exists and that there is a
series expansion around it, and ask what our data implies
for the radius of convergence of this series. Technically,
this also means that for each series expansion, we ask how
reliably theNc ! 1 limit can be taken frommeasurements
for a few small values of Nc.

In agreement with earlier studies, we find good evidence
for scaling to Nc ! 1 keeping T=Tc fixed. Such a ‘‘strong
Nc scaling’’, previously observed for many quantities on
the lattice, also gives small 1=Nc corrections. We also
examine ’t Hooft’s limiting procedure. It is clear that the
notion of ’t Hooft scaling has to be defined carefully in any
theory with a nonvanishing beta-function [2]. First, be-
cause one has to use a (scale dependent) renormalized
coupling with its attendant scheme ambiguities. Second,
because of this scheme dependence, 1=Nc corrections may
be moved between the operator expectation values and
the ’t Hooft coupling. Even keeping these uncertainties
in mind, we find that scaling at fixed � gives large correc-
tions (in the expansion around Nc ¼ 1) at small Nc,
including the physically interesting case of Nc ¼ 3.

The plan of this paper is as follows. In the next section,
we summarize the formulas used for calculation of the
various thermodynamic quantities. Next, in Sec. III we
discuss the latent heat of the deconfinement transitions.
In Sec. IV we investigate the conformal symmetry break-
ing measure, which is the trace of the energy-momentum
tensor, � ¼ �� 3p. In Sec. V we discuss the pressure and
the remaining bulk thermodynamic quantities. Section VI
is devoted to a comparison of results from theories with
different number of colors, to get an estimate of the size of
the leading Oð1=NcÞ corrections. Section VII analyzes the
calculated thermodynamic quantities, to infer properties of
the gluoNc plasma. The Appendix contains a detailed
discussion of the beta-functions used in this study.

II. FORMALISM AND DEFINITIONS

The thermodynamics of the SUðNcÞ gauge theory can be
obtained from the partition function,

ZðV; TÞ ¼
Z

DU expð�SÞ;
S ¼ �

X
x;�;�<�

f1� RealP��ðxÞg (1)

calculated on a space-time lattice with Ns lattice sites in
each of the spatial directions and Nt in the time direction;
the lattice sites are labeled by the 4-component index x and
directions by Greek indices, 1 � �; � � 4. The bare gauge
coupling, g2 ¼ 2Nc=� determines the lattice spacing, a,
which is implicit in the above equations. The spatial vol-
ume is V ¼ N3

s a
3 and the temperature is T ¼ 1=ðaNtÞ.

Since we investigate finite-size effects, it is useful to

introduce the aspect ratio, � ¼ Ns=Nt ¼ T
ffiffiffiffi
V3

p
. P��ðxÞ is

the trace of the product of SUðNcÞ valued link matrices U
around the plaquette in the�, � plane starting at site x. The
trace is normalized such that P��ðxÞ ¼ 1 if the link matri-

ces are set to the identity.
The expectation value of the plaquette,

P ¼ 1

6N3
sNt

X
x;�<�

RealP��ðxÞ; (2)

over the ensemble at any temperature, T, is one of the
primary observables on the lattice. The other is the expec-
tation value of the Wilson line,

L ¼ 1

N3
s

X
x

tr
YNt

x4¼1

Ut̂ðxÞ; (3)

which is the spatial average of the product of timelike link
variables wrapping around the lattice in the time direction
at each spatial site, x. hLi is the order parameter of the
confinement-deconfinement transition and changes from
zero to nonzero values at the (first-order) phase transition
temperature Tc. In the deconfined phase hLi hasNc allowed
values. Often hjLji is examined, although it is not an order
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parameter, since it has only two allowed values in the
transition region: being close to vanishing in the confined
phase and nonzero in the deconfined phase. These observ-
ables and the scaling of Tc to the continuum have been
reported earlier [9].

The integral in (1) is performed by Monte Carlo sam-
pling, using a combination of pseudoheatbath and over-
relaxation steps, where all SU(2) subgroups of the SUðNcÞ
group elements are touched. For details of the algorithm
used and its performance, see [9]. We studied SU(4) and
SU(6) theories in the temperature range between Tc, and
about 4Tc. Since a major focus of this study is to get results
in the continuum and thermodynamic limit, over the whole
temperature range, we use two different lattice spacings,
a ¼ 1=ð6TÞ and 1=ð8TÞ, at each temperature and several
different � [13]. The temperature scale for these theories
was set in [9], where it was shown that near Tc the results
are in the scaling regime. With the running of the coupling
obtained in that study, we found very good agreement
between the thermodynamic quantities extracted on latti-
ces with the different a at all T. We have also made a few
simulation runs for SU(3) gauge theories at large aspect
ratios, to complement existing studies of latent heat in
SU(3) gauge theories.

Bulk thermodynamic quantities are obtained by taking
suitable derivatives of the partition function, ZðV; TÞ.
In particular, the energy density and pressure are given by

� ¼ T2

V

@ logZ

@T

��������V
; p ¼ T

@ logZ

@V

��������T
: (4)

The entropy density is given by the identity s=T3 ¼
ð�þ pÞ=T4.

A quantity that is easy to calculate on the lattice is the
trace of the energy-momentum tensor,� ¼ �� 3p. This is
of some interest for models of the QCD plasma, since it is a
direct measure of the conformal symmetry breaking. Using
the above relations it is easy to show that

�

T4
¼ 6N4

t

@�

@ loga
h�Pi; where

�P ¼ Pð�; TÞ � hPð�; T ¼ 0Þi:
(5)

The expectation value of �P must be taken over the finite
temperature ensemble. The subtraction of the plaquette
expectation value at T ¼ 0must be done at the same lattice
spacing as the finite temperature simulation. This serves to
remove an ultraviolet divergence from the plaquette. It also
makes sure that �=T4 vanishes at T ¼ 0, since both the
pressure and the energy density vanish there. The deriva-
tive multiplying this nonperturbative factor is closely re-
lated to the beta-function of the theory. In the Appendix we
have a discussion of the choices of beta-functions and their
influence on �=T4.

The suggestion of [14] was that since p ¼ T logZ=V, in
the thermodynamic limit, the pressure can be evaluated

with respect to some reference value by integrating the
plaquette expectation value—

p

T4
¼ 1

VT3
logZ ¼ p0

T4
þ T

V

Z �

�0

d�0 @ logZ
@�

’ 6
Z �

�0

d�0�Pð�0Þ: (6)

Here p0 is the pressure at the reference temperature T0 ¼
1=Ntað�0Þ. For the gluoNc plasma the pressure is expected
to be very small below Tc, even as close to Tc as T � 0:9Tc.
Conventionally one takes the reference temperature to be
such a value and sets p0 ¼ 0, as in the second expression,
where the derivative has also been written out explicitly.
Once � and p are known, � and s can be evaluated.
Asymptotic freedom in SUðNcÞ gauge theories lead us to

expect that at sufficiently high temperatures one should
obtain a free gas of gluons. Then thermodynamic quantities
reach their ideal gas (i.e., Stefan-Boltzmann: SB) limits.
There are lattice corrections to this limit [15]. When the
pressure is evaluated through the integral method one has

�SB
T4

¼ 3
pSB

T4
¼ �2dA

15
GðNtÞ where

GðNtÞ ¼ 1þ 8�2

21

1

N2
t

þ � � �
(7)

and dA ¼ N2
c � 1. Since aT ¼ 1=Nt, the correction terms

come in powers of the lattice spacing a, and vanish in the
continuum limit. The fullGðNtÞ is also known exactly from
numerical computations, and listed in [15]. When we dis-
cuss the numerical computations later we will use this full
computation of GðNtÞ and not the series expansion above.
The difference between the two is about 2% for Nt ¼ 6.
We draw attention to the factor of dA: in the large Nc limit
it is often replaced by N2

c , but at the small values of Nc we
used, the difference is statistically significant. We use dA in
this work, and thereby subsume some of the formally
subleading 1=Nc corrections into this scaling.
One of the pieces of physics we are interested in is the

latent heat of the transition. In a thermodynamically large
volume this is defined by the formula

��

T4
c

¼ lim
�T!0

�
�ðTc þ �TÞ

T4
c

� �ðTc � �TÞ
T4
c

�

¼ lim
�T!0

�
�ðTc þ �TÞ

T4
c

� �ðTc � �TÞ
T4
c

�
(8)

where the second equality follows from the fact that p is
continuous across a first-order phase transition. These for-
mulas cannot be directly used at finite volume. We describe
a method for determining ��=T4

c in Sec. III.
Some remarks about the computation are best placed

here. It was observed earlier that at lattice spacing of a �
1=ð6TcÞ the two-loop beta-function with a 1=N2

t correction
provides a good description of the change of measured
length scales with the gauge coupling g2. Therefore, one
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should be able to perform continuum extrapolation of
thermodynamic quantities for T � Tc using data on lattices
with Nt � 6. This expectation should be correct except if
there are large corrections in powers of a to the operators
involved in defining components of the energy-momentum
tensor. We show evidence later that there are no such large
corrections. Another possible subtlety could reside in hav-
ing to take the V ! 1 (thermodynamic) limit before tak-
ing the continuum (a ! 0) limit. Such subtleties arise only
when there are large correlation lengths, 	. Here we have a
first-order phase transition with 	 � 1=T [16,17]. Hence,
the full machinery of finite-size scaling need not be in-
voked if due caution is exercised; the extraction of the
latent heat is one such case. We will mention these tests at
appropriate places in the remainder of the paper.

III. THE LATENT HEAT

When two copies of a system with a first-order transition
are held at temperatures Tc � �T, the difference in their
energy densities is finite. Since the transition is of first-
order, this difference remains finite even when �T ! 0,
provided one has thermodynamically large systems. When
V is large but not infinite, the correct limit may be obtained
as long as �T=Tc is much larger thanOð	3=VÞ. If V is large
enough, then this allows one to come close enough to Tc to
have confidence in the result. For smaller 	3=V, this pro-
cedure breaks down. By examining the reason for the
breakdown, we can develop a different procedure to esti-
mate the latent heat.

Finite-size effects at first-order phase transitions are best
understood in terms of constrained free energies, Fc. This
is the free energy of a system in which jLj or �P are
restricted to have fixed values but other parameters are
allowed to vary according to the temperature. Fc near a
first-order phase transition has multiple minima; the deep-
est corresponds to the value the constrained variable has in

the stable phase when V ! 1. As T changes, the depth of
the minima change, and on crossing Tc the deepest mini-
mum flips. However, because the finite system sees finite
barriers between the minima, the system explores all the
phases. Hence, the discontinuity is rounded off. As the
thermodynamic limit, V ! 1, is approached, the ‘‘wrong
phase’’ minimum becomes infinitely higher and the barrier
separating it from the true vacuum also becomes infinitely
high. As a result, the transition sharpens and gives the
correct thermodynamic limit.
The histogram of an observable obtained from its

Monte Carlo history is proportional to expð�VFc=TÞ.
The object of a finite-size scaling study of something like
the latent heat is to be able to identify the thermodynami-
cally stable phase from histograms such as those in Fig. 2.
The same figure also illustrates the problem which is
usually faced in computing the latent heat in SUðNcÞ gauge
theories. Although the histogram of jLj has multiple well-
identifiable maxima, the histogram of �P has a single peak.
If the specific heat in each of the phases is large, then the
two-peak nature of �=T4 could well be hidden until ex-
tremely large volumes are reached. Finite-size scaling
methods were developed in the past to extract reliably
the specific heat when multiple maxima are clearly devel-
oped [18,19]. However they are not applicable here, and we
need to use different techniques. We adapt one which was
first applied to gauge theories in [20].
Since the phases are well resolved by jLj, we can try to

use the following criterion. The cold confined phase could
be identified by requiring that jLj � Lc, and the hot de-
confined phase by jLj � Lh. The results of such a phase
separation are stable as long as Lc and Lh both lie in the
valley between the peaks of jLj. Examples of the proba-
bility density of �P obtained in the cold and hot phases so
defined are shown in Fig. 3. The figures illustrate the fact
that these probability densities are very stable—at each
fixed volume the pure phase probability distributions of �P
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FIG. 2 (color online). Histograms of jLj and �P normalized to have unit area under the curves. A multipeak structure in the
histogram corresponds to multiple (local) minima of the constrained free energy. As Ns changes between the values shown, in steps of
two, the histograms move up or down monotonically in the region where they are labeled.
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are identical for a range of couplings around Tc. If we had
not separated out the panels for different �, the curves for
the three different cases would have been indistinguishable
apart from small statistical fluctuations. Furthermore, as
one changes V (with fixed a) the mean value of �P in the
hot and cold phases remain the same. It appears that
the difference between the values of �P in the two phases
is very stable under the variation of both T and V near Tc.
It also turns out to be fairly stable under changes of Lc

and Lh.
The agreement of the histograms of �P for the different

� in the transition regime show that it is possible to reliably
extract the limiting values of �=T4 in each of the phases.
Examination of (5) shows that knowing the difference in
�P between the hot and cold phases one can extract easily

the jump in �=T4 and hence the latent heat density, since
the remaining factors are well-understood. In Table I we
summarize our results for the latent heat for SUðNcÞ gauge
theories with Nc ¼ 3, 4 and 6. In the entry for the latent
heat, the first error is statistical while the second is a
systematic error, i.e., the change in the result if Lh � Lc

changes by �20%. The results of [6] are higher, but those
of [8] are consistent with ours, within the larger statistical
and systematic errors of that study.
In SU(4) gauge theory we found that the extracted value

of ��=T4
c is fairly stable at fixed a as we change V. In fact,

as is clear from Table I, when a ¼ 1=ð6TcÞ we found that
there is no statistically significant change in the estimate of
this quantity for � � 3. The results for a ¼ 1=ð8TcÞ are
consistent with this conclusion. For the SU(3) theory, on
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FIG. 3 (color online). Histograms of �P in the two phases of SU(4) gauge theory as defined using Lc ¼ 0:024 and Lh ¼ 0:031. The
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the other hand, it seems that � � 6 is needed for an
estimate of the latent heat with equally small systematic
errors, i.e., finite volume corrections are larger for the
SU(3) theory. One sees that in going from Nc ¼ 3 to 4
the latent heat density scales faster than dA. This ties in
with the intuition developed from a study of correlation
lengths [16,17] that the SU(3) theory is weakly first-order.
One expects that correlation lengths should also become
shorter with increasing Nc [8], and hence finite volume
effects should be less pronounced.

Following the analysis of the Appendix, we understand
that the lack of clear scaling of ��=ðdAT4Þ to the contin-
uum limit is not due to the use of an inappropriate beta-
function. One possible explanation is that the large finite
volume effects mask the approach to the continuum. If so,
then one should be able to eliminate it by using another
quantity with the same effect. Since �=T4 has a very sharp
peak as a function of T, and that measurement would also
be related to the latent heat, we list the quantity ��=�max

in the table. As one can see, this ratio has much better
scaling properties, and the thermodynamic and continuum
limits of the ratio are very well determined.

The data collected for Nt ¼ 8 in Table I is fitted ex-
tremely well by the form

��

dAT
4
c

¼ 0:388ð3Þ � 1:61ð4Þ
N2

c

; (9)

where the numbers in brackets are the statistical errors on
the last digit of the central values. Interestingly, the fit
yields ��=ðdAT4

c Þ ¼ 0:014� 0:014 at Nc ¼ 2, where
there is a second-order finite temperature transition, and
hence �� ¼ 0. If one adds a term of Oð1=N4

cÞ, then the fit
changes marginally: the limiting value for Nc ! 1 is
stable at the 3
 level. The coefficient of the Oð1=N2

cÞ

term changes by 16%, and the next correction term is
marginal, its value being less than 10% of the total for
Nc ¼ 3. The extended series extrapolated to Nc ¼ 2 is still
consistent with vanishing latent heat of this theory.
Although Nc ¼ 2 must be the limit of the validity of the
series expansion around 1=Nc ¼ 0, it seems to be well-
behaved at Nc ¼ 3. In agreement with this, a reliable value
of theNc ! 1 limit of��=ðdAT4Þ can be extracted. This is
an example of successful strong scaling;��=ðdAT4

c Þ is well
described by just two terms of the series in 1=N2

c even at
small Nc.
The series for the fourth root of the above quantity may

be of interest, since
ffiffiffiffiffiffiffi
��4

p
has mass dimension unity [7,8].

This gives

�
��

dAT
4
c

�
1=4 ¼ 0:798ð7Þ � 1:09ð9Þ

N2
c

: (10)

The quality of the fit, as judged by the value of �2=DOF, is
worse, but still within the limits of acceptability. This result
above seems to have improved convergence properties
around Nc ¼ 1. However, on extending the fit to include
the Oð1=N4

cÞ term, we find that the correction terms are
unstable against changes. The coefficient of the second
term reduces to half its value, and the coefficient of the
third term is 6–7 times larger. The values of these terms are
comparable to each other for Nc ¼ 3, opening the possi-
bility that even higher order terms, or a resummation of the
whole series, need to be taken into account. From the
previous analysis it seems that the series expansion for
��=ðdAT4

c Þ comes close to performing this resummation.
We shall show later that other mass dimension four quan-
tities such as p, � and s also have good strong scaling
properties.

TABLE I. The latent heat of SUðNcÞ gauge theories for Nc ¼ 3, 4 and 6. The thermodynamic limit of ��=T4
c is seen to be under

control for Nc ¼ 4 and 6, as is the continuum limit. For all Nc, the ratio��=�max scales well. The numbers in brackets are the errors on
the least significant digits, the first is statistical and the second systematic.

Nc Nt Ns � jLjc jLjh ��=T4
c ��=�max

3

4

16 5.6908 0.055 0.075 2.06(1)(3)

24 5.6919 0.055 0.075 1.93(1)(3)

32 5.6922 0.055 0.075 1.90(2)(2)

6

24 5.8934 0.02 0.03 1.79(2)(4) 0.65(2)

32 5.8938 0.02 0.03 1.54(2)(5)

48 5.8940 0.022 0.032 1.44(4)(3)

8 32 6.0609 0.013 0.019 1.67(4)(4) 0.68(3)

4

6

16 10.79 0.024 0.031 4.85(5)(6) 0.88(2)

20 10.79 0.024 0.031 4.64(4)(5)

24 10.79 0.024 0.031 4.57(4)(3) 0.85(2)

8

22 11.08 0.013 0.017 4.58(5)(6)

24 11.08 0.013 0.017 4.32(6)(6) 0.82(2)

28 11.08 0.013 0.017 4.33(8)(6))

6
6

14 24.84 0.025 0.03 12.20(10)(4)

18 24.84 0.025 0.03 12.47(4)(2) 0.92(2)

8 20 25.46 0.012 0.015 11.93(34)(5) 0.90(3)
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IV. CONFORMAL SYMMETRY BREAKING

As discussed in Sec. II, �=T4 is easily calculated on the
lattice. We have seen in the case of the latent heat, however,
finite volume and cutoff effects need to be controlled. In
the SU(3) gauge theory, it is known that �=T4 rises rapidly
near Tc and peaks at about 1:1Tc [14]. The rapid rise is, of
course, dictated by the existence of a latent heat, but the
shift in the peak away from Tc is not yet understood. We
examine the Nc dependence of this peak.

In Fig. 4, we show the sensitivity of �=T4 to � and a.
Except in the immediate vicinity of Tc there seems to be
little sensitivity to � . The cutoff dependence is also insig-
nificant, except in the vicinity of the peak, �max. The good
agreement between data obtained with a ¼ 1=ð6TÞ and
1=ð8TÞ show that the results of the measurement with
either lattice spacing can be taken to be an estimate of
the continuum limit. We choose the conservative alterna-
tive of using a ¼ 1=ð8TÞ as a determination of the contin-
uum results. The peak of�=T4 for SU(4) gauge theory is in
the range 1:04 � T=Tc � 1:08.

The systematics of �=T4 for SU(6) gauge theories is
also shown in the same figure. The trends are very similar
to those in SU(4). Results for different � agree very well.
The approach to the continuum limit is also very similar to
that discussed for SU(4). Again, in this case, we can take

the results obtained with a ¼ 1=ð8TÞ to be an estimate of
the continuum limit. In going fromNc ¼ 3 to 6, the peak in
�=T4 moves closer to Tc.
It is of phenomenological interest to note that �=T4 is

not small even at 2Tc. In fact, as one can see in Fig. 4,
one has

�

T4

��������2Tc

’ 0:1dA: (11)

For Nc ¼ 3 this implies �1=4 ’ T ¼ 2Tc. This is a natural
scale, and therefore the theory is far from conformal.
We end this section with the investigation of an intrigu-

ing observation made in [21,22]: in the temperature range
1:1Tc � T � 4Tc, for the SU(3) pure glue plasma, �=T2

seems to be roughly constant. Phenomenological models of
the gluon plasma have introduced mass scales and obtained
such a behavior [23]. We investigated this modified scaling
behavior at larger Nc (see Fig. 5). The dimensionless
quantity �=ðdAT2T2

c Þ for SU(3) gauge theory is seen to
have little temperature dependence from just above Tc to
about 4Tc. Unfortunately, the data for SU(3) theory is noisy
at larger T. For SU(6) the error bars are smaller and one can
observe that this quantity falls with T. This implies that the
temperature dependence of � could be slower than T2. It
would be interesting in future to expand the range of Nc

and T in order to study this further.
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FIG. 4 (color online). Systematics of �=T4 in SU(4) and SU(6) lattice gauge theories. Both finite-size and finite lattice spacing
effects are small, except, possibly, very close to Tc.
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V. OTHER BULK THERMODYNAMIC
QUANTITIES

The pressure is calculated using the method outlined in
(6). The integration requires interpolation of the measured
points, and there could be a systematic error arising from
this. We have estimated this error by comparing linear and
quadratic interpolations. We found that point by point the

error is small. Since the integration errors increase over the
range of � and reach a maximum at the highest � that we
use, it is sufficient to report the magnitude of that error
compared to the statistical uncertainty. We can estimate the
significance of the error by the t statistic

t ¼ jI2 � I1jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðI2Þ þ 
2ðI1Þ

p (12)

where I2 is the integral estimated through a quadratic
interpolation, I1 is the estimate using a linear interpolation
and 
2ðI1;2Þ is the statistical error in the estimate of I1;2.
This measure for SU(4) is 1.03 and for SU(6) it is 0.007.
This source of error is therefore almost negligible. As a
result, the systematic error is almost entirely due to the
neglect of p0, the pressure at the lowest temperature where
the integration is started.
Figure 6 shows the cutoff and volume dependence in the

calculation of pressure for the SU(4) and SU(6) theories.
The results are normalized by the known (asymptotic)
finite cutoff correction for an ideal gluon gas, pSB, which
was described earlier. Hence, the pressure, so normalized,
should go to unity. We find that finite volume effects are
negligible. Finite lattice spacing effects also turn out to be
negligible once we normalize the pressure by pSB [24].
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FIG. 5 (color online). Testing a different scaling [22] of the
conformal symmetry breaking measure: �=ðdAT2T2

c Þ, where
dA ¼ N2

c � 1, for Nc ¼ 3, 4, and 6.
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FIG. 6 (color online). Study of systematics in the calculation of pressure for SU(4) and SU(6) gauge theory. Both finite-size and
finite lattice spacing effects seem to be under control.
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These results indicate that it is safe to identify the contin-
uum limit with the Nt ¼ 8 measurements. Since the vol-
ume dependence is negligible, at each T we use the largest
volume on which reliable results are available as an in-
dication of the thermodynamic limit.

At asymptotically large T the SUðNcÞ gauge theory
should go over to the ideal gluon gas. However, even at
the highest temperatures which we have probed, i.e.,
T ’ 4Tc, the ratio p=pSB is far from unity (see Fig. 6).
Given p=T4 and �=T4 we obtain also the other bulk
thermodynamic quantities: �=T4 and s=T3. These results
are collected in Fig. 7. One sees clear deviations from the
ideal gas limit in these two quantities as well. All three
quantities also show a very slow rise throughout the mea-
sured range of T. Both � and s show a rapid jump near Tc,
stronger for SU(6) than for SU(4).

VI. Nc SCALING OF THERMODYNAMIC
OBSERVABLES

As discussed earlier, we distinguish between strong Nc

scaling and ’t Hooft scaling. The first is scaling with Nc of

thermodynamic quantities at fixed T=Tc, and the second,
the scaling with Nc at fixed �. We examine scaling by
combining our results for the continuum limit of bulk
thermodynamic quantities for Nc ¼ 4 and 6, with a rean-
alysis of the older Nc ¼ 3 data of [14] using our
techniques.
Strong Nc scaling has been observed on the lattice in

many contexts [7,8,10,11]. The continuum limit of bulk
thermodynamic quantities that we have extracted are also
consistent with this limiting procedure, except for Nc ¼ 3
near Tc. In Fig. 8 we show the energy density and pressure,
each normalized by its ideal gas value, for Nc ¼ 3, 4 and 6.
As noted earlier, there are clear deviations from the ideal
gas behavior, but the scaled quantities are almost indepen-
dent of Nc. Since the ideal gas values scale with dA, one
expects that at large T all bulk thermodynamic quantities
should scale accordingly.
We see that p=pSB is independent of Nc over the whole

temperature range above Tc within the accuracy of our
measurement. Such a statement is also true for the energy
density except when T is close to Tc. Close to Tc the energy
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FIG. 7 (color online). Results for thermodynamic quantities in SU(4) (left) and SU(6) (right) gauge theories. Shown are the pressure,
energy density and entropy density, in units of pSB. The ideal gas limits for these quantities should be 1, 3 and 4, respectively.
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FIG. 8 (color online). The first panel shows the energy density and pressure in SUðNcÞ pure gauge theories, normalized to the
corresponding ideal gas values. The second panel shows �=T4, normalized by dA ¼ N2

c � 1, for the same theories.
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density does not scale as the ideal gas, i.e., as dA, between
Nc ¼ 3 and larger values of Nc. This is, of course, a
consequence of the fact that the latent heat density does
not scale as dA for Nc ¼ 3 (see Table I). Consequently,
�=T4 also fails to scale with dA in the vicinity of Tc. In
Fig. 8 we also show that the peak of �=ðT4dAÞ is smaller
for Nc ¼ 3 than for Nc ¼ 4 and 6 (the latter two are almost
identical in value). We also see that the peak is rounded and
shifted away from Tc at Nc ¼ 3. As discussed in Sec. III,
this could be due to finite-size effects, since Nc ¼ 3 has a
weaker first-order phase transition. With this exception,
strong Nc scaling seems to work very well for bulk ther-
modynamic quantities; the subleading corrections are too
small to be seen over the statistical errors.

Next we turn to evidence for ’t Hooft scaling. Since the
critical point is known very precisely for several Nc [9], we
test this scaling using �c ¼ Ncg

2
Rð2�TcÞ [25]. The change

of �c with Nc is very much larger than the statistical errors,
and is seen using both the nonperturbative and the two-loop
beta-functions, although it is somewhat larger with the
former. The change is nonmonotonic when the two-loop
beta-function is used. In this context, we recall the result
shown in the Appendix: the nonperturbative beta-function
is preferred near Tc. Restricting ourselves to using only this
leaves the three smallest values of Nc.

Even with these three, it is clear from Fig. 9 that the data
do not fall on a straight line and hence a single correction
term does not suffice. Using a second correction term, a
description of the confinement-deconfinement phase
boundary, i.e., the variation of �c with 1=N2

c , is

�c ¼
8<
:
9:8771ð4Þ� 14:2562ð2Þ

N2
c

þ 54:7830ð2Þ
N4

c
ðnon-perturbativeÞ

9:9904ð6Þþ 1:2081ð3Þ
N2

c
� 23:5709ð3Þ

N4
c

ðtwo-loopÞ: ;

(13)

Since the fit is linear in the parameters, the formal solution
for �2 minimization can be written down along with
parameter errors. At Nc ¼ 3 the values of the Oð1=N2

cÞ
and Oð1=N4

cÞ terms are comparable. Although they are
small corrections to the leading,OðN0

cÞ term, this behavior
of the series could indicate that Nc ¼ 3 lies near the radius
of convergence of the series around Nc ¼ 1.
If this is so, then summing three terms of the series is not

numerically accurate. However, with three pieces of data
fitting a large number of terms is an ill-conditioned prob-
lem. As a result, one would do better to fit a resummation
of the series, provided such a resummation has a small
number of parameters. Unfortunately, there is no theory for
the shape of the phase boundary. In its absence we try the
usual trick of estimating a Padé resummation of the series.
With three terms the best that we can try to do is to fit the
lowest order expansion

�cðNcÞ ¼ �cð1Þ þ a=N2
c

1þ N2�=N2
c

: (14)

The best fit givesN� ’ 4, roughly consistent with the series
analysis. As a result, the fitted value of �cð1Þ is sensitive to
the form of the remaining function, and cannot be reliably
extracted using data for Nc near 4. It would be useful to
improve the computations with Nc > 6 in order to extract
this quantity with better accuracy.
Next, we extend such a test to a bulk thermodynamic

quantity. Our results for s=sSB as functions of T=Tc and
�ð2�TÞ are shown in Fig. 10. As we show in the figure,
strong scaling holds with good precision since s=sSB is
almost independent of Nc down to the smallest tempera-
tures that we have studied. For scaling at fixed �, conver-
gence of the series is clearly bad for � ’ 9 or larger,
because the theories for different Nc begin to drop out of
the plasma phase; Figure 9 shows that theories with smaller
Nc drop to the confined phase at smaller �. At any fixed �
in this region one has to go to Nc large enough that the
theories are all in the same phase before one can observe
good scaling with Nc. We also find that the convergence of
the series in 1=N2

c is acceptable when � < 8:6 [27]. In the
range 8:6< �< 9, the physically interesting theory with
Nc ¼ 3 is close to the radius of convergence of the series
expansion, and the effect of the correction terms is large.
Figure 10 also displays a comparison of the scaled

entropy with predictions in a N ¼ 4 supersymmetric
Yang-Mills theory, computed [28] using the AdS/CFT
correspondence

s

sSB
¼ 3

4
þ 45

32
�ð3Þ

�
1

�

�
3=2 þ � � � : (15)

Although one does not expect this computation to be valid
in the realistic nonsupersymmetric theories under investi-
gation, it is sometimes said to agree with lattice results.
Here we show that the agreement is poor, except at the
highest possible temperatures. It has been argued [11] that
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FIG. 9 (color online). The value of the ’t Hooft coupling at the
finite temperature transition, �c, for different Nc. The renormal-
ized gauge coupling is evaluated at scale of 2�Tc, so that the
result is independent of the lattice spacing. The boxes denote
results obtained using the nonperturbative beta-function and the
circles using the two-loop beta-function in the V scheme.
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more realistic AdS-QCD models should be used for such a
comparison; the analysis of such models lies beyond the
scope of this paper.

VII. SUMMARYAND DISCUSSION

In this paper we have studied the thermodynamics of the
gluoNc plasma, by numerical simulations of SU(4) and
SU(6) gauge theories, and comparing them with a reanal-
ysis of existing data [14] for SU(3). Our focus is on taking
the continuum and thermodynamic limits, by using mul-
tiple spatial volumes at each cutoff and by using signifi-
cantly smaller cutoffs than used previously for the EOS of
Nc > 3. As discussed in the introduction, in terms of
statistics, lattice spacing and spatial volumes, this work
brings the study of the thermodynamics of pure gauge
SUðNcÞ theories with small Nc > 3 at par with the state
of the art for Nc ¼ 3, while also throwing some new light
on the SU(3) theory.

We had shown in an earlier study of the deconfinement
transition [9] that observations made with finite lattice
spacing could be continued to the continuum using the
renormalization group equations. When measurements
are made with lattice spacing a � 1=ð8TcÞ we had found
that the two-loop beta-function suffices. When the lattice
spacing a ¼ 1=ð6TcÞ is used a nonperturbative beta-
function was introduced which could be used to continue
the lattice results to the continuum limit [9]. In this paper
we used these earlier results to obtain the continuum
thermodynamics of pure gauge SU(4) and SU(6) theories.
We also made a reanalysis of the older SU(3) data using
this technique (as detailed in the Appendix).

One of our important results (see Sec. III) is an extrac-
tion of the latent heat of the deconfinement transition,
��=T4

c , for Nc ¼ 3, 4 and 6. We found that ��=ðdAT4
c Þ,

where dA ¼ N2
c � 1, increases between Nc ¼ 3 and larger

Nc, indicating that the first-order transition grows stronger

with increasing Nc. Our results are compatible with [8].
One expects stronger transitions to have smaller finite
volume effects, and our observations support this notion.
We found some scale breaking in the measurement of
��=T4

c , and observed that ��=�max shows better scaling
properties. We also saw that in the large Nc limit one has
��=ðdAT4

c Þ ¼ 0:388� 0:003 (see Eq. (9)).
Further study of bulk thermodynamic quantities started

with measurements of �=T4 (details are given in Sec. IV).
We found good scaling of this quantity, and a reliable
continuum limit, for T > Tc. For SU(3) some scale break-
ing is observed very close to Tc where the peak of this
quantity lies. The cause remains obscure, although there
are some indications that lead us to conjecture that this
could be due to finite volume effects. Future studies are
planned to understand this remaining ambiguity. In a range
of temperature up to 4Tc we found that � / T2 [21,22], or,
possibly, slower.
The pressure, p=T4, was obtained using the so-called

integral method (see Sec. V). Finite volume and lattice
spacing effects in this measurement are under good control.
We extracted the energy density, �=T4, and the entropy
density, s=T3, using these two primary measurements. In
the whole range of T all these quantities lie substantially
below the ideal gas values (see Figs. 7 and 8). Nevertheless,
p=T4, considered as a function of T=Tc, scales very well
with dA [10,11]. Subleading corrections in Nc are hard to
see at the level of accuracy we have reached (see Fig. 8).
Similar scaling with dA is also seen for �=T4 and s=T4,
except, possibly, in a small region near Tc.
In Fig. 11 we present a plot of the normalized energy

density, �=�SB against the normalized pressure, p=pSB

following [29]. The diagonal line is the line of all confor-
mal theories, with the ideal gluon gas being one special
point on it. Weak-coupling results [30] lie below this. One
sees that the lattice data for Nc ¼ 3, 4 and 6 lie further
below. Indeed the topology of these relations is such that
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the weak-coupling predictions are always a better approxi-
mation to the lattice data than conformal theories. This
figure gives clear evidence that there is no window of
temperature in which the EOS can be described by a
strongly-coupled conformal theory better than by weak-
coupling theory.

Yet another reason for making high-precision measure-
ments of bulk thermodynamics for Nc � 3 is to understand
the usefulness of the large Nc limit (see Sec. VI). In
agreement with previous results, we find that the strong
scaling limit obtained by taking fixed T andNc ! 1works
very well. Corrections in powers of 1=Nc are small, as a
result of which the large Nc results for the entropy density,
for example, can be directly applied for Nc ¼ 3 with about
1% error. However, when the same data is analyzed as a
function of the ’t Hooft coupling, the finite Nc corrections
are large for � > 8:6. The phase boundary for the large Nc

theory, expanded in powers of 1=N2
c , seems to have a radius

of convergence smaller than 1=9 (see Eq. (14)). Since this
observation has ramifications for all models of thermal
QCD which proceed from the large Nc approximation,
including string-based models, we plan further measure-
ments in the near future to explore the applicability of the ’t
Hooft limit.
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APPENDIX A: THE BETA-FUNCTION

The lattice theory is cut off at a length scale of a. When
a is small various quantities have a perturbation expansion
in gR, the renormalized coupling determined at a scale �a
(where � can depend on the scheme). Then the derivative
in Eq. (5) can be written as

@�

@ lna
¼ @�

@gR

@gR
@ lna

; (A1)

where the last factor is the negative of the beta-function.
Because of the fact that SUðNcÞ gauge theories are asymp-
totically free, one expects that a weak-coupling determi-
nation of the beta-function should suffice when a is small
enough. In [9] it was shown that the two-loop beta-function
is a sufficient description of the flow of the renormalized
coupling at the scale of a � 1=ð8TcÞ. Confidence in the
efficacy of two-loop scaling is enhanced by the fact that the
scheme dependence in the extraction of the QCD scale was
small.
Although the two-loop beta-function was insufficient to

describe the flow of the coupling at larger a, it was shown
that for a ’ acð6Þ, where acðNtÞ ¼ 1=ðNtTcÞ, a simple
correction of the form

acðNtÞ� ¼ R

�
1

�0g
2
RðacÞ

��
1þ c2

N2
t

�
; with

RðxÞ ¼ e�x=2x�1=2�
2
0

(A2)

suffices, where the two-loop beta-function is ��0g
3
R �

�1g
5
R (for an alternative approach see [31]). The values

of c2 were presented in Table (4) of [9]. In this paper the
integration of the beta-function is started from the scale
acð8Þ. In the calculation of Sec. IV, since we have taken
data at lattice spacings as low as acð6Þ, we have used such a
nonperturbatively corrected beta-function in the V-scheme
(this differs from the conventions of [3]). Any nonpertur-
bative beta-function will include finite lattice spacing cor-
rections [32] into the scaling, just as the above function
does. Such corrections are nonuniversal.
A simplified version of the tests of scaling in [9,33] can

be presented using the step-scaling function��ð�Þ. This is
the change in the bare coupling, ��, required to reproduce
the physics observed at a bare coupling �, when the lattice
spacing is doubled. If � is chosen to be the lattice coupling
where the deconfinement transition is observed for a given
Nt, then �� �� is the lattice coupling at the deconfine-
ment transition when Nt is changed to Nt=2. In Fig. 12 we
show the result of using the beta-functions given above and
the step-scaling function given in [14].
We also examined the sensitivity of the equation of state

to the choice of the beta-function. Figure 13 displays
results for �=T4 obtained in SU(3) and SU(4) gauge
theory, for lattices with a ¼ 1=ð8TÞ. For the SU(4) theory,
differences between the E-scheme and the V-scheme are
statistically insignificant at all temperatures. Similarly,
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FIG. 11 (color online). Approach to conformality in SUðNcÞ
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the difference between these and the nonperturbative
beta-function of (A2) are also insignificant at these
temperatures.

The results are similar for the SU(3) gauge theory, where
we have reanalyzed the data of [14]. The one-loop and

the two-loop beta-functions give coincident results for
T � 1:5Tc. In [33] a nonperturbative beta-function of the
form in (A2) was used to describe scaling of Tc. The results
of using this for �=T4 are shown. These three are close to
each other, as is the result of [14].
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