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The bottomonium spectrum is computed in dynamical 2þ 1 flavor lattice QCD, using nonrelativistic

QCD for the b quarks. The main calculations in this work are based on gauge field ensembles generated by

the RBC and UKQCD Collaborations with the Iwasaki action for the gluons and a domain-wall action for

the sea quarks. Lattice spacing values of approximately 0.08 fm and 0.11 fm are used, and simultaneous

chiral extrapolations to the physical pion mass are performed. As a test for gluon-discretization errors, the

calculations are repeated on two ensembles generated by the MILC Collaboration with the Lüscher-Weisz

gauge action. Gluon-discretization errors are also studied in a lattice potential model using perturbation

theory for four different gauge actions. The nonperturbative lattice QCD results for the radial and orbital

bottomonium energy splittings obtained from the RBC/UKQCD ensembles are found to be in excellent

agreement with experiment. To get accurate results for spin splittings, the spin-dependent order-v6 terms

are included in the nonrelativistic QCD action, and suitable ratios are calculated such that most of the

unknown radiative corrections cancel. The cancellation of radiative corrections is verified explicitly by

repeating the calculations with different values of the couplings in the nonrelativistic QCD action. Using

the lattice ratios of the S-wave hyperfine and the 1P tensor splitting, and the experimental result for the 1P

tensor splitting, the 1S hyperfine splitting is found to be 60:3� 5:5stat � 5:0syst � 2:1exp MeV, and the 2S

hyperfine splitting is predicted to be 23:5� 4:1stat � 2:1syst � 0:8exp MeV.

DOI: 10.1103/PhysRevD.82.114502 PACS numbers: 12.38.Gc, 14.40.Pq

I. INTRODUCTION

The low-lying radial and orbital energy splittings in
bottomonium are well known from experiment and well
understood theoretically. Spin-dependent energy splittings
pose a significantly greater challenge. On the experimental
side, the observation of the S ¼ 0 states is very difficult. So
far, only the �bð1SÞ has been found. The weighted average
of the results from [1–3] gives a value of 69:3� 2:9 MeV
for the �ð1SÞ � �bð1SÞ hyperfine splitting.

Calculations of this hyperfine splitting using perturba-
tive QCD gave significantly lower values around 40 MeV
[4–6]. Mixing of the �b with a light CP-odd Higgs boson
has been suggested as a possible explanation of this dis-
crepancy [7]. To definitely answer the question whether
QCD alone is able to correctly predict the�ð1SÞ � �bð1SÞ
mass difference, precise nonperturbative calculations from
lattice QCD are required.

Presently, lattice calculations with dynamical light
quarks are performed at lattice spacings that are too coarse
to resolve the Compton wavelength of the b quark, and
therefore special heavy-quark techniques are required.
Two such techniques are the Fermilab method [8] and
lattice nonrelativistic QCD (NRQCD) [9,10]. The botto-
monium spectrum has also been calculated using relativ-
istic actions, on anisotropic lattices [11] and on very fine,
small lattices [12], but so far without dynamical light
quarks.

With the Fermilab method, the heavy quark is imple-
mented by an improved Wilson-like action, where the

parameters are tuned such that heavy-quark discretization
errors are reduced. The Fermilab method has the advantage
over NRQCD that continuum extrapolations can be per-
formed safely. In the simplest case, only the mass parame-
ter in the action is adjusted such that the kinetic mass of a
heavy meson agrees with experiment. This method, in
combination with MILC gauge field configurations gener-
ated with the Lüscher-Weisz gluon action and 2þ 1 flavors
of rooted staggered sea quarks [13], has been employed in
[14] to calculate the bottomonium and charmonium spec-
tra. In the continuum limit, the �ð1SÞ � �bð1SÞ splitting
was found to be 54� 12 MeV.
A version of the Fermilab action with three tuned pa-

rameters was used in Ref. [15] to calculate bottomonium
masses at one lattice spacing using gauge field ensembles
generated by the RBC and UKQCD Collaborations using
the Iwasaki gluon action and 2þ 1 flavors of domain-wall
sea quarks [16].
In contrast to the Fermilab method, lattice NRQCD is

based on the direct discretization of an effective field
theory for heavy quarks, in which an expansion in powers
of the heavy-quark velocity v is performed [9,10]. For
bottomonium, one has v2 � 0:1 [17]. With NRQCD, it is
required that the UV cutoff provided by the lattice is lower
than the heavy-quark mass: one must have amb * 1, where
a is the lattice spacing. Discretization errors can be re-
moved through Symanzik improvement. The bottomonium
spectrum was calculated using improved lattice NRQCD
of order v4 on the MILC gauge field ensembles in [18].
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Good agreement with experiment was seen for the radial
and orbital energy splittings. However, the results for the
spin-dependent energy splittings suffered from large un-
certainties due to missing radiative and higher-order rela-
tivistic corrections in the NRQCD action used there. Spin-
dependent splittings are an effect of order v4, and therefore
v6 corrections are significant. These v6 corrections were
included in earlier calculations [19–22] and found to re-
duce the bottomonium spin splittings by 10%–30%.
Radiative corrections to the spin-dependent couplings in
the NRQCD action are expected to be of order �s

(�20%–30%), and are still unknown. However, as will
be demonstrated in this work, these radiative corrections
largely cancel in suitable ratios of spin splittings.

In the following, a new calculation of the bottomonium
spectrum in lattice QCD with 2þ 1 flavors of dynamical
sea quarks is presented. For the b quarks, an improved
NRQCD action including the spin-dependent order-v6

terms is used (for comparison, results obtained without
these terms are also shown). By varying the couplings of
the leading-order spin-dependent terms in the action, the
cancellation of radiative corrections is demonstrated non-
perturbatively for the ratio of the S-wave hyperfine and 1P
tensor splittings, as well as the ratio of the 2S and 1S
hyperfine splittings. For these quantities, results with un-
precedented precision are obtained here.

The main calculations in this paper are done on RBC/
UKQCD gauge field ensembles, which were generated
with the Iwasaki gluon action and a domain-wall sea-quark
action. The calculations are performed at lattice spacing
values of approximately 0.08 fm (with spatial lattice size
L ¼ 32) and 0.11 fm (for both L ¼ 24 and L ¼ 16). This
work is an extension of the first calculation by the author
that was using only the L ¼ 24 ensembles and only the v4

action [23]. By including the finer L ¼ 32 ensembles,
discretization errors can now be studied directly, and by
including the L ¼ 16 ensembles with their smaller box
size, the size of finite-volume effects can be estimated.
The data at L ¼ 24 are also reanalyzed with improved
methods leading to smaller statistical errors. With the
better accuracy, chiral extrapolations to the physical pion
mass are now possible.

Systematic errors caused by the lattice NRQCD action
are estimated using power counting. In order to study
discretization errors caused by the lattice gluon action,
two approaches are used here. First, the radial and orbital
energy splittings are calculated in a lattice potential model,
using the static quark-antiquark potential derived from the
gluon action in lattice perturbation theory. A comprehen-
sive study of the scaling behavior is presented for four
different gluon actions (Plaquette, Lüscher-Weisz,
Iwasaki, and DBW2). This model is however limited to
the tree level, and to radial and orbital energy splittings
only. In order to go beyond tree level and include spin
splittings, the nonperturbative lattice QCD calculations of

the bottomonium spectrum are repeated on gauge field
ensembles generated with the Lüscher-Weisz gluon action
by the MILC Collaboration, and a detailed comparison to
the results from the RBC/UKQCD ensembles (with the
Iwasaki action) is made.
This paper is organized as follows: the lattice methods

and parameters are described in Sec. II. The ‘‘speed of
light’’ is studied in Sec. III A. In Sec. III B, the results for
the radial and orbital energy splittings are presented, fol-
lowed by the spin-dependent energy splittings in Sec. III C.
The conclusions are given in Sec. IV. A simple analysis of
autocorrelations is described in Appendix A, the tuning of
the b-quark mass is discussed in Appendix B, and tables
with results in lattice units can be found in Appendix C.
The lattice potential model calculations of gluon-
discretization errors and the comparison of nonperturbative
results from the MILC and RBC/UKQCD ensembles are
presented in Appendix D.

II. METHODS

A. Lattice actions and parameters

The calculations in this work are based on gauge field
ensembles that include the effects of dynamical up-, down-
, and strange sea quarks (with mu ¼ md, in the following
denoted asml). The ensembles used for the main part of the
calculations were generated by the RBC and UKQCD
Collaborations [16,24]. The sea quarks are implemented
with a domain-wall action [25–27], which yields an exact
chiral symmetry when the extent L5 of the auxiliary fifth
dimension is taken to infinity. The gluons are implemented
with the Iwasaki action [28–30], which suppresses the
residual chiral symmetry breaking at finite L5 [31]. The
form of the Iwasaki action can be found in Appendix D,
where the discretization errors associated with this action
are analyzed.
The parameters of the RBC/UKQCD gauge field

configurations used here are given in Table I. All ensem-
bles have L5 ¼ 16. There are ensembles with two different
values of the bare gauge coupling, here given as � ¼ 6=g2.
The two values � ¼ 2:13 and � ¼ 2:25 correspond to
lattice spacings of a � 0:11 fm and a � 0:08 fm, respec-
tively (see Sec. III B 2). The box sizes at the coarser lattice
spacing are about 1.8 fm (L ¼ 16) and 2.7 fm (L ¼ 24);
for the finer lattice spacing the box size is about 2.7 fm
(L ¼ 32).
The bottom quark is implemented with lattice NRQCD

[9,10]. The Euclidean action has the form

Sc ¼ a3
X
x;t

c yðx; tÞ½c ðx; tÞ � KðtÞc ðx; t� aÞ�; (1)

where c is the two-component bottom quark field, and
KðtÞ is given by
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KðtÞ ¼
�
1� a�Hjt
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�
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�
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�
:

(2)

Here, H0 is the order-v
2 term,

H0 ¼ ��ð2Þ

2mb

; (3)

and �H contains higher-order corrections,

�H ¼ �c1
ð�ð2ÞÞ2
8m3

b

þ c2
ig

8m2
b

ðr � ~E� ~E � rÞ

� c3
g

8m2
b

� � ð~r� ~E� ~E� ~rÞ � c4
g

2mb

� � ~B

þ c5
a2�ð4Þ

24mb

� c6
að�ð2ÞÞ2
16nm2

b

� c7
g

8m3
b

f�ð2Þ;� � ~Bg

� c8
3g

64m4
b

f�ð2Þ;� � ð~r� ~E� ~E� ~rÞg

� c9
ig2

8m3
b

� � ð ~E� ~EÞ: (4)

Note that antiquark propagators can be obtained from
quark propagators calculated with the action (1) through
Hermitian conjugation.

Above, �ð2Þ ¼ P
3
j¼1 rð2Þ

j and �ð4Þ ¼ P
3
j¼1 rð4Þ

j , where

rðpÞ
� denotes the pth order symmetric and maximally local

covariant lattice derivative in � direction. All derivatives
are understood to act on all quantities to their right. The
chromoelectric and chromomagnetic fields are defined as
Ej � Fj0, Bj � � 1

2 �jklFkl. The terms with coefficients c1
to c4 in (4) are the order-v4 corrections, while the terms
with coefficients c7 to c9 are the spin-dependent order-v6

corrections (note that spin-independent order-v6 terms

are not included). The terms with coefficients c5 and
c6 are spatial and temporal discretization corrections for
H0. Quantities with a tilde also include discretization
corrections:

~r � ¼ r� � a2

6
rð3Þ

� ; (5)

~F �� ¼ F�� � a2

6
½rð2;adÞ

� þrð2;adÞ
� �F��: (6)

In (6), rð2;adÞ
� is a second-order adjoint derivative (which

acts only on F��) and F�� is the standard cloverleaf lattice

gluon field strength.
At tree level, the coefficients ci are equal to 1. The action

is tadpole improved [33] using the mean link in Landau
gauge, u0L. Using the mean link instead of the plaquette
for tadpole improvement leads to a better scaling
behavior [34].
In this work, calculations were performed either with

c7 ¼ c8 ¼ c9 ¼ 0 or with c7 ¼ c8 ¼ c9 ¼ 1. These two
actions will be referred to as the v4 action and the v6

action, respectively. The v4 action is identical to the action
used in [18]. The stability parameter n in (2) was always set
to n ¼ 2. Calculations were performed for multiple values
of the bare b-quark mass amb, as shown in Table I. The
spin-dependent energy splittings, which show significant
amb dependence (see Appendix C 5), were then interpo-

lated to amðphysÞ
b , where amðphysÞ

b is the value of the bare

b-quark mass that would yield agreement of the �bð1SÞ
kinetic mass with experiment (see Appendix B).

B. Calculation and fitting of two-point functions

The interpolating fields for the bottomonium two-point
functions used here are the same as in [23], except that the
cutoff radius was chosen differently (equal to L=2). For
a � 0:08 fm the smearing parameters in lattice units were

TABLE I. Summary of lattice parameters for the RBC/UKQCD ensembles. The values for the lattice spacing are results of this work
and are determined from the �ð2SÞ ��ð1SÞ energy splitting (see Sec. III B 2). The bare gauge coupling is given as � ¼ 6=g2. The
pion masses in lattice units were taken from [16,24,32] and converted to physical units using the lattice spacings given here. The last
column gives the value of the bare b-quark mass that would yield agreement of the �bð1SÞ kinetic mass with experiment (see
Appendix B).

L3 � T � aml ams amb u0L MD range, step a (fm) m� (GeV) am
ðphysÞ
b

163 � 32 2.13 0.01 0.04 2.536 0.8439 500–4010, 10 0.1117(33) 0.436(14) 2.469(72)

163 � 32 2.13 0.02 0.04 2.536 0.8433 500–4040, 10 0.1170(32) 0.548(16) 2.604(75)

163 � 32 2.13 0.03 0.04 2.536 0.8428 500–7600, 10 0.1195(24) 0.639(14) 2.689(56)

243 � 64 2.13 0.005 0.04 2.3, 2.536, 2.7 0.8439 915–8665, 25 0.1119(17) 0.3377(54) 2.487(39)

243 � 64 2.13 0.01 0.04 2.3, 2.536, 2.7 0.8439 1475–8525, 25 0.1139(19) 0.4194(70) 2.522(42)

243 � 64 2.13 0.02 0.04 2.3, 2.536, 2.7 0.8433 1800–3600, 25 0.1177(29) 0.541(14) 2.622(70)

243 � 64 2.13 0.03 0.04 2.3, 2.536, 2.7 0.8428 1275–3050, 25 0.1196(29) 0.641(15) 2.691(66)

323 � 64 2.25 0.004 0.03 1.75, 1.87, 2.05 0.8609 580–6840, 20 0.0849(12) 0.2950(40) 1.831(25)

323 � 64 2.25 0.006 0.03 1.75, 1.87, 2.05 0.8608 552–7632, 24 0.0848(17) 0.3529(69) 1.829(36)

323 � 64 2.25 0.008 0.03 1.75, 1.87, 2.05 0.8608 540–5920, 20 0.0864(12) 0.3950(55) 1.864(27)
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rescaled from those used at a � 0:11 fm so that the smear-
ing functions in physical units remain the same.

The methods used here for fitting the two-point func-
tions are also the same as in [23], i.e., multiexponential
Bayesian matrix-correlator fitting combined with statisti-
cal bootstrap (suitably modified for Bayesian fitting) [35].
As in [23], bottomonium two-point functions were calcu-
lated for 32 different source locations on each gauge field
configuration to increase statistics. Note that in [23] the
data were averaged over those source locations prior to the
analysis. However, the reduced sample size can lead to
overestimates of errors due to poorly determined data
correlation matrices. As shown in Appendix A, for the
L ¼ 24 and L ¼ 32 ensembles, the bottomonium data
from the 32 source locations are in fact sufficiently inde-
pendent. Therefore, in the present work the data correlation
matrices are calculated with the unblocked data sets for the
L ¼ 24 and L ¼ 32 ensembles. For the L ¼ 16 ensembles,
some autocorrelations between the data from different
source locations were seen, and therefore binning over
source locations was performed.

C. Chiral extrapolations

The dependence of the bottomonium energy splittings
on the light-quark masses is expected to be weak.
Therefore, chiral extrapolations to the physical pion mass
are performed linearly in m2

�. Before chiral extrapolation,
the energy splittings are converted to physical units using
the lattice spacing determinations on the individual ensem-
bles. In addition, the spin splittings are interpolated to the
physical b-quark mass on each individual ensemble (see
Appendixes C 5 and B).

For a given energy splittingEðm�; aÞ that depends on the
pion mass m� and the lattice spacing a, the chiral extrapo-
lation of the data from the L ¼ 32 ensembles with lattice
spacing a1 � 0:08 fm and the L ¼ 24 ensembles with
lattice spacing a2 � 0:11 fm is performed simultaneously,
using the functional form

Eðm�; a1Þ ¼ Eð0; a1Þ þ Am2
�;

Eðm�; a2Þ ¼ Eð0; a2Þ þ Am2
�:

(7)

The three unconstrained fit parameters are Eð0; a1Þ,
Eð0; a2Þ, and A. This allows for an arbitrary dependence
of the energy splitting Eðm�; aÞ on the lattice spacing a.
Higher-order terms depending on both a and m� are ne-
glected. As will be shown later, the a dependence in most
quantities is very weak, and therefore these higher-order
effects are small. No extrapolation in a is performed here,
since one cannot take the continuum limit with NRQCD.
Instead, discretization errors can be estimated from the
difference of the two results Eð0; a1Þ and Eð0; a2Þ. The
simultaneous chiral extrapolation was found to signifi-
cantly improve the statistical accuracy of Eð0; a1Þ from
the L ¼ 32 ensembles, due to the wider range in m2

� on
the L ¼ 24 ensembles.

The data from the L ¼ 16 ensembles, which have a
smaller volume, are extrapolated independently, to allow
for an arbitrary volume dependence of the coefficients A
(the L ¼ 24 and L ¼ 32 ensembles have approximately
the same spatial volume in physical units).
When performing the extrapolations, the statistical un-

certainties in the physical pion mass values on the individ-
ual ensembles (due to the scale uncertainty) are taken into
account, by making the pion masses themselves also pa-
rameters of the fit, constrained with Gaussian priors. The
central values and widths of these priors were set equal to
the values and uncertainties of the pion masses given in
Table I.

III. RESULTS

A. Speed of light

In the continuum, the energy of a particle with mass M
and three-momentum p satisfies the relationship E2 ¼
M2 þ p2 (in the units used here). Equivalently, one has

E2 �M2

p2
¼ 1: (8)

To study deviations from the relativistic continuum energy-
momentum relationship on the lattice, in the following the
square of the ‘‘speed of light’’ (8) will be calculated for the
�bð1SÞ meson. Note that due to the use of NRQCD,
energies extracted from fits to bottomonium two-point
functions are shifted by approximately �2mb. This shift
does not affect energy differences. To obtain the full mass
of a bottomonium state, one can calculate the kinetic mass,
defined as

Mkin � p2 � ½EðpÞ � Eð0Þ�2
2½EðpÞ � Eð0Þ� : (9)

Equation (9) will be equal to the physical mass if the
relativistic energy-momentum relationship is satisfied up
to a constant shift; with lattice NRQCD this is not exact
and Mkin will depend slightly on the momentum p. On a
lattice with L points in the spatial directions and periodic
boundary conditions, the momentum can have the values
p ¼ n � 2�=ðaLÞ where n ¼ ðn1; n2; n3Þ with ni 2 Z and
�L=2< ni � L=2. We therefore define the square of the
speed of light as

c2 � ½EðpÞ � Eð0Þ þMkin;1�2 �M2
kin;1

p2
; (10)

where Mkin;1 denotes the kinetic mass calculated with

n2 ¼ 1.
Deviations of c2 from 1 can be caused by missing

relativistic and radiative corrections in the NRQCD action
(mainly in the coefficients c1, c5, and c6) and by gluon-
discretization errors.
The numerical results for c2, calculated using the v4

action from the �bð1SÞ energies, are given in Table II and
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plotted in Fig. 1. The results at a � 0:11 fm given here
have smaller statistical errors than the previous ones in
[23]. At a � 0:11 fm, a very small deviation of c2 from 1,
at the level of about 0.1% (1:5	), can now be resolved for
n2 ¼ 2 and n2 ¼ 3. At a � 0:08 fm, this deviation goes
away, indicating that discretization errors are indeed
smaller at the finer lattice spacing.

The statistical error in c2 grows with n2. Notice however
that even at n2 ¼ 12, which corresponds to a meson mo-
mentum of about 1.6 GeV, the deviation of c2 from 1 is
found to be less than 0.3% at a � 0:11 fm and less than
0.4% at a � 0:08 fm. This demonstrates that the lattice
NRQCD in combination with the Iwasaki gluon action
works very well for bottomonium.

B. Radial/orbital splittings and the lattice spacing

1. Estimates of systematic errors

The radial and orbital bottomonium energy splittings are
calculated in this work with the v4 action on all ensembles.

Radial and orbital energy splittings are an effect of order
v2, and therefore the relative error in the radial and orbital
energy splittings due to the missing v6 corrections is of
order v4 � 0:01. Further systematic errors are introduced
by the missing radiative corrections to the v4 terms, which
leads to a relative error of order �sv

2 � 0:02 (here and in
the following, �s � 0:2 is used).
The dominant discretization errors in radial and orbital

energy splittings are expected to be caused by missing
radiative corrections to the couplings c5 and c6 in (4),
and by discretization errors in the gluon action.
The relative errors caused by the radiative corrections to

c5 and c6 can be estimated as follows: by replacing every
derivative with a factor of mbv, we see that the terms with
c5 and c6 in (4) should be of order a2m4

bv
4=ð24mbÞ and

am4
bv

4=ð16nm2
bÞ, respectively. The radiative corrections

should be of order �s times these estimates. The relative
error in radial and orbital energy splittings is obtained
through dividing by the estimate m2

bv
2=ð2mbÞ of H0. The

relative error due to the missing radiative corrections to c5
is then

�sa
2m2

bv
2

12
; (11)

which is about 1% at a � 0:11 fm and 0.6% at
a � 0:08 fm. The relative error due to the missing radia-
tive corrections to c6 is

�sambv
2

8n
; (12)

which is about 0.3% at a � 0:11 fm and 0.2% at
a � 0:08 fm. More sophisticated estimates of these errors,
using wave functions from a potential model, have been
made in [18].
The discretization errors caused by the gluon action are

discussed in detail in Appendix D. Estimates using tree-
level perturbation theory are derived in Appendix D 1. The
values for the Iwasaki action at the lattice spacings used
here can be found in Table XXX. The nonperturbative
results presented in Sec. III B 2 and Appendix D 2 indicate
that the errors may actually be smaller than the tree-level
estimates.

2. Results

The results for the radial and orbital energy splittings
in lattice units at amb ¼ 2:536 (for a � 0:11 fm) and
amb¼1:87 (for a�0:08 fm) are given in Appendix C 1.
The spin-averaged masses are denoted with a bar, and are
defined as

�M ¼
P
J
ð2J þ 1ÞMJP
J
ð2J þ 1Þ : (13)

In Appendix C 2, results for the radial and orbital energy
splittings for multiple values of amb, varying by about
15%, are given. As can be seen there, the dependence

TABLE II. Square of the speed of light, calculated with the v4

action. For n2 ¼ 9, the components are n ¼ ð2; 2; 1Þ and octa-
hedral transformations thereof. The data shown are from the
L ¼ 24 ensemble (a � 0:11 fm) with aml ¼ 0:005, amb ¼
2:536 and from the L ¼ 32 ensemble (a � 0:08 fm) with
aml ¼ 0:004, amb ¼ 1:87.

n2 c2 (a � 0:11 fm) c2 (a � 0:08 fm)

2 1.000 70(47) 1.000 12(55)

3 1.001 34(85) 1.000 22(92)

4 0.9987(12) 0.9987(15)

5 0.9998(15) 0.9991(17)

6 1.0008(18) 0.9995(20)

8 1.0005(22) 0.9995(28)

9 1.0011(25) 1.0001(31)

12 1.0015(33) 1.0009(44)

FIG. 1 (color online). Square of the speed of light, calculated
with the v4 action (points from the two different lattice spacings
are offset horizontally for legibility). The points at n2 ¼ 12
correspond to a meson momentum of about 1.6 GeV. Note that
the very small deviation of c2 from 1 at a � 0:11 fm, seen for
n2 ¼ 2 and n2 ¼ 3, disappears at a � 0:08 fm.
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on amb is very weak. The change when interpolating
from amb ¼ 2:536 at a � 0:11 fm or amb ¼ 1:87 at
a � 0:08 fm to the physical values of amb given in
Table I would be much smaller than the statistical errors.

The inverse lattice spacings of the gauge field ensembles
are determined from the�ð2SÞ ��ð1SÞ splitting, dividing
the experimental value from [36] by the dimensionless
lattice value. The 2S� 1S splitting is expected to have
smaller systematic errors than the 1P� 1S splitting [18].
In particular, as shown in Appendix D 1 b, the gluonic
discretization errors partially cancel in the 2S� 1S split-
ting. For the Iwasaki action and at tree level, the remaining
gluon errors in the 2S� 1S splitting are estimated to be
about 2.6% at a � 0:11 fm and 1.6% at a � 0:08 fm.

Results for the lattice spacings of all ensembles are
given in Tables III, IV, and V. The errors shown there are
statistical/fitting only. For comparison, results from both

the �ð2SÞ ��ð1SÞ and 13P��ð1SÞ splitting are given.
They are found to be mostly consistent within the statistical
errors here. Note that in the quenched approximation, the
ratio of the 2S� 1S and 1P� 1S splittings was previously
found to be in disagreement with experiment [18].

The lattice spacings obtained here are seen to become
slightly finer as the sea-quark mass is reduced (in [23], this
dependence was hidden by the larger statistical errors).
This behavior is in fact expected here, since in the RBC/
UKQCD ensembles, the bare gauge coupling is kept con-
stant when varying the sea-quark masses (see Table I).
In contrast to this, the MILC Collaboration decreases
� / 1=g2 when decreasing the sea-quark masses [13],
such that the lattice spacing remains approximately con-
stant [18].

The lattice spacings from the 2S� 1S splittings on the
individual ensembles were then used to convert the results
for the other radial and orbital energy splittings to physical
units. The conversion was performed using the bootstrap
method to take into account correlations between the
2S� 1S splitting and the other splittings.

Finally, the results in physical units were extrapolated to
the physical pion mass, as shown in Fig. 2. The data from
the L ¼ 24 and L ¼ 32 ensembles (both have a box size of
about 2.7 fm) were extrapolated simultaneously using the
function (7). The data from the L ¼ 16 ensembles were
treated independently, since the dependence on the pion
mass may be different for the smaller box size of about
1.8 fm.

The numerical results at the physical pion mass are
given in Table VI. In addition, the energies of the radial

and orbital excitations at the physical pion mass are plotted
in Fig. 3. The extrapolated data from the L ¼ 16 ensembles
have significantly larger statistical errors than the other
data. This is expected for the following two main reasons:
first, the four-dimensional volume of these ensembles is
about 7 times smaller than that of the L ¼ 24 ensembles,
providing less information. Second, the lowest pion mass
available at L ¼ 16 is larger than on the other two ensem-
bles, requiring more extrapolation. Within the statistical
errors, no finite-volume effects are seen (also at the indi-
vidual values of the quark masses, where the results are
more precise; see Fig. 2). Finite-volume effects in botto-
monium have been studied in detail using a lattice potential
model in [37]. At a box size of 1.8 fm (corresponding to the
L ¼ 16 lattices here) the most significant finite-size effects
were found in the 3S energy, which was shifted by about
�40 MeV compared to the infinite-volume energy. At a
size of 2.7 fm, this shift was found to be negligible.
The results for the radial and orbital energy splittings

obtained here from the L ¼ 24 and L ¼ 32 ensemble show
very little dependence on the lattice spacing. When going
from a � 0:11 fm to a � 0:08 fm, the 1P� 1S splitting
changes by about 2%. However, this change is only 1
standard deviation and could also be caused by a statistical
fluctuation. All results at a � 0:08 fm, where discretiza-
tion errors are expected to be the smallest, are in excellent

agreement with experiment. The 13P� 1S and �2ð1DÞ �
�ð1SÞ splittings at a � 0:08 fm have statistical errors of
only about 1.3%, and they agree fully with experiment.
This indicates that the systematic errors are very
small, smaller than the tree-level estimates of gluon-
discretization errors given in Table XXX would suggest.

C. Spin-dependent splittings

1. Discussion of systematic errors

Spin-dependent energy splittings first arise at order v4 in
the nonrelativistic expansion, via the terms with coeffi-
cients c3 and c4 in Eq. (4). For the order-v4 action, it is

TABLE III. Inverse lattice spacings of the L ¼ 16 ensembles
in GeV.

aml ¼ 0:01 aml ¼ 0:02 aml ¼ 0:03

a�1
2S�1S 1.766(52) 1.687(46) 1.651(33)

a�1
1P�1S 1.718(16) 1.678(13) 1.661(10)

TABLE IV. Inverse lattice spacings of the L ¼ 24 ensembles
in GeV.

aml ¼ 0:005 aml ¼ 0:01 aml ¼ 0:02 aml ¼ 0:03

a�1
2S�1S 1.763(27) 1.732(28) 1.676(42) 1.650(39)

a�1
1P�1S 1.742(14) 1.703(12) 1.680(27) 1.670(33)

TABLE V. Inverse lattice spacings of the L ¼ 32 ensembles in
GeV.

aml ¼ 0:004 aml ¼ 0:006 aml ¼ 0:008

a�1
2S�1S 2.325(32) 2.328(45) 2.285(32)

a�1
1P�1S 2.305(24) 2.329(23) 2.328(23)
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expected that at lowest order the S-wave hyperfine
splittings

�ðnSÞ � �bðnSÞ (14)

and the P-wave tensor splittings

� 2
b0ðnPÞ þ 3
b1ðnPÞ � 
b2ðnPÞ (15)

are proportional to c24 and independent of c3, while the
P-wave spin-orbit splittings

� 2
b0ðnPÞ � 3
b1ðnPÞ þ 5
b2ðnPÞ (16)

are proportional to c3 and independent of c4 [18]. In
this work, the coefficients ci are set to their tree-level
values, ci ¼ 1. Therefore, spin-dependent energy splittings
calculated directly will have systematic errors of order
�s � 0:2. However, these unknown radiative corrections
are expected to cancel in ratios of quantities with equal
dependence on the couplings ci. Nonperturbative results
for the dependence of various spin splittings and ratios of
spin splittings on c3 and c4 are given in Appendix C 4 for
both the v4 and v6 actions. As can be seen there, ratios of
hyperfine and tensor splittings are indeed independent of
both c3 and c4 to a very good approximation.

FIG. 2 (color online). Chiral extrapolation of radial and orbital energy splittings (calculated with the v4 action). Extrapolated points
are offset horizontally for legibility.
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Spin splittings calculated with the v4 action will also
have relativistic errors of order v2 � 0:1 due to the missing
v6 corrections. Therefore, the spin-dependent v6 correc-
tions, given by the terms with coefficients c7, c8, and c9 in
Eq. (4), are included in this work. Relativistic corrections
for spin splittings calculated with the v6 action are then
expected to be of order v4 � 0:01 due to the missing
order-v8 terms. Missing radiative corrections to the
order-v6 terms lead to additional systematic errors of order
�sv

2 � 0:02.
The terms with coefficients c3 and c4 in Eq. (4) include

the tree-level discretization corrections via (5) and (6):

� � ð~r� ~E� ~E� ~rÞ ¼ �jkl	jðrkFl0 � Fk0rlÞ

� a2

6
�jkl	jðrð3Þ

k Fl0 � Fk0rð3Þ
l Þ

� a2

6
�jkl	jðrk½rð2;adÞ

l Fl0

þrð2;adÞ
0 Fl0�

� ½rð2;adÞ
k Fk0 þrð2;adÞ

0 Fk0�rlÞ;
(17)

� � ~B¼�1

2
	j�jklFklþa2

12
	j�jkl½rð2;adÞ

k Fklþrð2;adÞ
l Fkl�:

(18)

However, radiative corrections to the order-a2 terms in (17)
and (18) are missing. Their size can be estimated using the
NRQCD power-counting rules. We replace every spatial
derivative bymbv and every temporal derivative by 1

2mbv
2

(by the leading-order equations of motion, a temporal
derivative is of the order of the nonrelativistic kinetic
energy [10]). The radiative discretization corrections are
of order �s times the a2 terms. For the spin-orbit splitting
controlled by (17), the terms with the spatial derivatives in
the a2 terms are dominant, and the relative discretization
errors become

1
3�sa

2m2
bv

2: (19)

This is about 0.04 at a � 0:11 fm and about 0.02 at
a � 0:08 fm. The relative discretization errors in the hy-
perfine and tensor splittings are

2
3�sa

2m2
bv

2: (20)

Here, an additional factor of 2 was introduced to take into
account the quadratic dependence of the hyperfine and
tensor splittings on (18). Equation (20) is equal to about
0.09 at a � 0:11 fm and about 0.05 at a � 0:08 fm.
In the spin-dependent order-v6 corrections (the terms

with coefficients c7, c8, and c9 in the action), the lattice
Laplacian used here does not include discretization correc-

tions. The tree-level corrected Laplacian would be ~�ð2Þ ¼
�ð2Þ � ða2=12Þ�ð4Þ. The relative error in the hyperfine
and tensor splittings caused by the missing of this correc-
tion is then of order a2m2

bv
4=6, which is only 0.005 at

a � 0:08 fm.
Additional discretization errors in spin splittings may

arise from the gluon action. These errors are discussed
in detail in Appendix D 2. For the S-wave hyperfine
splittings, the relative error caused by discretization errors
in the Iwasaki action is estimated to be about 5% at

FIG. 3 (color online). Chirally extrapolated results for the
radial and orbital energy splittings, calculated with the v4 action.
The �ð1SÞ and �ð2SÞ masses are used as input in the lattice
calculation. The errors on the lattice results shown here are
statistical/fitting/scale setting only.

TABLE VI. Chirally extrapolated results for the radial and orbital energy splittings in GeV, calculated with the v4 action. The errors
on the lattice results shown here are statistical/fitting/scale setting only; for a discussion of systematic errors, see Sec. III B 1. The
experimental values are from [1–3] [for the �bð1SÞ, which enters in 1S], from [61,62] [for the �2ð1DÞ], and from the Particle Data
Group [36] (for all other states).

L ¼ 16, a � 0:11 fm L ¼ 24, a � 0:11 fm L ¼ 32, a � 0:08 fm Experiment

�ð3SÞ ��ð1SÞ 0.98(13) 0.883(52) 0.900(34) 0.894 90(56)

13P��ð1SÞ 0.462(24) 0.4524(78) 0.4428(57) 0.439 57(37)

13P� 1S 0.476(24) 0.4657(79) 0.4571(59) 0.456 90(79)

23P� 13P 0.414(61) 0.351(21) 0.362(15) 0.360 33(45)

23P��ð1SÞ 0.865(70) 0.802(23) 0.803(17) 0.799 90(47)

23P� 1S 0.878(70) 0.816(23) 0.817(17) 0.817 22(83)

�2ð1DÞ ��ð1SÞ 0.717(39) 0.709(14) 0.7060(98) 0.703 40(87)
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a � 0:08 fm; for the other spin splittings no significant
gluon-discretization errors are found.

Finally, note that the lattice NRQCD calculation per-
formed here does not include the effects of annihilation of
the b and �b. This mainly affects the pseudoscalar states
�bðnSÞ, which can annihilate into two gluons [for the
�ðnSÞ, at least three gluons are required]. The annihilation
contribution to the �b mass can be related to the two-gluon
decay width �½�b ! gg� as follows [38,39]:

�Eannihil½�b� � lnð2Þ � 1

�
�½�b ! gg�: (21)

For the �bð1SÞ and �bð2SÞ, the widths were calculated in
[40] to be 7 MeV and 3.5 MeV, respectively. This gives
�Eannihil½�bð1SÞ� ¼ �0:7 MeV and �Eannihil½�bð2SÞ� ¼
�0:34 MeV, which is only about 1% of the hyperfine
splittings.

2. Results

The results for the spin-dependent energy splittings in
lattice units at amb ¼ 2:536 (for a � 0:11 fm, L ¼ 24)
and amb ¼ 1:87 (for a � 0:08 fm, L ¼ 32) for both the v4

and v6 NRQCD actions are given in Appendix C 3. Here,
all couplings ci in the action were set to their tree-level
values of 1.

In Appendix C 4, the dependence of the spin splittings
on the couplings c3 and c4 in the action (4) is studied (on
the L ¼ 24 ensemble with aml ¼ 0:005). Results are
shown for both the v4 and v6 actions. The naive expecta-
tions for the c3 and c4 dependence of the order-v4 spin
splittings were discussed at the beginning of Sec. III C 1.
The dependence of the 1P spin-orbit splitting on the cou-
pling c3 appears to be slightly weaker than expected: it
changes by only 13% (for the v4 action) or 15% (for the v6

action), when c3 is changed by 20%. Contrary to the naive
expectation, the 1P spin-orbit splitting also shows some
dependence on c4: about 6% (for the v4 action) or 8% (for
the v6 action), when c4 is varied by 20%. On the other
hand, the 1P tensor splitting behaves as expected: it shows
no significant c3 dependence, and the dependence on c4 is
consistent with proportionality to c24, for both the v

4 and v6

actions. The results for the 1S hyperfine splitting are also
close to these expectations. However, in the 1S hyperfine
splitting the deviations from the naive expectations, while
not large in absolute terms, are statistically significant due
to the very small statistical errors. The most important
result from Appendix C 4 is that the ratio of the 2S and
1S hyperfine splitting as well as the ratios of the S-wave
hyperfine and the 1P tensor splitting show no significant
dependence on either c4 or c3, and this is true for both the
v4 and v6 actions.

Next, in Appendix C 5, results for the spin-dependent
energy splittings for multiple values of amb, varying by
about 15%, are given, and visualized in Fig. 9. As can be
seen there, the results for most splittings are compatible

with a 1=mb dependence, with the notable exception of the
1S hyperfine splitting. The 1=mb dependence of the spin
splittings can be understood from the power-counting rules
as follows: radial and orbital energy splittings, which are
of order mbv

2, are nearly independent of mb, as shown in
Appendix C 2. This implies that

v2 / 1=mb: (22)

Spin-dependent energy splittings are a factor of v2 smaller
than radial and orbital energy splittings. Since the latter are
nearly constant, spin-dependent energy splittings are ex-
pected to be proportional to v2, and hence 1=mb.
The results for the 1S hyperfine splitting in lattice units

have very small statistical errors, and are clearly incom-
patible with a dependence proportional to 1=ðambÞ.
However, fits of the form A=ðambÞ þ B with a constant
term B describe the data very well in the range considered
here. The fit results A and B for the 1S hyperfine splittings
on all L ¼ 24 and all L ¼ 32 ensembles, for both the v4

action and the v6 action are given in Tables XXIII, XXV,
XXVII, and XXIX.
To obtain physical results, all spin splittings were then

interpolated to the physical b-quark masses given in
Appendix B, assuming a 1=ðambÞ dependence everywhere
except for the 1S hyperfine splittings and the ratios. For the
1S hyperfine splittings and the ratios involving them, the fit
results A and B were used in the interpolation.
The interpolated spin splittings were then converted to

physical units using the lattice spacings from the 2S� 1S
splittings on the individual ensembles as obtained in
Sec. III B 2. Note that the uncertainty in the lattice spacing
enters with a factor of 2 here, due to the resulting uncer-
tainty in the bare heavy-quark mass and the approximate
1=ðambÞ behavior of spin splittings.
Finally, simultaneous chiral extrapolations of the data at

a � 0:11 fm and a � 0:08 fm to the physical pion mass,
using the functional form (7), were performed (the data
from the v4 and v6 actions were treated independently).
These chiral extrapolations are visualized in Figs. 4 and 5.
The numerical results for the spin splittings at the physi-

cal pion mass are given in Table VII and plotted in Fig. 6. It
can be seen that the results obtained with the v6 and with
the v4 action differ significantly. At a � 0:08 fm, the 1S
hyperfine and spin-orbit splitting are reduced by about 20%
by the v6 terms, while the 1P tensor splitting is reduced
by 10%. These changes are in line with the estimate of
v2 � 0:1.
The dependence on the lattice spacing varies between

the different quantities. For example, the 1S hyperfine
splitting calculated with the v6 action increases by 3%
when going from a � 0:11 fm to a � 0:08 fm, but this
change is only 0.8 standard deviations. With the v4 action,
the lattice spacing dependence in the 1S hyperfine splitting
appears to be stronger, about 6% or 1.4 standard deviations.
This size of the a dependence is in good agreement with
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the estimates of discretization errors obtained in
Sec. III C 1. Note that the dependence on the lattice spacing
in spin splittings calculated directly (as opposed to the
ratios) may be caused both by discretization errors and
by the amb dependence of the missing radiative corrections
to c3 and c4. When going from a � 0:11 fm to a �
0:08 fm, the 1P tensor splitting appears to change by about
10%, but the effect is less than 1 standard deviation. No a
dependence is seen in the 1P spin-orbit splitting. Recall
that the estimates of discretization errors obtained in
Sec. III C 1 are indeed smaller by a factor of 2 in the

spin-orbit splitting compared to the tensor and hyperfine
splittings. In addition, in potential models the spin-orbit
splitting is not as sensitive to short distances as the hyper-
fine splitting.
The ratios of spin splittings calculated here also show no

significant dependence on the lattice spacing: about 0.7
standard deviations in the ratio of the 2S and 1S hyperfine
splittings and about 0.5 standard deviations in the ratios of
the S-wave hyperfine and 1P tensor splittings.
The most reliable results for the spin-dependent energy

splittings obtained in this work, calculated with the v6

FIG. 4 (color online). Chiral extrapolation of spin-dependent splittings from the L ¼ 24 and L ¼ 32 ensembles, part I. Extrapolated
points are offset horizontally for legibility.
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action at a � 0:08 fm, are summarized in Table VIII.
Here, estimates of the systematic errors based on the dis-
cussions in Sec. III C 1 and Appendix D 2 are given. The
systematic errors in the ratios of the hyperfine and tensor
splittings, where the unknown radiative corrections to c3
and c4 cancel, are dominated by discretization errors. The

systematic error in the 13P� hbð1PÞ hyperfine splitting is
dominated by the unknown radiative corrections of order

�s. However, the absolute systematic error in 13P�
hbð1PÞ is only 0.2 MeV (assuming �s � 0:2), because
the splitting is found to be zero within the statistical error

of about 1 MeV. The 13P� hbð1PÞ splitting vanishes in
potential models because the wave function at the origin is
zero for L � 0.
Using the lattice ratios of the S-wave hyperfine and the

1P tensor splitting, and the experimental result for the 1P
tensor splitting [36], the 1S and 2S hyperfine splittings can
be calculated in MeV. The 2S hyperfine splitting in MeV
can be calculated alternatively from the lattice ratio of the
2S and 1S hyperfine splitting, and the experimental value
of the 1S hyperfine splitting [1–3]. The results obtained
with both methods are shown in Table VIII.

FIG. 5 (color online). Chiral extrapolation of spin-dependent splittings from the L ¼ 24 and L ¼ 32 ensembles, part II. Extrapolated
points are offset horizontally for legibility.
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Using the �ð1SÞ, �ð2SÞ, and 13P masses from experi-
ment [36], the absolute masses of the �bð1SÞ, �bð2SÞ, and
hbð1PÞ mesons can then be calculated. This gives

M½�bð1SÞ� ¼ 9:4000ð55Þð50Þð21Þ GeV;
M½�bð2SÞ�a ¼ 9:9998ð41Þð21Þð9Þ GeV;
M½�bð2SÞ�b ¼ 9:9953ð36Þð19Þð12Þ GeV;
M½hbð1SÞ� ¼ 9:899 83ð93Þð20Þð27Þ GeV;

(23)

where the first error is statistical/fitting, the second error is
systematic, and the third error is experimental. For the
�bð2SÞ mass, the results from both methods as discussed
above are given.

IV. CONCLUSIONS

In this paper, a high-precision calculation of the botto-
monium spectrum in lattice QCD with 2þ 1 flavors of

dynamical light quarks was presented. One important im-
provement over [23] was the inclusion of a finer lattice
spacing, giving better control of discretization errors. The
dependence of the results on the lattice spacing was seen to
be weak, and consistent with the estimates of NRQCD
discretization errors based on power counting. At
a � 0:08 fm, the radial and orbital energy splittings were
found to be in excellent agreement with experiment, within
statistical errors as small as 1.3% (see Fig. 3). In addition,
the square of the ‘‘speed of light,’’ a quantity used on the
lattice to measure deviations from the relativistic contin-
uum energy-momentum relationship, was found to be
compatible with 1 within statistical errors smaller than
0.4% for bottomonium momenta up to 1.6 GeV (see
Fig. 1). These results provide valuable tests of the lattice
methods used here: NRQCD for the b quarks, the Iwasaki
action for the gluons, and the domain-wall action for the
sea quarks. The discretization errors associated with the
gluon action were studied further using a lattice potential

TABLE VII. Spin-dependent energy splittings from the L ¼ 24 and L ¼ 32 ensembles, interpolated to the physical b-quark mass
and extrapolated to the physical pion mass. All results in MeV, except for the dimensionless ratios. For the lattice data, the errors shown
here are statistical/fitting/scale setting only; see Sec. III C 1 for a discussion of systematic errors and Table VIII for the final results that
include estimates of the systematic errors. The experimental value for �ð1SÞ � �bð1SÞ is the weighted average of the results from
[1–3]. All other experimental values are from the Particle Data Group [36].

v4 action v6 action

a � 0:11 fm a � 0:08 fm a � 0:11 fm a � 0:08 fm Experiment

�ð1SÞ � �bð1SÞ 55.7(2.0) 59.0(1.4) 46.9(1.7) 48.5(1.1) 69.3(2.9)

�ð2SÞ � �bð2SÞ 22.1(4.1) 27.1(2.6) 15.8(3.6) 19.7(2.4) � � �

b2ð1PÞ � 
b1ð1PÞ 20.9(2.3) 20.9(1.9) 17.0(2.0) 16.9(1.7) 9.43(57)


b1ð1PÞ � 
b0ð1PÞ 28.9(2.1) 31.3(1.7) 26.0(1.8) 27.5(1.4) 33.34(66)

13P� hbð1PÞ 0.9(1.4) 0.3(1.0) 0.6(1.2) 0.04(93) � � �
�2
b0ð1PÞ � 3
b1ð1PÞ þ 5
b2ð1PÞ 163(13) 167(11) 137(12) 139.4(9.8) 163.8(2.6)

�2
b0ð1PÞ þ 3
b1ð1PÞ � 
b2ð1PÞ 36.6(4.4) 41.6(3.3) 34.7(3.9) 38.1(3.0) 47.3(1.6)

�ð2SÞ��bð2SÞ
�ð1SÞ��bð1SÞ 0.391(75) 0.456(47) 0.333(78) 0.403(52) � � �

�ð1SÞ��bð1SÞ
�2
b0ð1PÞþ3
b1ð1PÞ�
b2ð1PÞ 1.54(18) 1.44(13) 1.36(16) 1.28(12) 1.467(79)

�ð2SÞ��bð2SÞ
�2
b0ð1PÞþ3
b1ð1PÞ�
b2ð1PÞ 0.57(14) 0.622(98) 0.43(13) 0.497(87) � � �

FIG. 6 (color online). Chirally extrapolated results for the spin-dependent energy splittings, from the L ¼ 24 and L ¼ 32 ensembles.

Left panel: 1P spin splittings (energies relative to 13P). Right panel: S-wave hyperfine splittings [energies relative to the �ð1SÞ and
�ð2SÞ states, respectively]. The errors shown are statistical/fitting/scale setting only; see Sec. III C 1 for a discussion of systematic
errors and Table VIII for the final results that include estimates of the systematic errors.
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model based on tree-level perturbation theory, and by
repeating the nonperturbative calculations on MILC gauge
field ensembles generated with the Lüscher-Weisz action.
These tests show that the Iwasaki action works well at the
lattice spacings considered here.

The focus of this work was the accurate calculation of
spin splittings. To this end, ratios of hyperfine and tensor
splittings were calculated, in which the unknown radiative
corrections to the leading spin-dependent terms in the
NRQCD action cancel. This cancellation was confirmed
here directly through numerical calculation of these ratios
with different values of the spin-dependent couplings in the
action. Furthermore, systematic errors from relativistic cor-
rections were reduced by the inclusion of the spin-
dependent order-v6 terms in theNRQCDaction. The results
in Table VIII are considerably more precise than those from
previous lattice computations. For example, the ratio of
the 2S and 1S hyperfine splittings is predicted here to
be 0:403� 0:052stat � 0:027syst (the result from [18] is

0:5� 0:3stat). By the criterion of Ref. [41], the results (23)
for the �bð2SÞ mass obtained here are now the most
accurate predictions of a gold-plated hadron mass from
lattice QCD to date. The prediction of the hbð1PÞ mass
appears to be evenmore accurate, but note that it is obtained

by subtracting from the experimental result for the 13Pmass
a splitting that is zero within the statistical errors.

The result for the 1S hyperfine splitting obtained here is
60:3� 5:5stat � 5:0syst � 2:1exp MeV. This is consistent

with the value of 54� 12 MeV calculated with the
Fermilab method in [14]. It is also in excellent agreement
with the prediction of 60 MeV obtained in [42] using a
relativistic quark model, and with the result of 58�
1 MeV from [43] for nf ¼ 3.

The 1S hyperfine splitting calculated here is only about 1
standard deviation below the weighted average of the
experimental results from [1–3]. The splitting obtained

here is larger than many results from perturbative QCD
[4–6]. Penin argues in [6] using continuum perturbation
theory (where in fact lattice perturbation theory should be
used) that the inclusion of radiative corrections in the
NRQCD action could reduce the lattice value for the
hyperfine splitting by about 20 MeV and bring it in agree-
ment with perturbative QCD. This statement does not
apply to the result obtained here, where the hyperfine
splitting is calculated from the ratio to the P-wave tensor
splitting so that the radiative corrections cancel.
Interestingly, it is noted in [44] that the perturbative pre-
diction for the 1S hyperfine splitting increases significantly
and becomes consistent with experiment when the delta
function terms in the potential are not softened.
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APPENDIX A: ANALYSIS OF
AUTOCORRELATIONS

In this work, bottomonium two-point functions were
calculated for 32 different source locations spread evenly
across the lattice on each gauge field configuration in order
to increase statistics. The question is whether data from
different source locations are statistically independent, and

TABLE VIII. Final results for spin splittings, calculated with the v6 action at a � 0:08 fm
(L ¼ 32). For the lattice data, the first error is statistical/fitting, the second error is an estimate of
systematic uncertainties, and the third error (where given) is experimental. The experimental
value for the 1S hyperfine splitting is the weighted average of the results from [1–3]; the
experimental value for the 1P tensor splitting is calculated using the 13P masses from the
Particle Data Group [36].

This work Experiment

�ð2SÞ��bð2SÞ
�ð1SÞ��bð1SÞ 0.403(52)(27) � � �

�ð1SÞ��bð1SÞ
�2
b0ð1PÞþ3
b1ð1PÞ�
b2ð1PÞ 1.28(12)(10) 1.467(79)

�ð2SÞ��bð2SÞ
�2
b0ð1PÞþ3
b1ð1PÞ�
b2ð1PÞ 0.497(87)(44) � � �
�ð1SÞ � �bð1SÞ 60.3(5.5)(5.0)(2.1) MeV a 69.3(2.9) MeV

�ð2SÞ � �bð2SÞ 23.5(4.1)(2.1)(0.8) MeV a � � �
28.0(3.6)(1.9)(1.2) MeV b � � �

13P� hbð1PÞ 0.04(93)(20) MeV � � �
aUsing 1P tensor splitting from experiment.
bUsing �ð1SÞ � �bð1SÞ splitting from experiment.
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also whether the data from successive (in molecular dy-
namics time) gauge field configurations are statistically
independent. Possible autocorrelations in the data can be
reduced by binning, that is, by averaging the data within
blocks of some size B prior to the further statistical analy-
sis. Increases in the statistical errors in an observable under
binning of the data would indicate the presence of
autocorrelations.

Performing the binning analysis for the energies obtained
from the matrix fits used here with their large number
of degrees of freedom is problematic due to spurious

finite-sample-size effects for the estimates of the data cor-
relation matrix when the bin size becomes too large.
Therefore, in the following analysis, the statistical errors
in the two-point functions themselves are considered in-
stead. Figure 7 shows the errors in the diagonal �ð1SÞ,
�ð2SÞ, and �ð3SÞ two-point functions for a given source-
sink separation t, versus the bin size B (all errors relative to
the corresponding error at B ¼ 1). To the left of the vertical
dashed lines in the graphs, binning is performed over
neighboring source locations only (B ¼ 1; 2; 4; . . . ; 32).
To the right of thevertical dashed lines, binning is performed

FIG. 7 (color online). Analysis of autocorrelations in the two-point functions of the �ð1SÞ, �ð2SÞ, and �ð3SÞ interpolating fields.
The data are from the L ¼ 16 ensemble with aml ¼ 0:01, the L ¼ 24 ensemble with aml ¼ 0:005, and the L ¼ 32 ensemble with
aml ¼ 0:004.

TABLE IX. Heavy-quark mass dependence of the kinetic mass of the �bð1SÞ meson in lattice units, calculated with the v4 action on
the L ¼ 24 ensembles. Also shown are the results of correlated fits using the functional form aMkin ¼ A � amb þ B, and the value of
amb that would yield agreement of the �bð1SÞ kinetic mass with experiment.

amb ¼ 2:3 amb ¼ 2:536 amb ¼ 2:7 Fit result amðphysÞ
b

aml ¼ 0:005 4.965(11) 5.414(22) 5.743(13) A ¼ 1:944ð12Þ, B ¼ 0:494ð27Þ 2.487(39)

aml ¼ 0:01 4.986(13) 5.447(15) 5.768(17) A ¼ 1:958ð18Þ, B ¼ 0:483ð44Þ 2.522(42)

aml ¼ 0:02 4.979(45) 5.443(50) 5.763(54) A ¼ 1:967ð56Þ, B ¼ 0:46ð12Þ 2.622(70)

aml ¼ 0:03 4.933(29) 5.391(31) 5.712(32) A ¼ 1:947ð38Þ, B ¼ 0:454ð95Þ 2.691(66)

TABLE X. Heavy-quark mass dependence of the kinetic mass of the �bð1SÞ meson in lattice units, calculated with the v4 action on
the L ¼ 32 ensembles. Also shown are the results of correlated fits using the functional form aMkin ¼ A � amb þ B, and the value of
amb that would yield agreement of the �bð1SÞ kinetic mass with experiment.

amb ¼ 1:75 amb ¼ 1:87 amb ¼ 2:05 Fit result amðphysÞ
b

aml ¼ 0:004 3.882(10) 4.112(11) 4.458(11) A ¼ 1:914ð16Þ, B ¼ 0:534ð29Þ 1.831(25)

aml ¼ 0:006 3.8823(85) 4.1118(93) 4.4560(98) A ¼ 1:912ð10Þ, B ¼ 0:536ð19Þ 1.829(36)

aml ¼ 0:008 3.889(13) 4.122(14) 4.468(15) A ¼ 1:927 22ð Þ, B ¼ 0:518ð40Þ 1.864(27)
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over neighboring gauge configurations (B ¼ 64; 96;
128; . . . ; 256). Here, ‘‘neighboring’’ gauge configurations
are separated by the step sizes given in Table I. As can be
seen in Fig. 7, for theL ¼ 16 ensemble,which has a box size
of about 1.8 fm, significant autocorrelations between the
data from the different source locations can be seen at short
time separations for the interpolatingfields optimized for the
excited states [�ð2SÞ and �ð3SÞ]. The stronger autocorre-
lations for excited states compared to ground states can be
explained by the larger physical size of the excited states.No
significant autocorrelations are seen in molecular dynamics
time. Note that the source locations were always shifted
randomly from configuration to configuration in this work.
For the L ¼ 24 and L ¼ 32 ensembles, which have a box
size of about 2.7 fm, no significant autocorrelations are seen
either between source locations or in molecular dynamics
time. The same qualitative behavior was found for other
bottomonium two-point functions.

APPENDIX B: TUNING OF THE BARE
b-QUARK MASS

Results for the kinetic mass of the �bð1SÞ meson
in lattice units, calculated from Eq. (9) with the smallest
possible magnitude of the lattice momentum jpj ¼
1 � 2�=ðaLÞ, are given in Tables IX and X for the
L ¼ 24 and L ¼ 32 ensembles, respectively. Note that
aMkin is nearly independent of p, as demonstrated by the
calculation of the ‘‘speed of light’’ in Sec. III A. As can be
seen in Fig. 8, the dependence of aMkin on amb is con-
sistent with the linear function aMkin ¼ A � amb þ B in
the ranges considered. The fit results for A and B are also
shown in the tables. Using these fit results, and the lattice
spacings from the �ð2SÞ ��ð1SÞ splitting given in
Tables IV and V, the ‘‘physical’’ values of the bare

b-quark mass amðphysÞ
b were then determined such that

Mkin agrees with the experimental value of 9.3910
(29) GeV [1–3].

Note that using the spin-averaged 1S kinetic mass in-
stead of the �bð1SÞ kinetic mass for the tuning gives values

of amðphysÞ
b that are about 1% larger. The resulting shifts in

the spin splittings (in physical units) would be smaller than
the statistical errors obtained here. For the ratios of spin
splittings the shifts would be only about 0.05 standard
deviations, which is negligible.
The tuning of the b-quark mass was performed here only

for the v4 action, and the values of am
ðphysÞ
b obtained with

this action were then used also for the calculations with the
v6 action. The v6 action employed here does not include
the spin-independent order-v6 terms, and therefore a cal-
culation of Mkin with this action would not be complete to
this order. Ignoring this issue and doing the tuning for the

v6 action was found to increase amðphysÞ
b by about 2%

relative to the values obtained for the v4 action using the

1S kinetic mass. Again, the effect of this shift on the ratios
of spin splittings would be negligible. For the v6 action the

values of amðphysÞ
b calculated using the kinetic masses of the

�bð1SÞ, the spin average 1S, and the �ð1SÞ were found to
be in agreement.

APPENDIX C: RESULTS IN LATTICE UNITS

1. Radial and orbital energy splittings

FIG. 8 (color online). Kinetic mass of the �bð1SÞ meson plotted as a function of the bare heavy-quark mass (both in lattice units).
The lines and error bands are from correlated fits using the functional form aMkin ¼ A � amb þ B. Left panel: L ¼ 24, aml ¼ 0:005.
Right panel: L ¼ 32, aml ¼ 0:004.

TABLE XI. Radial and orbital energy splittings in lattice units,
calculated with the v4 action on the L ¼ 16 ensembles, for
amb ¼ 2:536.

aml ¼ 0:01 aml ¼ 0:02 aml ¼ 0:03

�ð2SÞ ��ð1SÞ 0.3187(93) 0.3337(91) 0.3409(68)

2S� 1S 0.3233(84) 0.3372(84) 0.3448(70)

�ð3SÞ ��ð1SÞ 0.536(42) 0.545(37) 0.549(26)

13P��ð1SÞ 0.2559(24) 0.2620(20) 0.2646(15)

13P� 1S 0.2634(24) 0.2697(20) 0.2725(15)

23P� 13P 0.226(21) 0.244(16) 0.236(16)

23P��ð1SÞ 0.478(23) 0.506(17) 0.501(16)

23P� 1S 0.485(23) 0.513(17) 0.509(16)

�2ð1DÞ ��ð1SÞ 0.4052(84) 0.4254(60) 0.4318(42)
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2. Heavy-quark mass dependence of radial and orbital energy splittings

TABLE XII. Radial and orbital energy splittings in lattice units, calculated with the v4 action
on the L ¼ 24 ensembles, for amb ¼ 2:536.

aml ¼ 0:005 aml ¼ 0:01 aml ¼ 0:02 aml ¼ 0:03

�ð2SÞ ��ð1SÞ 0.3193(49) 0.3250(53) 0.3359(84) 0.3413(82)

2S� 1S 0.3236(46) 0.3291(51) 0.3395(87) 0.3453(81)

�ð3SÞ ��ð1SÞ 0.497(22) 0.542(23) 0.540(53) 0.573(51)

13P��ð1SÞ 0.2523(20) 0.2580(19) 0.2617(42) 0.2632(51)

13P� 1S 0.2598(20) 0.2656(19) 0.2695(42) 0.2710(51)

23P� 13P 0.207(12) 0.2240(79) 0.246(13) 0.263(19)

23P��ð1SÞ 0.460(14) 0.4820(84) 0.508(15) 0.526(21)

23P� 1S 0.467(14) 0.4896(84) 0.516(15) 0.534(21)

�2ð1DÞ ��ð1SÞ 0.3998(54) 0.4140(49) 0.4330(82) 0.430(11)

TABLE XIII. Radial and orbital energy splittings in lattice units, calculated with the v4 action
on the L ¼ 32 ensembles, for amb ¼ 1:87.

aml ¼ 0:004 aml ¼ 0:006 aml ¼ 0:008

�ð2SÞ ��ð1SÞ 0.2421(33) 0.2418(47) 0.2464(34)

2S� 1S 0.2454(33) 0.2452(45) 0.2493(34)

�ð3SÞ ��ð1SÞ 0.394(15) 0.395(16) 0.401(16)

13P��ð1SÞ 0.1907(20) 0.1888(19) 0.1888(19)

13P� 1S 0.1969(20) 0.1949(19) 0.1950(19)

23P� 13P 0.1629(94) 0.1649(85) 0.170(11)

23P��ð1SÞ 0.3519(94) 0.3533(94) 0.359(11)

23P� 1S 0.3580(94) 0.3594(94) 0.365(11)

�2ð1DÞ ��ð1SÞ 0.3051(40) 0.3045(56) 0.3088(54)

TABLE XIV. Heavy-quark mass dependence of radial and orbital energy splittings in lattice
units, calculated with the v4 action on the L ¼ 24 ensemble with aml ¼ 0:005.

amb ¼ 2:3 amb ¼ 2:536 amb ¼ 2:7

�ð2SÞ ��ð1SÞ 0.3211(50) 0.3193(49) 0.3184(49)

2S� 1S 0.3257(47) 0.3236(46) 0.3225(48)

13P��ð1SÞ 0.2509(21) 0.2523(20) 0.2536(19)

13P� 1S 0.2590(21) 0.2598(20) 0.2608(19)

23P� 13P 0.213(15) 0.207(12) 0.204(11)

23P��ð1SÞ 0.464(16) 0.460(14) 0.458(12)

23P� 1S 0.472(16) 0.467(14) 0.465(12)

�2ð1DÞ ��ð1SÞ 0.4002(52) 0.3998(54) 0.4001(57)

TABLE XV. Heavy-quark mass dependence of radial and orbital energy splittings in lattice
units, calculated with the v4 action on the L ¼ 32 ensemble with aml ¼ 0:004.

amb ¼ 1:75 amb ¼ 1:87 amb ¼ 2:05

�ð2SÞ ��ð1SÞ 0.2422(31) 0.2421(33) 0.2418(31)

2S� 1S 0.2456(32) 0.2454(33) 0.2454(33)

13P��ð1SÞ 0.1901(22) 0.1907(20) 0.1918(19)

13P� 1S 0.1965(22) 0.1969(20) 0.1975(19)

23P� 13P 0.1645(99) 0.1629(94) 0.1592(80)

23P��ð1SÞ 0.353(10) 0.3519(94) 0.3494(82)

23P� 1S 0.359(10) 0.3580(94) 0.3552(82)

�2ð1DÞ ��ð1SÞ 0.3048(39) 0.3051(40) 0.3059(42)
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3. Spin-dependent energy splittings

TABLE XVI. Spin-dependent energy splittings in lattice units, from the v4 action on the L ¼ 24 lattices, for amb ¼ 2:536.

aml ¼ 0:005 aml ¼ 0:01 aml ¼ 0:02 aml ¼ 0:03

�ð1SÞ � �bð1SÞ 0.0302 16(78) 0.030 37(10) 0.030 87(23) 0.031 32(24)

�ð2SÞ � �bð2SÞ 0.0124(19) 0.0135(22) 0.0160(33) 0.0150(27)


b2ð1PÞ � 
b1ð1PÞ 0.011 16(97) 0.011 85(76) 0.0135(19) 0.0115(24)


b1ð1PÞ � 
b0ð1PÞ 0.015 73(79) 0.015 40(73) 0.0179(15) 0.0150(20)

13P� hbð1PÞ 0.001 16(56) 0.001 39(46) 0.0023(13) 0.0035(16)

�2
b0ð1PÞ � 3
b1ð1PÞ þ 5
b2ð1PÞ 0.0873(52) 0.0900(43) 0.103(10) 0.087(13)

�2
b0ð1PÞ þ 3
b1ð1PÞ � 
b2ð1PÞ 0.0204(19) 0.0189(15) 0.0223(31) 0.0183(48)

�ð2SÞ��bð2SÞ
�ð1SÞ��bð1SÞ 0.411(63) 0.446(73) 0.52(11) 0.480(87)

�ð1SÞ��bð1SÞ
�2
b0ð1PÞþ3
b1ð1PÞ�
b2ð1PÞ 1.48(14) 1.60(13) 1.38(19) 1.71(44)

�ð2SÞ��bð2SÞ
�2
b0ð1PÞþ3
b1ð1PÞ�
b2ð1PÞ 0.61(11) 0.72(13) 0.72(18) 0.82(26)

TABLE XVII. Spin-dependent energy splittings in lattice units, from the v6 action on the L ¼ 24 lattices, for amb ¼ 2:536.

aml ¼ 0:005 aml ¼ 0:01 aml ¼ 0:02 aml ¼ 0:03

�ð1SÞ � �bð1SÞ 0.025 607(67) 0.025 781(84) 0.026 20(19) 0.026 57(19)

�ð2SÞ � �bð2SÞ 0.0090(16) 0.0102(19) 0.0120(27) 0.0113(25)


b2ð1PÞ � 
b1ð1PÞ 0.009 10(80) 0.009 74(69) 0.0108(19) 0.0093(22)


b1ð1PÞ � 
b0ð1PÞ 0.013 96(71) 0.013 80(64) 0.0158(14) 0.0134(17)

13P� hbð1PÞ 0.000 85(50) 0.000 99(46) 0.0018(11) 0.0026(15)

�2
b0ð1PÞ � 3
b1ð1PÞ þ 5
b2ð1PÞ 0.0734(45) 0.0763(40) 0.086(11) 0.073(13)

�2
b0ð1PÞ þ 3
b1ð1PÞ � 
b2ð1PÞ 0.0189(16) 0.0178(14) 0.0206(33) 0.0174(40)

�ð2SÞ��bð2SÞ
�ð1SÞ��bð1SÞ 0.350(64) 0.395(75) 0.46(10) 0.425(95)

�ð1SÞ��bð1SÞ
�2
b0ð1PÞþ3
b1ð1PÞ�
b2ð1PÞ 1.36(12) 1.45(12) 1.27(20) 1.52(35)

�ð2SÞ��bð2SÞ
�2
b0ð1PÞþ3
b1ð1PÞ�
b2ð1PÞ 0.476(96) 0.57(12) 0.58(16) 0.65(21)

TABLE XVIII. Spin-dependent energy splittings in lattice units, from the v4 action on the L ¼ 32 lattices, for amb ¼ 1:87.

aml ¼ 0:004 aml ¼ 0:006 aml ¼ 0:008

�ð1SÞ � �bð1SÞ 0.024 441(74) 0.024 408(74) 0.024 55(11)

�ð2SÞ � �bð2SÞ 0.0114(12) 0.0109(19) 0.0127(13)


b2ð1PÞ � 
b1ð1PÞ 0.008 56(93) 0.009 10(98) 0.0087(11)


b1ð1PÞ � 
b0ð1PÞ 0.012 68(78) 0.012 86(85) 0.013 21(78)

13P� hbð1PÞ 0.000 30(43) 0.001 04(56) 0.000 49(63)

�2
b0ð1PÞ � 3
b1ð1PÞ þ 5
b2ð1PÞ 0.0681(54) 0.0714(55) 0.0696(57)

�2
b0ð1PÞ þ 3
b1ð1PÞ � 
b2ð1PÞ 0.0168(15) 0.0168(19) 0.0177(18)

�ð2SÞ��bð2SÞ
�ð1SÞ��bð1SÞ 0.465(51) 0.448(79) 0.520(53)

�ð1SÞ��bð1SÞ
�2
b0ð1PÞþ3
b1ð1PÞ�
b2ð1PÞ 1.45(13) 1.46(17) 1.38(14)

�ð2SÞ��bð2SÞ
�2
b0ð1PÞþ3
b1ð1PÞ�
b2ð1PÞ 0.675(95) 0.65(14) 0.72(10)
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4. Dependence of spin splittings on the couplings c3 and c4

TABLE XIX. Spin-dependent energy splittings in lattice units, from the v6 action on the L ¼ 32 lattices, for amb ¼ 1:87.

aml ¼ 0:004 aml ¼ 0:006 aml ¼ 0:008

�ð1SÞ � �bð1SÞ 0.020 215(69) 0.020 170(59) 0.020 292(96)

�ð2SÞ � �bð2SÞ 0.0083(12) 0.0082(14) 0.0096(12)


b2ð1PÞ � 
b1ð1PÞ 0.006 77(85) 0.007 35(79) 0.007 10(95)


b1ð1PÞ � 
b0ð1PÞ 0.011 22(69) 0.011 16(70) 0.011 41(68)

13P� hbð1PÞ 0.000 18(42) 0.000 75(52) 0.000 24(50)

�2
b0ð1PÞ � 3
b1ð1PÞ þ 5
b2ð1PÞ 0.0562(49) 0.0591(44) 0.0582(53)

�2
b0ð1PÞ þ 3
b1ð1PÞ � 
b2ð1PÞ 0.0157(14) 0.0150(16) 0.0157(16)

�ð2SÞ��bð2SÞ
�ð1SÞ��bð1SÞ 0.410(61) 0.404(70) 0.476(61)

�ð1SÞ��bð1SÞ
�2
b0ð1PÞþ3
b1ð1PÞ�
b2ð1PÞ 1.29(11) 1.34(14) 1.29(13)

�ð2SÞ��bð2SÞ
�2
b0ð1PÞþ3
b1ð1PÞ�
b2ð1PÞ 0.528(92) 0.54(11) 0.613(99)

TABLE XX. Dependence of the spin splittings, calculated with the v4 action, on the couplings c3 and c4. Shown is the ratio of the
splitting with either c3 � 1 or c4 � 1 to the splitting with all ci ¼ 1, calculated using bootstrap. The data are for the L ¼ 24 ensemble
with aml ¼ 0:005 and amb ¼ 2:536.

c3 ¼ 0:8 c3 ¼ 1:2 c4 ¼ 0:8 c4 ¼ 1:2

�ð1SÞ � �bð1SÞ 0.980 16(18) 1.021 48(19) 0.671 51(53) 1.3808(12)

�ð2SÞ � �bð2SÞ 0.983(87) 1.025(91) 0.68(10) 1.35(14)


b2ð1PÞ � 
b1ð1PÞ 0.832(49) 1.162(54) 1.020(62) 0.954(61)


b1ð1PÞ � 
b0ð1PÞ 0.935(38) 1.064(35) 0.786(34) 1.239(48)

13P� hbð1PÞ 0.95(37) 1.01(43) 0.67(36) 1.32(63)

�2
b0ð1PÞ � 3
b1ð1PÞ þ 5
b2ð1PÞ 0.871(29) 1.129(31) 0.936(32) 1.059(39)

�2
b0ð1PÞ þ 3
b1ð1PÞ � 
b2ð1PÞ 0.991(84) 1.008(76) 0.658(67) 1.40(11)

�ð2SÞ��bð2SÞ
�ð1SÞ��bð1SÞ 1.003(89) 1.003(89) 1.02(15) 0.98(10)

�ð1SÞ��bð1SÞ
�2
b0ð1PÞþ3
b1ð1PÞ�
b2ð1PÞ 0.989(83) 1.013(78) 1.02(10) 0.989(77)

�ð2SÞ��bð2SÞ
�2
b0ð1PÞþ3
b1ð1PÞ�
b2ð1PÞ 0.99(16) 1.02(15) 1.05(23) 0.98(16)

TABLE XXI. Dependence of the spin splittings, calculated with v6 action, on the couplings c3 and c4. Shown is the ratio of the
splitting with either c3 � 1 or c4 � 1 to the splitting with all ci ¼ 1, calculated using bootstrap. The data are for the L ¼ 24 ensemble
with aml ¼ 0:005 and amb ¼ 2:536.

c3 ¼ 0:8 c3 ¼ 1:2 c4 ¼ 0:8 c4 ¼ 1:2

�ð1SÞ � �bð1SÞ 0.977 88(17) 1.024 11(20) 0.646 56(47) 1.4180(11)

�ð2SÞ � �bð2SÞ 0.98(13) 1.03(13) 0.63(12) 1.44(19)


b2ð1PÞ � 
b1ð1PÞ 0.795(53) 1.205(58) 1.016(55) 0.961(68)


b1ð1PÞ � 
b0ð1PÞ 0.924(34) 1.071(30) 0.765(34) 1.265(53)

13P� hbð1PÞ 0.92(42) 1.02(49) 0.66(41) 1.36(66)

�2
b0ð1PÞ � 3
b1ð1PÞ þ 5
b2ð1PÞ 0.845(28) 1.154(32) 0.920(29) 1.077(40)

�2
b0ð1PÞ þ 3
b1ð1PÞ � 
b2ð1PÞ 0.987(71) 1.006(62) 0.641(59) 1.41(11)

�ð2SÞ��bð2SÞ
�ð1SÞ��bð1SÞ 1.00(13) 1.00(13) 0.97(19) 1.01(14)

�ð1SÞ��bð1SÞ
�2
b0ð1PÞþ3
b1ð1PÞ�
b2ð1PÞ 0.991(75) 1.018(62) 1.008(95) 1.002(74)

�ð2SÞ��bð2SÞ
�2
b0ð1PÞþ3
b1ð1PÞ�
b2ð1PÞ 1.00(21) 1.04(19) 0.96(26) 1.02(20)

STEFAN MEINEL PHYSICAL REVIEW D 82, 114502 (2010)

114502-18



5. Heavy-quark mass dependence of spin splittings

TABLE XXIII. Heavy-quark mass dependence of the 1S hyperfine splitting in lattice units, from the v4 action on the L ¼ 24
ensembles. In the last column of the table, the results of correlated fits using the functional form aE�ð1SÞ � aE�bð1SÞ ¼ A=ðambÞ þ B

are shown.

amb ¼ 2:3 amb ¼ 2:536 amb ¼ 2:7 Fit result

aml ¼ 0:005 0.032 685(90) 0.030 216(78) 0.028 727(75) A ¼ 0:0615ð10Þ, B ¼ 0:005 97ð41Þ
aml ¼ 0:01 0.032 91(11) 0.030 37(10) 0.028 85(10) A ¼ 0:062 95ð90Þ, B ¼ 0:005 54ð34Þ
aml ¼ 0:02 0.033 44(25) 0.030 87(23) 0.029 33(24) A ¼ 0:0636ð28Þ, B ¼ 0:0058ð11Þ
aml ¼ 0:03 0.034 03(26) 0.031 32(24) 0.029 68(23) A ¼ 0:0675ð20Þ, B ¼ 0:004 70ð79Þ

TABLE XXIV. Heavy-quark mass dependence of spin splittings in lattice units, from the v6 action on the L ¼ 24 ensemble with
aml ¼ 0:005 [the results for the �ð1SÞ � �bð1SÞ splitting are given in Table XXV].

amb ¼ 2:3 amb ¼ 2:536 amb ¼ 2:7

�ð2SÞ � �bð2SÞ 0.0097(18) 0.0090(16) 0.0085(15)


b2ð1PÞ � 
b1ð1PÞ 0.009 64(87) 0.009 10(80) 0.008 77(83)


b1ð1PÞ � 
b0ð1PÞ 0.015 17(80) 0.013 96(71) 0.013 20(64)

13P� hbð1PÞ 0.000 83(54) 0.000 85(50) 0.000 93(52)

�2
b0ð1PÞ � 3
b1ð1PÞ þ 5
b2ð1PÞ 0.0786(47) 0.0734(45) 0.0703(47)

�2
b0ð1PÞ þ 3
b1ð1PÞ � 
b2ð1PÞ 0.0208(19) 0.0189(16) 0.0177(15)

TABLE XXII. Heavy-quark mass dependence of spin splittings in lattice units, from the v4 action on the L ¼ 24 ensemble with
aml ¼ 0:005 [the results for the �ð1SÞ � �bð1SÞ splitting are given in Table XXIII].

amb ¼ 2:3 amb ¼ 2:536 amb ¼ 2:7

�ð2SÞ � �bð2SÞ 0.0138(21) 0.0124(19) 0.0116(18)


b2ð1PÞ � 
b1ð1PÞ 0.0122(11) 0.011 16(97) 0.010 60(86)


b1ð1PÞ � 
b0ð1PÞ 0.017 34(86) 0.015 73(79) 0.014 69(71)

13P� hbð1PÞ 0.001 20(62) 0.001 16(56) 0.001 20(54)

�2
b0ð1PÞ � 3
b1ð1PÞ þ 5
b2ð1PÞ 0.0956(62) 0.0873(52) 0.0824(46)

�2
b0ð1PÞ þ 3
b1ð1PÞ � 
b2ð1PÞ 0.0225(22) 0.0204(19) 0.0189(18)

TABLE XXV. Heavy-quark mass dependence of the 1S hyperfine splitting in lattice units, from the v6 action on the L ¼ 24
ensembles. In the last column of the table, the results of correlated fits using the functional form aE�ð1SÞ � aE�bð1SÞ ¼ A=ðambÞ þ B

are shown.

amb ¼ 2:3 amb ¼ 2:536 amb ¼ 2:7 Fit result

aml ¼ 0:005 0.027 319(70) 0.025 607(67) 0.024 567(66) A ¼ 0:0427ð10Þ, B ¼ 0:008 76ð40Þ
aml ¼ 0:01 0.027 548(91) 0.025 781(84) 0.024 712(85) A ¼ 0:043 98ð75Þ, B ¼ 0:008 43ð29Þ
aml ¼ 0:02 0.028 00(19) 0.026 20(19) 0.025 13(19) A ¼ 0:0447ð25Þ, B ¼ 0:0086ð10Þ
aml ¼ 0:03 0.028 51(21) 0.026 57(19) 0.025 40(19) A ¼ 0:0482ð16Þ, B ¼ 0:007 53ð65Þ
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TABLE XXVII. Heavy-quark mass dependence of the 1S hyperfine splitting in lattice units, from the v4 action on the L ¼ 32
ensembles. In the last column of the table, the results of correlated fits using the functional form aE�ð1SÞ � aE�bð1SÞ ¼ A=ðambÞ þ B

are shown.

amb ¼ 1:75 amb ¼ 1:87 amb ¼ 2:05 Fit result

aml ¼ 0:004 0.025 679(82) 0.024 441(74) 0.022 850(76) A ¼ 0:033 80ð58Þ, B ¼ 0:006 36ð28Þ
aml ¼ 0:006 0.025 669(78) 0.024 408(74) 0.022 787(70) A ¼ 0:034 43ð54Þ, B ¼ 0:005 98ð27Þ
aml ¼ 0:008 0.025 82(12) 0.024 55(11) 0.022 91(11) A ¼ 0:0348ð11Þ, B ¼ 0:005 92ð57Þ

TABLE XXIX. Heavy-quark mass dependence of the 1S hyperfine splitting in lattice units, from the v6 action on the L ¼ 32
ensembles. In the last column of the table, the results of correlated fits using the functional form aE�ð1SÞ � aE�bð1SÞ ¼ A=ðambÞ þ B

are shown.

amb ¼ 1:75 amb ¼ 1:87 amb ¼ 2:05 Fit result

aml ¼ 0:004 0.021 117(74) 0.020 215(69) 0.019 088(62) A ¼ 0:024 24ð44Þ, B ¼ 0:007 26ð22Þ
aml ¼ 0:006 0.021 083(63) 0.020 170(59) 0.019 029(56) A ¼ 0:024 50ð56Þ, B ¼ 0:007 07ð27Þ
aml ¼ 0:008 0.021 222(92) 0.020 292(96) 0.019 126(91) A ¼ 0:0251ð11Þ, B ¼ 0:006 85ð58Þ

TABLE XXVIII. Heavy-quark mass dependence of spin splittings in lattice units, from the v6 action on the L ¼ 32 ensemble with
aml ¼ 0:004 [the results for the �ð1SÞ � �bð1SÞ splitting are given in Table XXIX].

amb ¼ 1:75 amb ¼ 1:87 amb ¼ 2:05

�ð2SÞ � �bð2SÞ 0.0088(13) 0.0083(12) 0.0077(13)


b2ð1PÞ � 
b1ð1PÞ 0.007 00(89) 0.006 77(85) 0.006 43(72)


b1ð1PÞ � 
b0ð1PÞ 0.011 87(73) 0.011 22(69) 0.010 40(61)

13P� hbð1PÞ 0.000 20(42) 0.000 18(42) 0.000 20(32)

�2
b0ð1PÞ � 3
b1ð1PÞ þ 5
b2ð1PÞ 0.0587(51) 0.0562(49) 0.0530(41)

�2
b0ð1PÞ þ 3
b1ð1PÞ � 
b2ð1PÞ 0.0168(15) 0.0157(14) 0.0144(12)

TABLE XXVI. Heavy-quark mass dependence of spin splittings in lattice units, from the v4 action on the L ¼ 32 ensemble with
aml ¼ 0:004 [the results for the �ð1SÞ � �bð1SÞ splitting are given in Table XXVII].

amb ¼ 1:75 amb ¼ 1:87 amb ¼ 2:05

�ð2SÞ � �bð2SÞ 0.0122(13) 0.0114(12) 0.0108(12)


b2ð1PÞ � 
b1ð1PÞ 0.0091(10) 0.008 56(93) 0.008 04(76)


b1ð1PÞ � 
b0ð1PÞ 0.013 52(84) 0.012 68(78) 0.011 72(70)

13P� hbð1PÞ 0.000 28(49) 0.000 30(43) 0.000 33(39)

�2
b0ð1PÞ � 3
b1ð1PÞ þ 5
b2ð1PÞ 0.0725(60) 0.0681(54) 0.0636(44)

�2
b0ð1PÞ þ 3
b1ð1PÞ � 
b2ð1PÞ 0.0179(18) 0.0168(15) 0.0154(13)
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APPENDIX D: GLUON-DISCRETIZATION
ERRORS

The Iwasaki gluon action used in this work belongs to a
class of actions with the form

SG½U�¼��

3

X
x

�
ð1�8c1Þ

X
�<�

P½U�x;��þc1
X
���

R½U�x;��

�
;

(D1)

where P½U�x;�� and R½U�x;�� are the real part of the trace

of the 1� 1 plaquette and 1� 2 rectangle terms, respec-
tively [the coefficient c1 in (D1) should not be confused
with the one in the NRQCD action (4)]. The Iwasaki action
uses c1 ¼ �0:331, derived from a renormalization-group
transformation [28–30]. Note that tree-level order-a2 im-
provement would require c1 ¼ �1=12, corresponding to
the tree-level Lüscher-Weisz action [45,46]). However,
nonperturbatively and at coarse lattice spacings, the
Iwasaki action has been shown to yield reduced lattice

FIG. 9 (color online). Heavy-quark mass dependence of the spin splittings on the L ¼ 24, aml ¼ 0:005 and L ¼ 32, aml ¼ 0:004
ensembles. Results are shown for both the v4 and the v6 actions. The dashed lines and gray error bands are correlated fits using the
function A=ðambÞ. The data for the 1S hyperfine splittings are incompatible with this form, and additional fits using the function
A=ðambÞ þ B are shown, which describe the data very well.
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artifacts compared to the tree-level Lüscher-Weisz action
[47,48].

In this appendix, gluonic discretization errors in botto-
monium energy splittings will be investigated. In Sec. D 1,
the shifts in radial and orbital energy splittings are studied
using tree-level perturbation theory for four different
choices of c1. The tree-level energy shift for the simple
plaquette action (c1 ¼ 0) has previously been estimated at
order a2 in [49,50]. In the following, a new analysis based
on a lattice potential model is presented. This analysis does
not make use of an expansion in powers of a, which would
not be appropriate for the Iwasaki action.

Then, to go beyond tree level, in Sec. D 2 nonperturba-
tive bottomonium results obtained from the RBC/UKQCD
ensembles (using the Iwasaki gluon action) and from the
MILC ensembles [13] (using the tadpole-improved one-
loop Lüscher-Weisz action [51]) are compared. This com-
parison also includes all the bottomonium spin splittings
considered in this paper, and leads to nonperturbative
estimates of gluonic discretization errors for them.

1. Lattice potential model using tree-level
perturbation theory

a. The model

The discretization errors caused by the gluon action in
radial and orbital bottomonium energy splittings can be
estimated using a potential model on a three-dimensional
cubic lattice with Hamiltonian

H ¼ � �

mb

þ V; (D2)

where � is a lattice Laplace operator and VðrÞ is the static
quark-antiquark potential derived from the lattice gluon
action in use. In the model employed here, VðrÞ is taken to
be of the form

VðrÞ ¼ V lat;0ðrÞ þ �jrj; (D3)

where V lat;0ðrÞ is the tree-level lattice potential that is
obtained from the tree-level lattice gluon propagator
Glat

��ðqÞ as follows:

V lat;0ðrÞ ¼ � 4

3
g2

Z
jqjj��

a

d3q

ð2�Þ3 e
iq�rGlat

00ðq; 0Þ: (D4)

For a ! 0, the potential V lat;0ðrÞ approaches the continuum
Coulomb potential V0ðrÞ ¼ �ð4=3Þ�s=jrj [with �s ¼
g2=ð4�Þ]. The linear term �jrj in (D3) is added to describe
the nonperturbative long-distance behavior of the quark-
antiquark potential. In Ref. [37] a similar model on a cubic
lattice was considered, with a discrete Laplacian but with
the continuum form of the potential. In the following, the
same parameters as in [37] are used:

ffiffiffiffi
�

p ¼ 468 MeV,
�s ¼ 0:24, and mb ¼ 4:676 GeV. Note that in [37] the
coordinate system was chosen such that the origin r ¼ 0
was at the center of an elementary cube, in order to avoid
the singularity of the continuum Coulomb potential. In
contrast, here the point r ¼ 0 is a regular lattice point,
and the lattice potential (D4) is finite at that point [one has
Vlat;0ð0Þ / 1=a]. In fact, the dominant gluon-discretization
errors arise at and near the point r ¼ 0.
The propagator Glat

��ðqÞ for the action (D1) can be found
in [52]. The 0-0-component at q0 ¼ 0 has the simple form

Glat
00ðq; 0Þ ¼

1

ð2aÞ2
P

3
j¼1 sin

2ðaqj2 Þ � c1a
2ð2aÞ4

P
3
j¼1 sin

4ðaqj2 Þ
:

(D5)

The Iwasaki gluon action [28–30] has c1 ¼ �0:331.
Results will also be given for c1 ¼ 0 (the simple plaquette
action), c1 ¼ �1=12 (the tree-level Lüscher-Weisz action
[45,46]), and c1 ¼ �1:406 86 (the DBW2 action [47,53]).
For these choices of c1 and for all points rwith jri=aj � 60
the integral (D4) was computed numerically.
For the Laplace operator � in (D2), three different

discretizations are considered:

� ¼

8>><
>>:

P
3
j¼1 rþ

j r�
j ; unimproved;P

3
j¼1 rþ

j r�
j � ða2=12ÞP3

j¼1½rþ
j r�

j �2; Oða2Þ � improved;P
3
j¼1 rþ

j r�
j � ða2=12ÞP3

j¼1½rþ
j r�

j �2 þ ða4=90ÞP3
j¼1½rþ

j r�
j �3; Oða4Þ � improved;

(D6)

with rþ
j c ðrÞ ¼ ½c ðrþ aejÞ � c ðrÞ�=a and r�

j c ðrÞ ¼
½c ðrÞ � c ðr� aejÞ�=a. As shown by the results in the
next section, when the Oða4Þ-improved Laplacian is
used, the discretization errors associated with � are in
most cases much smaller than the gluonic discretization
errors associated with (D4).

The low-lying eigenvalues and eigenfunctions of the
Hamiltonian (D2) were computed numerically for lattices
with a physical side length of 2.7 fm and lattice spacings in
the range from 0.0223 to 0.208 fm. As in [37], only
one octant of the lattice was simulated. S-wave states

(A1 representation) and D-wave states (E representation)
were obtained by using periodic boundary conditions in all
three lattice directions; P-wave states (T1 representation)
were obtained by using antiperiodic boundary conditions
in the r3 direction and periodic boundary conditions in the
r1 and r2 directions.

b. Results

Figure 10 shows the deviations in the 1S and 1P
energies from their continuum values as a function of
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a2, for the three different levels of Symanzik improve-
ment in the lattice Laplacian defined in Eq. (D6). As can
be seen in the figure, the difference between the results
from the Oða2Þ- and Oða4Þ-improved Laplace operators
is small, much smaller than the difference between the
results from the unimproved and Oða2Þ-improved
Laplace operators. This indicates that the remaining dis-
cretization errors in the Oða4Þ-improved Laplacian are
negligible. However, for the S-wave state a significant
shift in the energy from its continuum value remains at
finite lattice spacing. This error can be interpreted as the
tree-level gluonic contribution to the discretization er-
rors, stemming from the use of the lattice potential (D4).

As expected, at small lattice spacings, the
Oða2Þ-improved Lüscher-Weisz action shows signifi-
cantly smaller tree-level discretization errors than the
other actions.
For the P-wave states, the gluonic discretization errors

are much smaller than for the S-wave states. This is ex-
pected because the dominant correction in the potential
arises at the origin, where the wave function vanishes for
all states other than the S-wave states. Only the DBW2
action leads to significant tree-level gluon-discretization
errors in the 1P energy.
Examples of 1S and 1P eigenfunctions of the

Hamiltonian (D2) with the Oða4Þ-improved Laplacian

FIG. 10 (color online). Shift in the lattice potential model 1S and 1P energies as a function of the lattice spacing, for different levels
of Symanzik improvement in the Laplace operator.

BOTTOMONIUM SPECTRUM AT ORDER v6 FROM . . . PHYSICAL REVIEW D 82, 114502 (2010)

114502-23



are shown in Fig. 11. The large negative coefficient
c1 ¼ �1:406 86 of the DBW2 action leads to a visible
distortion of the 1S-wave function compared to the tree-
level Lüscher-Weisz action with c1 ¼ �1=12, while the
1P state is only weakly affected by the choice of c1.
The broadening of the 1S-wave function is expected
because a negative coefficient c1 shifts the potential at
short distances upwards. In particular, at r ¼ 0, one
has

3a

4g2
V lat;0ð0Þ �

8>>><
>>>:

�0:252 73; c1 ¼ 0;
�0:219 03; c1 ¼ �1=12;
�0:164 37; c1 ¼ �0:331;
�0:093 84; c1 ¼ �1:406 86:

(D7)

However, note that the broadening of the lattice
1S-wave function caused by a negative value of c1
does not necessarily mean that the hyperfine splitting
is reduced. This will be discussed further in Sec. D 2.

FIG. 11 (color online). Lattice potential model wave functions�ðr1; r2; r3Þ at r1 ¼ 0 for the 1S and 1P states. Data are shown for the
tree-level Lüscher-Weisz gluon action (c1 ¼ �1=12) and the DBW2 gluon action (c1 ¼ �1:406 86), at two different lattice spacings,
using the Oða4Þ-improved Laplacian in all cases.
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The results for the shifts in the energies of the 1S, 2S, 3S,
1P, 2P, and 1D states, obtained with the Oða4Þ-improved
Laplacian and the four different gluon actions, are summa-
rized in Fig. 12. This figure also shows the 2S� 1S and
1P� 1S splittings, demonstrating that the 2S� 1S split-
ting has smaller tree-level gluon-discretization errors and
is therefore better suited for setting the lattice scale. For the
Iwasaki action, the gluonic tree-level discretization errors
in the 2S� 1S splitting are found to be about 2.6% at a ¼
0:11 fm and 1.6% at a ¼ 0:08 fm, respectively. Note that
the 2P� 1P splitting is nearly free of gluonic discretiza-
tion errors and therefore appears to be a good alternative

choice for the scale setting. However, in the actual
lattice QCD calculation the 2P� 1P splitting has much
larger statistical errors than the 2S� 1S splitting (see
Appendix C 1).
Figure 13 shows the gluonic discretization errors in the

3S� 1S, 1P� 1S, 2P� 1P, and 1D� 1S splittings for
the case that they are calculated using the 2S� 1S splitting
to set the scale. In the 2P� 1P splitting, previously nearly
free of gluonic discretization errors, this process introduces
new gluon errors. However, in the other splittings shown in
Fig. 13, the scale setting with the 2S� 1S splitting leads to
a partial cancellation of gluonic discretization errors. The

FIG. 12 (color online). Shift in the lattice potential model energy levels and splittings as a function of the lattice spacing. All data
shown in this figure were generated with theOða4Þ-improved Laplacian, so that the shifts are dominated by gluon-discretization errors.
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results for the relative errors obtained with the Iwasaki
action at a ¼ 0:11 fm and a ¼ 0:08 fm are given in
Table XXX.

2. Results from MILC ensembles and gluon-
discretization errors in spin splittings

In order to study the influence of the gauge action on the
bottomonium energy splittings nonperturbatively, the cal-
culations presented in the main part of this paper were
repeated on two ensembles of lattice gauge fields generated
by the MILC Collaboration [13]. These ensembles make
use of the tadpole-improved one-loop Lüscher-Weisz ac-
tion [51] for the gluons, which is based on order-a2

Symanzik improvement rather than renormalization-group
improvement. The action includes the plaquette and rect-
angle terms, and in addition a third term (‘‘parallelo-
gram’’). Their coefficients �pl, �rt, and �pg were

computed using one-loop perturbation theory, but without
the effects of sea quarks. These effects were later calcu-
lated and found to be significant [54]. Therefore, on the
(2þ 1)-flavor MILC ensembles, the gluon action is ex-
pected to have Oð�sa

2Þ errors.
The parameters of the MILC ensembles used here are

given in Table XXXI. The values for the lattice spacing and

amðphysÞ
b were computed using exactly the same methods as

for the RBC/UKQCD ensembles, to minimize any possible
bias. The sea quarks in the MILC ensembles are imple-
mented with the rooted staggered AsqTad action [57–59].
This leads to an effective averaging over multiple tastes of
sea pions [13], and therefore the appropriate pion mass to
consider for bottomonium is the root-mean square (RMS)
pion mass. To facilitate the comparison, the results from
the RBC/UKQCD ensembles were therefore interpolated/
extrapolated to match the RMS pion masses of the MILC
ensembles. The lattice spacings of the coarse and fine
MILC ensembles also match the lattice spacings of the
corresponding RBC/UKQCD ensembles. As discussed in
Sec. III B 2, the lattice spacing of the RBC/UKQCD en-
sembles changes slightly when the sea-quark mass is
changed, because the bare gauge coupling is kept constant.
It turns out that this shift makes the agreement of the lattice
spacings even better after interpolation to match the MILC
pion masses. At the matching points, any significant dif-
ference between the results from the RBC/UKQCD and
MILC ensembles would indicate different systematics as-
sociated with the gluon and sea-quark actions. In the
following it is assumed that the effect of changing the
sea-quark action is negligible for bottomonium.

TABLE XXX. Estimates of tree-level gluon-discretization er-
rors in radial and orbital bottomonium energy splittings com-
puted with the Iwasaki action and using the 2S� 1S splitting to
set the scale. A negative sign indicates a negative deviation from
the continuum value.

Error (a ¼ 0:11 fm) Error (a ¼ 0:08 fm)

3S� 1S 0.6% 0.4%

1P� 1S �3:4% �2:8%
2P� 1P 2.6% 1.6%

1D� 1S �1:2% �1:1%

FIG. 13 (color online). Shift in the lattice potential model energy splittings, rescaled using the 2S� 1S splitting, as a function of
the lattice spacing. All data shown in this figure were generated with the Oða4Þ-improved Laplacian, so that the shifts are dominated
by gluon-discretization errors.
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The radial and orbital energy splittings are compared in
Table XXXII. As can be seen there, with the exception of
the statistically most precise 1P� 1S splitting, all results
from the MILC ensembles agree with those from the RBC/
UKQCD ensembles within the statistical errors. At the
coarse lattice spacing, the 1P� 1S splitting from the
MILC ensemble is found to be about 9 MeV (1.4 standard
deviations) higher than that from the RBC/UKQCD en-
semble. At the fine lattice spacing, the 1P� 1S splittings
from the MILC and RBC/UKQCD ensembles fully agree
with each other within the statistical error of 7 MeV. In
contrast, the tree-level estimates in Fig. 13 would suggest a
difference between the splittings from the Iwasaki and tree-
level Lüscher-Weisz actions of 27MeVat a ¼ 0:12 fm and
18 MeVat a ¼ 0:09 fm. Note however that at these lattice
spacings, the tadpole-improved one-loop Lüscher-Weisz
action has a value of �rt=�pl that is not as far away from

the Iwasaki action as in the tree-level case [51]. Thus,
nonperturbatively the errors caused by the Iwasaki action
are likely to be smaller than the tree-level estimates.

The spin splittings from the RBC/UKQCD and MILC
ensembles are compared in Table XXXIII (for the order-v4

NRQCD action) and Table XXXIV (for the order-v6

NRQCD action). As can be seen there, with the exception
of the directly calculated 1S hyperfine splitting, all results
from the MILC ensembles are in agreement with the
corresponding results from the RBC/UKQCD ensembles
within the statistical errors. At the fine lattice spacing, the
1S hyperfine splitting from the MILC ensemble is found to
be about 5% (1.9 standard deviations) higher than the 1S
hyperfine splitting from the RBC/UKQCD ensemble.

Recall from Sec. D 1 b that a negative coefficient c1 in
the gluon action leads to a broadening of the lattice

1S-wave function. In the continuum, the leading-order
hyperfine splitting is proportional to jc ð0Þj2, and one
might therefore expect naively that a negative coefficient
c1 reduces the hyperfine splitting [60]. If this picture was
correct, for example, the simple plaquette action (c1 ¼ 0)
would give a significantly larger hyperfine splitting than
the Iwasaki action (c1 ¼ �0:331). In Ref. [22], the authors
compared their results for the 1S hyperfine splitting,
computed using the Iwasaki action, to the results from
[21] that used the same NRQCD action and the same
number of sea-quark flavors, but the plaquette gluon
action. The lattice spacing was a � 0:10 fm in both cases.
At a ¼ 0:10 fm, the lattice potential model from Sec. D 1

gives jc ðc1¼0Þð0Þj2=jc ðc1¼�0:331Þð0Þj2 � 1:5. In contrast,
the results for the 1S hyperfine splitting from the two
groups were in agreement within the statistical error of
about 5%. Clearly, the simple continuum picture for the
hyperfine splitting does not apply here. On the lattice,
the spin-dependent potential responsible for the S-wave
hyperfine splitting will have nonzero values also at r � 0.
It is expected to be a complicated function that depends
both on the lattice gluon propagator and on the discretiza-
tion of the chromomagnetic field strength in the NRQCD
action.
Given the comparison of results for the 1S hyperfine

splitting from the Iwasaki action with results from two
other gluon actions as discussed above, it seems reasonable
to assume a gluonic discretization error of 5% for the
hyperfine splittings calculated with the Iwasaki action at
a � 0:08 fm. The same error estimate is used for the ratios
of hyperfine and tensor splittings. For the ratio of the
2S and 1S hyperfine splittings, a partial cancellation of
gluonic discretization errors is expected (as in the 2S� 1S

TABLE XXXI. Parameters for the calculations on the MILC ensembles. The bare gauge couplings are given as � ¼ 10=g2. For the
MILC ensembles, there are taste splittings between the different pions [13], and the root-mean-square masses taken from [55,56] are
given.

L3 � T � aml ams amb u0L nconf a (fm) mðRMSÞ
� (GeV) amðphysÞ

b

243 � 64 6.76 0.005 0.05 2.3, 2.64, 2.7 0.8362 2099 0.1198(11) 0.460 2.664(24)

283 � 96 7.09 0.0062 0.031 1.75, 1.86, 2.05 0.8541 1910 0.086 13(83) 0.416 1.858(19)

TABLE XXXII. Comparison of results from the RBC/UKQCD and MILC ensembles: radial and orbital energy splittings in GeV,
computed with the v4 action.

a � 0:12 fm, m� � 460 MeV a � 0:09 fm, m� � 416 MeV
RBC MILC RBC MILC

�ð3SÞ ��ð1SÞ 0.916(28) 0.915(30) 0.926(23) 0.934(31)

13P��ð1SÞ 0.4426(41) 0.4510(45) 0.4349(45) 0.4367(58)

13P� 1S 0.4556(41) 0.4645(46) 0.4490(46) 0.4515(60)

23P� 13P 0.3932(92) 0.385(12) 0.396(13) 0.386(11)

23P��ð1SÞ 0.836(11) 0.831(12) 0.829(14); 0.823(15)

23P� 1S 0.849(11) 0.845(13) 0.843(14) 0.837(15)

�2ð1DÞ ��ð1SÞ 0.7130(70) 0.7143(70) 0.7091(81) 0.713(12)
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splitting in Fig. 12), and therefore a 2.5% gluon error is
estimated for this ratio at a � 0:08 fm.

Finally, recall from Fig. 9 that the 1S hyperfine splitting
computed on the RBC/UKQCD ensembles shows an amb

dependence that is slightly different from the simple

proportionality to 1=ðambÞ seen in the other spin splittings.
In Fig. 14, the 1S hyperfine splitting in lattice units computed
on the coarse and fine MILC ensembles is plotted as a
function of 1=ðambÞ. As can be seen there, the behavior is
very similar to that found on the RBC/UKQCD ensembles.

TABLE XXXIII. Comparison of results from the RBC/UKQCD and MILC ensembles: spin splittings, computed with the v4 action.
All results in MeV, except for the dimensionless ratios.

a � 0:12 fm, m� � 460 MeV a � 0:09 fm, m� � 416 MeV
RBC MILC RBC MILC

�ð1SÞ � �bð1SÞ 52.29(99) 53.79(95) 56.2(1.1) 59.3(1.2)

�ð2SÞ � �bð2SÞ 23.3(2.1) 25.0(2.2) 28.1(2.1) 31.6(3.2)


b2ð1PÞ � 
b1ð1PÞ 20.3(1.1) 21.5(1.3) 20.4(1.5) 21.8(1.8)


b1ð1PÞ � 
b0ð1PÞ 27.1(1.0) 27.3(1.1) 29.8(1.3) 29.8(1.6)

13P� hbð1PÞ 2.94(66) 2.90(70) 1.93(84) 2.1(1.2)

�2
b0ð1PÞ � 3
b1ð1PÞ þ 5
b2ð1PÞ 155.3(6.4) 162.1(7.5) 161.6(8.8) 168.7(9.6)

�2
b0ð1PÞ þ 3
b1ð1PÞ � 
b2ð1PÞ 33.9(2.1) 33.1(2.3) 39.4(2.7) 38.0(3.8)

�ð2SÞ��bð2SÞ
�ð1SÞ��bð1SÞ 0.447(39) 0.466(41) 0.501(38) 0.532(52)

�ð1SÞ��bð1SÞ
�2
b0ð1PÞþ3
b1ð1PÞ�
b2ð1PÞ 1.517(88) 1.63(11) 1.416(98) 1.56(15)

�ð2SÞ��bð2SÞ
�2
b0ð1PÞþ3
b1ð1PÞ�
b2ð1PÞ 0.692(75) 0.755(83) 0.720(73) 0.83(12)

TABLE XXXIV. Comparison of results from the RBC/UKQCD and MILC ensembles: spin splittings, computed with the v6 action.
All results in MeV, except for the dimensionless ratios.

a � 0:12 fm, m� � 460 MeV a � 0:09 fm, m� � 416 MeV
RBC MILC RBC MILC

�ð1SÞ � �bð1SÞ 44.39(84) 45.64(81) 46.49(91) 48.64(96)

�ð2SÞ � �bð2SÞ 17.3(1.8) 18.8(1.9) 20.9(1.9) 22.3(2.4)


b2ð1PÞ � 
b1ð1PÞ 16.55(99) 17.7(1.2) 16.5(1.3) 17.5(1.7)


b1ð1PÞ � 
b0ð1PÞ 24.06(91) 24.3(1.0) 25.9(1.1) 26.5(1.5)

13P� hbð1PÞ 2.18(60) 2.13(62) 1.27(74) 1.21(96)

�2
b0ð1PÞ � 3
b1ð1PÞ þ 5
b2ð1PÞ 130.6(5.9) 137.0(6.9) 134.3(7.8) 140.9(8.8)

�2
b0ð1PÞ þ 3
b1ð1PÞ � 
b2ð1PÞ 31.5(1.9) 30.9(2.2) 35.6(2.4) 35.7(3.7)
�ð2SÞ��bð2SÞ
�ð1SÞ��bð1SÞ 0.392(40) 0.413(42) 0.450(41) 0.458(47)

�ð1SÞ��bð1SÞ
�2
b0ð1PÞþ3
b1ð1PÞ�
b2ð1PÞ 1.396(81) 1.48(10) 1.304(88) 1.36(14)

�ð2SÞ��bð2SÞ
�2
b0ð1PÞþ3
b1ð1PÞ�
b2ð1PÞ 0.552(66) 0.607(75) 0.593(67) 0.626(90)

FIG. 14 (color online). Heavy-quark mass dependence of the 1S hyperfine splittings on the MILC ensembles (see Fig. 9 for the data
from the RBC/UKQCD ensembles).
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