
Reflection positivity of free overlap fermions

Yoshio Kikukawa1 and Kouta Usui2,3

1Institute of Physics, the University of Tokyo, Tokyo 153-8902, Japan
2Department of Physics, the University of Tokyo, Tokyo 113-0033, Japan

3Institute for the Physics and Mathematics of the Universe (IPMU), the University of Tokyo, Chiba 277-8568, Japan
(Received 11 June 2010; published 2 December 2010)

It is shown that free lattice fermions defined by overlap Dirac operator fulfill the Osterwalder-Schrader

reflection positivity condition with respect to the link-reflection. The proof holds true in nongauge models

with interactions such as chiral Yukawa models.

DOI: 10.1103/PhysRevD.82.114503 PACS numbers: 11.15.Ha

I. INTRODUCTION

To give the constructive definition of a relativistic quan-
tum field theory through a lattice model, it is desirable for
the lattice model to satisfy several fundamental require-
ments such as locality, reflection positivity, and hypercubic
rotation and translation symmetry. Locality is believed to
assure that the continuum limit of the lattice model is
universal and the model belongs to the same universality
class of the target continuum local field theory. Reflection
positivity guarantees that the lattice model is a consistent
quantum mechanical system satisfying unitarity.
Hypercubic rotation and translation symmetry is hopefully
expected to result in the recovery of the Euclidean group
symmetry in the continuum limit. These properties of the
lattice model should be established rigorously, if possible,
before the applications to ‘‘first-principle’’ computation.

In the lattice model, it is also desirable to keep the
important symmetries of the target continuum field theory.
Gauge symmetry can be preserved by introducing link
variables. Chiral symmetry, despite of the infamous no-
go theorem [1–3], can be also preserved by adopting lattice
Dirac operators which satisfy the Ginsparg-Wilson (GW)
relation [4–9]. For the overlap Dirac operator [5,6], a
gauge-covariant solution to the GW relation which has
been derived in the five-dimensional domain wall approach
[10–12], a rigorous proof of locality has been given under a
certain condition for admissible gauge-link variables [13].
Even the applications to large scale numerical simulation
of lattice QCD have been attempted, obtaining clear nu-
merical evidences for the spontaneous chiral symmetry
breaking in QCD [14–16].

However, for the GW fermions, reflection positivity is
not fully understood yet [17–19]. The situation should be
compared to the case of Wilson fermions, for which the
rigorous proofs of reflection positivity have been given
[20–22]. Then, one might think that it is still somewhat
premature to refer the above numerical applications as
‘‘first principle’’ computations [23].

In this paper, we will examine the reflection positivity of
lattice fermions defined through overlap Dirac operator. It
will be shown rigorously that free overlap Dirac fermions

fulfill the reflection positivity with respect to the link-
reflection. The proof will be extended to the cases of
Majorana and Weyl fermions. In Ref. [17], Lüscher dis-
cussed the unitarity property of free overlap Dirac fermion
by investigating the positivity through the spectral repre-
sentation of free propagator and concluded that free over-
lap Dirac fermion has a good unitarity property. Our direct
proof of the reflection positivity given here is consistent
with this observation. Our proof will be also extended to
the nongauge models with interactions such as chiral
Yukawa models. For gauge models, however, a proof of
reflection positivity, if any, seems to be more involved and
we will leave it for future study.

II. REFLECTION POSITIVITY

Reflection positivity is a sufficient condition for recon-
structing a quantum theory in the canonical formalism, i.e.
the Hilbert space of state vectors and the Hermitian
Hamiltonian operator acting on the state vectors, from
the lattice model defined in the Euclidean space [25]. Let
us formulate the reflection positivity condition for lattice
Dirac fermions. The cases of Majorana and Weyl fermions
will be discussed later.
We assume a finite lattice � ¼ ½�Lþ 1; L�4 � Z4 in

the lattice unit a ¼ 1, and impose an antiperiodic boundary
condition in the time direction, and periodic boundary
conditions in the space directions. The fermionic action
is defined in the bilinear form

Að �c ; c Þ ¼ X
x2�

�c ðxÞDLc ðxÞ; (1)

with a lattice Dirac operator DL [28]. The kernel of the
Dirac operator should be written as

DLðx; yÞ ¼
X
n2Z4

ð�1Þn0Dðxþ 2nL; yÞ; x; y 2 �; (2)

where Dðx; yÞ is the kernel of the Dirac operator in the
infinite lattice Z4. The quantum theory is then completely
characterized by the expectational functional defined by
the fermionic path integration:

PHYSICAL REVIEW D 82, 114503 (2010)

1550-7998=2010=82(11)=114503(7) 114503-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.82.114503


hFi :¼ 1

Z

Z
D½c �D½ �c �eAð �c ;c ÞFð �c ; c Þ; (3)

where the Grassmann integration for each field variable is
specified as

R
dc �ðxÞc �ðxÞ ¼ 1,

R
d �c �ðxÞ �c �ðxÞ ¼ 1,

and the functional measure is defined by

D ½c �D½ �c � :¼ Y
x2�;�¼1;2;3;4

fdc �ðxÞd �c �ðxÞg: (4)

The reflection positivity condition—a condition on this
expectational functuonal—is formulated as follows: Let us
define time reflection operator � which acts on polyno-
mials of the fermionic field variables by the relations

�ðc ðxÞÞ ¼ ð �c ð�xÞ�0ÞT; (5)

�ð �c ðxÞÞ ¼ ð�0c ð�xÞÞT; (6)

�ð�Fþ �GÞ ¼ ���ðFÞ þ ���ðGÞ; (7)

�ðFGÞ ¼ �ðGÞ�ðFÞ; (8)

where we denote �ðt; xÞ ¼ ð�tþ 1; xÞ and F, G are arbi-
trary polynomials of fermionic fields and * means complex
conjugation. Let �� � � be the sets of sites with positive
or nonpositive time, respectively. LetA� be the algebra of
all the polynomials of the fields on��, andA on�. Then
one says the theory is reflection positive if its expectation
h�i: A ! C satisfies

h�ðFþÞFþi � 0 for 8Fþ 2 Aþ: (9)

A popular choice of lattice Dirac operator is the Wilson-
Dirac operator,

Dw ¼ X
�¼0;1;2;3

�
1

2
��ð@� � @y�Þ þ 1

2
@y�@�

�
; (10)

and in this case, the rigorous proofs of the reflection
positivity have been given [20–22]. The proofs cover the
case with gauge interaction. Therefore, the use of Wilson-
Dirac fermions in numerical applications has a completely
sound basis [29]. Here we consider the overlap Dirac
operator

D ¼ 1

2

�
1þ X

1ffiffiffiffiffiffiffiffiffiffi
XyX

p
�
; X ¼ Dw �m; (11)

for 0<m � 1. This lattice Dirac operator describes a
single massless Dirac fermion and satisfies the GW rela-
tion, �5DþD�5 ¼ 2D�5D. Although the action is nec-
essarily nonultralocal [31], the free overlap Dirac fermion
indeed satisfies the reflection positivity condition, as will
be shown below.

III. PROOF OF REFLECTION POSITIVITY
OF OVERLAP DIRAC FERMION

To prove the reflection positivity, we need some addi-
tional definitions and notations. First, let us denote

hFi0 :¼
Z

D½c �D½ �c �Fð �c ; c Þ: (12)

This h�i0 defines a linear function fromA into C. Second,
we decompose the lattice action A into the following three
parts:

A ¼ Aþ þ A� þ �A; (13)

where Aþ 2 Aþ, A� 2 A�, and �A is the part of the
action which contains both positive and negative time
fields. Third, let us call P the set of all polynomials of
the form

P
j�ðFþjÞFþj in a finite summation, where

Fþj 2 Aþ.
Although the above definition of P works well for the

proof of the Wilson fermion, it is not enough for the proof
of the overlap fermion. In our case of the overlap fermion,
one needs to consider not only finite summations of the
form

P
j�ðFþjÞFþj, but also infinite summations or inte-

grations like

Z
ds�ðFðsÞÞFðsÞ ¼ lim

N!1
XN
k¼1

�ðFðskÞÞFðskÞ�sk; (14)

where the integration is defined as a limit of a finite
Riemanian summation [see also Eq. (32) or (35)]. To this

end, we consider �P , the closure of P . The closure �P
contains not only elements of the original P , but also all
the limit points of conversing sequences in P . That is,

F 2 �P , 9fFng1n¼1 2 P : lim
n!1Fn ¼ F: (15)

Here, the sequence fFngn � A is defined to be convergent
to some F 2 A, if any coefficient in Fn converges to the
corresponding coefficient in F as a complex number [32].
Note that with respect to this definition of convergence, the
linear operation, the product operation inA, and the linear
mappings h�i0; h�i: A ! C are all continuous functions,
i.e. if Fn ! F, Gn ! G, then

�Fn þ �Gn ! �Fþ �G; FnGn ! FG; (16)

hFni ! hFi; hFni0 ! hFi: (17)

Now, we note the fact that the following four statements
(i)–(iv) imply the reflection positivity:

(i) If F, G belong to �P then FG also belongs to �P .

(ii) For all F 2 �P , hFi0 � 0.
(iii) �ðAþÞ ¼ A�.
(iv) �A 2 �P .

In fact, from these statements, it follows that
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heA�ðFþÞFþi0 ¼ heAþþA�þ�A�ðFþÞFþi0
¼ heAþþ�ðAþÞþ�A�ðFþÞFþi0
¼

�
�ðeAþÞeAþe�A|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
2 �P ðbyðiÞ;ðivÞÞ

�ðFþÞFþ|fflfflfflfflffl{zfflfflfflfflffl}
2 �P

�
0
� 0 (18)

for arbitraryFþ 2 Aþ. Considering the special casewhere
Fþ ¼ 1 2 Aþ, we have heAi0 � 0. Hence, we obtain

h�ðFþÞFþi ¼ heA�ðFþÞFþi0
heAi0

� 0: (19)

Therefore the proof is reduced to showing these four state-
ments (i)–(iv).

Next, we will give the proofs of the statements (i)–(iv).
The statement (i) follows from the similar statement with
P , which has been proved for the Wilson case [20]. In fact,

let F, G 2 �P . Then, there exist sequences fFngn and fGngn
in P such that

Fn ! F; Gn ! G: (20)

From the continuity of the product operation in A [see
(16)], we get

FnGn ! FG: (21)

Since Fn, Gn 2 P , FnGn 2 P . Therefore FG is the limit

of the sequence fFnGngn � P , which means that FG 2 �P .
To show the statement (ii), one should refer to the

definition of fermionic integration measure. With the defi-
nition (4), it is sufficient to consider Fþ 2 Aþ of the form

Fþ ¼ Y
x2�þ;�¼1;2;3;4

f �c �ðxÞc �ðxÞg 2 P ; (22)

for which one can seeZ
D½c �D½ �c ��ðFþÞFþ ¼ fdetð�2

0Þg16L4 ¼ 1 � 0: (23)

Therefore, one concludes that for arbitrary F 2 P ,

hFi0 � 0. Take arbitrary F 2 �P . Then there exists a con-
verging sequence fFngn such that Fn ! F. From the con-
tinuity of h�i0 [see (17)], we obtain

hFi0 ¼ h lim
n!1Fni0 ¼ lim

n!1hFni0 � 0: (24)

The statement (iii) can be shown by using the property of

the overlap Dirac kernel: Dy
Lðx; yÞ ¼ �0DLð�x; �yÞ�0. In

fact, one gets

�ðAþÞ ¼
X

x2�þ

X
y2�þ

�ð �c ðxÞDLðx; yÞc ðyÞÞ

¼ X
x2�þ

X
y2�þ

�c ð�yÞ�0D
y
Lðy; xÞ�0|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

¼Dð�y;�xÞ

c ð�xÞ

¼ X
x02��

X
y02��

�c ðx0ÞDLðx0; y0Þc ðy0Þ ¼ A�: (25)

To show the statement (iv) �A 2 �P , we use a spectral
representation of DLðx; yÞ. To derive the spectral represen-
tation of DL, we first Fourier transform the overlap Dirac
operator kernel Dðx; yÞ in the infinite volume:

Dðx; yÞjx0�y0 ¼
Z d4p

ð2�Þ4 e
ip�ðx�yÞ Xðp0;pÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XyXðp0;pÞ

q ; (26)

where Xðp0;pÞ ¼
P

�i�� sinp� þP
�ð1� cosp�Þ �m.

Then, we change the p0 integration region, ½��;��, to
the contours along the imaginary axis in the complex p0

plane by Cauchy’s integration theorem, as shown in Fig. 1.
Depending whether x0 � y0 > 0 or x0 � y0 < 0, we
choose the contours ½iE1; i1� or ½�iE1;�i1�, respec-
tively, to obtain

Dðx; yÞjx0�y0>0 ¼
Z d3p

ð2�Þ3
Z 1

E1

dE

2�
e�Eðx0�y0Þeip�ðx�yÞ

	 XðiE;pÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�XyXðiE;pÞ

q ; (27)

Dðx; yÞjx0�y0<0 ¼
Z d3p

ð2�Þ3
Z 1

E1

dE

2�
eEðx0�y0Þeip�ðx�yÞ

	 Xð�iE;pÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�XyXðiE;pÞ

q ; (28)

where E1 is the edge of the cut coming from the square root
and is determined by the relations

XyXðiE1;pÞ ¼ 0; E1 > 0: (29)

In this spectrum representation of D, it is very crucial to
notice the fact that 
�0Xð�iE;pÞ (E � E1) are positive
definite matrices and there exist matrices Y�ðE;pÞ such
that


 �0Xð�iE;pÞ ¼ Yy
�Y�ðE;pÞ ðE � E1Þ: (30)

In fact, it is not difficult to check that Y�ðE;pÞ are given by

Y�ðE;pÞ¼�X3
k¼1

lðE;pÞsinpk

WðE;pÞ �k
 i
WðE;pÞ
2lðE;pÞ�0þ ilðE;pÞ;

FIG. 1. Complex integration contours.
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whereWðE;pÞ ¼ P
3
k¼1ð1� cospkÞ þ 1� coshE�m and

lðE;pÞ ¼
2
641

2
ðsinhEÞ=

0
@X3

k¼1

sin2pk=WðE;pÞ2 þ 1

1
A

	
0
@1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�X3
k¼1

sin2pk þWðE;pÞ2
�
=sinh2E

vuut 1
A
3
75

1=2

:

From the Eqs. (2), (27), and (28), we find the spectrum
representation of DLðx; yÞ as follows: Putting V ¼
1=ð2LÞ3,

DLðx; yÞjx0�y0 ¼
X
p

Z 1

E1

dE

2�

1

1þ e�2EL

1

V

	 e�Ejx0�y0jeip�ðx�yÞ Xð�iE;pÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�XyXðiE;pÞ

q
þX

p

Z 1

E1

dE

2�

e�2EL

1þ e�2EL

1

V
eEjx0�y0jeip�ðx�yÞ

	 �Xð��iE;pÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�XyXðiE;pÞ

q ; (31)

where � is defined as the sign of x0 � y0, and the spacial
momentum pk runs over pk ¼ nk�=L, (� L � n � L) in
the above summation. In (31), the first termbecomesDðx; yÞ
in the limitL ! 1, and the second term represents a ‘‘finite
lattice effect’’ which vanishes in the limitL ! 1. The latter
is the contribution of the wrong-sign-energy modes and
the minus sign appearing in front of Xð��iE;pÞ comes
from the antiperiodicity in the time direction, which is
required for the positivity, as will be seen.

From these observations, now we can show that

�A 2 �P : for the term with x0 > 0, y0 � 0 (in this case
� ¼ 1), we obtainX

x2�þ

X
y2��

�c ðxÞDLðx; yÞc ðyÞ

¼ �X
p

Z 1

E1

dE

2�

1

V
½CE;p�ðCE;pÞ þDE;p�ðDE;pÞ�; (32)

where CE;p and DE;p are defined by

CE;p¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

1þe�2EL

s X
x2�þ

�c ðxÞ�0
~YþðE;pÞye�Ex0eip�x; (33)

DE;p¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�2EL

1þe�2EL

s X
x2�þ

�c ðxÞ�0
~Y�ðE;pÞyeEx0eip�x; (34)

with ~YþðE;pÞ ¼ YþðE;pÞ=ð�XyXðiE;pÞÞ1=4. The overall
minus sign in the right-hand side of (32) results from (31)
by using (30). This minus sign is canceled after exchanging
the order of the Grassmann products in (32), and we see

that this term belongs to �P . Similarly, for the term with
x0 � 0, y0 > 0 (in this case � ¼ �1), we obtainX

x2��

X
y2�þ

�c ðxÞDLðx; yÞc ðyÞ

¼ X
p

Z 1

E1

dE

2�

1

V
½�ðC0

E;pÞC0
E;p þ �ðD0

E;pÞD0
E;p�; (35)

where C0
E;p and D0

E;p are defined by

C0
E;p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ e�2EL

s X
y2�þ

~Y�ðE;pÞc ðyÞe�Ey0e�ip�y; (36)

D0
E;p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�2EL

1þ e�2EL

s X
y2�þ

~YþðE;pÞc ðyÞeEy0e�ip�y: (37)

In this case we do not need to exchange the order of the
product, and we immediately see that this term belongs to
�P . Thus we obtain �A 2 �P and complete the proof of the
reflection positivity in the Dirac case.

IV. MAJORANA AND WEYL FERMIONS

The above proof for the Dirac fermion can be extended
for Majorana fermions [33,34] andWeyl fermions [35–38].
In the case of Majorana fermion, the antifield �c is the
charge conjugation of the field c : �c � c TC, where C is
the charge conjugation matrix satisfyingC��C

�1 ¼ ��T
�,

C�5C
�1 ¼ �T

5 , CyC ¼ 1, CT ¼ �C. Accordingly, the

path-integral measure reduces to D½c � :¼
s
Q

x2�;�fdc �ðxÞg, where a sign factor sð¼ �1Þ is intro-

duced for later convenience. This Majorana-reduction does
not contradict the definition of time reflection �, because
both (5) and (6) imply �ðc ðxÞÞ ¼ C�0c ð�xÞ. Then, the
conditions (iii) A� ¼ �ðAþÞ and (iv) �A 2 �P follow im-

mediately. The propery (ii) of �P also holds true by the
fact that one can always choose the sign factor s so

that
R
D½c ��ðFþÞFþ ¼ fdetðC�0Þg8L4

> 0 for Fþ ¼Q
x2�þ;�¼1;2;3;4fc �ðxÞg. Thus the reflection positivity (9)

follows from the conditions (i), (ii), (iii), and (iv) also for
the Majorana case.
For Weyl fermion, we define the chiral components by

c�ðxÞ¼
�
1� �̂5

2

�
c ðxÞ; �c�ðxÞ¼ �c ðxÞ

�
1
�5

2

�
; (38)

where �̂5 ¼ �5ð1� 2DÞ. We adopt, for simplicity, the
chiral basis for gamma matrices in which �5 ¼ �3 � 1,
�0 ¼ �1 � 1, and denote the spinor indices as �þ ¼
f1; 2g; �� ¼ f3; 4g. Then �c��
ðxÞ ¼ �c �
ðxÞ. The action

of the Weyl fermion is given by Að�Þ ¼P
x
�c�ðxÞDLc�ðxÞ, and the Dirac fermion action (1) de-

composes as A ¼ AðþÞ þ Að�Þ. To define the path-integral
for the Weyl fermion, we introduce the chiral bases

fvi�ðxÞj�̂5v
i�ðxÞ ¼ �vi�ðxÞ; i ¼ 1; � � � ; n�g; (39)
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where n� ¼ 2ð2LÞ4, and expand the fields as c�ðxÞ ¼P
iv

i�ðxÞci�. The path-integral measure is then defined by

D ½c��D½ �c�� ¼
Y
i

dci�
Y

x2�;�


d �c �
ðxÞ; (40)

and the path-integral measure of the Dirac fermion (4) is
factorized as D½c �D½ �c � ¼ JD½cþ�D½ �cþ�D½c��	
D½ �c�� where the Jacobian

J½c �ðxÞ; ciþ; cj��
¼ jvþ�ðxÞ1 � � �vþ�ðxÞnþv��ðxÞ1 � � �v��ðxÞn�j (41)

can be set to unity by choosing the chiral basis vectors
appropriately. The expectational functional for the left-
handed Weyl fermion is defined by

hFið�Þ :¼ 1

Zð�Þ
Z

D½c��D½ �c��eAð�Þð �c�;c�ÞFð �c�; c�Þ:
(42)

Because of the factorization properties of the action and
the path-integral measure, we note the identity

hFð �c�; c�Þið�Þ ¼ hFð �c�; c�Þið�Þh1iðþÞ

¼ hFð �c�; c�Þi: (43)

In this setup, we can formulate the reflection positivity
condition for the Weyl fermion as follows. We define the
time reflection operator � for the left-handed fields as

�ðc���ðxÞÞ ¼ f �c�ð�xÞ�0g�� ¼ �c��þð�xÞ; (44)

�ð �c��þðxÞÞ ¼ f�0c�ð�xÞg�þ ¼ c���ð�xÞ; (45)

where �þ ¼ �� � 2. We letAð�Þ
� be the algebra of all the

polynomials of the left-handed field components c���ðxÞ
and �c��þðxÞ on ��. Then one can show

h�ðFþÞFþið�Þ � 0 for 8Fþ 2 Að�Þ
þ : (46)

Note that, in this formulation of the reflection positivity,
the field components c��þðxÞ are completely excluded

from observables.
To prove (46), we note the fact that the expectational

functional for the left-handed Weyl fermion (42) is simply
related to the expectational functional for the Dirac fer-

mion (3) by hFið�Þ ¼ hFið�Þh1iðþÞ ¼ hFi for Fð �c�; c�Þ.
Moreover, since��

1� �̂5

2

�
D�1

�
��;�þ

¼
��
1� �5

2

�
D�1

�
��;�þ

; (47)

one can show

hFðc��� ;
�c��þÞið�Þ ¼ hFðc �� ;

�c �þÞi; (48)

by performing the Wick constructions explicitly. Then,
(46) follows immediately from the reflection positivity
condition (9) for the overlap Dirac fermion.

V. REFLECTION POSITIVITY OF
CHIRALYUKAWATHEORY

In this section, we consider the case with an interaction-
chiral Yukawa model. The chiral Yukawa model is defined
by the action [9]

A ¼ X
x2�

�
�cDc �	�@y�@�	�m2

0	
�	

� 
0

2
ð	�	Þ2 � 2 ���þ g0ð �c þ ��Þ

	
�
1

2
ð1� �5Þ	þ 1

2
ð1þ �5Þ	�

�
ðc þ �Þ

�
; (49)

where c is a Dirac field, � is an auxiliary Dirac field, and
	 is a complex scalar field. In this case, we define the field

algebra AðYÞ of the chiral Yukawa theory as the set of all
the polynomials Fðc ; �;	Þ of fermionic fields c and �
whose coefficients are complex valued continuous (not
necessarily holomorphic) functions of bosonic field con-

figuration 	, with converging expectation value hFiðYÞ
defined through the path integration as usual:

hFiðYÞ :¼ 1

ZðYÞ
Z

D½path�eAðc ;�;	ÞFðc ; �;	Þ<1: (50)

Here, D½path� stands for the path-integration measure,

D ½path� ¼ D½c �D½ �c �D½��D½ ���D½	�D½	��: (51)

Note that all the polynomials of bosonic field configuration

belong to AðYÞ.
The � operation for the fermionic fields c ; � is the same

as in the free case (5) and (6). For the bosonic field	, the �
reflection is defined as

�	ðxÞ :¼ 	ð�xÞ: (52)

For F 2 AðYÞ of the form Fðc ; �;	Þ ¼ fð	ÞMðc ; �Þ
with f being a continuous function of f	ðxÞgx2� and
Mðc ; �Þ some monomial of fc �ðxÞ; �c �ðxÞ; ��ðxÞ;
���ðxÞgx2�, we define

�ðFÞðc ; �;	Þ ¼ f�ð�	ÞMyð�c ; ��Þ; (53)

where My means the monomial whose order of the
Grassmann product is reversed in the original M. We

extend the � operation for arbitrary F 2 AðYÞ by antili-
nearity. Then, the reflection positivity of this chiral Yukawa
model is defined in the same way as in the free overlap
fermion case:

h�ðFþÞFþiðYÞ � 0; for 8Fþ 2 AðYÞ
þ : (54)

We will prove the reflection positivity of the chiral
Yukawa model in the same manner as in the free fermion
case, based on the statements (i)–(iv). The statement (i)
clearly holds true. In the statement (ii), we define the

expectation h�iðYÞ0 for the Yukawa model as
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hFiðYÞ0
:¼

Z
D½path�Fðc ; �;	Þ: (55)

For this definition to make sense, F should be a special

element in AðYÞ so that the right-hand side of (55) is

convergent. Let B be the subset of AðYÞ whose elements
are integrable with respect to the above h�i0 measure. Note

that if F belongs toAðYÞ, eAF belongs toB because of the
rapidly decreasing property of the bosonic weight. Then,
the statement (ii) should be rephrased as follows: (ii) For

all F 2 �P \B, hFi0 � 0. To show this, it is sufficient to

consider Fþ 2 AðYÞ
þ of the form

Fþ ¼ fð	þÞ
Y

x2�þ;�
���ðxÞ��ðxÞ �c �ðxÞc �ðxÞ; (56)

where 	þ ¼ f	ðxÞgx2�þ . For such an Fþ, we obtain

h�ðFþÞFþiðYÞ0 ¼
								
Z

D½	þ�D½	�þ�fð	þÞ
								2� 0: (57)

Therefore, for arbitrary F 2 P \B the statement (ii)

holds. This result can be extended for F 2 �P \B by a
similar argument in the case of free fermion given above
[39]. The statement (iii) can be checked by noting that the
interaction terms are strictly local and belongs to either Aþ
or A�, depending on the time coordinate, and they are
mapped to each other by the � transformation. To show
the statement (iv), one should note that only the first two
terms in the action (49) contribute to �A. The first fermi-

onic part belongs to �P as shown in the above proof of the
free Dirac fermion. As to the second bosonic part, it is a
well-known fact.

From these statements (i)–(iv), the reflection positivity
of the chiral Yukawa model follows immediately. By (18)

and the fact that eA�ðFþÞFþ 2 B for arbitrary Fþ 2
AðYÞ

þ , we obtain

heA�ðFþÞFþiðYÞ0 � 0; heAiðYÞ0 ¼ heA�ð1Þ1iðYÞ0 � 0:

(58)

This implies

h�ðFþÞFþiðYÞ ¼ heA�ðFþÞFþiðYÞ0

heAiðYÞ0

� 0; 8F 2 AðYÞ
þ ;

(59)

completing the proof of (54).

VI. DISCUSSIONS

There is another route to the proof; it is through the
connection to domain wall fermion [33,40]. Since domain
wall fermion is defined by the five-dimensional Wilson
fermion, it fulfills the reflection positivity by itself. In the

free case, fortunately, the positivity condition is also sat-
isfied for the Pauli-Villars fields, where the Pauli-Villars
fields are defined by a five-dimensional Wilson fermion
plus a five-dimensional bosonic spinor field with the action
defined by the five-dimensional Wilson-Dirac operator
square jDwð5 dim:Þ �m0j2, both subject to the antiperiodic

condition in the fifth direction (m0 is the domain wall
height in the lattice unit.) Then one can safely take the
limit of the infinite extent of the fifth dimension and the
reflection positivity of overlap Dirac fermions follows
indeed.
In the case with gauge interaction, however, the positiv-

ity condition is not satisfied for the Pauli-Villars bosonic
field. In fact, for the action of the Pauli-Villars bosonic
field,

APVðbÞ ¼ �X
x

	�ðxÞjDwð5 dim:Þ �m0j2	ðxÞ; (60)

one has

�ðAPVðbÞÞ � APVðbÞ (61)

under the antilinear � operation for the bosonic spinor field
	�ðxÞ and the link variable Uðx; yÞ,

�	�ðxÞ :¼ 	�ð�xÞ; �Uðx; yÞ ¼ Uð�x; �yÞ; (62)

and for an observable F of the form FðU;	; c Þ ¼
fð	;UÞMðc Þ,

�ðFÞðU;	; c Þ ¼ f�ð�	; �UÞMyð�c Þ; (63)

as before. This is due to the nonvanishing commutators
of the covariant difference operators ½r0;rk� � 0 (k ¼
1, 2, 3). This causes a difficulty in completing the proof.
Of course, it does not exclude the possibility that the
overlap fermion itself, which is defined in the limit of
the infinite extent of the fifth dimension, satisfies the
reflection positivity. In this approach with domain wall
fermion, it would be possible to trace the effects of the
violation of the reflection positivity in the limit of the
infinite extent of the fifth dimension. Work in this direc-
tion is in progress.
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