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We update our previous determination of both the decay constant and the mass of the Ds meson using

the highly improved staggered quark formalism. We include additional results at two finer values of the

lattice spacing along with improved determinations of the lattice spacing and improved tuning of the

charm and strange quark masses. We obtain mDs
¼ 1:9691ð32Þ GeV, in good agreement with experiment,

and fDs
¼ 0:2480ð25Þ GeV. Our result for fDs

is 1:6� lower than the most recent experimental average

determined from the Ds leptonic decay rate and using Vcs from Cabibbo-Kobayashi-Maskawa unitarity.

Combining our fDs
with the experimental rate we obtain a direct determination of Vcs ¼ 1:010ð22Þ, or

alternatively 0:990þ0:013
�0:016 using a probability distribution for statistical errors for this quantity which

vanishes above 1. We also include an accurate prediction of the decay constant of the �c, f�c
¼

0:3947ð24Þ GeV, as a calibration point for other lattice calculations.
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I. INTRODUCTION

Lattice QCD is now a firmly established method for
providing precision tests of the standard model [1].
Combined with experiment, lattice QCD calculations
have the potential to uncover new physics provided that
both the theoretical and experimental results are accurate
enough.

The most accurate lattice QCD calculations are those for
the masses of ‘‘gold-plated’’ mesons, where few MeV
errors are now possible across the entire spectrum. This
accuracy is at the level where electromagnetic effects on
the meson masses, currently missing from lattice QCD
calculations, have to be estimated and included.
Reference [2] gives a recent summary including predic-
tions of masses that have been made ahead of experiment.
The meson masses are extracted from simple ‘‘two-point’’
hadron correlation functions calculated on the lattice from
combining appropriate valence quark and antiquark propa-
gators. Another parallel set of quantities that can be deter-
mined from the same correlation functions are the meson
decay constants. Calculations of these can be compared to
experimental results for rates of annihilation to photons for
neutral unflavored vector mesons and to W bosons for
charged pseudoscalars. By determining as complete and
accurate a picture as possible for decay constants along

with masses we provide a stringent test of the standard
model. Physics beyond the standard model can introduce
new ways to decay to leptons for some mesons, and so
accurate comparison of decay constants between theory
and experiment can also provide direct constraints on new
physics models.
Here we focus on results for one quantity, the decay

constant of the Ds meson, fDs
, which has been a showcase

for the impact that accurate lattice QCD calculations can
have, particularly when ahead of experimental results. We
will update our result from 2007 [3], making several im-
provements to the calculation. It is important to understand
that fDs

is not calculated in isolation; as discussed above, it

is one piece of the range of QCD physics that is calculable
on the lattice. The other pieces, where they can also be
tested against experiment, lend weight to the confidence
we have in our error analysis. This is particularly true for
our calculation because we can calculate a range of differ-
ent quantities all with the same method. So here we also
update our results for the mass of theDs meson and discuss
other calculations that will provide further tests. First we
review briefly some background to the calculation of fDs

.

Decay constants for light pseudoscalar mesons (f� and
fK) have been calculable with errors at the few percent
level since 2004 [4], being one of the first calculations done
in lattice QCD once ensembles of gluon field configura-
tions were available that included the full effect of u, d and
s sea quarks with a light enough mass for the u=d quark to
enable controlled extrapolation to the physical point. These
calculations were done using the improved staggered
(asqtad) formalism [5,6] which has a number of advantages
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over previous formalisms, which means that the calcula-
tion of f� and fK can be done accurately. Key require-
ments for these calculations are a quark formalism (such as
improved staggered quarks) which

(i) has an absolutely normalized operator to couple to
the W boson;

(ii) is improved so that it has small discretization errors
(Oð�sa

2Þ for improved staggered quarks) and
(iii) is numerically fast so that large ensembles of gluon

field configurations can be made including sea
quarks and so that many hadron correlation func-
tions can be calculated per configuration, for small
statistical errors. In addition a large physical vol-
ume (> 2:5 fm3) is necessary so that finite volume
effects are reduced to the 1% level. Having all of
these features means that accurate extrapolations to
the physical continuum limit can be made.

Calculations of decay constants for mesons containing
the heavier c quark became important with the promise of
results from the CLEO-c experiment. The first lattice re-
sults for fD and fDs

appeared from the Fermilab Lattice/

MILC collaborations in 2005 as predictions ahead of ex-
periment [7]. They used the ‘‘Fermilab’’ formalism [8],
developed many years previously for heavy quark physics,
and had errors of 8%. This led to the unfortunate impression
that decay constants for D and Ds mesons were inevitably
much less accurate than those for� andK and errors would
only be slowly reduced as higher statistics and the advent of
finer lattices reduced statistical errors and systematic errors
from discretization effects. Because the Fermilab formal-
ism predated the improved staggered formalism, however,
these calculations had not made use of any of the features
discussed above that made f� and fK so accurate.

For c quarks the issue of discretization errors becomes
more important than for the lighter quarks. In 2007 we
showed that further improving the improved staggered
formalism to the highly improved staggered quark
(HISQ) formalism [9] produces a quark formalism that
has all the good features of the asqtad formalism outlined
above but also significantly smaller discretization errors. In
fact the discretization errors are small enough that HISQ
can be used for c quarks as well as u=d and s quarks and
using the same formalism for all 4 lightest quarks has
enormous advantages. We used HISQ for all the valence
quarks to calculate all 4 decay constants: f�, fK, fD and
fDs

to better than 2% accuracy [3]. Our results were

f� ¼ 132ð2Þ MeV fK ¼ 157ð2Þ MeV

fD ¼ 207ð4Þ MeV fDs
¼ 241ð3Þ MeV:

(1)

Although fD and fDs
still have noticeably larger discreti-

zation errors (and therefore contributions to the systematic
error from the extrapolation to the a ! 0 limit) than fK
and f� there are smaller systematic errors from, for
example, finite volume effects. This leads then to the

expectation, and the result, of very similar final errors.
Our error for fDs

was somewhat smaller than that for fD
(1.3% versus 1.8%) since the Ds contains no valence u=d
quarks and is therefore much less sensitive to the chiral
extrapolation to the physical u=d quark mass. This makes
fDs

a particularly accurate quantity to calculate in lattice

QCD.
Since, at that time, fD and fDs

were only known to 6–8%

from experiment [10–12], we had the added test, unavail-
able to the Fermilab formalism, of agreeing with experi-
ment for f� and fK. An additional very stringent test that
had not previously been done was the determination of the
mass of the Ds and D mesons along with their decay
constants. The masses are known to better than 1 MeV
experimentally. We were able to achieve errors from lattice
QCD of 7 MeV (0.3%) by determining the difference
between the D or Ds mass and one half that of the �c.
Electromagnetic effects on the masses, missing from the
lattice QCD calculation, had to be allowed for in achieving
this accuracy. Good agreement between lattice QCD and
the experimental results was obtained. We quoted mDs

¼
1:962ð6Þ GeV and mD ¼ 1:868ð7Þ GeV [3].
Following our result much improved experimental num-

bers for fD [13] (206(9) MeV) and fDs
(274(11) MeV)

became available from CLEO [14]. This produced the
exciting picture in the summer of 2008 that agreement
between experiment and our result for fD was very good
but that the experimental result for fDs

(including averages

with results from BABAR and Belle [15]) was significantly
larger than our lattice QCD value, see, for example,
[16,17]. Since the experimental errors were still much
bigger than ours the discrepancy, of 3�, was dominated
by the experimental error. A burst of activity from other
lattice QCD calculations produced results that agreed with
ours but, having errors several times larger, often also
agreed with the experimental one [18]. This led to much
speculation about the existence of new physics (that had to
affect Ds but not D) [19] as well as limits on new physics
from the fact that the experimental fDs

was larger (and

not smaller) than the standard model result from our
calculation [20].
Since then improved statistics and further results from

other channels [21–24] have brought down the experimen-
tal average and reduced its error to 2%. In early 2010, the
Heavy Flavor Averaging Group (HFAG) gave a world av-
erage result from experiment of fDs

¼ 0:2546ð59Þ GeV
[25], 2� above our 2007 result. In the meantime we have
extended our lattice QCD calculation using HISQ quarks to
even finer lattices as well as improving the accuracy with
which we determine the lattice spacing (which provides the
calibration of the energy scale) and fix the c and s quark
masses. This has led our result for fDs

to move upwards, as

we show here, to 0.2480(25) GeV, with a slight improve-
ment in the error to 1%. The main reason for the up-
ward shift is the recalibration of the lattice spacing.
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The experimental average as of October 2010 hasmoved up
again slightly with new results fromBABAR [26]. Our value
for fDs

is now 1:6� from the experimental average and this

reduces considerably the room for new physics in this
quantity.

In Sec. II we describe the lattice QCD calculation and in
Sec. III the results. These sections contain technical details
which may not be of interest to those without a lattice QCD
background. As well as fDs

we give results for mDs
which,

as discussed above, is an important check on the calcula-
tion. We also show results for f�c

, the decay constant of the

�c. This cannot be accessed directly from experiment but
provides an excellent ‘‘figure of merit’’ for lattice QCD
calculations in charm physics. We give the result to 0.6%
so that other lattice QCD calculations can compare to this
when quoting numbers for fDs

. In Sec. IV we discuss the

picture that emerges from the current experimental and
lattice QCD results for fDs

, including the update we give

here. We have tried to make this section readable by those
that skipped the earlier technical details. We will also
comment on the effects of the recalibration of the lattice
energy scale on the other calculations included in [3], i.e.
fK, f� and fD. Section V gives our conclusions.

II. LATTICE QCD CALCULATION

We work with 11 different ensembles of gluon field
configurations provided by the MILC Collaboration.
These include the effect of u, d and s sea quarks using
the improved staggered (asqtad) formalism and the fourth
root ‘‘trick’’. This procedure has passed various tests in-
dicating that it is a valid discretization of QCD [27–29].
Configurations are available with large spatial volumes
(> 2:4 fm3) for a wide range of values of the lattice spac-
ing, a, and at multiple values of the sea light and strange
quark masses. The u and d quark masses are taken to be
equal in the sea (mu ¼ md ¼ ml) for numerical speed. This
has negligible effect on the calculations described here. We
use configurations at 5 values of the lattice spacing be-
tween 0.15 fm and 0.045 fm with parameters as listed in
Table I. We have chosen the ensembles so that we can test
the dependence of our results on each of: the lattice spac-
ing; the physical volume; the sea light quark mass and the
sea strange quark mass.

On these configurations we have calculated quark propa-
gators for charm quarks and strange quarks using the HISQ
action. The numerical speed of HISQ means that we have
been able to use several nearby quark masses for charm and
strange to allow accurate interpolation to the correct val-
ues. This is described in the next section. These propaga-
tors are combined together to make pseudoscalar meson
correlators with valence quark content either ‘‘charm-
charm,’’ ‘‘charm-strange’’ or ‘‘strange-strange.’’ By fitting
the correlators as a function of the time separation of the
source and the sink on the lattice we are able to determine
the ground-state pseudoscalar mass (i.e. that of the �c, Ds

or �s) and the amplitude with which the ground-state
meson is created or destroyed by the local temporal axial
current. This latter quantity is directly related to the decay
constant.
The HISQ action [9] is an extension of the asqtad

improved staggered quark action, which is itself based on
the unimproved (naive) staggered quark action. The unim-
proved staggered action is equivalent to a simple ‘‘naive’’
discretization of the continuum quark action to give, on the
lattice:

S ¼ X
x

�c ðxÞð� � �ðUÞ þmaÞc ðxÞ; (2)

where ma is the quark mass in lattice units. �ðUÞ is a
discrete version of the covariant derivative coupling to the
lattice gluon field U�ðxÞ, which is a set of SU(3) matrices

sitting on the links of the lattice:

��ðUÞc ðxÞ
¼ 1

2
½U�ðxÞc ðxþ �̂Þ �Uy

�ðx� �̂Þc ðx� �̂Þ�: (3)

In the improved staggered formalism the gluon field in the
covariant derivative is smeared i.e. U�ðxÞ is replaced by a

sum of products of U� matrices tracing out more compli-

cated paths between x and xþ �̂ [5]. The smearing in-
troduces a form factor that reduces the coupling between
the quark and high momentum (p � �=a) gluons that
cause a particular type of discretization error for staggered
quarks. This error in principle appears at �sa

2 but in

TABLE I. Ensembles (sets) of MILC configurations with size
L3 � T and sea mass parameters m

asq
l and m

asq
s used for this

analysis. The sea ASQTAD quark masses (l ¼ u=d) are given in
the MILC convention where u0 is the plaquette tadpole parame-
ter. Values of u0 are given in Table VI. The lattice spacing values
in units of r1 after ‘‘smoothing’’ are given in the second column
[31]. Sets 1 and 2 are ‘‘very coarse’’; sets 3, 4, 5, 6 and 7
‘‘coarse’’; sets 8 and 9 ‘‘fine’’; set 10 ‘‘superfine’’; and set 11
‘‘ultrafine’’. The final column gives the number of configurations
and the number of time sources per configuration used for
calculating quark propagators for the best-tuned parameter sets
on each ensemble.

Set r1=a au0m
asq
l au0m

asq
s L=T Ncf � Nt

1 2.152(5) 0.0097 0.0484 16=48 631� 2

2 2.138(4) 0.0194 0.0484 16=48 631� 2

3 2.647(3) 0.005 0.05 24=64 678� 2

4 2.618(3) 0.01 0.05 20=64 595� 2

5 2.618(3) 0.01 0.05 28=64 269� 4

6 2.644(3) 0.02 0.05 20=64 600� 2

7 2.658(3) 0.01 0.03 20=64 328� 2

8 3.699(3) 0.0062 0.031 28=96 566� 4

9 3.712(4) 0.0124 0.031 28=96 600� 4

10 5.296(7) 0.0036 0.018 48=144 201� 2

11 7.115(20) 0.0028 0.014 64=192 208� 1

UPDATE: PRECISION Ds DECAY CONSTANT FROM . . . PHYSICAL REVIEW D 82, 114504 (2010)

114504-3



practice is very large for unimproved staggered quarks.
The error is seen most clearly in the mass differences
between different ‘‘tastes’’ of pseudoscalar meson, created
by different point-split pseudoscalar operators. These mass
splittings are proportional to a2 and are strongly reduced
on going from unimproved staggered quarks to improved
staggered quarks [6]. Most smearing methods introduce
additional discretization errors. This is avoided here by the
specific form of the smearing used [5]. In the highly
improved staggered quark action this smearing is applied
twice with a reunitarization of the gluon field in between.
We also apply a projection back on to SU(3) for the gluon
field, although this makes little difference in practice. We
then find another further large reduction in the splittings
between different tastes of pseudoscalar mesons [9]. In the
pseudoscalar case the splitting in the squared masses
(�m2

�) is roughly constant (for quark masses that are not
too large) and so the splittings in the pseudoscalar masses
themselves (�m�) fall with quark mass. Thus these ‘‘taste-
changing’’ errors are generally smaller for charm quarks
than strange quarks [9,32], and they are particularly small
with the HISQ action.

Other, more mundane, discretization errors are tackled
by standard improvement techniques. A simple analysis in
Fourier space of the symmetric difference of Eq. (3) shows
that this has errors of Oða2Þ which can be corrected by the
addition of a ðpaÞ3 term. This term, known as the Naik
term [33], appears in the improved staggered quark action
as a mixture of 3-link and 1-link differences. The improved
staggered quark action then has discretization errors that
are Oða4Þ, apart from radiatively generated errors at
Oð�sa

2Þ. The HISQ action uses the same Naik term (ex-
cept that it contains smeared gluon fields) but corrects it
further for discretization errors when using quark masses
appropriate to charm or heavier. Discretization errors con-
trolled by the quark mass ma become important in that
case. and we adjust the coefficient of the Naik term so that
it takes value (1þ �) instead of 1 [9]. Then, schematically,

S ¼ X
x

�c ðxÞð� � ~�ðUÞ þmaÞc ðxÞ; (4)

where

~� � ¼ �� � 1þ �

6
�3

�: (5)

� is a function of ma (starting at ðmaÞ2) calculated to give
the correct quark dispersion relation (energy as a function
of momentum) at tree level. Here we give an exact formula
for � at tree level, �tree, given an expansion for the tree-
level pole mass, mtree, as a function of the mass ma in the
lattice action [9]:

mtreea ¼ ma

�
1� 3

80
ðmaÞ4 þ 23

2240
ðmaÞ6 þ 1783

537600

� ðmaÞ8 � 76943

23654400
ðmaÞ10 þ . . .

�
; (6)

�tree þ 1 ¼
4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 12mtreea

coshðmtreeaÞ sinhðmtreeaÞ
q
ðsinhðmtreeaÞÞ2

: (7)

These equations are obtained by solving the condition for
the ‘‘kinetic mass’’,M2 ¼ ½@2E=@p2

x��1, to be equal to the
tree-level pole mass, mtree. mtree in turn solves the pole
condition at zero momentum. Including a Naik coefficient
of (1þ �tree) means that the leading (in the velocity ex-
pansion) ðmaÞ4 errors are removed in the HISQ case, and
so remaining discretization errors are suppressed either by
�s or by the fact that heavy quarks are nonrelativistic in
their bound states. � can be fixed nonperturbatively by
demanding that the ‘‘speed of light’’ be 1, and this was
done in earlier calculations [9]. However it was found that
nonperturbative results for � were close to the tree-level
result in the HISQ case and so here we simply define � to
take the value �tree above.
It is numerically very fast to calculate quark propagators

for staggered actions because they have only one spin
component. This means that we can readily calculate
propagators from several different time sources on the
lattice for improved statistics. Table I lists the number of
configurations used from each ensemble and the number of
time sources per configuration. To increase statistics fur-
ther we use a ‘‘random wall’’ source for the quark propa-
gator instead of a delta function [4]. The random wall is a
set of U(1) random numbers with unit norm on every point
of the source time slice (separately for each color) and is
used as the source for the inversion to calculate the quark
propagator. The same random wall is used for all propa-
gators from a given time source on a given configuration so
that when any propagator is combined with the complex
conjugate of another to form a meson correlator the ran-
dom numbers cancel except where the initial spatial points
and colors are the same. This effectively increases the
number of meson correlators sampled and reduces the
statistical noise by a large factor for the case of pseudo-
scalar mesons. We also take a random starting point for our
time sources for the very coarse, coarse and fine ensembles.
The pseudoscalar meson correlation function CabðtÞ for

meson of valence content a �b is calculated by multiplying
together the quark propagator for quark a and the complex
conjugate of the quark propagator for quark b from the
same source on a given configuration, matching colors at
the source and sink and matching the sink spatial site
index, which is summed over to set the meson to zero
momentum. The meson correlation function is then aver-
aged over time sources on a single configuration. This
means that any correlations between the time sources on
a given configuration are accounted for. We also have to
worry about autocorrelations between results on successive
configurations in an ensemble. Tests by binning correlators
have shown that the results on different configurations
are independent of each other except on the finest lattices.
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We therefore bin the correlators on superfine and ultrafine
lattices by a factor of 2.

The correlation function averaged over the independent
samples from an ensemble is then fit as a function of the
time separation between source and sink, t, to the form:

�CðtÞ ¼ X
i

aiðe�Mit þ e�MiðT�tÞÞ (8)

for the case a ¼ b. i ¼ 0 is the ground state and larger i
values denote radial or other excitations with the same JPC

quantum numbers. T is the time extent of the lattice. For
the unequal mass case there are additional ‘‘oscillating’’
terms coming from opposite parity states, denoted ip:

�CðtÞ ¼ X
i;ip

aie
�Mit þ ð�1Þtaipe�Mip t þ ðt ! T � tÞ: (9)

To fit we use a number of exponentials i, and where
appropriate ip, in the range 2–6, loosely constraining the

higher-order exponentials by the use of Bayesian priors
[34]. As the number of exponentials increases, we see the
�2 value fall below 1 and the results for the fitted values
and their errors for the parameters for the ground state
i ¼ 0 stabilize. This allows us to determine the ground-
state parameters a0 andM0 as accurately as possible while
allowing the full systematic error from the presence of
higher excitations in the correlation function. We take the
fit parameters to be the logarithm of the ground-state
masses M0 and M0p and the logarithms of the differences

in mass between successive radial excitations (which are
then forced to be positive). The Bayesian prior value for
M0 is obtained from a simple ‘‘effective mass’’ in the
correlator and the prior width on the value is taken as a
factor of 1.5. The prior value for the mass splitting between
higher excitations is taken as roughly 600 MeV with a
width of a factor of 2. Where oscillating states appear in the
fit, the prior value for M0p is taken as roughly 600 MeV

above M0 with a prior width of a factor of 2 and the
splitting between higher oscillating excitations is taken to
be the same as for the nonoscillating states. The amplitudes
ai and aip are given prior widths of 1.0.

Our fit includes the effect of correlation between differ-
ent values of t. We apply a cut on the range of eigenvalues
from the correlation matrix that are used in the fit of 10�3

or 10�4. We also cut out very small t values from our fit,
typically below 3 or 4, to reduce the effect of higher
excitations.

The results for masses and amplitudes from fits in
Eqs. (8) and (9) are in units of the lattice spacing. The
value of the lattice spacing must be determined for each
ensemble to enable conversion to physical units. For this
we use the parameter r1, defined from the heavy quark
potential [4]. This parameter can be accurately determined
(to better than 0.5%) in units of the lattice spacing and so is
good for making ensemble to ensemble comparisons of a.
Results from the MILC Collaboration are given in Table I.

Unfortunately r1 does not have a directly accessible physi-
cal value. Instead we must determine that from other
quantities. In [35] we used four other physical quantities
with well-known experimental values to fix the value of r1
to 0.3133(23) fm. This then yields a value for a on a given
ensemble with two errors—an error from the value of
r1=a on that ensemble and an error, correlated between
ensembles, from the physical value of r1.
The amplitude, a0, from the fits in Eqs. (8) and (9) is

directly related to the matrix element for the local pseu-
doscalar operator to create or destroy the ground-state
pseudoscalar meson from the vacuum. From the definition
of the correlator and using a relativistic normalization for
the fields:

a0 ¼ ðh0jPsjPiÞ2=2M0 (10)

where the pseudoscalar current Ps ¼ �a�5b for quark
content a �b. Because of the chiral symmetry of the stag-
gered quark action we have a partially conserved axial
current (PCAC) relation that relates the local pseudoscalar
operator above to a temporal axial current that is abso-
lutely normalized on the lattice. This allows us to deter-
mine the decay constant for these pseudoscalar mesons
without having to worry about an uncertainty from the
renormalization between the lattice and the continuum.
The decay constant for meson P with quark content a �b is
defined from

h0j �a���5bjPðpÞi � fPp�: (11)

For a meson at zero momentum, and using the PCAC
relation @�A

� ¼ ðma þmbÞPs to relate the axial vector

and pseudoscalar currents, this becomes

ðma þmbÞh0j �a�5bjPðpÞi � fPM
2
P; (12)

where ma and mb are the appropriate quark masses.
Combining this with Eq. (10) then allows us to determine
fP in lattice QCD from our fits to the correlators for
pseudoscalar meson P using

fP ¼ ðma þmbÞ
ffiffiffiffiffiffiffiffi
2a0
M3

0

s
: (13)

Here ma and mb are the quark masses used in the lattice
QCD calculation.
fP in turn is related, for charged pseudoscalars such as

the �, K, D and Ds mesons, to the experimentally
measurable leptonic branching fraction via a W boson:

B ðP ! l	lð�ÞÞ ¼ G2
FjVabj2
P

8�
f2Pm

2
l mP

�
1� m2

l

m2
P

�
2
;

(14)

up to calculable electromagnetic corrections. Vab is the
appropriate Cabibbo-Kobayashi-Maskawa (CKM) element
for quark content a �b. 
P is the pseudoscalar meson
lifetime.
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III. RESULTS

Accurate results for the Ds meson require accurate tun-
ing of both the c and the s quark masses. We use the
pseudoscalar mesons made purely of c quarks or of s
quarks to do this and so first discuss results for these
mesons.

Table II lists the valence HISQ quark masses close to
that of the charm quark that we used for each of the gluon
configuration ensembles along with the corresponding
value of the Naik parameter (1þ �). We also list the values
of the ground-state pseudoscalar c �cmeson mass and decay
constant obtained from our fits to the c �c meson correlators
to Eq. (8). The decay constant, f�c

, will be discussed in

Sec. III C—it is a useful quantity to calculate despite the
fact that the �c is a neutral particle and does not undergo a
purely leptonic decay of the kind given in Eq. (14). To tune
the charm quark mass in the HISQ action we must inter-
polate to the point at which the mass of the �c has the

correct physical value on each ensemble. This physical
value is not exactly the experimental value (2.980 GeV
[37]) because our lattice QCD calculation corresponds to a
world in which there are no electromagnetic interactions
and we do not allow our �c meson to annihilate to gluons.
Both of these effects tend to reduce the �c mass by small
amounts and so the appropriate physical value for us to
compare our lattice QCD calculation to is 2.985(3) GeV,
allowing a 50% error for each correction to the experimen-
tal value. The corrections are obtained from a potential
model for the electromagnetic effect and from perturbation
theory for the effect of gluon annihilation [9,35].
Figure 1 shows the meson mass in physical units plotted

against the quark mass, also in physical units, for each
ensemble. This plot demonstrates how the quark mass
tuning is done, as well as illustrating very clearly how
accurately we can do this from lattice QCD. Several fea-
tures of the figure stand out. On a given ensemble the value
of the meson mass is linear in the quark mass, as we would

TABLE II. Results for the masses in lattice units of the goldstone pseudoscalars made from
valence HISQ charm or strange quarks on the different MILC ensembles, enumerated in Table I.
Columns 2 and 3 give the corresponding bare charm quark mass, and Naik coefficient,
respectively. Column 6 gives the bare strange quark mass (� ¼ 0 in that case). A lot of the
meson masses in this table appear also in [36] but we have added results on the coarse 02=05 and
01=03 ensembles (sets 6 and 7) and the large volume coarse 01=05 ensemble (set 5) as well as
improving the tuning of masses on other ensembles and improving some fits on sets 4, 10 and 11.
Results for the decay constant of the �c meson are also included, for analysis in Sec. III C.

Set amc 1þ � am�c
af�c

ams am�s

1 0.81 0.665 2.19381(16) 0.3491(5) 0.061 0.50490(36)

0.825 0.656 2.22013(15) 0.3539(5) 0.066 0.52524(36)

0.85 0.641 2.26352(15) 0.3622(5) 0.080 0.57828(34)

2 0.825 0.656 2.21954(13) 0.3537(4) 0.066 0.52458(35)

3 0.622 0.779 1.79132(8) 0.25706(18) 0.0489 0.41133(17)

0.65 0.762 1.84578(8) 0.26368(18) 0.0537 0.43118(18)

4 0.63 0.774 1.80849(11) 0.25998(20) 0.0492 0.41436(23)

0.66 0.756 1.86666(10) 0.26721(20) 0.0546 0.43654(24)

0.72 0.720 1.98109(10) 0.28228(22) 0.06 0.45787(23)

0.753 0.700 2.04293(10) 0.29114(24) 0.063 0.46937(24)

5 0.63 0.774 1.80856(7) 0.26006(15) 0.0492 0.41457(14)

6 0.625 0.777 1.79347(13) 0.2556(3) 0.0491 0.41196(24)

0.0525 0.42588(30)

0.0556 0.43834(30)

7 0.619 0.781 1.78595(15) 0.2564(3) 0.0487 0.41030(31)

8 0.413 0.893 1.28057(7) 0.17217(11) 0.0337 0.29413(12)

0.43 0.885 1.31691(7) 0.17508(11) 0.0358 0.30332(12)

0.44 0.880 1.33816(7) 0.17678(11) 0.0366 0.30675(12)

0.45 0.875 1.35934(7) 0.17850(11) 0.0382 0.31362(14)

9 0.412 0.894 1.27522(7) 0.17086(10) 0.0336 0.29309(13)

0.427 0.885 1.30731(10) 0.17344(15) 0.03635 0.30513(20)

10 0.273 0.951 0.89935(12) 0.11864(24) 0.0228 0.20621(19)

0.28 0.949 0.91543(8) 0.11986(21) 0.024 0.21196(13)

11 0.193 0.975 0.66628(13) 0.0882(3) 0.0161 0.15278(28)

0.195 0.975 0.67117(6) 0.08846(11) 0.0165 0.15484(14)

0.018 0.16209(17)
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expect. The lines showing this behavior (not plotted on the
figure) are essentially parallel with a slope close to the
naive expectation of 2 for ensembles with different lattice
spacing values. In fact the slope does increase from 1.7 on
the very coarse lattices to 2.3 on the superfine lattices. The
reason for this is that the x-axis is a well-defined ‘‘running’’
quark mass, being the quark mass in the HISQ Lagrangian
with a particular ultraviolet scale set by the lattice spacing.
This is why we denote the mass on the x-axis asmcðaÞ. The
horizontal line indicates the correct value of the �c mass
and therefore, where it cuts each set of results, the tuned
value of mc at that lattice spacing. These values ‘‘run’’ to
the left on finer lattices as the ultraviolet cutoff increases,
as expected from perturbation theory. We expect the varia-
tion of �c mass with quark mass to be some number
(say, 2) times the quark mass at a fixed scale. Therefore
on finer lattices, where the scale is higher, we expect the
slope to be larger, as demonstrated in Fig. 1.

Another feature is that the results for different ensembles
with very similar values of the lattice spacing are very
close together i.e. there is very little dependence of the
tuned c mass on the sea-quark masses. The results for
different physical volumes (sets 4 and 5) lie on top of
each other showing that there is no dependence on the

volume. We would not expect any significant volume
dependence on these large spatial volumes for the �c since
it is a relatively small particle.
From the horizontal line on Fig. 1 and the lattice points

on the line it is clear that we have tuned the charm quark
mass very well on all except the superfine lattices (where it
is off by 0.1%). In each case this corresponds to the lightest
charm quark mass in our Table II. Figure 1 does not include
errors in converting the lattice quark mass or �c mass to
GeV coming from the values of r1=a or the physical value
of r1. The effect of these errors is reduced over naive
expectations because �m�c

is close to 2�mc, and so the

leading-order change from any �a cancels out. This issue
was addressed in [36]. Here we are not aiming to determine
mc, but simply to make sure we understand the errors in
other quantities induced by the tuning error in mca, so we
leave a more detailed discussion of this source of system-
atic error to the sections on the individual quantities.
Table II lists the valence HISQ quark masses close to

that of the strange quark that we used for making strange
quark propagators on each of the gluon field ensembles.
We also list the corresponding values of the mass of the
ground-state s�s meson, the �s. The �s is not a particle
available to study in the real world where s�s mixes with
u �u and d �d. However, by omitting these possibilities in the
lattice QCD calculation we can obtain a pure s�s ‘‘pion-
like’’ meson. This turns out to be useful for tuning the s
quark mass because the �s mass can be determined rela-
tively precisely, and is less sensitive to the sea-quark
masses than, for example, m�. However, the physical
value for the �s mass has to be determined by relating it
to � and K meson masses known from experiment. In
earlier lattice QCD calculations we determined m�s

¼
0:6858ð40Þ GeV [35] and this is the value we will use
here. We also studied the �s decay constant which is again
a quantity that cannot be measured experimentally in the
real world but one which turns out to be useful for deter-
mining the lattice spacing. We will not discuss f�s

further

here.
Figure 2 shows the square of the �s mass against the

quark mass, both in physical units, for each ensemble. We
expect m2

�s
/ ms from leading-order chiral perturbation

theory and the results indeed show this dependence.
Once again the lines demonstrating this (not plotted on
the figure) are fairly parallel but with a slope increasing on
the finer lattices as the quark mass for a given meson mass
runs to smaller values. The horizontal plots gives the
physical value of the �s mass given above and the strange
quark mass can be read off for each ensemble from where
this crosses the line of data. Again we have well-tuned
strange quark masses at each value of the lattice spacing at
the lightest end of the range. The strange quark mass values
on the very coarse and coarse lattices are rather close
together but on the finer lattices the strange mass changes
as rapidly with lattice spacing as the charm mass does in
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FIG. 1 (color online). Results for the mass of the pseudoscalar
meson made of quarks with masses close to that of the charm
quark mass for the full set of ensembles from Table I. The x-axis
is the lattice bare mass of the quark, which runs with lattice
spacing from right to left. Very coarse ensembles are triangles;
coarse, crosses; fine, squares; superfine, pluses; ultrafine, bursts.
Results for heavier sea u=d quark masses at each lattice spacing
are in red, lighter ones are in blue. On the coarse lattices the very
heavy sea masses of set 6 are in pink, the lighter strange sea mass
of set 7 in grey and the large volume results on set 5 are in green,
on top of the result from set 4. Statistical errors are too small to
be visible on this plot. The results show that tuning the quark
mass to that of charm depends very little on the sea-quark masses
or on the volume. The dotted line gives the physical value, with
its error, appropriate to lattice QCD, see text.
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Fig. 1. In the continuum limit the ratio of these two masses
becomes a scale-invariant constant [36].

Again it is evident from Fig. 2 that there is very little
dependence of the tuned s quark mass on either the sea-
quark masses or the volume. Because the value of the tuned
s quark mass is proportional to the square of the �s mass
the relative uncertainty in ms arising from lattice spacing
errors is equal to that of the lattice spacing. There is no
cancellation as there was in the case of the charm quark. In
addition the 0.6% uncertainty in the physical value of the
�s mass is significant, because it becomes an uncertainty of
1.2% in ms. The effect of these uncertainties on the mass
and decay constant of the Ds meson will be discussed
below.

The staggered quarks in the sea are asqtad improved
staggered quarks rather than HISQ quarks, i.e. they use a
different discretization of the quark piece of the QCD
Lagrangian. The s quark mass in the two formalisms will
then not be the same, and we need to understand the ratio of
the two so that we can extrapolate to the physical (real
world) point for both the valence and sea-quark masses. We
can determine the physical points for the sea-quark masses
from our tuning of the valence masses and this ratio. There

is very little sea-quark mass dependence in the quantities
that we study here, so that we do not need to know this ratio
accurately. It is discussed further in the Appendix.
Once we have determined the c and s masses to be used

to give the required physical results for the �c and the �s

mesons, the Ds meson correlator is entirely prescribed.
There are no further adjustable parameters, given the na-
ture of QCD. The fit to the Ds meson correlators gives us
both theDs meson mass (fromM0 in Eq. (9)) and its decay
constant (from a0) as testable outputs from lattice QCD.
Since the Ds meson mass is well-known experimentally it
provides an excellent independent test of the error analysis
on the decay constant. It is therefore very important to
analyze both of these quantities together.

A. mDs

TheDs meson correlators are made from the same c and
s quark propagators that are used for the �c and �s above.
We must use Eq. (9) to fit the Ds correlators, however,
because they do have additional oscillating terms in them.
Table III lists results for the masses, M0 and the decay
constant derived from a0 for each combination of c and s
masses that we have used on each ensemble. The statistical
errors coming from the fit are significantly larger for theDs

than for the �c. This is because the noise in heavy-light
correlators has a lower mass associated with it than the
signal. The mass in the squared correlator which gives the
noise is given by one half of the sum of the �c and �s

masses, which is smaller than the signal Ds mass. This
means that the signal to noise ratio degrades at large times
for theDs correlator and the statistical error increases. This
is illustrated in Fig. 3 in which we explicitly plot and
compare the ‘‘effective mass’’ extracted from the Ds cor-
relator and from its statistical error. This issue becomes a
problem for B meson correlators [38]. It is not a big
problem for the Ds, however, and the statistical errors
that we obtain in Table III are very small.
To determine the physical mass of the Ds meson as

accurately as possible we want to minimize errors coming
from the conversion from lattice units to physical units i.e.
from the lattice spacing. The error on the physical value of
r1 is 0.7%. Applied directly to the Ds mass this would
amount to a sizeable 14 MeV error. This can be avoided
however, by calculating instead the mass difference mDs

�
m�c

=2. Because this is much smaller (480 MeV) it will

have a much reduced absolute error from the lattice spac-
ing [3]. In addition, it is much less sensitive to any errors
from mistuning of the c quark mass because the leading
contribution of mc effectively cancels in this difference.
Indeed this difference can be thought of as the difference in
binding energy between a charmonium meson and a
charm-light meson, and is therefore an important physical
quantity. The fact that it can be calculated accurately in
lattice QCD and compared to experiment is a stringent test
of QCD itself.
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FIG. 2 (color online). Results for the square of the mass of the
pseudoscalar meson made of quarks with masses close to that of
the strange quark mass for the full set of ensembles from Table I.
Errors are statistical errors from the fits to the meson correlators.
The x-axis is the lattice bare mass of the quark, which runs with
lattice spacing from right to left. Very coarse ensembles are
triangles; coarse, crosses; fine, squares; superfine, pluses; ultra-
fine, bursts. Results for heavier sea u=d quark masses at each
lattice spacing are in red, lighter ones are in blue. On the coarse
lattices the very heavy sea masses of set 6 are in pink, the lighter
strange sea mass of set 7 in grey and the large volume results on
set 5 are in green, on top of the result from set 4. The results
show that tuning the quark mass to that of strange depends very
little on the sea-quark masses or on the volume. The dotted line
gives the physical value, with its error, appropriate to lattice
QCD, see text.
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The first stage in the analysis of theDs meson mass is to
determine the difference mDs

�m�c
=2 for tuned c and s

quark masses on each ensemble. As discussed above, we
have results very close to the tuned point on almost every
one of the 11 ensembles. However, it is important to make
sure that all of our results are tuned to the same point
before extrapolation and so we first test the dependence
of mDs

�m�c
=2 as a function of ms and mc. Figs. 4 and 5

show results as a function ofm2
�s
andm�c

for sets 1, 4 and 7

where we have multiple data points with different combi-
nations of mc and ms and so can unravel the separate
dependences. The dependence is plotted against meson
mass rather than directly against the quark mass since the

tuning condition is set by the �c or �s meson mass, so this
is a more direct (and more physical) way to study any
mistuning effects. Note that the mass values of the �c and
�s are above their physical values for the cases given in
Figs. 4 and 5. Since we are only studying small mistuning
effects for the values of the masses that we have closer to

TABLE III. Results for the mass and decay constant of the Ds

meson in units of the lattice spacing for a range of charm and
strange quark masses on each MILC ensemble.

Set amc ams amDs
afDs

1 0.81 0.061 1.4665(8) 0.1970(10)

0.825 0.066 1.4869(7) 0.1994(10)

0.825 0.080 1.5019(6) 0.2042(8)

0.85 0.066 1.5117(8) 0.2004(10)

0.85 0.080 1.5266(6) 0.2053(9)

2 0.825 0.066 1.4869(11) 0.1997(20)

3 0.622 0.0489 1.1890(7) 0.1538(9)

0.65 0.0537 1.2247(5) 0.1561(9)

4 0.63 0.0492 1.2007(5) 0.1559(7)

0.66 0.0546 1.2391(5) 0.1586(6)

0.66 0.06 1.2452(5) 0.1604(6)

0.66 0.063 1.2486(4) 0.1614(6)

0.72 0.0546 1.3027(6) 0.1602(7)

0.72 0.06 1.3086(5) 0.1620(7)

0.72 0.063 1.3120(5) 0.1631(6)

0.753 0.0546 1.3369(6) 0.1610(7)

0.753 0.06 1.3429(5) 0.1629(7)

0.753 0.063 1.3462(5) 0.1639(7)

5 0.63 0.0492 1.2013(5) 0.1561(8)

6 0.625 0.0491 1.1916(7) 0.1553(10)

7 0.619 0.0487 1.1867(10) 0.1548(17)

8 0.413 0.0337 0.84721(23) 0.10836(24)

0.43 0.0358 0.86982(23) 0.10943(24)

0.43 0.0366 0.87079(22) 0.10970(24)

0.43 0.0382 0.87274(21) 0.11028(24)

0.44 0.0358 0.88152(23) 0.10959(27)

0.44 0.0366 0.88249(23) 0.10986(27)

0.44 0.0382 0.88443(22) 0.11044(24)

0.45 0.0358 0.89317(24) 0.10974(27)

0.45 0.0366 0.89414(23) 0.11001(27)

0.45 0.0382 0.89607(23) 0.11059(27)

9 0.412 0.0336 0.84352(26) 0.10779(31)

0.427 0.03635 0.86443(40) 0.1086(5)

10 0.273 0.0228 0.59350(24) 0.07500(27)

11 0.193 0.0161 0.43942(33) 0.05533(39)

0.195 0.0165 0.44270(28) 0.05550(34)
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FIG. 3 (color online). Results for the effective mass of the Ds

correlator and the effective mass of the noise in the Ds correlator
plotted as a function of lattice time for one correlator on the fine
lattices (set 8). The effective mass is obtained from the log of the
ratio of the correlator (or its error) at successive times. At large
times it becomes the mass of the lowest state in the correlator
or its error. The lines compare the results to the expected mass
i.e. the Ds mass for the signal and ðm�s

þm�c
Þ=2 for the

noise.
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FIG. 4 (color online). Results for the mass of the Ds meson
(specifically the difference between that mass and one half of the
�c mass) as a function of the square of the �s meson mass,
acting as a proxy for the strange quark mass. Results are for a
range of different quark masses around the masses of the c and s
quark masses on very coarse set 1 (triangles), coarse set 4
(crosses) and fine set 7 (squares). The lines are fits to the results
for each ensemble allowing linear terms in m2

�s
and m�c

. Here

the lines join points for a fixed c quark mass. See Fig. 5 for the
equivalent as a function of m�c

.
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the physical points, this will give a sufficiently accurate
picture of these effects.

In Fig. 4 we see that the dependence ofmDs
�m�c

=2 on

m2
�s
is linear as we expect, since this corresponds to a linear

dependence on ms. The slope is clearly physical i.e. inde-
pendent of the lattice spacing (whereas the slope against
ms would not be, because of the running of ms itself,
discussed earlier). The value of the slope is 0.20(1) and
this can be compared to an ‘‘experimental’’ slope, albeit
over a much larger mass range, of 0.22 obtained by com-
paring results for the masses of the D and the Ds [37].
Figure 5 also shows linear dependence on mc, expressed
physically as linear dependence on m�c

. The slope does

differ on the very coarse lattices from the others so showing
some lattice spacing dependence in this case. The slope is
also very small �0:05 because, as discussed above, the
leading dependence on mc cancels between mDs

and

m�c
=2. The slope is again similar to the ‘‘experimental’’

value of 0.03 obtained over a much larger mass range from
comparing Bs and Ds mesons [37].

Results from Figs. 4 and 5 can be used to adjust the
values of mDs

�m�c
=2 on each ensemble to the tuned

point, m�c
¼ 2:985 GeV and m�s

¼ 0:6858 GeV. An er-

ror of 50% of any shift is added in quadrature to the
statistical error. The shifts from mistuning are less than
the statistical error on all ensembles except sets 2 (very
coarse) and 10 (superfine). On set 10 the shift is by

1.5 times the statistical error and on set 2 by 4 times
the statistical error. Table IV gives the tuned value of
mDs

�m�c
=2 in GeV on each ensemble along with two

errors. The first is the statistical/tuning error and the second
is that from the error in r1=a on that ensemble. This error is
a factor of 3 smaller than its naive value because of a
cancellation of lattice spacing errors inside the mass dif-
ference. Any change in r1=a means a change to m�c

and

m�s
as well as a change in mDs

�m�c
=2. The results then

need to be retuned to the physical c and s masses and this
largely cancels the change resulting from the change in
r1=a. The error from r1=a uncertainty is much smaller than
the statistical error then in every case. The statistical errors,
which dominate, are at the level of 1 MeV.
We can then extrapolate the tuned values on each

ensemble in the lattice spacing and the sea-quark masses
to the physical point where the lattice spacing is zero and
the sea-quark masses take their real world values. It is
clear from Table IV looking at the coarse and fine ensem-
bles that mDs

�m�c
=2 has no significant dependence on

the sea-quark masses at the level of our 1 MeV statistical
errors. The picture is obscured on the very coarse lattices
by the larger error on set 2 from mistuning. In fact if we
compare sets 1 and 2 at the �c and �s masses correspond-
ing to those available on set 2 (i.e. at somewhat heavier
masses than the correctly tuned point) then we find again
that sets 1 and 2 agree on the value of mDs

�m�c
but now

within an error of 1.5 MeV rather than the 3 MeV in
Table IV.
We expect mDs

�m�c
=2 to be very insensitive to the

sea-quark masses based on chiral perturbation theory. This
couples a nonrelativistic Lagrangian for D and Ds meson
fields to the pion octet and gives an expansion in powers of
�, K and �8 masses for the mass and decay constant of the
appropriate D meson. The Ds has valence c and s masses
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FIG. 5 (color online). Results for the mass of the Ds meson
(specifically the difference between that mass and one half of the
�c mass) as a function of the �c meson mass, acting as a proxy
for the charm quark mass. Results are for a range of different
quark masses around the masses of the c and s quark masses on
very coarse set 1 (triangles), coarse set 4 (crosses) and fine set 7
(squares). The lines are fits to the results for each ensemble
allowing linear terms in m2

�s
and m�c

. Here the lines join points

for a fixed s quark mass. See Fig. 4 for the equivalent as a
function of m2

�s
.

TABLE IV. Values for the mass and decay constant of the Ds

meson and for the decay constant of the �c after tuning to the
physical c and s masses (i.e. the physical �c and �s meson
masses) on each ensemble. Results are in GeV with two errors,
the first from statistics and tuning and the second from the
uncertainty in r1=a on that ensemble.

Set mDs
� m�c

2 (GeV) fDs
(GeV) f�c

(GeV)

1 0.5021(12)(4) 0.2674(14)(3) 0.4753(9)(2)

2 0.5020(32)(4) 0.2671(28)(3) 0.4756(6)(2)

3 0.4889(12)(3) 0.2564(15)(2) 0.4284(3)(1)

4 0.4897(9)(3) 0.2573(12)(2) 0.4291(4)(1)

5 0.4906(9)(3) 0.2576(13)(2) 0.4292(4)(1)

6 0.4909(12)(3) 0.2586(17)(2) 0.4255(5)(1)

7 0.4911(17)(3) 0.2592(28)(2) 0.4286(6)(1)

8 0.4823(6)(2) 0.2525(6)(2) 0.4012(3)(2)

9 0.4817(6)(2) 0.2520(7)(2) 0.3998(3)(2)

10 0.4784(10)(2) 0.2499(9)(3) 0.3945(10)(3)

11 0.4766(13)(4) 0.2481(17)(5) 0.3953(13)(6)
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which have been tuned to the appropriate values so the only
dependence we are interested in here is the dependence on
sea s and u=d quark masses which enter through the
masses of mesons made either purely of sea quarks or of
mixed sea and valence quarks. The leading tree-level de-
pendence on sea-quark masses is a term Cð2ml;sea þ
ms;seaÞ. Loops couple the Ds meson to a virtual DK or

Ds�8 pair. This generates logarithmic terms but with, in
this case, a very benign dependence on sea-quark masses
since none of the associated meson masses vanish in the
chiral limit. These terms can then simply be viewed as
additional polynomial terms in ml;sea and ms;sea. A more

detailed chiral analysis is not useful here because the sea-
quark mass dependence of our results is clearly so small as
to have no useful information in it. We simply need to
make sure that we allow a sufficient error on the extrapo-
lated value at the physical point to allow for any sea-quark
mass dependence that might be there. For this purpose a
simple polynomial expansion in ml;sea and ms;sea suffices.

We take as expansion coefficients �xl and �xs where
�xq ¼ ðmq;sea �mq;sea;physÞ=ms;sea;phys. ms;sea;phys is the sea

(asqtad) strange quark mass at the physical point. We take
this value from results quoted by the MILC Collaboration
[31] for very coarse to superfine and use the analysis of the
ratio of HISQ to asqtad mases from the Appendix to give
the value of ms;sea;phys on the ultrafine lattices. We take

ml;sea;phys ¼ ms;sea;phys=27:2 using the ratio for ml=ms de-

termined by the MILC Collaboration [31]. Table IV shows
thatmDs

�m�c
=2 does have significant dependence on the

lattice spacing, changing by 20 times the statistical error
between very coarse and ultrafine lattices. This is also not
surprising because the charm quark is relatively heavy and
consequently the scale for discretization errors here will be
much higher than that for quantities involving only light
quarks. This is why it is important to have a formalism,
such as HISQ, with very well controlled discretization
errors and to have results at many values of the lattice
spacing. Discretization errors with the HISQ action can
appear only as powers of a2—no odd powers of a are
allowed. The a2 errors appearing at tree-level have been
removed and so the coefficient of a2 terms is Oð�sÞ. The
inclusion of the Naik term with coefficient calculated at
tree-level means that all ðmcaÞ2n discretization errors are
removed at leading order in v2=c2 where v2 is the velocity
of the charm quark in the Ds or �c. Thus discretization
errors from the HISQ action are expected to be at the level
of ðv2=c2ÞðmcaÞ2n, except for the a2 term which is further
suppressed by �s. There are additional �sa

2 and tree-level
a4 and higher errors coming from the gluon action, how-
ever. These we would typically expect to have a scale of a
few hundred MeV (i.e. �QCD) associated with them rather

than mc, so their effects will be included if we allow for a
scale of mc.

We therefore take the following fit form to extrapolate
� ¼ mDs

�m�c
=2 to the physical point:

�ða; �xl; �xsÞ

¼ �phys

�
1þ X4

j¼1

cjðmcaÞ2j þ 2bl�xlð1þ cbðmcaÞ2Þ

þ 2bs�xsð1þ csðmcaÞ2Þ þ 4bllð�xlÞ2

þ 2bls�xl�xs þ bssð�xsÞ2
�
: (15)

We use a constrained fit [34] to this form which allows us
to estimate the errors arising from different pieces of the fit.
The prior value and width for�phys we take as 0.5, with the

very broad width of 0.2. Note that we give the discretiza-
tion errors a scale ofmc. The prior value and width that we
take on the cn parameters is 0.0(2), estimating v2=c2 for the
c quark inside the Ds to be 0.2. c1, which multiplies the a2

errors, is a factor of �s smaller from the arguments above
so we take the prior for c1 to be 0.00(6). The b parameters
multiplying the linear sea-quark mass dependence are
taken to have prior values and widths of 0.00(7). The size
of the prior width here is set by the fact that the dependence
of� on the valence light quark mass inside theDs is known
from a comparison of D and Ds. This would give a slope
with valence mass, in units of the strange mass, of 0.2. Sea-
quark mass effects are a factor of at least 3 smaller than
valence mass effects in gold-plated quantities, so we take a
prior width of 0.07. By the same reasoning we allow the b
parameters multiplying the quadratic dependence to be as
large as ð0:2Þ2=3, i.e. we take the prior on these parameters
to be 0.000(13).
The extrapolated result at the physical point, �phys from

the fit above is 0.4753(22) MeV with a �2=dof of 0.2 for
11 degrees of freedom. We fit all of the data including the
two volumes for the coarse lattices, sets 4 and 5. Missing
out set 5 makes no appreciable difference to the result.
Modifications to the fit form above also do not change this
number significantly. Here we itemize the effect of some of
them:
(i) changing the prior on all ci (including c1) to 0.0(5)

changes �phys 0:4� and increases the error by 20

(ii) adding two extra powers of a2 into the sum on j in
Eq. (15) (i.e. using 6 terms instead of 4) does not
change �phys or the error at all. The same is true for

subtracting two powers of a2 (i.e. using 2 terms
instead of 4).

(iii) adding extra discretization errors into the sea-quark
mass dependence (i.e. a term proportional to
ðmcaÞ4 in each of the terms linear in �xl and �xs
and a term proportional to ðmcaÞ2 in each of the
quadratic terms) makes no difference at all.

(iv) missing out the sea-quark mass dependence alto-
gether makes no difference to �phys but increases

the �2 value to 0.33.
(v) changing all the �x values by 10% in either direction

makes no appreciable difference, nor does changing
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them within their error bars on, for example, the
ultrafine or fine lattices.

(vi) missing out the very coarse lattice results makes no
difference; missing out the very coarse and the
coarse shifts �phys by 0:4� (1 MeV), and increases

the error to 3 MeV as �2 drops to 0.1.
(vii) missing out the ultrafine result shifts �phys by 0:2�

(0.5 MeV) and increases the error to 3 MeV.
Figure 6 shows the results plotted against the square of

the lattice spacing along with the fitted curve above, taken
at the physical sea-quark mass values (i.e. �xl ¼ �xs ¼ 0).
The value plotted on the y-axis is mDs

itself, generated by

adding m�c
=2 ¼ 1:4925 GeV to �. The result at a ¼ 0 is

then the value of the Ds mass in a world without electro-
magnetism. To compare to experiment we need to estimate
and add in the effect of the electromagnetic repulsion
between the positively charged quark and antiquark inside
theDs. To do this we compare experimental masses for the
Dþ,D0,Ds, B

þ, B0 and Bs to a phenomenological formula
allowing for electromagnetic effects proportional to the
product of quark and antiquark electric charges inside the
meson as well as the square of the electromagnetic charge
on the light quark. This latter term is a self-energy effect,
not needed for the heavy quarks because it will cancel in all
the differences taken (and therefore is absorbed into the
heavy quark mass). In comparing charged and neutral
mesons containing u and d quarks we must allow for the
mass difference between u and d quarks. Then we can
write [39]:

MðQ;qÞ¼MsimðQ;qÞþAeqeQþBe2qþCðmq�mlÞ (16)

where Msim is the mass of the meson in the absence of
electromagnetism and with mu ¼ md. If we take experi-
mental results for the meson masses above along with
ms=ml ¼ 27:2 and mu=md ¼ 0:42 we obtain A �
4 MeV, B � 3 MeV and Cms � 100 MeV. The latter
quantity differs by 10% between D and B mesons, indicat-
ing 1=mQ effects at this level that we ignore here. The

resulting electromagnetic shift for the Ds is then 1.3
(7) MeV, where we take an error of 50% on the shift, safely
encompassing 1=mQ effects and other limitations of this

model. Adding 1.3 MeV to our fit result gives the shaded
band in Fig. 6, where we now include our full error of
3.2 MeV. The full error budget is discussed below.
Figure 7 shows the sea-quark mass dependence of our

results plotted against �xl. The fitted curves are those from
Eq. (15). For each group of ensembles we use the lattice
spacing value from the ensemble with lightest sea-quark
mass to plot the fit curve. No significant dependence on �xl
or �xs is evident.
Table V shows the complete error budget for mDs

from

our calculation. The error of 2.2 MeV from our fit to �
above includes the effect of statistical errors (including
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FIG. 6 (color online). Results for the mass of the Ds meson
tuned to the correct valence c and s mass on each ensemble from
Table IV as a function of the square of the lattice spacing. The
line shows the result of the fit described by Eq. (15), taken at the
physical values for the sea-quark masses. The shaded band gives
our final result adjusted for electromagnetic effects and with the
full error as described in the text. The black burst gives the
experimental result.
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FIG. 7 (color online). Results for the mass of the Ds meson
tuned to the correct valence c and s mass on each ensemble from
Table IV as a function of the difference between the sea light
quark mass and the physical value scaled by the physical strange
quark mass (i.e. the parameter �xl). The results are clearly
separated by their lattice spacing value with very coarse at the
top and ultrafine at the bottom. The lines show the result of the fit
described by Eq. (15), taken at the value of the sea strange quark
mass (�xs) and using the lattice spacing value corresponding to
the ensemble with smallest �xl in that group. The results on the
coarse lattices at �xl ¼ 0:25 include numbers at two different
values of �xs as well as at two different volumes. This gives an
idea of the spread in results from these effects. The lowest line is
the fit curve in �xl at a ¼ 0 and �xs ¼ 0. The shaded band gives
our final result adjusted for electromagnetic effects and with the
full error as described in the text. The black burst gives the
experimental result.
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valence mass mistuning errors), r1=a errors and errors
arising from the extrapolation in sea-quark masses and
lattice spacing. We can separate these errors as described
in [32] by working out how the final error changes when
any of the inputs to the fit changes and dividing �2 into a
sum of terms coming from each input:

�2 ¼ �2
a þ �2

b þ . . . : (17)

Inputs to the fit include groups of priors associated with
pieces of the fit function as well as statistical errors on the
data points. Here we streamline the process by calculating
explicitly the differential of �2 with respect to the inputs
and so determining �2

a, �
2
b etc. directly. The resulting

breakdown of errors given in Table V shows them to be
dominated by statistical errors.

Additional errors to be included in the error budget are
errors that affect the final result in physical units but do not
affect the fit above. The first of these is the overall error in
the physical value of r1 of 0.7%. This affects the tuning of
all the valence masses but, as described earlier, the effect
on � is reduced by a factor of 3 because of cancellation
between scale shifts and tuning shifts. More precisely we
find a 1.0 MeV error on mDs

from the r1 uncertainty. The

effect on � of the uncertainty in the physical values of the
�c mass and the�s mass used in tuning can be judged from
Figs. 5 and 4. The error on the �c mass has negligible
effect, again because most of the �c mass dependence
cancels out in �. The uncertainty in the �s mass is not
negligible, however, but gives an uncertainty in �, which
we then transfer to mDs

, of 1.1 MeV. The error on the

physical value of the �c reappears when we reconstruct
mDs

from � and m�c
. It therefore gives a 1.5 MeVerror to

mDs
coming from electromagnetic and annihilation effects

in the �c meson mass. The error from electromagnetic
effects on theDs mass itself is 0.7 MeVas described earlier.

The error from the finite volume of the lattices we
estimate to be negligible from finite volume chiral pertur-
bation theory. Our lattice results comparing two different
volumes (sets 4 and 5) show no significant effect at the
level of 0.4
Our lattice calculation includes u, d and s quarks in the

sea but no c quarks, although gluon field configurations are
now being generated that do include them [40]. In the real
world c quarks do appear in the sea and we can estimate the
effect of these perturbatively because the c quark mass is
relatively heavy, i.e. larger than typical momenta appearing
inside the mesons we are discussing. The effect of a
massive quark loop in the gluon propagator which gives
rise to the heavy quark potential is simply to add a correc-
tion to the potential which is proportional to a delta func-
tion at the origin [41]:

VðrÞ ¼ �Cf�s

r
! �Cf�s

�
1

r
þ �s

10m2
c

�3ðrÞ
�
: (18)

Although this additional term is a spin-independent inter-
action its effects in charmonium can be judged by com-
parison to that of the hyperfine potential. The hyperfine
potential induces a mass splitting of � 120 MeV from a
term which has the same � function form as above but a
coefficient 280 ( ¼ 80�=ð3�sÞ) times as large. Thus we
expect the shift of the �c (and J=c Þ masses caused by the
presence of c quarks in the sea to be approximately
0.4 MeV. The Ds meson has much smaller momenta typi-
cally inside it and so we expect a much smaller effect from
c quarks in the sea on the Ds meson mass. If we set that
effect to zero, so that conservatively there is no cancella-
tion of this effect in the quantity �, then we obtain an
uncertainty in our final Ds mass of 0.2 MeV, or 0.01%.
Our final result for mDs

is then 1.9691(32) GeV to be

compared to an experimental result of 1.9685(3) GeV [37].

B. fDs

The decay constant of the Ds meson is the main result
from this paper. Having discussed in detail the tests that
can be successfully done of the Ds mass, we now discuss
the analysis of the decay constant.
Table III gives the raw results for the decay constant on

the 11 different ensembles we have studied. As formDs
it is

important to be able to understand the dependence of fDs

on the valence c and smasses and to tune the result on each
ensemble to the physical values for these masses. As
described above, this corresponds to tuning them to physi-
cal values of the �c and �s meson masses. Figures 8 and 9
show the dependence of fDs

on these meson masses on

very coarse, coarse and fine lattices. Again we are using
results somewhat above the physical values for the �s and
�c masses to extract the dependence which will then allow
us to tune accurately our results that are much closer to the
physical values. As expected, the dependence on m2

�s
�

ms is linear and the slope does not change with lattice

TABLE V. Full error budget for mDs
, fDs

and f�c
given as a

percentage of the final fitted value. Note that in the case of f�c

the top six errors are those to be considered for a lattice QCD
calculation that matches this one. As discussed in the text, the
bottom three errors are included for completeness.

Error mDs
fDs

f�c

statistical/valence tuning 0.094% 0.57% 0.45%

r1=a 0.025% 0.15% 0.16%

r1 0.051% 0.57% 0.27%

a2 extrapoln 0.044% 0.40% 0.24%

mq;sea extrapoln 0.048% 0.34% 0.09%

finite volume 0% 0.10% 0%

m�s
0.056% 0.13% -

em effects in Ds 0.036% 0.10% -

em and annihln in m�c
0.076% 0.00% 0.05%

em effects in �c - - 0.40%

missing c in sea 0.01% 0% 0.01%

Total 0.16% 1.0% 0.6% (top 6)
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spacing. The value of the slope, 0:06 GeV�1 can be com-
pared to the change in fDq

expected from q ¼ s to q ¼ l

[3]. This corresponds to a somewhat larger slope of
0:09 GeV�1 but is over a much larger range where non-
linear effects may appear. The slope of fDs

against m�c

falls from very coarse to fine lattices. This has interesting
implications for the behavior of the heavy-strange meson
decay constant as a function of heavy quark mass. It is clear
from the study of the �s and Ds mesons that the decay
constant increases as the ‘‘heavy’’ quark mass is increased
from ms to mc. However, above mc the behavior is less
clear because lattice QCD calculations have so far not been
accurate enough to distinguish clearly what is happening to
within 5–10% errors. There are known to be large correc-
tions to the 1=

ffiffiffiffiffiffiffi
mQ

p
behavior expected fromHQET because

fDs
and fBS

are not very different [42]. This is consistent

with a slope against heavy quark mass for fDs
that tends to

zero. It is clear that understanding this dependence also
requires good control of discretization errors.

Again we use the dependence shown in these plots to
make small tuning shifts to the values of fDs

on each

ensemble so that they correspond to the correct result for
m�c

¼ 2:985 GeV andm�s
¼ 0:6858 GeV. Table IV gives

the tuned values on each ensemble. Because the statistical
errors are about twice as large for fDs

as for � and the

dependence on m�c
and m�s

is smaller, the tuning shifts,

and the errors from them, are very much less than the
statistical errors on all ensembles. Even on set 2 the shift

from mistuning is only 1�. The error in fDs
from the

uncertainty in r1=a is only slightly reduced over its naive
value from cancellations. It is also much smaller than the
statistical error everywhere. It is given as the second error
in Table IV.
Again it is clear from Table IV that the sea-quark mass

dependence of the results is smaller than our 1–2 MeV
statistical errors, but the lattice spacing dependence is not.
We therefore fit the sea-quark mass dependence with a
relatively simple form that allows an error for what little
dependence there is to be included in the final extrapolated
value at the physical point. For the lattice spacing depen-
dence we include relatively high order terms to make sure
that a sufficiently large error is included in the final ex-
trapolated value for this dependence. The fit form is the
same as that used for �:

fDs
ða; �xl; �xsÞ

¼ fDs;phys

�
1þ X4

j¼1

cjðmcaÞ2j þ 2bl�xlð1þ cbðmcaÞ2Þ

þ 2bs�xsð1þ csðmcaÞ2Þ þ 4bllð�xlÞ2

þ 2bls�xl�xs þ bssð�xsÞ2
�
: (19)

We take the same prior values and widths as before except
that for fDs;phys we take to be 0.25(10).
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FIG. 8 (color online). Results for the decay constant of the Ds

meson as a function of the square of the �s meson mass, acting
as a proxy for the strange quark mass. Results are for a range of
different quark masses around the masses of the c and s quark
masses on very coarse set 1 (triangles), coarse set 4 (crosses) and
fine set 7 (squares). The lines are fits to the results for each
ensemble allowing linear terms in m2
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and m�c

. Here the lines

join points for a fixed c quark mass. See Fig. 9 for the equivalent
as a function of m�c
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FIG. 9 (color online). Results for the decay constant of the Ds

meson as a function of the �c meson mass, acting as a proxy for
the charm quark mass. Results are for a range of different quark
masses around the masses of the c and s quark masses on very
coarse set 1 (triangles), coarse set 4 (crosses) and fine set 7
(squares). The lines are fits to the results for each ensemble
allowing linear terms in m2

�s
and m�c

. Here the lines join points

for a fixed s quark mass. See Fig. 8 for the equivalent as a
function of m2

�s
.

C. T. H. DAVIES et al. PHYSICAL REVIEW D 82, 114504 (2010)

114504-14



The extrapolated result at the physical point, fDs;phys is

0.2480(19) GeV with a �2=dof of 0.2 for 11 degrees of
freedom. The fit is robust to changes in the fitting function:

(i) changing the prior on all the ci (including c1) to 0.0
(5) changes fDs;phys by 0:8� and increases the error

by 30%.
(ii) adding or subtracting two powers of a2 into the sum

on j in Eq. (19) does not change fDs;phys or its error.

(iii) adding an extra power of discretization errors into
both the linear and quadratic sea-quark mass de-
pendent terms makes no difference.

(iv) missing out the sea-quark mass dependence alto-
gether changes fDs;phys by 0:2� but increases the �2

value to 0.3.
(v) Changing all the �x values by 10% in either direc-

tion makes no appreciable difference, nor does
changing them within their error bars on, for ex-
ample, the ultrafine or fine lattices.

(vi) missing out the very coarse lattice results does not
change fDs;phys; missing out the very coarse and the

coarse shifts fDs;phys by 0:3� (1 MeV).

(vii) missing out the ultrafine result shifts fDs;phys by

0:4� (1 MeV).
Figure 10 shows the results plotted against the square of

the lattice spacing. The line is the fit curve for the physical
sea-quark mass values (i.e. �xl ¼ �xs ¼ 0). The shaded
band is then the final physical result including the full error
of 1.0% (2.5 MeV), to be discussed below and broken
down into its component parts in Table V.

We construct the error budget as before, separating the
error of 1.9 MeV resulting from the extrapolation to the

physical point into its components of statistical error, r1=a
error and errors from extrapolation in the lattice spacing
and in the sea-quark masses. Here the contributions from
statistical errors and the different extrapolation errors are
comparable.
The error in the physical value of r1 is 0.7%. This

becomes a 0.6% error in fDs
when the effects of r1 on

shifting the value of m�s
are taken into account. The effect

of the 0.6% uncertainty in the physical value of m�s
can

similarly be estimated from the dependence of fDs
on the

�s mass at 0.1%. The uncertainty in fDs
from the uncer-

tainty in the value of the �c mass is negligible. The error
from working on a finite spatial volume instead of infinite
volume is estimated at 0.1% from comparing finite and
infinite volume chiral perturbation theory. It is clear from
our results (see Table III) that we see no significant volume
dependence within our 0.5% statistical errors, which is in
agreement with chiral perturbation theory, but that pro-
vides a stronger constraint.
The size of electromagnetic effects inside the Ds can be

bounded by the size of these effects on the �c. By allowing
for an electromagnetic contribution to the heavy quark
potential we estimate that f�c

could be increased by up

to 0.4% by these effects. Since theDs has one quark of half
the electromagnetic charge and is also much larger, so less
sensitive to short-distance electromagnetic effects, we con-
servatively take an error of 0.1% from internal electromag-
netic effects [43].
The error resulting from missing c quarks in the sea can

also be bounded by the size of such effects on f�c
. In

Sec. III A we discussed a comparison between the hyper-
fine potential in charmonium and that induced by adding c
quarks in the sea. The hyperfine potential causes the dif-
ference between fJ=c and f�c

, which we will see in the

next section is very small, 3%. The c-in-the-sea potential
is 280 times smaller and so will produce a completely
negligible effect on f�c

and therefore also on fDs
.

Figure 11 shows the results for fDs
as a function of the

sea light quark mass, normalized to the strange mass as in
Eq. (A3). The lines show the fitted curves at the appropriate
values of lattice spacing and sea strange quark mass, along
with the final physical curve and final result with error
band. No significant dependence on sea-quark masses is
seen.
Our final result for fDs

is 0.2480(25) GeV, to be com-

pared to the October 2010 average from the Heavy Flavor
Averaging Group of 0.2573(53) GeV [25].

C. f�c

Here we study the remaining independent quantity that
can be extracted from the pseudoscalar correlators calcu-
lated here, the decay constant of the �c meson. Although
this cannot be directly related to any process measurable in
experiment, it can be compared between lattice QCD
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FIG. 10 (color online). Results for the Ds decay constant tuned
to the correct c and s mass on each ensemble as a function of the
square of the lattice spacing. The line shows the result of the fit at
the physical value for the sea-quark masses, as described in the
text. The shaded band gives our final result with the full error bar
as described in the text.
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calculations using different formalisms for the c quarks.
Since we have particularly accurate results here, we give a
value for f�c

that others can use to test their formalisms

against.
The raw results for f�c

on each ensemble are given in

Table II. Since the �c contains only charm quarks we have
only to plot f�c

against m�c
to interpolate to the correct

point on each ensemble. Because this is simpler than
having to separate the dependence on two masses, as was
done for theDs, we can plot the results from many more of
the ensembles. Figure 12 shows the results. As expected,
the dependence is linear (we allowed for quadratic terms in
the fit, but these were small) but with a slope that depends
on the lattice spacing. The figure also emphasizes how
little sea-quark mass dependence there is, in line with the
evidence from Fig. 1. Some is visible above our very small
statistical errors on the coarse and fine ensembles,
however.

Again we use the dependence shown in Fig. 12 to make
small tuning shifts to the values of f�c

on each ensemble so

that they correspond to the correct result for m�c
¼

2:985 GeV. Table IV gives these tuned values. The statis-
tical/tuning errors are small but the r1=a errors are even

smaller because of cancellation when the retuning is done
on changing the lattice spacing. Once again the lattice
spacing dependence is the most striking feature of these
results.
We fit the tuned values to the same functional form as

used for mDs
(Eq. (15)) and fDs

(Eq. (19)). We take the

same prior values and widths for the parameters except that
for the physical value of f�c

, f�c;phys we take 0.4(2) and for

the coefficients, ci, for the discretization errors we take 0.0
(3), since v2 for a c quark is expected to be somewhat
higher than in a Ds.
The extrapolated value at the physical point, f�c;phys, is

0.3947(20) GeV with a �2=dof of 0.3 for 11 degrees of
freedom. Once again we tested how robust the fit was:
(i) changing the prior on all the ci (including c1) to 0.0

(8) changes f�c;phys by 0:5� (1 MeV) and increases

the error by 40%.
(ii) adding two powers of a2 into the sum on j in the fit

equation does not change f�c;phys or its error; sub-

tracting two powers changes f�c;phys by 0:5�

(1 MeV) and reduces the error by 30%.
(iii) adding an extra power of discretization errors into

both the linear and quadratic sea-quark mass de-
pendent terms makes no difference.

(iv) missing out the sea-quark mass dependence alto-
gether does not change f�c;phys but increases the �

2

value to 1.
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FIG. 11 (color online). Results for the decay constant of theDs

meson tuned to the correct valence c and s mass on each
ensemble from Table IV as a function of the difference between
the sea light quark mass and the physical value scaled by the
physical strange quark mass (i.e. the parameter �xl). The results
are clearly separated by their lattice spacing value with very
coarse at the top and ultrafine at the bottom. The lines show the
result of the fit described by Eq. (19), taken at the value of the sea
strange quark mass (�xs) and using the lattice spacing value
corresponding to the ensemble with smallest �xl in that group.
The results on the coarse lattices at �xl ¼ 0:25 include numbers
at two different values of �xs as well as at two different volumes.
This gives an idea of the spread in results from these effects. The
lowest line is the fit curve in �xl at a ¼ 0 and �xs ¼ 0. The
shaded red band gives our final result with the full error as
described in the text.
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FIG. 12 (color online). Results for the �c decay constant as a
function of the �c mass for the different ensembles in Table I. As
in Fig. 1, very coarse ensembles are triangles; coarse, crosses;
fine, squares; superfine, pluses. Errors shown are statistical only.
Results for heavier sea u=d quark masses at each lattice spacing
are in red, lighter ones are in blue. On the coarse lattices the very
heavy sea masses of set 6 are in pink, the lighter strange sea mass
of set 7 in grey and the large volume results on set 5 are in green,
on top of the result from set 4. The lines are fits to the results for
one ensemble at each lattice spacing allowing linear and qua-
dratic terms in m�c

.
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(v) Changing all the �x values by 10% in either direc-
tion makes no appreciable difference, nor does
changing them within their error bars on, for ex-
ample, the ultrafine or fine lattices.

(vi) missing out the very coarse lattice results does not
change f�c;phys appreciably; neither does missing

out the very coarse and the coarse but the error
increases by 50%.

(vii) missing out the ultrafine result shifts f�c;phys by

1:4� (2.5 MeV) and increases the error by 40%.
The error budget is constructed as before, estimating the

split in the error obtained from the fit into components
from statistics, r1=a and extrapolations in a2 and the sea-
quark masses. In addition the error from the uncertainty in
the physical value of r1 becomes 0.3%, allowing for the
cancellation that reduces the sensitivity below the naive
0.7%. The error from finite volume effects we take to be
negligible based on the chiral perturbation theory studies
of the much larger Ds meson.

As we will discuss in Sec. IV, f�c
is not a quantity that

can be compared directly to experiment. We include it here
as a calibration point for lattice QCD studies of charm
physics. As such, we do not have to include errors arising
from effects outside a pure lattice QCD calculation includ-
ing u, d, and s sea quarks and taking the �c mass to be
2.985 GeV. Thus in Table V only the top six errors in the
final column should be included for such a calculation and
the bottom three ignored.

For completeness we discuss other sources of error that
may need to be considered if lattice QCD calculations
differing in detail from ours are compared to it. The error
that arises from the 3MeVuncertainty in the physical value

of the �c mass can be estimated from the slope of f�c
with

m�c
in Fig. 12. This gives an error of 0.05% with f�c

increasing with the value of m�c
. Internal electromagnetic

effects inside the �c will also increase f�c
. In Sec. III B we

estimated this effect at 0.4% (but lattice QCD calculations
will not typically include electromagnetic effects). The
effect of including c quarks in the sea will also be to
increase f�c

. In Sec. III B we estimated this as 0.01%,

based on a comparison to fJ=c that will be described in

Sec. IVB3.
Figure 13 shows f�c

against a2 in fm2 with the fit curve

for the physical sea-quark mass values. The shaded band is
the final physical result including the full 0.6% error, i.e.
0.3947(24) GeV.
Figure 14 shows the results for f�c

as a function of the

sea light quark mass, normalized to the strange mass as in
Eq. (A3). The lines show the fitted curves at the appropriate
values of lattice spacing and sea strange quark mass, along
with the final physical curve and final result with error
band. No significant dependence on sea-quark masses is
seen.

 0.38

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 0  0.005  0.01  0.015  0.02  0.025

f
c  /

 G
eV

a2 in fm2

FIG. 13 (color online). Results for the �c decay constant tuned
to the correct c mass on each ensemble as a function of the
square of the lattice spacing. The line shows the result of the fit
described in the text. The shaded band gives our final result with
the full error bar as described in the text.
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FIG. 14 (color online). Results for the decay constant of the �c

meson tuned to the correct valence c mass on each ensemble
from Table IV as a function of the difference between the sea
light quark mass and the physical value scaled by the physical
strange quark mass (i.e. the parameter �xl). The results are
clearly separated by their lattice spacing value with very coarse
at the top and ultrafine at the bottom. The lines show the result of
the fit described in the text, taken at the value of the sea strange
quark mass (�xs) and using the lattice spacing value correspond-
ing to the ensemble with smallest �xl in that group. The results
on the coarse lattices at �xl ¼ 0:25 include numbers at two
different values of �xs as well as at two different volumes. This
gives an idea of the spread in results from these effects.
The lowest line is the fit curve in �xl at a ¼ 0 and �xs ¼ 0.
The shaded blue band gives our final result with the full error as
described in the text.
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IV. DISCUSSION

A summary of the results from this calculation is then:

mDs
¼ 1:9691ð32Þ GeV fDs

¼ 0:2480ð25Þ GeV
f�c

¼ 0:3947ð24Þ GeV: (20)

A. Comparison to our previous results

Our new results improve on our 2007 results [3] in
several ways, as described earlier. It is worth discussing
the effect of these changes on the final numbers because,
particularly in the case of fDs

, the shift from 2007 is

significant.
Our 2007 result for mDs

was 1.962(6) GeV obtained

from very coarse, coarse and fine ensembles. The lattice
spacing was fixed using the quantity r1 as here, but setting
the physical value of r1 to 0.321(5) fm. The error on mDs

from this uncertainty in r1 was 0.2% i.e. 4 MeV. Since then
we have improved significantly the calibration of the lattice
spacing by improving the determination of the physical
value of r1 to 0.3133(23) fm. This has used improved
determinations of r1=a on each ensemble by the MILC
Collaboration [31]. The change in the value of r1 repre-
sents 1:5� and therefore we expect mDs

to change by

approximately 6 MeV. In fact the change has been 7 MeV.
Of course the change in r1 has not been the only change.

The lattice spacing values on individual ensembles have
moved relative each other with changes in r1=a values.
These have moved furthest on the very coarse set 1, chang-
ing by 1% or 2�, but with some changes of up to 0.5% (1�)
on the coarse ensembles. Values on the fine ensembles have
not shifted significantly. The relative shifts change the
lattice spacing extrapolation slightly, as does our improved
tuning of the charm quark mass (the strange mass was
tuned within the chiral extrapolation previously using re-
sults for the K and � meson masses). We also have addi-
tional determinations of the sea-quark mass dependence.
These other effects largely cancel each other, however, in
this case. Our new error budget shows an improved error
coming from the determination of r1 and this is the main
effect behind the reduction of total error from 0.3%
to 0.2%.

Our fDs
result has changed by 2.7% (from 0.2415

(32) GeV) which is a shift of 2�. From our error budget
the change expected from the change in r1 is 1.5%.
Combined with changes in r1=a and improved tuning,
however, results on the fine and very coarse ensembles
have changed by up to 2%. This has affected the continuum
extrapolation. Sea-quark mass effects, although not signifi-
cant either now or before, have also changed in the same
direction. This has meant that the 0.3% sea-quark mass
extrapolation error has added linearly to (some of) the
0.5% continuum extrapolation and the roughly 2% shift,
rather than in quadrature.

The ratio fDs
=fD is not very sensitive to r1 and so,

although we have not yet performed an improved analysis
of fD, we would not expect this ratio to change very much.
If we take our previous result for fDs

=fD, but double the r1
uncertainty and add it linearly to the a2 and mu;d extrapo-

lation errors to allow for the behavior seen in fDs
, we

would obtain an error of 1.5% on the ratio, giving 1.164
(18). Combined with our new result for fDs

this gives a

value for fD of 0.213(4) GeV, to be compared to a CLEO
result of 0.206(9) GeV [13]. We emphasize that our new
value for fD does not result from a new analysis of fD itself
but simply from the change in fDs

given here.

Our 2007 results for f� and fK change a little when the
new value for r1 is used. Using the fitting procedure
described in the appendices of [35] (but not including the
experimental results for f� and fK in the fit data), we find
f� ¼ 132ð2Þ MeV and fK ¼ 159ð2Þ MeV which agree
within errors with our 2007 results [3] and with experiment
[37] to within about 1:5�.

B. Comparison to other lattice
results and to experiment

1. mDs

As discussed in Sec. III A, the accurate determination of
the mass of the Ds meson is an important test of the
calculation of fDs

. Our result, 1.9691(32) GeV, is in good

agreement with experiment, as shown in Fig. 6. The ex-
perimental error is 0.3 MeV [37]. To improve the lattice
QCD error of 3 MeV further would require improved
statistical errors on the very fine lattices but also improved
errors from electromagnetic=�c annihilation effects that
are not currently included in lattice QCD calculations. It is
impressive that lattice QCD calculations have reached the
point where electromagnetic effects have to be considered
in the match to experiment.
Other lattice QCD formalisms for c quarks are not as

highly improved as HISQ. They then have more difficulty
in handling charmonium and so fix the c quark mass from
the Ds. However, we believe that it is still important to
check the masses of other mesons containing c quarks as a
test of systematic errors. The easiest quantity to compare is
the one defined earlier as � ¼ mDs

�m�c
=2, the differ-

ence in binding energy between charmonium and Ds. Our
result for this is plotted in Fig. 15. A variant of � was
recently calculated using the Fermilab heavy quark formal-
ism for c quarks, combining this with light asqtad quarks
on the MILC very coarse, coarse and fine ensembles [44].
The c mass is fixed from the energy-momentum relation
for theDs meson (because the energy at zero momentum is
not equal to the mass), which leads to sizeable statistical
errors in the tuning process, growing with heavy quark
mass [45]. Typically the ‘‘kinetic mass’’ for the Ds is
obtained to 2%. The Fermilab lattice/MILC collaborations

quote a result for �0 ¼ mð �DsÞ �mð1SÞ=2 of 0:529� 7þ12
�0
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with a partial error budget [44]. Here �Ds indicates the spin-

average mass of the Ds and the D	
s and mð1SÞ is the spin

average of the masses of the J=c and the �c. The spin
average is used to reduce their discretization error from
spin-dependent terms, but the D	

s does have a strong decay
mode, albeit Zweig-suppressed, that will lead to an addi-
tional systematic error in the lattice QCD calculation. The
first error given above is from statistics and extrapolation
uncertainties and the second from the physical value of r1
which they take as 0:318þ0:000

�0:007 fm. The Fermilab Lattice/

MILC result agrees with experiment and is plotted in
Fig. 15 for comparison to our result for �. More detailed
comparison between the results needs improved accuracy
for those from the Fermilab formalism.

2. fDs

Figure 16 compares the result for the Ds decay constant
from this paper to other lattice QCD calculations that
include the effect of sea quarks. The Fermilab Lattice/
MILC result of 260(10) MeV is a preliminary one from a
conference presentation [46], updated from their original
2005 calculation [7] in a number of ways but including an
update of the physical value of the parameter r1 used to set
the lattice spacing as we have done here. Their calculation
uses MILC gluon field configurations as we do, but at the
three coarsest lattice spacing values that we have used. The

Fermilab formalism for c quarks is combined with the
asqtad formalism for the s quarks. As explained above
the c quark mass is tuned from the dispersion relation for
Ds mesons. In the Fermilab formalism there is no PCAC
relation and so the temporal axial current operator that
annihilates the Ds in its leptonic decay (Eq. (11)) must
be renormalized to match the continuum current operator
that couples to the W. This is done by a perturbative
calculation to Oð�sÞ after taking a ratio to vector current
operators. The systematic uncertainty from this approach is
in principle Oð�2

sÞ ( � 5%), but it is argued in [46,47] that
a significantly smaller (1:4%þ 0:3%) error be used which
is the square of the one-loop contribution. It would be
useful to test this on a calculation such as fK where the
result is well-known [48]. With relativistic formalisms
such as the HISQ formalism used here and the twisted
mass formalism to be discussed below, the existence of the
PCAC relation means that the issue of renormalization
does not arise. Also in both cases, fK can be calculated
as well as fDs

as a test of the error analysis.

Figure 16 also includes the result 244(8) MeV from the
European Twisted Mass Collaboration [49] using the
twisted mass formalism for all of the quarks. This formal-
ism is an improved version of the Wilson formalism with
discretization errors starting at Oða2Þ, somewhat worse
than the Oð�sa

2Þ for HISQ, but also having a partially

 0.45  0.5  0.55

 or  (GeV)

FNAL/MILC: 0912.2701

HPQCD: this paper

Experiment

FIG. 15 (color online). Summary of full lattice QCD results for
the difference of binding energy between charm-strange and
charmonium states. � uses pseudoscalar mesons Ds and �c

and compares the result from this paper to experiment, given
by the appropriate red point and shaded band). �0 uses a spin-
average of the pseudoscalar and vector states and compares the
result from the Fermilab Lattice/MILC Collaborations to experi-
ment. Our result corresponds to the complete error budget given
in Table V and is corrected for missing electromagnetic effects.
The Fermilab Lattice/MILC result includes both errors given in
[45] but has not been corrected for missing electromagnetic
effects.

FIG. 16 (color online). Comparison of the result from this
paper for the Ds decay constant with those from other lattice
QCD calculations that include the effect of sea quarks. The
Fermilab Lattice/MILC result is a preliminary one but also
includes the effects of u, d and s quarks in the sea. The
ETMC result includes only u and d quarks in the sea. We
show also a recent average of experimental results from the
Heavy Flavor Averaging Group [25] and two separate averages
over the �	 and 
	 channels. Experimental results for fDs

convert the leptonic decay rate to a decay constant using
Eq. (21) and using an input value for Vcs (see text).

UPDATE: PRECISION Ds DECAY CONSTANT FROM . . . PHYSICAL REVIEW D 82, 114504 (2010)

114504-19



conserved axial current so no renormalization issues.
ETMC include only the effect of u and d quarks in the
sea, however, and it is not clear what systematic error to
take for missing s quarks that are there in the real world.
We cannot use perturbative arguments, as we have done
here to account for the missing c quarks in the sea. ETMC
are now improving their calculations to include both s and
c sea quarks [50].

The experimental results shown on Fig. 16 are the
October 2010 averages from the Heavy Flavor Averaging
Group [25], using recent CLEO [21–23], BABAR [24,26]
and Belle [15] results from measurement of the Ds ! �	
and Ds ! 
	 decay rates. To determine fDs

from experi-

ment the measured leptonic branching fraction, corrected
for electromagnetic radiation [43], is used in

fDs
¼ 1

GFjVcsjmlð1�m2
l =m

2
Ds
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�BðDs ! l	Þ

mDs

Ds

s
: (21)

Avalue for Vcs must be assumed. In the past Vcs ¼ Vud has
often been taken (see, for example, [21]), assuming 2� 2
CKM unitarity. HFAG take the 2010 Particle Data Tables
result for Vcs (0.97345(16)) from a full CKM matrix uni-
tarity fit [25,37]. These two alternatives for Vcs differ at the
level of 0.1% which is irrelevant here.

It is clear from Fig. 16 that there is no longer any
significant ‘‘fDs

puzzle’’ [51] since the discrepancy

between our lattice QCD result and the world average of
experiment (257.3(5.3) MeV) is 1:6�. The average of
experimental results in the 
	 channel (252.4(6.9) MeV)
and our value agree very well. This is emphasized further
in Fig. 17 where the most accurate recent experimental
results are individually compared to our value for fDs

, and

all except one disagree by less than 1�.
Things have now changed quite significantly since the

summer of 2008 when the most accurate experimental
result for fDs

was 267.9(9.1) MeV [16] and the most

accurate lattice QCD result was 241(3) MeV [3,17], dif-
fering by almost 3�. The experimental average moved
down 5% (1:5�) in early 2010 but has since moved up 1%
to the new world average value and the lattice result has
moved up 3% (2:3�). The discrepancy between experi-
ment and lattice QCD is now only 4% (1:6�) and the
experimental error is now reduced to only twice that of
the lattice QCD error. This marks significant effort both
experimentally and theoretically on this quantity to under-
stand and pin down the original discrepancy. Figure 18
shows the history of fDs

from experiment and lattice QCD

since the first full lattice QCD calculation of 2005.

FIG. 17 (color online). Comparison of our new result for the
Ds decay constant with recent experimental results from CLEO
[21–23] and BABAR [26]. These are derived from leptonic decay
modes of the Ds in various channels, and using Eq. (21) with an
input value for Vcs (see text). The CLEO numbers are taken from
the compilation in [23], using consistent values for Vcs, mDs

and 
Ds
and so differ slightly from the historical numbers in

Fig. 18. We also include the HFAG 2010 world average for
experiment [25].
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FIG. 18 (color online). Values for fDs
from experiment and

from lattice QCD since 2005, excluding results from conference
proceedings. Later results from a given collaboration and process
supersede the earlier ones. Experimental results are divided into
those from the �	 channel [11,12,15,21,26] (in red) and those
from the 
	 channel [11,14,21–24,26] (in several 
 decay
modes, in pink). The HFAG October 2010 world average for
experiment [25] is included as a light orange band. Note that the
leftmost red point (from BABAR [12]) appears with dashed error
bars—the lower value with solid error bars is the result adjusted
by HFAG [65], although this number is not now included in the
HFAG average. Lattice QCD points are in dark blue for full QCD
[3,7]—the rightmost point is from this paper. The light blue point
is from ETMC [49] including only u and d in the sea.
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3. f�c

As stated earlier, there is no direct comparison possible
between lattice results for f�c

and experiment because the

�c does not annihilate to a W boson or other particle that
would couple directly to the temporal axial current. The
high accuracy of our results is therefore useful only to
provide a comparison point for other lattice QCD calcu-
lations. No result of comparable accuracy is available from
any other charm quark formalism as yet and including the
effect of sea quarks. ETMC [52] quote a preliminary result
of 379(29) MeV for f�c

including u and d quarks in the sea

only and tuning the c mass from the mass of the J=c (i.e.
this analysis is not directly linked to their Ds analysis, as
ours is). Future lattice charmonium calculations using
different formalisms (for example [53] or [54]) can use
our result as a benchmark point to check renormalization or
discretization effects because f�c

is a very simple quantity

to calculate.
Although direct comparisons with experiment do not

exist, various comparisons that rely on approximation
schemes, principally potential models, can be made. In a
potential model the decay constant of an S-wave state is

related to the wave function at the origin, c ð0Þ, by c ð0Þ ¼
f

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M=12

p
, where M is the meson mass and f its decay

constant. This relationship is only correct up to relativistic
and radiative corrections, which for the �c could be size-
able (at the level of 30%). Using this same potential model
approach the leading term in the decay width for �c ! ��
can be written as [55]

�ð�c ! ��Þ ¼ 12�e4c�
2jc ð0Þj2

m2
c

: (22)

Here the c quark has electromagnetic charge ec (in units of
e), mass mc and � is the electromagnetic coupling con-
stant. This formula has radiative and relativistic corrections
at the next order. The decay width is only poorly known for
the �c with the PDG estimate given as 7.2(2.1) keV [37].
Substituting the decay constant into the formula and
taking mc ¼ M�c

=2, justifiable at this order, gives f�c
¼

0:4ð1Þ GeV, where only the large error from experiment is
shown. Alternatively one may extract f�c

from B decays to

�cK using the factorization approximation. CLEO
obtain f�c

¼ 0:335ð75Þ GeV [56].

A more useful experimental result to compare to our
decay constant is probably the decay constant of the J=c .
Because the J=c can annihilate to a photon (seen as two
leptons in the final state) through the vector current there is
an exact relationship between the decay width and the
decay constant of the vector particle defined in an analo-
gous way to that for the pseudoscalar meson byX

i

< 0j �c�ic jVi > =3 ¼ fVmV: (23)

This decay constant can also be calculated in lattice QCD
[32]. Work is in progress and results will be given

elsewhere. The relationship between decay width and
decay constant for the process Vh ! eþe� is then

�ðVh ! eþe�Þ ¼ 4�

3
�2
QEDe

2
Q

f2V
mV

: (24)

The experimental results [37] give fJ=c ¼ 407ð5Þ MeV

using 1=�QEDðmcÞ ¼ 134 [57]. Thus 1% accurate results

for this decay constant are available from experiment, and
can be used to test lattice QCD. In a potential model vector
and pseudoscalar values of c ð0Þ should differ only by
relativistic corrections, since this is a spin-dependent effect
which appears first at subleading order in the velocity-
squared of the heavy quark. Thus we would expect our
results for the pseudoscalar decay constant to be fairly
close to those for the vector. It is hard to make this state-
ment quantitative however because, even if the difference
in c ð0Þ values of vector and pseudoscalar were accurately
pinned down, the relationship of c ð0Þ to the decay constant
could have sizeable radiative and relativistic corrections.
Our result for f�c

, 0.3947(24) GeV, is in fact very close

to the experimental result for fJ=c , only differing by 3%

(2�). This is somewhat surprising, given naive potential
model arguments. Accurate lattice QCD studies in botto-
monium will show whether this is a coincidence at the
charm mass or a more general feature.

V. CONCLUSIONS

In this paper we have updated our 2007 result for the
mass and decay constant of theDs meson [3] to incorporate
a new more accurate calibration of the energy scale in
lattice QCD. We have also included results at two finer
values of the lattice spacing so we now cover a range of
lattice spacing values from 0.15 fm down to 0.044 fm for
improved determination of the continuum limit. Our results
for mDs

and fDs
increase as a result of this calibration. mDs

is in excellent agreement with experiment with a reduced
(3 MeV) error to give 1.9691(32) GeV. Our result for fDs

has increased significantly to 0.2480(25) GeV. This, along
with recent movement of the experimental results, means
that the ‘‘fDs

puzzle’’ is essentially solved: there is no

longer significant disagreement between theory and ex-
periment for this quantity. The experimental error is double
the theoretical error, however, and improved experimental
results from BESIII aim to obtain a 1% on fDs

[58]. The

lattice QCD error could be further reduced by improved
statistical accuracy on the very fine lattices.
Instead of assuming a value for Vcs to obtain an experi-

mental result for fDs
to compare to lattice QCD we can

combine our result for fDs
with the experimental leptonic

branching fraction to give a direct determination of Vcs. To
do this we take the HFAG determination [25] of the world
average leptonic branching fractions for the Ds to �	 and

	 of 0.590(33)% and 5.29(28)%, respectively, our result
for fDs

and
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Vcs ¼ 1

GFfDs
mlð1�m2

l =m
2
Ds
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�BðDs ! l	Þ

mDs

Ds

s
: (25)

This gives results for Vcs of

Vcs ¼ 1:033ð31Þ; Ds ! �	

¼ 0:990ð28Þ Ds ! 
	 (26)

where the error is dominated by the experimental branch-
ing fraction. We can combine the results, allowing for
correlated errors in fDs

and 
Ds
, to obtain

Vcs ¼ 1:010ð22Þ (27)

This central value is in a disallowed region above 1 so we
also provide an alternative result that takes this into
account. We divide the error above into its statistical and
systematic contributions as 1.010(20)(11) and then reinter-
pret the statistical probability distribution as a Gaussian
cutoff at 1. We then take the central value as the median of
this new distribution and the error bars as encompassing�
one third of the area about the median. This procedure
gives the following result:

Vcs ¼ 0:990þ0:007
�0:012 � 0:011: (28)

Both these values for Vcs are compatible with CKM results
(or Vud) at better than the 2� level. An independent direct
determination of Vcs is possible from D ! Kl	 semilep-
tonic decay for which it is also possible to obtain very
accurate results with the HISQ action [59].

A useful bound can be obtained on the mass of a charged
Higgs from comparing the experimental determination of
the Ds leptonic branching fraction to the expected result
using fDs

from lattice QCD (i.e. standard model), see, for

example, [20]. In a 2-Higgs doublet model (Type II) theDs

can also annihilate to a charged Higgs which interferes
destructively with the W annihilation. This changes the
leptonic branching fraction by a simple factor r, where

ffiffiffi
r

p ¼ 1þ 1

1þms=mc

�
mDs

mH�

�
2
�
1� ms

mc

tan2�

�
(29)

and tan� is the ratio of vacuum expectation values of the
two scalar doublets. r < 1 for large tan� but this would be
seen from an experimental determination of fDs

(using Vcs

from CKM unitarity) being smaller than the lattice QCD
result. Thus we can derive a bound in the tan�=mH� plane
from the fact that this is not the case. Here we update what
was done in [20] to include our new lattice QCD result
given here and the current world average fDs

from experi-

ment [25]. These combine to give a central value and error
for

ffiffiffi
r

p ¼ 1:038ð23Þ, i.e.
ffiffiffi
r

p
> 0:968 at the 3� level.

Equation (29), using our recent accurate determination of
mc=ms from lattice QCD [36], then excludes low values of
mH� as indicated in Fig. 19. The bound is not as strong as in
[20] because of the upward shift of our lattice QCD result.
However the fact that our lattice result, and now the

experimental average, are so accurate still means that a
bound exists. New results from BES [58] with improved
experimental errors would produce a much stronger bound,
if the experimental central value does not change but the
error on fDs

is reduced to 1%. This is also indicated in

Fig. 19. The exclusion limits should be compared to that
from direct searches at LEP (mH� > 78:6 GeV at
95% C.L.) from [60] and the estimates of discovery poten-
tial and exclusion reach of ATLAS at LHC [61].
Reference [62] obtains a bound of mH� > 316 GeV from
combining results from several processes including D=Ds

leptonic decay.
We have also updated results for f�, fK and fD based on

the change in the calibration of the lattice spacing used
here for fDs

but, however, with no new calculations in these

cases. We find results consistent with experiment. Finally
we have given a new very accurate result for f�c

which will

be useful as a calibration point for future lattice QCD
calculations in charm physics.
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APPENDIX: SEA-QUARK MASSES

The staggered quarks in the sea are asqtad improved
staggered quarks whereas the valence quarks are HISQ
quarks, i.e. they use different discretizations of the quark
piece of the QCD Lagrangian. The s quark mass in the two
formalisms will then not be the same, but there should be a
fixed ratio between the two which is in principle calculable
in perturbation theory up to discretization effects. This
reflects the fact that the difference between the two
Lagrangians is a difference of regularization and therefore
an ultraviolet effect. Calculations in Oð�sÞ perturbation
theory of the mass renormalization in the two formalisms
shows that the Oð�sÞ term in the relative normalization is
very small [28,63]. We therefore expect [64]

amhisq

amasq
¼ 1� 0:004�sðaÞ þ C�2

sðaÞ þ . . . (A1)

up to discretization and sea-quark mass effects. Here
amhisq and amasq are the lattice valence quark masses for
the HISQ and asqtad actions, respectively, that give the
same meson mass for a particular meson on a given en-
semble. Note that amasq is defined in the conventional way
i.e. without the u0 factor present in Table I.

Given the HISQ to asqtad mass ratio we can determine
the tuning of the sea-quark masses from our tuning of the
valence HISQ masses. There is very little sea-quark mass
dependence in the quantities that we study here, so that we
do not need to know this ratio accurately. In principle it
could be done very accurately, because as we have seen the
meson masses can be determined very accurately. In the
absence of this information for asqtad quarks, however, we
take the suggested tuned asqtad strange quark masses from
the MILC Collaboration [31], correcting for the u0 factor
(taken from the lightest sea-quark mass ensemble at each
lattice spacing and given in Table VI), and compare them
to our tuned HISQ strange quark masses [35]. Figure 20
shows results on very coarse, coarse, fine and superfine
lattices. The errors on each point are substantial, �3%,
because we have included the tuning error from each action
added in quadrature, since the tunings were done in a
different way. The results can easily be fit to the form:

amhisq

amasq
¼1�0:004�sðaÞþC�2

sðaÞþDa2þEa4 (A2)

adding discretization errors to that in Eq. (A1). The fit
gives a coefficient C � 2.

The fitted curve enables us to determine that the sea
strange quark mass on the ultrafine lattices should be
0.0135(5) (with u0 factor included) i.e. it is reasonably
well-tuned. The error is substantial, but the sea-quark

masses have very little impact on the accuracy of results
given here.

Table VI gives values for the u0 parameter (¼ ðplaqÞ1=4)
and the physical asqtad strange quark masses given by the

TABLE VI. The sea asqtad masses given in Table I have a
factor of u0 equal to the fourth root of the average plaquette
included in them. We remove this factor in our comparison of
quark masses between HISQ and asqtad and so give values here
in column 2 from [30], for all ensembles except set 7 where the
result is simply estimated from that of the other coarse lattices.
Column 3 gives values for the physical asqtad strange quark at
each lattice spacing mass quoted by MILC [31] and including the
u0 factor. The result on set 11 is obtained from the tuned HISQ
strange mass and the ratio described in the text. Columns 4 and 5
then give values for �xl and �xs as defined in Eq. (A3) and used
in our extrapolations to the physical point. Errors come from the
errors in u0ams;phys and are correlated between ensembles at a

given lattice spacing and between �xl and �xs.

Set u0 u0am
asq
s;phys �xl �xs

1 0.8604 0.0439(18) 0.184(10) 0.10(5)

2 0.8610 0.0439(18) 0.405(19) 0.10(5)

3 0.8678 0.0350(7) 0.106(3) 0.429(29)

4 0.8677 0.0350(7) 0.249(6) 0.429(29)

5 0.8677 0.0350(7) 0.249(6) 0.429(29)

6 0.8688 0.0350(7) 0.535(12) 0.429(29)

7 0.868 0.0350(7) 0.249(6) �0:143ð18Þ
8 0.8782 0.0261(5) 0.201(5) 0.188(23)

9 0.8788 0.0261(5) 0.439(10) 0.188(23)

10 0.8879 0.0186(4) 0.157(5) �0:03ð2Þ
11 0.8951 0.0135(5) 0.170(8) 0.04(4)
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FIG. 20 (color online). Results for the ratio of the physical
masses of the strange quark using the HISQ formalism [35] and
the asqtad formalism [31]. The mass for the asqtad formalism in
this ratio has the factor of u0 removed. The points are lattice
results combining our work and that of the MILC Collaboration.
The shaded band represents a fit of the form given in Eq. (A2).
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MILC Collaboration [31] for all lattice spacing values
except the ultrafine. We use our result for ultrafine as
discussed above. From the physical strange quark mass
we determine the physical light quark mass using the
MILC result: ms=ml ¼ 27:2ð3Þ. The table then gives val-
ues for �xl and �xs, where

�xq ¼
mq;sea �mq;sea;phys

ms;sea;phys

; (A3)

used in our extrapolation to physical quark masses in
Sec. III.
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